
Code-Optimise: Self-Generated Preference Data
for Correctness and Efficiency

Anonymous ACL submission

Abstract

Code Language Models have been trained to001
generate accurate solutions, typically with no002
regard for runtime. On the other hand, pre-003
vious works that explored execution optimi-004
sation have observed corresponding drops in005
functional correctness. To that end, we intro-006
duce Code-Optimise, a framework that incor-007
porates both correctness (passed, failed) and008
runtime (quick, slow) as learning signals via009
self-generated preference data. Our framework010
is both lightweight and robust as it dynamically011
selects solutions to reduce overfitting while012
avoiding a reliance on larger models for learn-013
ing signals. Code-Optimise achieves signifi-014
cant improvements in pass@k while decreas-015
ing the competitive baseline runtimes by an016
additional 6% for in-domain data and up to 3%017
for out-of-domain data. As a byproduct, the018
average length of the generated solutions is re-019
duced by up to 48% on MBPP and 23% on020
HumanEval, resulting in faster and cheaper in-021
ference. The generated data and codebase will022
be open-sourced at www.open-source.link.023

1 Introduction024

Code Language Models (CLMs) trained on large025

code repositories such as The Stack (Kocetkov026

et al., 2022; Lozhkov et al., 2024) gradually027

increase their understanding of code semantics.028

CLMs are thus able to generate functionally correct029

and reasonably efficient solutions to programming030

problems (Austin et al., 2021; Chen et al., 2021),031

among many other code related skills (Li et al.,032

2023). Shypula et al. (2023) have shown that CLMs033

can optimise slow-running code to achieve large034

runtime gains but at a substantial cost to correctness035

(down by up to ∼30%). Subsequent research has036

focused mostly on improving code correctness. On037

the data perspective, a common way of improving038

functional correctness is via distilled supervised039

fine-tuning (Tunstall et al., 2023; Xu et al., 2023;040

 Optimisation

 Supervised Fine-Tuning (SFT)

 Direct Preference Optimisation (DPO)

 Sampling

Input: Write a function to reverse words in a given string.

Solution: return s[::-1]

 Annotation

 Solution: return s[::-1]
 Unit Tests:

 Solution: return " ".join(sorted([str(x) if type(x) != str for x in
s.split(" ")]))
 Unit Tests:

 Solution: return " ".join(s.split()[::-1])
 Unit Tests:

assert reverse_words("java language")==("language java")
assert reverse_words("indian man")==("man indian")

 Passed: True
 Time: 64281.948 nanoseconds

Input: Write a function to reverse words in a given string.

Solution: return " ".join(sorted([str(x) if type(x) != str for
x in s.split(" ")]))

Interpreter
&

Timing Module

TOP-N% of the fastest solutions per
problem, where N ∈ {25, 100}

Optimised
CLM

Baseline
CLM

1

2

3

Baseline
CLM

Seed Data
(prompt +
unit tests)

Input: Write a function to reverse words in a given string.

Solution: return " ".join(s.split()[::-1])

All

&

&

&

Passed vs. Failed

&

&

Quick vs. Slow

&

Figure 1: Overview of Code-Optimise. (1) Diverse so-
lutions are sampled per problem. (2) A code interpreter
annotates the solutions by functional correctness and
runtime. (3) CLM is optimised using SFT or DPO.

Luo et al., 2023; Wei et al., 2023) on training data 041

generated by large models such as GPT-4 (Achiam 042

et al., 2023). However, in many cases, due to le- 043

gal, financial and/or privacy constraints, it is not 044

feasible to rely on proprietary data. Additionally, 045

we seek to overcome the limitations of supervised 046

1

www.open-source.link

Model Split Problem Solution
Total Filtered Ratio Total Filtered Ratio CoV

StarCoder-1B
Train 384 183 47.66 38400 15472 40.29 0.011

Validation 90 40 44.44 9000 3533 39.26 0.010

StarCoder-3B
Train 384 211 54.95 38400 17575 45.77 0.007

Validation 90 45 50.00 9000 3926 43.62 0.014

CodeLlama-7B
Train 384 250 65.10 38400 21350 55.60 0.007

Validation 90 55 61.11 9000 4962 55.13 0.008

CodeLlama-13B
Train 384 261 67.97 38400 22182 57.77 0.007

Validation 90 56 62.22 9000 5108 56.76 0.007

Table 1: Statistics of our self-generated preference data. 1) A Model generates 100 solutions per problem out of
Total problems in each Split. 2) Functional correctness and runtime are annotated. 3) Problems are filtered to retain
those with at least 2 passing and 1 failing solution (Filtered). A low coefficient of variation (CoV ≤ 0.1) across 5
runs indicates that runtime measurements are stable. Ratio is the percentage of Filtered

Total retained code solutions.

