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ABSTRACT

We examine Dropout through the perspective of interactions. Given N variables,
there are O(N?) possible pairwise interactions, O(N?) possible 3-way interac-
tions, i.e. O(N*) possible interactions of k variables. Conversely, the probability
of an interaction of k variables surviving Dropout at rate p is O((1 — p)¥). In
this paper, we show that these rates cancel, and as a result, Dropout selectively
regularizes against learning higher-order interactions. We prove this new perspec-
tive analytically for Input Dropout and empirically for Activation Dropout. This
perspective on Dropout has several practical implications: (1) higher Dropout rates
should be used when we need stronger regularization against spurious high-order
interactions, (2) caution must be used when interpreting Dropout-based feature
saliency measures, and (3) networks trained with Input Dropout are biased esti-
mators, even with infinite data. We also compare Dropout to regularization via
weight decay and early stopping and find that it is difficult to obtain the same
regularization against high-order interactions with these methods.

1 INTRODUCTION

We examine Dropout through the perspective of interactions: learned effects that require multiple
input variables. Given N variables, there are O(N?) possible pairwise interactions, O(N?) possible
3-way interactions, etc. We show that Dropout contributes a regularization effect which helps neural
networks (NNs) explore simpler functions of lower-order interactions before considering functions
of higher-order interactions. Dropout imposes this regularization by reducing the effective learning
rate of interaction effects according to the number of variables in the interaction effect. As a result,
Dropout encourages models to learn simpler functions of lower-order additive components. This
understanding of Dropout has implications for choosing Dropout rates: higher Dropout rates should be
used when we need stronger regularization against spurious high-order interactions. This perspective
also issues caution against using Dropout to measure term saliency because Dropout regularizes
against terms for high-order interactions. Finally, this view of Dropout as a regularizer of interaction
effects provides insight into the varying effectiveness of Dropout for different architectures and data
sets. We also compare Dropout to regularization via weight decay and early stopping and find that it
is difficult to obtain the same regularization effect for high-order interactions with these methods.

Why Interaction Effects? When it was introduced, Dropout was motivated to prevent “complex
co-adaptations in which a feature detector is only helpful in the context of several other specific feature
detectors” (Hinton et al., 2012} [Srivastava et al.,|2014). Because most "complex co-adaptations" are
interaction effects, we examine Dropout under the lens of interaction. This perspective is valuable
because (1) modern NNs have so many weights that understanding networks by looking at their
weights is infeasible, but interactions are far more tractable because interaction effects live in function
space, not weight space, (2) the decomposition that we use to calculate interaction effects has
convenient properties such as identifiability, and (3) this perspective has practical implications on
choosing Dropout rates for NN systems. To preview the experimental results, when NNs are trained
on data that has no interactions, the optimal Dropout rate is high, but when NNs are trained on
datasets which have important 2nd and 3rd order interactions, the optimal Dropout rate is 0.
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2 RELATED WORK

Although Hinton et al proposed Dropout to prevent spurious co-adaptation (i.e., spurious interactions),
many questions remain. For example: Is the expectation of the output of a NN trained with Dropout
the same as for a NN trained without Dropout? Does Dropout change the trajectory of learning
during optimization even in the asymptotic limit of infinite training data? Should Dropout be used
at run-time when querying a NN to see what it has learned? These questions are important because
Dropout has been used as a method for Bayesian uncertainty (Gal & Ghahramani, 2016} (Gal et al.|
2017} |Chang et al., 2017bjal), which implicitly assume that Dropout does not bias the model’s output.
The use of Dropout as a tool for uncertainty quantification has been questioned due to its failure to
separate aleotoric and epistemic sources of uncertainty (Osband, 2016)) (i.e., the uncertainty does not
decrease even as more data is gathered). In this paper we ask a separate yet related question: Does
Dropout treat all parts of function space equivalently?

Significant work has focused on the effect of Dropout as a weight regularizer (Baldi & Sadowski,
2013}, (Warde-Farley et al., [2013}; |Cavazza et al., 2018}, [Mianjy et al., 2018; [Zunino et al., [2018]),
including its properties of structured shrinkage (Nalisnick et al., 2018) or adaptive regularization
(Wager et al.| [2013)). However, weight regularization is of limited utility for modern-scale NNs, and
can produce counter-intuitive results such as negative regularization (Helmbold & Long] [2017).

