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Figure 1. We propose TimeFormer, a Transformer module that implicitly models the motion pattern via Temporal Attention from a
learning perspective (right). TimeFormer is plug-and-play to existing deformable 3D Gaussian reconstruction methods [27, 61, 67] and
enhances reconstruction results (left and middle) without affecting their original inference speed.

Abstract

Dynamic scene reconstruction is a long-term challenge
in 3D vision. Recent methods extend 3D Gaussian Splat-
ting to dynamic scenes via additional deformation fields and
apply explicit constraints like motion flow to guide the de-
formation. However, they learn motion changes from in-
dividual timestamps independently, making it challenging
to reconstruct complex scenes, particularly when dealing
with violent movement, extreme-shaped geometries, or re-
flective surfaces. To address the above issue, we design
a plug-and-play module called TimeFormer to enable ex-
isting deformable 3D Gaussians reconstruction methods
with the ability to implicitly model motion patterns from
a learning perspective. Specifically, TimeFormer includes
a Cross-Temporal Transformer Encoder, which adaptively
learns the temporal relationships of deformable 3D Gaus-
sians. Furthermore, we propose a two-stream optimiza-
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tion strategy that transfers the motion knowledge learned
from TimeFormer to the base stream during the train-
ing phase. This allows us to remove TimeFormer dur-
ing inference, thereby preserving the original rendering
speed. Extensive experiments in the multi-view and monoc-
ular dynamic scenes validate qualitative and quantita-
tive improvement brought by TimeFormer. Project Page:
https://patrickddj.github.io/TimeFormer/

1. Introduction
High-quality reconstruction of dynamic scenes is signifi-
cantly challenging in computer vision and graphics, yet has
a wide range of potential applications in movie production,
virtual reality, and augmented reality. The difficulty stems
from factors like occlusions, translucent materials, specular
surfaces, and changing topology, all of which are prevalent
in dynamic scenes.

Inspired by the success of neural radiance field (NeRF)
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on static scenes [3, 36, 37], extending NeRF to dynamic
scenes [15, 24, 26, 30, 38, 39, 51, 72] has been ex-
plored. However, these NeRF-based methods are limited
by computationally intensive volume rendering [7], which
makes real-time rendering almost impossible. Recently,
3D Gaussian Splatting (3DGS) [22] represents the scene
with anisotropic 3D Gaussians and develops a rasterization-
based rendering algorithm, which allows real-time render-
ing through directly projecting 3D Gaussians onto the im-
age plane. Following the revolutionized 3DGS, dynamic
Gaussian Splatting methods [9, 27, 49, 68] have been in-
troduced for reconstructing dynamic scenes. These meth-
ods typically construct a canonical 3DGS and utilize a
deformation field to deform it based on individual times-
tamps [27, 61, 67].

However, temporal relationships of 3D Gaussians have
been poorly investigated. Previous studies have primarily
modeled motion patterns using various types of the defor-
mation field, for example, MLPs [2, 19, 33, 34, 44, 54, 67,
71], spatial-temporal planes [10, 32, 61], polynomial func-
tions [27], Fourier series [21], and combinations of these
methods [28]. These methods learn motion patterns from
independent time input in a vanilla way, neglecting internal
cross-time relationships. Some studies introduce the motion
flow regularization [23] to explicitly learn motion patterns
from neighboring frames [32, 34]. Although these methods
promote similar motion between adjacent timestamps, they
adopt a local perspective on time series during optimization.
This constraint makes it challenging to reconstruct scenes
with more complex motion patterns, such as sudden appear-
ances, violent movements, or reflective surfaces.

In this paper, we introduce TimeFormer, a transformer
module designed to implicitly learn motion patterns across
multiple timestamps. By modeling temporal relationships
within a time batch, we aim to provide a global view of
the entire time series, enabling the deformation field back-
bones themselves to capture motion patterns from a learning
perspective, as shown in Fig. 1. Specifically, TimeFormer
utilizes a Cross-Temporal Encoder to capture the implicit
motion patterns of 3D Gaussians across multiple sampled
timestamps using a self-attention mechanism. Moreover, to
avoid additional computational costs of TimeFormer during
inference, we present a two-stream optimization strategy.
By sharing the weights of two deformation fields, we trans-
fer the motion pattern learning from TimeFormer stream to
the base stream during training. Therefore, we can elimi-
nate TimeFormer during inference and maintain the original
rendering speed. Notably, TimeFormer does not require any
prior information and extracts motion patterns solely from
RGB supervision, which can be seamlessly adapted to pre-
vious deformable 3D Gaussian methods in a plug-and-play
manner. Furthermore, TimeFormer promotes faster gradi-
ent descent and guides a more efficient canonical space, ul-

Points: 154.5 k    FPS: 31.3 Points: 63.6 k    FPS: 79.7

DeformGS PSNR: 27.17 + TimeFormer PSNR: 28.70

Figure 2. TimeFormer guides towards more efficiently distributed
canonical space, showing higher FPS and better quality. The re-
sults are from “cut lemon” in the HyperNeRF Dataset [39].

timately increasing FPS during inference, as demonstrated
in Fig. 2.