fine-tuning (SFT), which only optimises for ‘pos-047

itive’ examples, with no means of reducing the048

likelihood of generating undesirable (e.g. incorrect049

or slow) code. Although such issues may be ad-050

dressed via Reinforcement Learning (RL) (Le et al.,051

2022; Wang et al., 2022; Gorinski et al., 2023),052

they often come with added complexity and in-053

stability. Therefore, we opt for Direct Preference054

Optimisation (Rafailov et al., 2024) as our pre-055

ferred fine-tuning method due to its simplicity and056

widespread adoption. We propose Code-Optimise,057

a lightweight framework that trains CLMs with058

our self-generated preference data for correctness059

(passed/failed) and efficiency (quick/slow), shown060

in Figure 1. Starting from a small collection of061

problems and unit tests, Code-Optimise bootstraps062

the pretrained CLM to generate the required learn-063

ing signals thereby exposing the model to on-policy064

automatically annotated data. Code-Optimise pro-065

vides additional robustness by dynamically select-066

ing solutions during training to reduce overfitting.067

Our method consists of three steps: 1) Sampling;068

generate N solutions for each problem description,069

2) Annotation; automatically label each solution070

for correctness and runtime, 3) Optimisation; fine-071

tune the CLM on the self-generated preference data072

using several lightweight configurations. The main073

contributions of Code-Optimise are:074

• We create and publish a novel code preference075

dataset (and a recipe to extend it) that enables076

multi-objective optimisation (code correctness077

and runtime efficiency) of CLMs.078

• We present experimental analysis to support079

our approach and observe that functional cor-080

rectness is significantly improved, particularly 081

for smaller CLMs and lower k in pass@k. 082

The scores are further enhanced with our Dy- 083

namic Solution Selection (DSS). 084

• We demonstrate that runtimes are reduced by 085

up to 6% for MBPP and up to 3% for Hu- 086

manEval over competitive baseline CLMs. Fi- 087

nally, the length of generated solutions is re- 088

duced by up to 23% for HumanEval and up to 089

48% for MBPP, decreasing inference costs. 090

To the best of our knowledge, our work is the first 091

to show improvements in both correctness and effi- 092

ciency for the task of code generation. 093

2 Code-Optimise 094

We now introduce Code-Optimise, a lightweight 095

method for optimisation of CLMs aimed at im- 096

proving functional correctness of code as well as 097

reducing its runtime, shown in Figure 1. 098

2.1 Sampling 099

We assume access to Dseed = {xi, yi, uti}Ni=1, a 100

dataset of problem descriptions xi and the corre- 101

sponding unit tests uti that can be used for sam- 102

pling and testing new solutions from the CLM, 103

denoted CLMbase henceforth. Since fine-tuning 104

the model on the limited solutions yi would lead to 105

overfitting, we leverage its extensive pretraining to 106

generate a multitude of diverse solutions to obtain 107

additional training data. We sample 100 solutions 108

from CLMbase for each problem description with 109

multinomial sampling due to its lower computa- 110

tional cost. A temperature of t = 0.6 is applied to 111

2

Algorithm 1 Timing module algorithm.

1: for s ∈ solutions do
2: CoV ←∞
3: repeat ▷ up to 1K times
4: times← [] ▷ initialise empty list
5: for 1, . . . , 50 do
6: runtime, passed← EXEC(s)
7: times.append(runtime)
8: µ, σ ← MEAN(times), STD(times)
9: CoV ← σ/µ

10: until CoV ≤ 0.1
11: if CoV > 0.1 then
12: ▷ stable runtime was not obtained
13: passed← False