Instead of focusing on the influence of Dropout on parameters, we take a nonparametric view of NNs
as function approximators. Thus, our work is similar in spirit toWan et al.|(2013)), which showed
a linear relationship between keep probability and the Rademacher complexity of the model class.
Our investigation finds that Dropout preferentially targets high-order interaction effects, resulting
in models that generalize better by down-weighting high-order interaction effects that are typically
spurious or difficult to learn correctly from limited training data.

3 PRELIMINARIES

Multiplicative terms like X7 X5 are often used to encode “interaction effects". They are, however,
only pure interaction effects if X; and Xs are uncorrelated and have mean zero. When the two
variables are correlated, some portion of the variance in the outcome X; X» can be explained by main
effects of each individual variable. Note that correlation between two input variables does not imply
an interaction effect on the outcome, and an interaction effect of two input variables on the outcome
does not imply correlation between the variables.

In this paper, we use the concept of pure interaction effects from |Lengerich et al.| (2020): a pure
interaction effect is variance explained by a group of variables u that cannot be explained by any
subset of u. This definition is equivalent to the fANOVA decomposition of the overall function F':
Given a density w(X) and F* C £*(R") the family of allowable functions for variable set u, the
weighted fANOVA (Hooker, 2004; [2007; (Cuevas et al., 2004) decomposition of F'(X) is:

L= agmin [ (X a0t - FOO) w0iX, aa)

{9u e}-u}ue[d] uCld]

where [d] indicates the power set of d features, such that
VoCu [ X0 (X)X =0 Vg, (1b)

i.e., each member f,, is orthogonal to the members which operate on any subset of w. An interaction
effect f, is of order k if |u| = k. Given N variables in X, there are O(NV) possible effects of
individual variables, O(N?) possible pairwise interactions, O(/N?) possible 3-way interactions, i.e.
O(N*) possible interactions of order .

The fANOVA decomposition provides a unique decomposition for a given data distribution; thus, pure
interaction effects can only be defined by simultaneously defining a data distribution. An example
of this interplay between the data distribution and the interaction definition is shown in Figure
As|Lengerich et al.|(2020) describe, the correct distribution to use is the data-generating distribution
p(z). In studies on real data, estimating p(«) is one of the central challenges of machine learning; for
this paper, we use simulation data for which we know p(x).
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4  ANALYSIS: DROPOUT REGULARIZES INTERACTION EFFECTS

Dropout operates by probabilistically setting values to zero (i.e. multiplying by a Bernoulli mask).
For clarity, we call this “Input Dropout” if the perturbed values are input variables, and “Activation
Dropout” if the perturbed values are activations of hidden nodes.

First, we show that Input Dropout is equivalent to replacing the training dataset with samples drawn
from a perturbed distribution:

Theorem 1. Let E[Y|X] =" .y fu(Xu) with E[Y] = 0. Then Input Dropout at rate p produces

EY|X©M] =Y (1-p)"f(X) )
u€(d]

where M, a vector of d Bernoulli random variables, is the Dropout mask and © is element-wise
multiplication.

This theorem shows that Input Dropout shrinks the conditional expectation of Y'|X ® M toward
the expectation of Y. Furthermore, Input Dropout preferentially targets high-order interactions: the
scaling factor shrinks exponentially with |u|. Implications of this theorem are:

1. The distribution of training data is different for different levels of Input Dropout, so even NNs
trained for more epochs or with infinite sample size cannot overcome the bias introduced
by Dropout and will converge to different optima based on the Input Dropout level. This is
unlike L1 or L2 regularization which can be overcome by increasing the size of the training
set.

2. Input Dropout affects higher-order interactions more than lower-order interactions, biasing
the prediction of any model (regardless of whether or not the model was originally trained
with Input Dropout).

3. Input Dropout acts on the data distribution, not the model, so it has the same effect on
learning regardless of the downstream net architecture.
Next, we show that Input Dropout shrinks gradients by down-weighting the gradient scale, with
shrinkage factor exponential in effect order:
Theorem 2. Let V (-, -) be the gradient update for an interaction effect u. The expected concordance
between the gradient with Input Dropout at rate p and the gradient without Input Dropout is:
Vu(Xy,Y) Vo (X, ©MY)
[V (X, Y

E s = (1-p)"V,(X,,Y). 3)

This theorem shows that Input Dropout shrinks the gradient update corresponding to each effect by
an effective learning rate ,(k) = (1 — p)* which decays exponentially in the interaction order .
Implications of this theorem are:

1. The decreased learning rate persists throughout all training. Therefore, the disruption in the
gradient will interplay with other mechanisms of optimizers (e.g. momentum).