To sum up, our main contributions are as follows:
• We propose TimeFormer, a transformer module that en-

hances current deformable 3D Gaussians reconstruction
methods in a plug-and-play manner from an automatic
learning perspective.

• The two-stream optimization strategy allows the exclu-
sion of TimeFormer during inference while maintaining
and even improving rendering speed.

• Extensive experiments on real-world datasets validate the
effectiveness of TimeFormer, achieving state-of-the-art
rendering quality.

2. Related Works

2.1. Dynamic Scene Reconstruction

Dynamic Scene Reconstruction has been extensively re-
searched over many years, with a wealth of studies [20,
39, 66, 67, 74] contributing to current progress. The pio-
neering neural radiance field [3, 12, 36, 48, 69] has demon-
strated photorealistic rendering for novel view synthesis
from calibrated multiview images, inspiring extensive ap-
proaches [8, 11, 38, 39, 42, 52, 63] to extend NeRF to 4D
space-time field for dynamic scene reconstruction. There
are majorly two lines of NeRF-based methods for dy-
namic scene reconstruction: 1) deformation-based meth-
ods [11, 38, 39, 42, 52] model deformation changes by
using a deformation field to map the queried positions in
different timestamps to a canonical space; 2) compact 4D
space-time fields [5, 8, 25, 63] take the timestamps, po-
sitions, and directions as input to predict color and den-
sity. However, NeRF-based approaches are limited to train-
ing and rendering speed. Thus, a large number of meth-
ods [1, 4, 13, 24, 29, 31, 43, 47, 56–58, 62, 64] have been
proposed to accelerate NeRF-based methods.

Recent 3DGS [22] achieves real-time rendering and dy-



namic 3DGS approaches [27, 67, 68] emerge. In details,
deformation-based methods [2, 10, 19, 21, 27, 28, 32–
34, 44, 54, 61, 67, 71] employ a deformation field to predict
per-Gaussian offsets and deform a canonical 3DGS accord-
ing to different timestamps. Meanwhile, 4DGS [68] and
4D-Rotor [9] add the time dimension to 3D Gaussian, form-
ing a 4D Gaussian representation. TimeFormer focuses on
modeling the temporal relationship and is plug-and-play to
deformation-based methods [67] and 4D space-time repre-
sentations [27, 68]. There are also a few attempts [28, 44,
49] in leveraging the nearby motion or flow for dynamic
Gaussian reconstruction. For example, 3DGStream [49]
proposes a per-frame optimization strategy, which predicts
current Gaussian attributes based on previous Gaussian at-
tributes. Meanwhile, Gaussian-Flow [28] presents explic-
itly model time-dependent residual of each attribute. To
model a long video sequence, SWinGS [44] splits a video
sequence into multiple sliding windows based on optical
flow and uses a deformation-based method to model each
sliding window.

2.2. Motion Modeling

Motion prediction in dynamic scene reconstruction from
multi-view videos or monocular videos is an ill-posed prob-
lem. Early dynamic NeRF [15, 38, 39, 52] directly learns
motion patterns from individual timestamps , and several
later works propose motion flow regularization terms [15,
26, 30, 35, 40, 45, 46, 51, 55, 70] to promote the learning of
cross-time motion patterns. These methods typically utilize
2D prior information (e.g., optical flow) from pre-trained
networks [50] to supervise the scene flows within neigh-
boring frames. PREF [46] uses motion predictor to infer
current motion based on the previous four frames and pro-
pose a self-supervision strategy without optical flow prior.
KFD-NeRF [70] models motion patterns by Kalman Filter
based on the previous two frames. CT-NeRF [35] employs
a cross-attention mechanism from transformer [53] to learn
the correlation of conservative frames.

Dynamic 3D Gaussian Splatting (3DGS) methods [16,
17, 59, 73] also utilize optical flow supervision to en-
hance reconstruction performance. Techniques such as
MD-Splatting [10], D3DG [34], and ST-4DGS [23] focus
on minimizing both forward and backward Gaussian flow
to promote temporal smoothness in Gaussian motions. DN-
4DGS [32] incorporates information from previous, cur-
rent, and next timestamps into the deformation field to cap-
ture cross-time motion patterns. However, these methods
primarily establish temporal correlations with neighboring
timestamps , which limits their ability to address long-term
motion changes. Additionally, they introduce extra compu-
tational costs during inference, which can reduce rendering
speed. In contrast, TimeFormer captures the temporal rela-
tionships of Gaussians from a global perspective across the

entire time series. Notably, TimeFormer is employed only
during the training phase, without any additional computa-
tional costs during inference.