achieve a balance between functional correctness112

and diversity, resulting in non-uniform runtimes.113

2.2 Annotation114

The solutions are automatically evaluated for func-115

tional correctness and runtime. While the former116

can be achieved by simply executing a solution117

with its corresponding unit tests, the latter requires118

additional steps for obtaining stable runtime mea-119

surements, see Algorithm 1. Each solution s is exe-120

cuted 50 times to determine its functional correct-121

ness (passed/failed) and runtime in nanoseconds.122

We obtain µ and σ, then calculate the coefficient of123

variation CoV . A measurement is deemed stable124

and accepted if CoV ≤ 0.1 (usually much lower).125

Otherwise, we repeat the loop up to 1K times. In126

the unlikely scenario that a stable runtime could127

not be obtained, we set passed = False (mark128

solution as failed). In order to further increase the129

reliability of runtime measurements, we execute130

Algorithm 1 five times (in a separate process) and131

average the results. Lastly, we remove problems132

xi, yi, uti which do not have at least two passing133

and one failed solution to ensure that optimisation134

can be enhanced with our Dynamic Solution Selec-135

tion (2.4) during training. The statistics of the final136

dataset Dtrain are shown in Table 3.137

2.3 Optimisation138

In this step, the model is fine-tuned on Dtrain to139

bias CLMbase towards generating more function-140

ally correct and runtime-efficient solutions. Al-141

though several methods for preference data optimi-142

sation exist (Yuan et al., 2023; Zhao et al., 2023;143

Liu et al., 2024; Azar et al., 2023; Ethayarajh et al.,144

2024; Hong et al., 2024), we opt for DPO due to its145

simplicity and wide adoption. We also benchmark 146

SFT due to its widespread use in prior work. 147

Supervised Fine-Tuning We train CLMbase on 148

Dtrain using TOP-N% of the fastest solutions 149

where N ∈ {25, 100}, which means that the diver- 150

sity of runtimes grows as N increases. Henceforth, 151

models optimised with the top 25% of fastest solu- 152

tions are denoted as SFT25 and CLMs trained with 153

all (including the slowest) solutions as SFT100. 154

LSFT (πθ) = −E(x,y)∼D [log πθ (y | x)] (1) 155

Direct Preference Optimisation Aiming to 156

avoid the complexity and instability of reinforce- 157

ment learning, DPO (Rafailov et al., 2024) aligns 158

models to preference data with a simple classifica- 159

tion loss, shown in Equation 2. 160

LDPO (πθ;πref) = −E(x,yw,yl)∼D 161
162[

log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
(2) 163

We investigate the effectiveness of the following 164

configurations of code preference pairs: 165

• Quick versus Slow: Choose quick & slow 166

solutions according to the annotated runtime. 167

We denote such models as DPOQvS . 168

• Passed versus Failed: Choose passed & 169

failed pairs according to the annotated func- 170

tional correctness, denoted as DPOPvF . 171

• All: Choose all preference pairs from the 172

Quick vs. Slow and Passed vs. Failed configu- 173

rations. We denote such models as DPOAll. 174

2.4 Dynamic Solution Selection 175

Training data is typically fixed at the start of train- 176

ing and remains static throughout (Tunstall et al., 177

2023; Luo et al., 2023; Xu et al., 2023; Wang et al., 178

2023; Yuan et al., 2024). Our approach takes ad- 179

vantage of the multitude of code solutions from the 180

sampling step (2.1) to dynamically select prefer- 181

ence pairs during training. To that end, we ran- 182

domly choose a new preference pair (yw, yl) for 183

each problem xi from Dtrain at the start of the 184

epoch for DPO configurations. For SFT, we ran- 185

domly choose any working solution (yw) at the 186

start of each epoch for a comparable configuration. 187

This reduces overfitting by presenting prompts with 188

multiple completions. Note that we utilise dynamic 189

solution selection by default in our framework. 190

3

Pass@1 Pass@10 Pass@1000

10

20

30

40

50

60

MBPP

Pass@1 Pass@10 Pass@1000

10

20

30

40

50

60

70

HumanEval

25 100 QvS PvF All

Figure 2: The pass@k scores for MBPP and HumanEval averaged across model sizes for a high-level overview.
Models optimised via DPO consistently show higher functional correctness compared to Base and SFT for all k.

MBPP HumanEval
5%

0%

5%

10%

15%

Time

Sl
ow

er

 |
 Fa

st
er

MBPP HumanEval
20%

0%

20%

40%

60%

80%

Length
Lo

ng
er

 |

 S
ho

rte
r

25 100 QvS PvF All

Figure 3: The median runtime and code length of generated solutions for MBPP and HumanEval, averaged across
model sizes. Values shown are the percentage changes relative to Base, i.e. >0 is slower or longer than Base, <0 is
faster or shorter. The best DPO models achieve a reduced runtime compared to SFT models as well as the very
competitive Base models. A significant reduction in code length (10% - 20%) is observed across both datasets.

3 Results191

In this section, we define the evaluation metrics192

and present the results of our proposed framework193

at varying scales. We also provide a qualitative194

analysis to support our findings. Detailed imple-195

mentation notes are provided in Appendix A.196

3.1 Evaluation Metrics197

Functional Correctness is evaluated by sam-198

pling 100 solutions per problem via multinomial199

sampling and a temperature of t = 0.6. Following200

Chen et al. (2021), we measure functional correct-201

ness using pass@k, where k ∈ {1, 10, 100}.202

Code Efficiency improvements can be a chal-203

lenge to capture accurately. Using Algorithm 1,204

we measure efficiency using runtime (the median 205

of all working solutions). Since the runtime of a 206

failed program is undefined, we remove problems 207

for which models have no working solutions to 208

compare CLMs on the same subset of solved prob- 209

lems. Doing so ensures a fair comparison between 210

models. Table 2 shows that this subset increases as 211

CLMs get larger and more ‘code-competent’. 212

Code Length does not necessarily correlate with 213

code efficiency as shorter outputs may abstract 214

away the complexities of their implementations. 215

Note that Code-Optimise does not explicitly fine- 216

tune CLMs for code length. However, we are still 217

interested in determining if our preference optimi- 218

sation results in code that is both faster (execution 219

4

1B 3B 7B 13B
10

20

30

40

50

60

70

MBPP
Pass@1
Pass@10
Pass@100

1B 3B 7B 13B
10

20

30

40

50

60

70

80

90
HumanEval

Pass@1
Pass@10
Pass@100

25 100 QvS PvF All

Figure 4: The pass@1, pass@10 and pass@100 scores for MBPP and HumanEval as the number of parameters
increases. A significant improvement over competitive Base and SFT models can be observed for DPO configs.

Model MBPP HumanEval

StarCoder-1B 40.60% 30.49%
StarCoder-3B 48.40% 46.95%
CodeLlama-7B 55.60% 73.71%
CodeLlama-13B 60.40% 79.27%

Table 2: Intersection of problems between Base, SFT ,
and DPO models with at least one working solution.

savings) and shorter (inference savings). The sub-220

set of working solutions in Table 2 is again used to221

measure code length, which is the median number222

of characters of all working solutions.223

3.2 Functional Correctness224

Figure 2 shows the pass@k scores for MBPP and225

HumanEval, averaged over all model sizes. The226

individual pass@k scores are shown in Figure 4.227

We observe that models optimised via DPO con-228

sistently demonstrate higher functional correctness229

relative to the baseline (Base) and SFT on both230

datasets. The effect is even larger on in-domain231

data, particularly with lower k. The DPO models232

perform similarly on MBPP with DPOPvF being233

the best overall on HumanEval. SFT models show234

a marginal improvement for k = 1 but no improve-235

ment (or a small decrease) at higher k. We therefore236

conclude that DPO is a more suitable fine-tuning237

paradigm for our self-generated code preference238

data as it is better able to leverage the learning sig- 239

nals (quick versus slow and passed versus failed). 240

3.3 Code Efficiency 241

The runtimes and lengths of generated solutions are 242

plotted in Figure 3 as a percentage change from the 243

baseline (a value < 0 means faster or shorter than 244

the baseline while > 0 means slower or longer). 245

Once again, values are averaged across model sizes 246

for a high-level overview. Individual model scores 247

are shown in Figures 5 and 6, respectively. In 248

preliminary analysis, we observed that baseline 249

CLMs were already capable of generating solu- 250

tions with low-complexity. However, DPOQvS 251

and DPOAll models manage to further decrease 252

runtimes on in-domain data by up to 6% and up to 253

3% on the out-of-domain data. SFT models gen- 254

erally increase runtimes across both datasets. In 255

terms of code length, the best DPO models reduce 256

the median number of characters by up to 48% on 257

MBPP and 23% on HumanEval while SFT mod- 258

els tend to generate significantly longer solutions. 259

This is particularly evident with SFT100, which 260

uses all code solutions for training, including the 261

slowest, which tend to be longer. SFT does not 262

appear to be particularly suitable for optimising 263

runtime or code length with our preference data as 264

any baseline biases for generating longer code can 265

be reinforced. In summary, Code-Optimise induces 266

a reduction in runtime for faster code execution 267

5

1B 3B 7B 13B
10%

0%

10%

20%

30%

40%

50%
MBPP

Sl
ow

er

 |
 Fa

st
er

1B 3B 7B 13B

20%

10%

0%

10%

20%

30%

40%

50%

HumanEval

Sl
ow

er

 |
 Fa

st
er

25 100 QvS PvF All

Figure 5: The runtimes for MBPP and HumanEval as model size increases. Values shown are the percentage
changes relative to Base, i.e. >0 means slower than Base, <0 means faster. On average, DPO models show a greater
runtime reduction on in-domain rather than out-of-domain data. SFT models exhibit inconsistent scaling patterns.

1B 3B 7B 13B
50%

25%

0%

25%

50%

75%

100%

125%

MBPP

Lo
ng

er

 |
 S

ho
rte

r

1B 3B 7B 13B

20%

0%

20%

40%

60%

80%

100%
HumanEval

Lo
ng

er

 |
 S

ho
rte

r

25 100 QvS PvF All

Figure 6: Code lengths for MBPP and HumanEval as model sizes increase. Values shown are the percentage
changes relative to Base, i.e. >0 means longer than Base, <0 means shorter. DPO models consistently produce
shorter sequences across both datasets. SFT models generate significantly longer code, particularly the larger CLMs.

while also outputting shorter solutions, resulting in268

lower inference costs and improved response times.269

3.4 Model Scaling270

Figures 4, 5 and 6 show the evolution of functional271

correctness, runtimes and lengths of generated so-272

lutions as the number of trainable parameters in-273

creases. Analysing pass@1 in Figure 4, we can see274

that larger DPO models achieve a more significant275

improvement over the baseline and SFT, particu-276

larly for in-domain problems. Somewhat surpris-277

ingly, functional correctness for HumanEval (out-278

of-domain) improves at a faster rate than MBPP279

(up to 7B parameters). In Figure 5, we observe280

that as the DPO models increase in size, their run-281

times relative to the baseline remain consistent.282

The DPOPvF configuration tends to average some- 283

what slower runtimes as this setup only optimises 284

for correctness thus sacrificing efficiency. We can 285

also see a consistent pattern of increased runtimes 286

for all SFT models. On HumanEval, on the other 287

hand, runtimes for different model sizes are much 288

less predictable. However, on average, our best con- 289

figuration DPOQvS does show an improvement 290

over the already competitive baseline CLMs. The 291

effect on code length generalises very well to out- 292

of-domain problems, particularly for larger CLMs, 293

see Figure 6. In fact, we find a clear trend for all 294

DPO models and for both datasets that shows re- 295

duced code lengths of up to 48% in-domain and 296

up to 23% out-of-domain. SFT models increase 297

the lengths in all cases, especially at larger model 298

6

25 100 QvS PvF All
10
11
12
13
14
15
16
17
18

MBPP

25 100 QvS PvF All
10

11

12

13

14

15 HumanEval

Dynamic Static

Figure 7: The pass@1 scores for StarCoder-1B without (Static) and with (Dynamic) solution selection (DSS). DSS
benefits every model, especially DPO configs. More pass@k scores can be found in Figure 12 of the Appendix.

sizes. As was the case with runtimes, this is akin to299

reinforcing its biases towards more verbose code300

as the preference data is self-generated.301

3.5 Qualitative Analysis302

Figure 8 shows several solutions to a typical pro-303

gramming problem taken from MBPP that gives304

a more tangible form to our results. More exam-305

ples for HumanEval and MBPP can be found in306

the Appendix (Figures 10 and 11). Following a307

manual inspection of dozens of generated solutions308

from each configuration, the efficiency improve-309

ments generally come from two main sources: (1)310

brevity: the model outputs only essential code (no311

function calls, unit tests, comments, etc.), which312

saves generation time for auto-regressive LMs and313

(2) complexity: the code is simplified and uses314

faster routines, relative to the baseline, which saves315

resources when it is executed. The SFT models316

tend to sacrifice brevity the most as their complex-317

ity is similar to the baseline. Figures 8, 10, and 11318

show several examples of this, e.g. adding func-319

tion calls to the newly generated solution, possibly320

with import statements and/or expected inputs or321

outputs1. This is in line with the observation from322

Figure 3 where the SFT models appear to be more323

verbose and biased towards longer outputs. The324

DPO models tend to produce solutions with a some-325

what lower complexity and a better unit test cov-326

erage. Further analysis suggests that HumanEval327

solutions generated by baseline LMs are quite com-328

petitive and usually more runtime-efficient than329

1Adding test cases to code is generally considered good
programming practice. However, for the purpose of pure
efficiency (our case), this can potentially add significant cost.

MBPP baseline solutions. We posit that this may 330

be due to the more comprehensive task descriptions 331

in HumanEval, which include input-output pairs. 332

Among DPO models, we do not observe a clear 333

winner in qualitative analysis although DPOQvS 334

is the best setup in terms of aggregate results. 335

3.6 Importance of Solution Selection 336

Our core methodology for creating high-quality 337

code preference data enables us to dynamically se- 338

lect unique pairs for each prompt at the start of 339

a new epoch. Since we train all models for 30 340

epochs, CLMs can potentially be exposed to many 341

unique combinations of code completions. Figure 342

7 shows pass@1 scores for StarCoder-1B improv- 343

ing with dynamic solution selection compared to 344

static pairs randomly assigned at the beginning of 345

training, commonly practiced in related work. The 346

benefits are somewhat more pronounced for DPO, 347

our preferred optimisation method, compared to 348

SFT. Across different k in pass@k, models consis- 349

tently benefit from our dynamic solution selection, 350

additionally seen in Figure 12 in the Appendix. 351

4 Related Work 352

Distilled Supervised Fine-Tuning was applied 353

to code generation models for the sole purpose of 354

improving functional correctness. CLMs such as 355

MagiCoder (Wei et al., 2023) and WizardCoder 356

(Luo et al., 2023) query large proprietary models to 357

provide the necessary training data (Cui et al., 2023; 358

Xu et al., 2023). However, such approaches may 359

not be permissible in many development settings 360

due to financial, legal and/or privacy reasons. 361

7

Input prompt:
def test_duplicate(arraynums):

"""Write a function to find whether a given
array of integers contains any duplicate
element."""