3. Preliminary: Deformable 3D Gaussians
3D Gaussians [22] represent the scene with a set of 3D
Gaussians, each of which has unique opacity o ∈ [0, 1], cen-
ter position µ ∈ R3×1, and covariance matrix Σ ∈ R3×3.
For a position x ∈ R3×1 in 3D space, the corresponding
contribution of a 3D Gaussian on it can be formulated as:

G(x) = o · e− 1
2 (x−µ)⊤Σ−1(x−µ). (1)

The covariance matrix Σ can be decomposed into a scaling
matrix S and a rotation matrix R: Σ = RSSTRT , where
S = diag([sx, sy, sz]) and R can be transformed from a
quaternion [rw, rx, ry, rz]. Then the 3D Gaussians can be
splatted to a 2D camera plane through differential Gaussian
splatting. To model the appearance of 3D Gaussians, spher-
ical harmonics (SH) are introduced to define the color c.
Finally, for each pixel, the rendering results of 3DGS can
be derived by calculating the color contribution of all the
related Gaussians. This process is known as α-blending:

C =

N∑
i

ciαi

i−1∏
j=1

(1− αj), (2)

where ci, αi represent the color and density computed from
the i-th 3D Gaussian.

Recent methods [27, 61, 67] utilize deformation fields
that extend 3DGS to 4D space, inspired from NeRF-based
methods such as D-NeRF [42]. The structure of the defor-
mation field D can vary among MLP [67], K-Plane [61]
and Polynominal [27], while the deformation process can
be summarized as follows:

(∆µ,∆r,∆s) = D(µ, t), (3)

where timestamp t ∈ T , T ∈ RT×1 contains T linear
time inputs, µ, r, s are the center position, rotation quater-
nion, and scaling factors of 3D Gaussians, and ∆µ,∆r,∆s
are their residuals, respectively. The inputs and outputs of
Eq. 3 can vary among different methods, while they share
the same framework.

4. Method
In this section, we first provide an overview of the enhanced
deformable 3D Gaussians reconstruction with the proposed
TimeFormer (Sec. 4.1). We then introduce the TimeFormer
in detail (Sec. 4.2) which consists of a Cross-Temporal En-
coder and shared deformation fields (Sec. 4.3). We also
discuss the insights behind TimeFormer from the view of
gradient flow.
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multi-temporal relationships and produce distinct time-variant po-
sition offsets ∆p0, . . . ,∆pB−1.
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Figure 5. Data Flow Changes in the Deformation Field. Dashed
lines represent new data flow among time samples t0, . . . , tB−1.

4.1. Overview

Previous methods model motion patterns by explicitly
learning temporal relationships on individual or neighbor-
ing timestamps, failing on those complex scenes contain-
ing violent movement or dynamic reflective surfaces. In
contrast, we present TimeFormer to enable the deformable
3D Gaussian backbones themselves to model cross-time
relationships from an implicit learning perspective. The
main framework with the proposed TimeFormer is shown in
Fig. 3. Our approach retains standard reconstruction mod-
ules, which include (1) 3D Gaussians in the canonical space
and (2) a deformation field that applies time-variant trans-

formation. Additionally, TimeFormer is introduced before
the deformation field to extract implicit cross-time motion
features for each Gaussian through a self-attention mech-
anism along the time dimension. Moreover, we share the
weights of two deformation fields to transfer the motion
knowledge from TimeFormer to mitigate the gap between
the original branch and TimeFormer branch, which supports
real-time rendering without TimeFormer during inference.

4.2. TimeFormer

Cross-Temporal Encoder BatchFormer [18] demonstrates
that the attention mechanism helps learn sample relation-
ships from batch dimension, rather than channel and spa-
tial dimentions [6, 53], inspiring us that different times-
tamps can also be considered as a special time batch. Let
Ts ⊂ T , Ts = {ti}B−1

i=0 denotes randomly sampled times-
tamps, and let G ∈ RN×(3+C) denotes Gaussians in the
canonical space, where B is the size of time batch, N is the
number of Gaussians, 3+C means each Gaussian has 3 po-
sition channels and C additional channels. As in Fig. 4, all
Gaussians’s postions are made into B copies, expanded into
Gc ∈ RB×N×3, and sampled timestamps are made into N
copies, expanded into T ′ ∈ RB×N×1. Then, we composite
Gc and T ′ together and apply position encoding function γ
to extract high frequency information, as in Eq. 4:

γ(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · ·

sin
(
2L−1πp

)
, cos

(
2L−1πp

)) (4)

In our experiments, we set L = 6 for both positions x and
time t. We treat [γ(Gc, γ(T ′)] ∈ RB×N×(3×2L+2L) as the
original input F0 to TimeFormer. It can be considered as
N sequences of the length B, containing 8L feature chan-
nels. With M transformer encoder layers, for mth layer, in-
termediate features are calculated through multi-head self-
attention(MSA) and MLP blocks. In the final stage, we use
a tiny MLP to transform the last encoded features FM−1



into offset O ∈ RB×N×3 in the linear space:

O = MLP (FM−1), Gt = Gc +O (5)

We consider the output from the Cross-Temporal Encoder
as a fixing residual term to the original positions to encour-
age a gradual, steady learning process on motion patterns.
Implicit cross-time relationship learning in TimeFormer en-
ables the automatic aggregation of Gaussians with simi-
lar variations during optimization, promoting more efficient
spatial distribution and accelerating rendering speed.
Gradient Analysis Let D and P be the deformation field
and TimeFormer respectively, the output of the deformation
field ∆µi and partial derivative for µ in time ti ∈ Ts are
formulated as follows:

∆µi = D(µ, ti),
∂∆µi

∂µ
=

∂D(µ, ti)
∂µ

(6)

With TimeFormer applied on time batch Ts, we reformu-
late as Eq. 7 and data flow changes as in Fig. 5.

∆µi = D(µ+ P(µ, Ts), ti) (7)

To calculate the partial derivative for µ, we apply the
chain rule. Let a = µ+ P(µ, Ts), then:

∂∆µi

∂µ
=

∂D(a, ti)
∂a

· ∂a
∂µ

,
∂a

∂µ
= 1 +

∂P(µ, Ts)
∂µ

(8)

∂∆µi

∂µ
=

∂D(a, ti)
∂a

·
(
1 +

∂P(µ, Ts)
∂µ

)
(9)

Eq. 6 has a weaker dynamic nature, as it only consid-
ers the current timestamp ti. In contrast, Eq. 9 incorporates
an additional gradient term, ∂P(µ,Ts)

∂µ , enabling the current
state to be influenced by any past or future states. In other
words, ∆µi also optimizes the models according to other
timestamps tj ∈ Ts(j ̸= i), which is a significant dif-
ference compared to the backward process without Time-
Former. Such design accounts for cross-time attention and
allows the models to capture more challenging motion pat-
terns from a global view of the entire time series.

4.3. Shared Deformation Fields
Accounting for additional computation costs of Time-
Former, which can significantly decrease rendering speed,
we force the original deformation field and the auxiliary de-
formation field to share weights for knowledge transferring.
Let V be the camera viewpoints, we apply the shared defor-
mation fields to predict deformed space from both Gaus-
sians in the canonical space and Gaussians from Time-
Former. Then, we apply the splatting algorithm to these two
groups of deformed space. We calculate the losses between
rendered images and ground truth Igt as follows:

Lc = ∥Splatting(D(Gc, T ),V)− Igt∥1 (10)

Lt = ∥Splatting(D(Gt, T ),V)− Igt∥1 (11)

L = λcLc + λtLt (12)

, whereLc,Lt represent losses of original branch and Time-
Former branch with λc > λt. We use a relatively smaller λt

because we find it easy to overfit on the second branch with
TimeFormer, causing a degradation in inference quality.

5. Experiment
5.1. Implementation Details
Our implementation is tested on a single A100 GPU. We
use M = 4 transformer encoder layers in TimeFormer and
the number of time samples is B = 4. We set λc = 1
and λt = 0.8 to prevent overfitting on TimeFormer. We
assess our experimental results using image quality metrics,
including peak-signal-to-noise ratio (PSNR) and structural
similarity index (SSIM [60]).
Baselines & Datasets. We apply TimeFormer to
4DGS [68], STGS [27] on multi-view videos, e.g., N3DV
Dataset [25], and evaluate TimeFormer on 4DGS [68] and
DeformGS [67] on monocular dynamic videos, e.g., Hyper-
NeRF Dataset [39], respectively. We also utilize NeRF-DS
Dataset [65] to demonstrate the robustness of TimeFormer
on moving objects with specular surfaces.

5.2. Experimental Comparisons
Multi-View Video Dataset. In Tab. 1, TimeFormer im-
proves the reconstruction quality (e.g., PSNR) of original
4DGS [61] and STGS [27] by 0.74 and 0.61, outperforming
all baselines methods. We extract the frames at an initial
time for scene Cook Spanish in Fig. 6, and TimeFormer can
reconstruct a clearer geometry and specular effects com-
pared to the original results.

To have a more comprehensive overview of Time-
Former’s capacity on different temporal stages, we col-
lect PSNR for 300 frames of all six scenes from N3DV
Dataset [25] and calculate the average per-frame PSNR.
As in Fig. 7, the reconstruction quality increases more sig-
nificantly at the beginning and end, and such balanced re-
construction results are attributed to TimeFormer’s cross-
temporal attention mechanism on the whole time series.
Monocular Video Dataset. Tab. 3 shows the enhancements
achieved by TimeFormer on the HyperNeRF Dataset. It’s
observed that TimeFormer increases the PSNR by 0.89 for
4DGS [61] and 0.94 for DeformGS [67], and the SSIM by
0.019 and 0.028, respectively. Fig. 9 additionally provides
visualization of the improvement in the image quality: on
the left, TimeFormer generates a clearer outline between
fingers, while on the right the texture on the front of the
broom is clearer. TimeFormer also eliminates artifacts and
reveals a clear structure of the broom.
Dynamic Reflective Video Dataset. Fig. 10 additionally
demonstrates that TimeFormer can work well on scenes



Method Sear Steak Flame Salmon Cut Beef Flame Steak Cook Spinach Coffee Martini Mean
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

K-Plane [14] 32.52 0.971 30.44 0.942 31.82 0.965 32.38 0.970 30.60 0.968 29.99 0.943 31.63 0.960
MixVovels [56] 31.21 0.971 29.92 0.945 31.30 0.965 31.43 0.970 31.61 0.965 29.36 0.946 30.80 0.960

GS4D [68] 32.92 0.953 26.39 0.897 33.08 0.959 33.81 0.967 32.77 0.956 25.23 0.884 30.07 0.936
4D-Rotor [9] 32.86 0.956 28.25 0.913 33.14 0.952 31.61 0.953 32.56 0.949 27.95 0.908 31.06 0.938
4DGS [61] 32.49 0.949 28.92 0.917 32.90 0.956 32.51 0.954 32.46 0.948 27.34 0.903 31.10 0.938

+TimeFormer 33.38 0.955 29.33 0.924 33.11 0.957 33.25 0.953 33.03 0.949 28.93 0.910 31.84 0.941
STGS [27] 33.71 0.962 28.21 0.921 33.52 0.958 33.46 0.963 33.13 0.955 27.71 0.915 31.62 0.946

+TimeFormer 34.34 0.965 29.13 0.924 33.57 0.958 34.04 0.964 33.45 0.956 28.83 0.917 32.23 0.947

Table 1. Quantitative Comparisons on N3DV Dataset [25]. We use bold font to indicate the improvement, statistics of K-Plane [14] and
MixVoxels [56] are from their original paper, while we calculate metrics of all Gaussian-based methods by running their official codes.

4DGS    PSNR: 32.84 + TimeFormer    PSNR:32.99 STGS    PSNR:32.86 + TimeFormer    PSNR:33.07 Ground Truth

Figure 6. Visualization of Comparisons on N3DV Dataset [25].
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Figure 7. Per-Frame PSNR on N3DV Dataset [25]. TimeFormer
improves the reconstruction quality, especially at the beginning
and end time series.

with dynamic specular objects on NeRF-DS Dataset [65].
TimeFormer can reconstruct a cleaner appearance on reflec-
tive material (e.g., a metallic cup, a glass bottle), and this
improvement is attributed to the attention mechanism which
enables the deformation field to detect changes on specular
surfaces from a learning perspective automatically.
Analysis of FPS & Canonical Space. We also find that
TimeFormer achieves more efficient representation with
much fewer points in the final canonical space, thereby
achieving a higher FPS in Tab. 2. We attribute the phe-
nomenon to the reason that TimeFormer guides faster gra-
dient descent and promotes the spatial layout of Gaus-
sian points during optimization. Interestingly, in Fig. 8,

0 2000 4000 6000 8000 10000 12000 14000 Step

0.012

0.016

0.020

0.024

0.028

L1 loss

4DGS
Ours: Original Branch
Ours: TimeFormer Branch

Figure 8. Comparions of Convergence Speed. We use the same
batch size for 4DGS [61] and calculate the loss of both branches
in our method.

the L1 loss of both branches in our method decreases
faster and shows almost the same convergence trend during
training, exceeding the optimization speed of the original
method. This eliminates many redundant points and guides
the canonical space toward a more efficient distribution, as
in Fig. 2. Moreover, Fig. 8 also proves that the cross-time
relationship learned in TimeFormer has been successfully
transferred to the base branch, as introduced in Sec. 4.3.
Analysis of Motion Patterns. We argue that TimeFormer
achieves more robust learning of motion patterns. To take
a deeper insight, we visualize the motion changes as fol-