Base Solution:
for i in range(0, len(arraynums)-1):

for j in range(i+1, len(arraynums)):
if arraynums[i] == arraynums[j]:

return True
return False

SFT25 Solution:
Your code here
for i in range(len(arraynums)):

for j in range(i+1, len(arraynums)):
if arraynums[i] == arraynums[j]:

return True
return False

array = [1, 2, 3, 1]
print(test_duplicate(array))
Write a function to find the frequency of
the elements present in a given array.

SFT100 Solution:
Code here
arraynums.sort()
for i in range(len(arraynums)-1):
if arraynums[i] == arraynums[i+1]:

return True
return False

if __name__ == ’__main__’:
arraynums = [1, 2, 3, 4, 5, 1]
print(test_duplicate(arraynums))

DPOQvS Solution:
return len(arraynums) != len(set(arraynums))

DPOPvF Solution:
Write your code here
if len(arraynums) == len(set(arraynums)):

return False
return True

DPOAll Solution:
nums = set(arraynums)
return len(nums) != len(arraynums)

Figure 8: Example solutions for an MBPP problem with
additional use cases found in Figures 10 and 11 .

Reinforcement Learning (Le et al., 2022; Wang362

et al., 2022; Gorinski et al., 2023) can overcome363

the shortcomings of supervised fine-tuning by ef-364

fectively propagating the negative rewards for dys-365

functional code. However, RL algorithms typically366

come with additional complexity and instability.367

Recently, Rafailov et al. (2024) proposed Direct368

Preference Optimisation (DPO) as an alternative369

to Reinforcement Learning from Human Feedback370

for aligning language models with human prefer- 371

ences (Tunstall et al., 2023). DPO serves as a form 372

of offline reinforcement learning that directly opti- 373

mises on a given set of trajectories without the need 374

for a separate reward model. We should note that 375

the aforementioned RL approaches to code synthe- 376

sis only consider functional correctness and not the 377

runtime of generated solutions. 378

Code Efficiency Optimisation was previously 379

proposed by Shypula et al. (2023) as a code edit- 380

ing/repair task where slow-running code had to be 381

edited to achieve a faster runtime. Models were 382

optimised on a newly curated dataset augmented 383

by synthetic test cases through various methods of 384

prompting and fine-tuning. However, the greatly 385

reduced runtimes came at a significant cost to func- 386

tional correctness. In many configurations, the 387

model edits reduce performance by up to 30% with 388

‘smaller’ CLMs (7B, 13B) suffering a larger degra- 389

dation. We hypothesise that this may be due to 390

a) overfitting the single runtime objective (in con- 391

trast with our work where the aim is to optimise 392

both correctness and runtime) and b) the removal of 393

failed programs from the dataset leading the CLMs 394

to struggle with semantics of correct versus incor- 395

rect code. We opt to not compare directly with 396

this work as their method is specifically curated to 397

the code editing task where an already functionally 398

correct but inefficient program is assumed as input. 399

On the contrary, we aim to produce programming 400

solutions from scratch that are both functionally 401

correct and runtime/inference efficient. 402

5 Conclusions 403

We have introduced Code-Optimise, a lightweight 404

framework for improving functional correctness 405

and runtime via self-generated code preference data 406

optimisation (quick versus slow and passing versus 407

failing solutions). Our experiments have shown 408

several benefits: 1) functional correctness is signif- 409

icantly improved, particularly for smaller models, 410

2) dynamic solution selection during training pro- 411

vides an additional benefit by reducing overfitting, 412

3) runtime is reduced by up to 6% for MBPP and up 413

to 3% for HumanEval over strong baseline CLMs, 414

lowering the cost of code execution, 4) code length 415

is significantly shortened, up to 48% for MBPP 416

and up to 23% for HumanEval, which reduces in- 417

ference cost and improves response times. We hope 418

that our insights as well as our novel dataset will 419

stimulate further exciting research in this area. 420

8

6 Limitations421

Timing the execution of short programs accurately422

is challenging and despite our best efforts, the run-423

time measurements could probably be improved424

further with additional software engineering efforts.425

This would also provide a cleaner and more stable426

learning signal for Code-Optimise, which could427

potentially improve results. While our method-428

ology is highly data-efficient, using only ∼200429

open-source prompts for training data generation,430

obtaining additional high-quality problems (free431

from proprietary/licensing issues) may potentially432

yield better results. Other code-related tasks that433

may be amenable to optimisation for improved run-434

time/inference could potentially benefit from our435

methodology and as such may be investigated out-436

side of the scope of this paper. While we conducted437

all experiments using Python, we acknowledge438

that less popular/similar programming languages439

should also be investigated in follow-up work.440

References441

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama442
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,443
Diogo Almeida, Janko Altenschmidt, Sam Altman,444
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.445
arXiv preprint arXiv:2303.08774.446

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten447
Bosma, Henryk Michalewski, David Dohan, Ellen448
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.449
Program synthesis with large language models. arXiv450
preprint arXiv:2108.07732.451

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal452
Piot, Daniel Guo, Daniele Calandriello, Michal453
Valko, and Rémi Munos. 2023. A general theoret-454
ical paradigm to understand learning from human455
preferences.456

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming457
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-458
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,459
Greg Brockman, et al. 2021. Evaluating large460
language models trained on code. arXiv preprint461
arXiv:2107.03374.462

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,463
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and464
Maosong Sun. 2023. Ultrafeedback: Boosting lan-465
guage models with high-quality feedback. arXiv466
preprint arXiv:2310.01377.467

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,468
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model469
alignment as prospect theoretic optimization.470

Philip Gorinski, Matthieu Zimmer, Gerasimos Lam- 471
pouras, Derrick Goh Xin Deik, and Ignacio Iacobacci. 472
2023. Automatic unit test data generation and actor- 473
critic reinforcement learning for code synthesis. In 474
Findings of the Association for Computational Lin- 475
guistics: EMNLP 2023, pages 370–384. 476

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 477
Monolithic preference optimization without refer- 478
ence model. 479

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, 480
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer- 481
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf, 482
et al. 2022. The stack: 3 tb of permissively licensed 483
source code. arXiv preprint arXiv:2211.15533. 484

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio 485
Savarese, and Steven Chu Hong Hoi. 2022. Coderl: 486
Mastering code generation through pretrained models 487
and deep reinforcement learning. Advances in Neural 488
Information Processing Systems, 35:21314–21328. 489

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 490
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 491
Marone, Christopher Akiki, Jia Li, Jenny Chim, 492
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 493
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 494
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 495
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 496
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 497
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 498
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 499
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 500
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 501
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 502
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 503
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 504
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 505
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 506
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 507
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 508
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 509
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 510
von Werra, and Harm de Vries. 2023. Starcoder: may 511
the source be with you! 512

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, 513
Mohammad Saleh, Peter J. Liu, and Jialu Liu. 2024. 514
Statistical rejection sampling improves preference 515
optimization. 516

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 517
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 518
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 519
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 520
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 521
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 522
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 523
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 524
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 525
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 526
Niklas Muennighoff, Xiangru Tang, Muhtasham 527
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 528
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 529

9

http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2310.12036
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2309.06657
http://arxiv.org/abs/2309.06657
http://arxiv.org/abs/2309.06657

Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas530
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten531
Scholak, Sebastien Paquet, Jennifer Robinson, Car-532
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-533
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz534
Ferrandis, Lingming Zhang, Sean Hughes, Thomas535
Wolf, Arjun Guha, Leandro von Werra, and Harm536
de Vries. 2024. Starcoder 2 and the stack v2: The537
next generation.538

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-539
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,540
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:541
Empowering code large language models with evol-542
instruct. arXiv preprint arXiv:2306.08568.543

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-544
pher D Manning, Stefano Ermon, and Chelsea Finn.545
2024. Direct preference optimization: Your language546
model is secretly a reward model. Advances in Neu-547
ral Information Processing Systems, 36.548

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten549
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,550
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy551
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna552
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron553
Grattafiori, Wenhan Xiong, Alexandre Défossez,554
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-555
tin, Nicolas Usunier, Thomas Scialom, and Gabriel556
Synnaeve. 2024. Code llama: Open foundation mod-557
els for code.558

Alexander Shypula, Aman Madaan, Yimeng Zeng,559
Uri Alon, Jacob Gardner, Milad Hashemi, Gra-560
ham Neubig, Parthasarathy Ranganathan, Osbert561
Bastani, and Amir Yazdanbakhsh. 2023. Learning562
performance-improving code edits. arXiv preprint563
arXiv:2302.07867.564

Lewis Tunstall, Edward Beeching, Nathan Lambert,565
Nazneen Rajani, Kashif Rasul, Younes Belkada,566
Shengyi Huang, Leandro von Werra, Clémentine567
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-568
rect distillation of lm alignment. arXiv preprint569
arXiv:2310.16944.570

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li,571
Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, and Qun572
Liu. 2022. Compilable neural code generation with573
compiler feedback. In Findings of the Association for574
Computational Linguistics: ACL 2022, pages 9–19.575

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa576
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh577
Hajishirzi. 2023. Self-instruct: Aligning language578
models with self-generated instructions. In Proceed-579
ings of the 61st Annual Meeting of the Association for580
Computational Linguistics (Volume 1: Long Papers),581
pages 13484–13508, Toronto, Canada. Association582
for Computational Linguistics.583

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and584
Lingming Zhang. 2023. Magicoder: Source code is585
all you need. arXiv preprint arXiv:2312.02120.586

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 587
Chaumond, Clement Delangue, Anthony Moi, Pier- 588
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 589
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 590
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 591
Teven Le Scao, Sylvain Gugger, Mariama Drame, 592
Quentin Lhoest, and Alexander M. Rush. 2020. Hug- 593
gingface’s transformers: State-of-the-art natural lan- 594
guage processing. 595

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 596
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 597
Jiang. 2023. Wizardlm: Empowering large lan- 598
guage models to follow complex instructions. arXiv 599
preprint arXiv:2304.12244. 600

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, 601
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. 602
2024. Self-rewarding language models. arXiv 603
preprint arXiv:2401.10020. 604

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, 605
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank 606
responses to align language models with human feed- 607
back without tears. 608

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, 609
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se- 610
quence likelihood calibration with human feedback. 611
arXiv preprint arXiv:2305.10425. 612

10

http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302
http://arxiv.org/abs/2304.05302