+ TimeFormer
PSNR:22.23

4DGS
PSNR:21.28

DeformGS
PSNR:20.63

Ground Truth+ TimeFormer
PSNR:21.13

+ TimeFormer
PSNR:29.51

4DGS
PSNR:28.55

DeformGS
PSNR:27.63

Ground Truth+ TimeFormer
PSNR:28.59

Figure 9. Visualization of Comparisons on HyperNeRF Dataset [39].
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Figure 10. Visualization of Comparisons on NeRF-DS Dataset [65]. Compared with original results from DeformGS [67], TimeFormer
presents a clearer visual effect on dynamic objects with specular surfaces.

Method N ↓ Training ↓ FPS ↑
STGS [27] 172.1 k 41 min 82.1

+TimeFormer 148.9 k 78 min 88.9
4DGS [61] 145.9 k 52 min 31.7

+TimeFormer 113.1 k 94 min 37.9
(a) Quantitative comparisons on N3DV Dataset [25].

Method N ↓ Training ↓ FPS ↑
DeformGS [67] 169.6 k 25 min 30.1
+TimeFormer 82.9 k 35 min 58.9

4DGS [61] 172.3 k 32 min 35.7
+TimeFormer 135.5 k 48 min 40.9
(b) Quantitative comparisons on HyperNeRF Dataset [39].

Table 2. Comparisons of Gaussian Number, Training Time & FPS.

lows: for each Gaussian, we calculate its bias (∆x,∆y,∆z)
towards canonical space in time t and replace the color
attributes (r, g, b) with the absolute value of this bias:
(r, g, b) ← (|∆x|, |∆y|, |∆z|). We use the same splatting

algorithm to render the accumulated motion bias, transfer-
ring the rendered result as a heatmap, as in Fig. 11.

In Fig. 11a, TimeFormer identifies the blade’s motion
as a rigid deformation, showing a sharper outline and con-
sistent motion, especially as it contacts the initially static
lemon. This demonstrates TimeFormer ’s ability to dis-
tinguish between moving and static objects. In Fig. 11b,
TimeFormer captures subtle motion on the spray gun and
clear flame flickering on the beef. Fig. 11c shows that Time-
Former also detects the violent movement of the elongated
broom, where 4DGS [61] fails, proving its robustness in
handling extremely geometries.

5.3. Ablation Studies
Cross-Temporal Encoder. Tab. 5 demonstrates that the
performance of TimeFormer is not sensitive to time batch
B and transformer encoder layer M . In Tab. 5b, we ex-
plore two sampling methods: random sampling and contin-
uous sampling of timestamps. Both strategies demonstrate
improvements in PSNR and other metrics compared to the
baseline. Notably, the random sampling method yields



Method Broom Chicken Cut Lemon Torchco Peel Banana Hand Mean
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DeformGS [67] 20.74 0.322 26.32 0.786 27.94 0.714 27.4 0.877 26.38 0.836 27.79 0.78 26.09 0.719
+TimeFormer 21.01 0.324 26.55 0.792 30.01 0.780 27.55 0.883 27.24 0.852 29.79 0.848 27.03 0.747

4DGS[61] 21.53 0.351 26.82 0.797 29.72 0.763 27.45 0.883 27.82 0.844 29.52 0.841 27.14 0.747
+TimeFormer 22.84 0.401 27.06 0.801 30.23 0.778 29.48 0.902 28.21 0.853 30.38 0.862 28.03 0.766

Table 3. Quantitative Comparisons on HyperNeRF Dataset [39].

Method Press Plate Basin Sieve Bell Cup Mean
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HyperNeRF [39] 25.4 0.873 18.1 0.714 20.2 0.829 25.0 0.909 24.0 0.884 24.1 0.896 22.8 0.851
NeRF-DS [65] 26.4 0.911 20.8 0.867 20.3 0.868 26.1 0.935 23.3 0.872 24.5 0.916 23.57 0.895
DeformGS[67] 25.68 0.866 20.82 0.812 19.87 0.804 25.71 0.881 24.92 0.854 24.52 0.897 23.59 0.852
+TimeFormer 26.29 0.867 20.90 0.817 19.93 0.805 26.26 0.891 25.90 0.873 25.16 0.903 24.10 0.859

Table 4. Quantitative Comparisons on NeRF-DS Dataset [65].
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Figure 11. Motion Visualization on HyperNeRF Dataset [39].

more significant enhancements. We hypothesize that this
phenomenon occurs because the random sampling method
allows for more effective propagation of dynamic behavior
modeling across the entire time series.