A Implementation Details613

A.1 Dataset614

MBPP The Mostly Basic Programming Prob-615

lems introduced by Austin et al. (2021) consists616

of 974 crowd-sourced Python programming chal-617

lenges. Each problem comprises a description, an618

example code solution and a few automated test619

cases. The dataset contains training, validation and620

test splits. We utilise the training and validation621

splits for optimisation, while the test split serves as622

the in-domain test data distribution.623

HumanEval (Chen et al., 2021) comprises 164624

Python programming challenges. The function sig-625

natures, docstrings, example solutions and several626

unit tests were handwritten for each problem. We627

leverage HumanEval as our out-of-domain test set628

as the descriptions in MBPP do not contain any unit629

tests and the writing style of HumanEval problems630

does not follow a consistent format. This helps us631

evaluate robustness to handwritten prompts.632

A.2 Training633

We use the StarCoder (Li et al., 2023) and CodeL-634

lama (Rozière et al., 2024) families of models in635

our experiments. We opt for the pretrained (base)636

versions with sizes of 1B and 3B for StarCoder637

and 7B and 13B for CodeLlama, hosted on Hug-638

gingFace (Wolf et al., 2020). During training, we639

fine-tune each model using a total of 30 epochs and640

select the best model based on the lowest valida-641

tion loss. We use a learning rate of 5e−7 with a642

linear scheduler, a 10% warm-up, and a maximum643

sequence length of 2048 tokens.644

B Supplementary Experiments645

B.1 Additional Qualitative Examples646

In Figures 10 and 11, we present additional quali-647

tative examples from each configuration.648

B.2 Additional Ablation Scores649

In Figure 12, we present additional pass@10 and650

pass@100 scores for MBPP and HumanEval of651

StarCoder-1B by ablating the solution selection.652

B.3 Fastest Solution Analysis653

Shypula et al. (2023) introduce the Best@k met-654

ric, which considers only the fastest solution given655

k samples. We show the results of our optimisa-656

tion using this non-standard metric as an additional657

analysis. We set k = 100 (all generated solutions),658

MBPP HumanEval
6%

4%

2%

0%

2%

4%

Best@100

Sl
ow

er

 |
 Fa

st
er

25
100

QvS

PvF

All

Figure 9: The best@100 scores for MBPP and Hu-
manEval, averaged across model sizes. Values shown
are the percentage change to Base, i.e. >0 is slower than
Base, <0 is faster. Considering the fastest solution for
each problem, DPO models show the best runtimes.

which is the basis of all our experiments. In Fig- 659

ure 9, we note that DPO models produce faster solu- 660

tions not only on in-domain problems, but also out- 661

of-domain, between 2% and 5% faster. DPOPvF 662

once again has the higher runtime as its objective is 663

to optimise only functional correctness. The fastest 664

solutions from the SFT models are generally slower 665

on both MBPP and HumanEval. Note that Best@k 666

may overestimate the runtime improvements by 667

only considering the fastest solution. Hence, we 668

utilise the median of all working solutions as a less 669

biased evaluation in our experiments. 670

C Complete Results 671

C.1 Sampling 672

In Table 3, we show the functional correctness of 673

the CLMs in the sampling stage of Code-Optimise. 674

C.2 Optimisation 675

In Tables 4, 5, 6, and 7, we tabulate the full model 676

performance of the CLMs on the test sets. The 677

CoV is shown beside each runtime. 678

11

Input prompt:
def has_close_elements(numbers, threshold):
"""Check if in a list of numbers, are any two numbers closer to each other than threshold.

has_close_elements([1.0, 2.0, 3.0], 0.5) == False
has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True"""

Base Solution:
for index, number in enumerate(numbers):

for other_number in numbers[index+1:]:
if abs(number - other_number) < threshold:

return True
return False

if __name__ == ’__main__’:
import doctest
doctest.testmod()

SFT25 Solution:
for i, number1 in enumerate(numbers[:-1]):

for number2 in numbers[i+1:]:
if abs(number1 - number2) < threshold:

return True
return False

if __name__ == "__main__":
import doctest
doctest.testmod()

print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.4))
print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0, 6.0], 0.4))
<five additional test cases truncated>

SFT100 Solution:
for i, number1 in enumerate(numbers[:-1]):

for number2 in numbers[i+1:]:
if abs(number1 - number2) < threshold:

return True
return False

if __name__ == "__main__":
import doctest
doctest.testmod()

print(has_close_elements([1.0, 2.0, 3.0], 0.5))
print(has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3))
<six additional test cases truncated>

DPOQvS Solution:
return any(

abs(numbers[i] - numbers[j]) < threshold
for i in range(len(numbers))
for j in range(i + 1, len(numbers))

)

DPOPvF Solution:
for i, x in enumerate(numbers[:-1]):

for y in numbers[i+1:]:
if abs(x - y) < threshold:

return True
return False

DPOAll Solution:
for i in range(len(numbers) - 1):
for j in range(i + 1, len(numbers)):

if abs(numbers[i] - numbers[j]) < threshold:
return True

return False

Figure 10: Example solutions for a problem in HumanEval.

12

Input prompt:
def remove_Occ(s,ch):

""" Write a python function to remove first and last occurrence of a given character from the
string. """

Base Solution:
if ch in s:

s = s.replace(ch, ”, 1) # remove first occurrence
if ch in s:

s = s.replace(ch, ”, 1) # remove second occurrence
return s

SFT25 Solution:
if ch in s:

return s.replace(ch, "", 1).replace(ch, "", 1)
else:

return s

s = "geeksforgeeks"
ch = "e"
print(remove_Occ(s, ch))
Write a python function to remove all the vowels from the string.

SFT100 Solution:
l = []
for i in s:

if i != ch:
l.append(i)

return "".join(l)

if __name__ == ’__main__’:
s = input().strip()
ch = input().strip()
result = remove_Occ(s, ch)
print(result)

Given a string, return a version without the first and last char of the string. The string may
be any length – including 0 – so you must handle the case of an empty string.

DPOQvS Solution:
while ch in s:

s = s.replace(ch,"",1)
return s

DPOPvF Solution:
return s.replace(ch,”,2)

DPOAll Solution:
return s.replace(ch,"",2).replace(ch,"",-1)

Figure 11: Example solutions for a problem in MBPP.

13

25 100 QvS PvF All
20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5
MBPP

25 100 QvS PvF All
20

22

24

26

28

HumanEval

Dynamic Static

(a) pass@10

25 100 QvS PvF All
30

35

40

45

50

55
MBPP

25 100 QvS PvF All
30
32
34
36
38
40
42
44
46

HumanEval

Dynamic Static

(b) pass@100

Figure 12: The pass@10 and pass@100 scores for StarCoder-1B without (Static) and with (Dynamic) solution
selection (DSS). Performance improves on both metrics and distributions with DSS.

14

Model Split Pass@1 Pass@10 Pass@100

StarCoder-1B
Train 14.00 34.50 55.20

Validation 12.20 31.70 48.90

StarCoder-3B
Train 19.50 44.30 61.70

Validation 19.20 42.50 57.80

CodeLlama-7B
Train 25.80 54.00 70.10

Validation 23.40 50.30 68.90

CodeLlama-13B
Train 28.80 58.20 71.60

Validation 24.60 52.90 66.70

Table 3: Functional correctness of the CLMs during sampling.

Model Pass@1 Pass@10 Pass@100 Time Length

Base 11.80 31.70 49.80 114338 ± 0.021 155
SFT25 17.90 34.40 47.60 104690 ± 0.012 238
SFT100 16.80 34.20 47.00 169536 ± 0.017 252
DPOQvS 17.10 36.10 52.80 109051 ± 0.018 144
DPOPvF 16.90 36.90 54.00 118418 ± 0.019 181
DPOAll 16.90 36.40 53.20 103588 ± 0.021 152

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 12.00 24.30 39.00 150930 ± 0.017 124
SFT25 14.20 24.30 39.00 157975 ± 0.027 180
SFT100 13.90 24.50 40.20 154395 ± 0.020 175
DPOQvS 14.20 27.30 42.10 143259 ± 0.013 125
DPOPvF 14.30 28.10 45.70 147980 ± 0.034 146
DPOAll 13.70 27.10 42.10 232759 ± 0.012 132

(b) HumanEval

Table 4: Model performance on MBPP and HumanEval of StarCoder-1B.

15

Model Pass@1 Pass@10 Pass@100 Time Length

Base 16.90 40.00 55.00 113760 ± 0.016 158
SFT25 23.40 41.80 55.20 115834 ± 0.011 171
SFT100 22.40 41.60 55.20 119675 ± 0.035 198
DPOQvS 23.80 46.10 59.80 112395 ± 0.008 162
DPOPvF 23.90 45.50 60.20 116529 ± 0.017 185
DPOAll 23.40 45.30 60.20 103726 ± 0.012 149

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 17.20 36.80 61.00 143806 ± 0.012 162
SFT25 19.20 38.80 56.10 149743 ± 0.017 172
SFT100 19.40 38.60 56.10 152948 ± 0.022 190
DPOQvS 21.00 42.90 67.70 151401 ± 0.011 170
DPOPvF 21.50 44.30 70.10 153620 ± 0.013 181
DPOAll 20.50 42.30 66.50 147823 ± 0.014 161

(b) HumanEval

Table 5: Model performance on MBPP and HumanEval of StarCoder-3B.

Model Pass@1 Pass@10 Pass@100 Time Length

Base 21.40 48.50 65.20 105313 ± 0.012 196
SFT25 25.40 48.40 62.00 124000 ± 0.058 372
SFT100 24.30 49.10 62.60 110982 ± 0.010 435
DPOQvS 28.60 52.00 66.80 108925 ± 0.013 141
DPOPvF 30.20 52.10 66.20 109783 ± 0.006 129
DPOAll 29.10 52.30 66.60 108992 ± 0.016 129

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 25.10 55.00 79.30 646547 ± 0.004 188
SFT25 26.80 55.00 82.90 509264 ± 0.004 256
SFT100 26.40 54.10 82.30 496296 ± 0.006 304
DPOQvS 28.20 60.30 84.80 562279 ± 0.005 159
DPOPvF 30.10 64.00 86.60 639553 ± 0.003 166
DPOAll 28.70 61.20 85.40 646486 ± 0.002 160

(b) HumanEval

Table 6: Model performance on MBPP and HumanEval of CodeLlama-7B.

16

Model Pass@1 Pass@10 Pass@100 Time Length

Base 23.70 52.50 67.60 118418 ± 0.009 223
SFT25 28.80 53.70 66.20 112624 ± 0.006 348
SFT100 26.70 52.80 66.00 126165 ± 0.004 523
DPOQvS 33.50 56.40 70.60 110390 ± 0.008 116
DPOPvF 34.10 55.50 69.00 110427 ± 0.018 126
DPOAll 32.80 56.20 69.20 110679 ± 0.008 122

(a) MBPP

Model Pass@1 Pass@10 Pass@100 Time Length

Base 27.80 62.70 87.20 497649 ± 0.015 187
SFT25 30.00 62.70 85.40 560336 ± 0.005 238
SFT100 27.90 61.00 82.90 532856 ± 0.006 375
DPOQvS 32.60 67.40 88.40 513372 ± 0.005 145
DPOPvF 33.20 68.00 88.40 528546 ± 0.008 157
DPOAll 31.90 66.70 86.00 520788 ± 0.003 141

(b) HumanEval

Table 7: Model performance on MBPP and HumanEval of CodeLlama-13B.

17

	Introduction
	Code-Optimise
	Sampling
	Annotation
	Optimisation
	Dynamic Solution Selection

	Results
	Evaluation Metrics
	Functional Correctness
	Code Efficiency
	Model Scaling
	Qualitative Analysis
	Importance of Solution Selection

	Related Work
	Conclusions
	Limitations
	Implementation Details
	Dataset
	Training

	Supplementary Experiments
	Additional Qualitative Examples
	Additional Ablation Scores
	Fastest Solution Analysis

	Complete Results
	Sampling
	Optimisation