Shared Deformation Fields. In Tab. 5b, the image qual-
ity during inference suffers a considerable decrease if we

Setting Random Sampling Continuous Sampling
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

B=2 25.89 0.875 0.117 25.73 0.871 0.124
B=4 26.06 0.871 0.119 25.78 0.874 0.117
B=6 25.99 0.87 0.123 25.73 0.865 0.125

(a) Ablation Studies on Batch Size and Sampling Strategies.

Setting PSNR↑ SSIM↑ LPIPS↓
Baseline 25.44 0.867 0.125

M=1 25.96 0.874 0.117
M=2 25.90 0.874 0.120
M=3 26.05 0.876 0.112
M=4 26.04 0.873 0.119

w/o Shared 24.81 0.852 0.132
(b) Ablation Results. M is the number of encoder layers, “w/o Shared” means
not using shared weights in two deformation fields.

Table 5. Ablation Results. The results are from three scenes press,
sieve and bell on NeRF-DS Dataset [65].

train two deformation fields without sharing their weights.
Fig. 8 also demonstrates the effectiveness of the two-stream
strategy and TimeFormer’s ability of re-balancing.

6. Conclusion

We propose TimeFormer, a Transformer module that is
plug-and-play to existing deformable 3D Gaussians meth-
ods and enhances reconstruction results without additional
computational budget. TimeFormer enables deformation
fields to implicitly model complex motion patterns from a
learning perspective. In addition, we design a two-stream
optimization strategy to transfer the learned motion knowl-
edge from TimeFormer to the original deformation branch.
This allows us to remove TimeFormer during inference and
thus maintain the same inference speed as the original meth-



ods. Extensive experiments demonstrate TimeFormer effec-
tively facilitates the reconstruction of three state-of-the-art
deformable 3D Gaussians Splatting methods among three
datasets, and illustrate the improvement on reconstruct-
ing complex scenes containing violent movement, extreme-
shaped geometries, or reflective surfaces.
Limitations TimeFormer may produce overly
smooth textures for objects with intricate details.
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Algorithm 1: Implementation of TimeFormer.
class TimeFormer (nn.module):

# d in: here is 4, (x, y, z, t)
# L: frequency of Position Encoding (PE) γ
def init (self, d in, L, nhead, d hidden,
n layer):

# PE: PE function, PE ch: d in×2L
self.PE, PE ch = get PE(L=L, d in=d in)
# define Cross-Temporal Encoder
layer = nn.TransformerEncoderLayer(PE ch,
nhead, d hidden,
activation=nn.functional.tanh)

self.encoder =
nn.TransformerEncoder(layer, n layer)

# define Tiny MLP
self.mlp = nn.Linear(PE ch, 3)

# x: [seq len, seq batch, channel]
def forward(self, x):

PE x = self.PE(x)
h = self.encoder(PE x)
h = self.mlp(h)
return h
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A. Implementation
In this section, we provide the Pytorch [41] code of Time-
Former in Alg. 1 and two-stream optimization strategy in
Alg. 2, to clarify the framework in Fig. 3.

Alg. 1 is an additional explanation for Fig. 4, includ-
ing three parts: 1) Position Encoding (PE), 2) Definition
of Transformer encoder, 3) Definition of tiny MLP. Note
that we use a shared TimeFormer on all Gaussians in the
canonical space.

The Transformer Encoder receives input structured as
[seq len, seq batch, channel], and we input x structured as
[B, N , 4], where B is the size of time batch, N is the
number of Gaussians and 4 means 3 position channel and 1
channel for the timestamp. Alg. 2 shows how we construct
input to time.

In Alg. 2, we introduce the process in a time batch in
detail. We first construct input to TimeFormer by concate-
nating Gaussian positions and sampled time stamps, as in
Sec. 4.2. Besides the original branch where the deforma-
tion function is directly performed on the canonical space,

Algorithm 2: Two-Stream Optimization Strategy.
# timeformer: TimeFormer
# deform: Shared Deformation Field

# N: number of Gaussians
# GS: Gaussians in the canonical space
# B: size of time batch
B = 4
lambda t = 0.8
# Vs, Ts: sampled cameras and timestamps
# images gt: sampled GT images
Vs, Ts, images gt = random.sample(Dataset, B)

# construct input to TimeFormer
# [N, 3] => [B, N, 3]
G expanded = GS.xyz.unsqueeze(0).expand(B, -1, -1)
# [B] => [B, N, 1]
T expanded = Ts.unsqueeze(1).expand(-1,
N).unsqueeze(2)

# src: [B(seq len), N(seq batch), 4(channel)]
src = torch.cat((G expanded, T expanded), dim=2)
# offset t: [B, N, 3]
offset t = timeformer(src)

# use iterations to save cuda memory
loss = 0.0
for i in range(B):

# original branch
# simplified: (xyz, t) => d xyz
d xyz = deform(GS.xyz, Ts[i])
image = splatting(GS, Vs[i], d xyz=d xyz)
loss += L1(image, images gt[i])

# TimeFormer branch: use offset t[i,:,:]
d xyz t = deform(GS.xyz+offset t[i,:,:], Ts[i])
image t = splatting(GS, Vs[i], d xyz=d xyz t)
loss += lambda t * L1(image t, images gt[i])

# Optimize shared deformation field, TimeFormer
and Gaussians in the canonical space

loss.backward()
deform.optimizer.step()
timeformer.optimizer.step()
GS.optimizer.step()

we add another TimeFormer branch. TimeFormer calcu-
lates prior offsets “offset t” via cross-time relationships be-
fore the deformation field. These two branches are opti-
mized at the same time during training, while the Time-
Former branch can be removed during inference.

B. Analysis on Canonical Space & FPS
Apart from Fig. 2, we provide more results in Fig. 12 and
Fig. 13, as a further illustration on TimeFormer’s capabil-
ity to reduce Gaussians in the canonical space and improve
inference speed. TimeFormer promotes more efficient spa-
tial distribution of Gaussians in the canonical space, leading
to improvements in reconstruction quality while simultane-
ously eliminating a substantial number of redundant Gaus-
sians compared to baseline methods.

C. Slider Window Demo
We provide additional comparison results of baseline meth-
ods with TimeFormer. We strongly recommend opening the
following website demos in folder website demos and us-



Points: 189.7 k    FPS: 25.4 Points: 101.1 k    FPS: 47.7

DeformGS PSNR: 27.07 +TimeFormer PSNR: 28.01

Points: 169.7 k    FPS: 28.5 Points: 62.5 k    FPS: 77.4

DeformGS PSNR: 28.17 +TimeFormer PSNR: 29.69

Figure 12. Comparisons of Canonical Space, FPS on Hypernerf Dataset [39].

Points: 46.8 k    FPS: 80.3 Points: 15.9 k    FPS: 207.1 Points: 39.3 k    FPS: 90.7 Points: 16.7 k    FPS: 189.5

DeformGS PSNR: 20.62 +TimeFormer PSNR: 20.93DeformGS PSNR: 24.46 +TimeFormer PSNR: 25.18

Figure 13. Comparisons of Canonical Space, FPS on NeRF-DS Dataset [65].

Setting Bell Press Sieve Mean
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Baseline 24.92 0.854 0.126 25.68 0.866 0.141 25.71 0.881 0.108 25.44 0.867 0.125
M=1 25.67 0.872 0.097 26.17 0.867 0.141 26.04 0.884 0.113 25.96 0.874 0.117
M=2 25.46 0.872 0.104 26.01 0.866 0.139 26.22 0.883 0.116 25.90 0.874 0.120
M=3 25.87 0.875 0.095 26.29 0.865 0.138 26.00 0.887 0.104 26.05 0.876 0.112
M=4 25.71 0.870 0.103 26.09 0.865 0.14 26.33 0.885 0.115 26.04 0.873 0.119

w/o Shared 24.12 0.832 0.137 25.01 0.854 0.146 25.29 0.869 0.113 24.81 0.852 0.132

Table 6. Ablation Results of three scenes press, sieve and bell on NeRF-DS Dataset [65].

ing the “slider window” to see the improvements brought
by TimeFormer more clearly.

• Overview: index.html
• 4DGS+TimeFormer on HyperNeRF Dataset: in-

dex 4DGS hypernerf.html
• DeformGS+TimeFormer on HyperNeRF Dataset: in-

dex deformGS hypernerf.html
• DeformGS+TimeFormer on NeRF-DS Dataset: in-

dex deformGS nerfds.html



D. Ablation Studies
We provide more detailed ablation results on three scenes
on NeRF-DS Dataset [65], as in Tab. 6. This further il-
lustrates that TimeFormer is not sensitive to the number
of transformer encoder layers M . However, we observe a
significant decrease in reconstruction quality on all scenes
without shared deformation fields.


	Introduction
	Related Works
	Dynamic Scene Reconstruction
	Motion Modeling

	Preliminary: Deformable 3D Gaussians
	Method
	Overview
	TimeFormer
	Shared Deformation Fields

	Experiment
	Implementation Details
	Experimental Comparisons
	Ablation Studies

	Conclusion
	Implementation
	Analysis on Canonical Space & FPS
	Slider Window Demo
	Ablation Studies