2. The impact of training with Input Dropout could be undone by re-weighting gradients.

4.1 SYMMETRY BETWEEN DROPOUT STRENGTH AND NUMBER OF INTERACTION EFFECTS
From N input features, there are (]Z ) distinct k-order interaction effects which could be estimated.
Without any regularization, high-order interactions would dominate. However, as shown above, the
effective learning rate of k-order interactions decays exponentially with k. This is a symmetry with
(JZ ) (which is < N* for all k and ~ N* for small k). As shown in Fig the exponential growth of
the hypothesis space H;, with interaction order is balanced by the exponential decay of the effective
learning rate, providing strong regularization against high-order interaction effects.
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Figure 1: The growing hypothesis space of potential interaction effects is balanced against the
effective learning rate imposed by Dropout. In this figure, we plot the product of the effective learning
rate (1, (k)) and the number of potential interaction effects of order k (#y,) for a variety of Dropout
rates p. Infal we plot these values on a log scale for the entire range of potential interaction orders for
an input of 25 features. In@, we plot up to order 4 on a linear scale.

5 EXPERIMENTS

As shown above, Dropout does not simply add unbiased noise to the gradient updates; instead,
Dropout exerts an unceasing force throughout the optimization process. This means that Dropout
changes the steady-state optima of the model. We examine this behavior empirically for both Input
Dropout and Activation Dropout by decomposing the effect estimated by a NN with the fANOVA.
Anonymized code to reproduce all figures is available at[ﬂ

5.1 MEASURING INTERACTION EFFECTS IN TRAINED NEURAL NETWORKS

The function F'(X) estimated by a NN can be decomposed as: F(X) = > ueld] fu(X,) by the
fANOVA (Eq.[Ib). We will use this decomposition to measure the interaction effects implicit in
the NN. To approximate this decomposition, we repeatedly apply model distillation (Hinton et al.,
2015; Bucilua et al., [2006) using the XGBoost software package (Chen & Guestrin, 2016). First,
we train boosted stumps (XGBoost with max depth of 1) to approximate the output of the NN
using only main effects of individual variables. We successively increase the maximum depth of
trees (corresponding to an increase in the maximum order of interaction effect). By training on the
residuals of the previous model, we ensure that the estimated effects are orthogonal. In the remainder
of this paper, we will refer to Vary (f,(X)) as the effect size of an estimated effect f, | For a
demonstration of the accuracy and robustness of this procedure, please see the experiments performed
in Appendix [A] Given the extra space allowed for the camera-ready copy, we intend to include these
experiments in the main text here.

5.2 DROPOUT REGULARIZES INTERACTIONS IN PURE NOISE DATA

In this experiment, we use a simulation setting in which there is no signal (so any estimated effects
are spurious). This gives us a testbench to easily see the regularization strength of different levels of
Dropout. Specially, we generate 1500 samples of 25 input features where X; ~ Unif(—1,1) and
Y ~ N(0,1). We optimize NNs with 3 hidden layers and ReLU nonlinearities and measure effect
sizes as described in Sec.[5.1] In Fig.[2l we see the results for NNs with 32 units in each hidden
layer. For this small network, both Activation and Input Dropout have strong regularizing effects on a
NN. Not only do they reduce the overall estimated effect size, both Activation and Input Dropout
preferentially target higher-order interactions (e.g., the proportion of variance explained by low-order
interactions monotonically increases as the Dropout Rate is increased for Figs. and2f] In

'"https://github.com/dropout-intx/ICLR2021
>The fANOVA decomposition is identifiable for a given distribution of X; in our experiments, we will mainly
use simulation data so that this decomposition can be computed with respect to the correct distribution.
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Figure 2: In this experiment, we train fully-connected NNs on pure noise (details in Sec. .
Displayed values are the (mean =+ std. over 10 initializations) of the trained model’s variance
explained by each order of interaction. Activation and Input Dropout both reduce the effect sizes of
the learned high-order interactions. The top row (a—c) shows absolute effect sizes (which of course
decrease as Dropout increases), while the middle row (d—f) shows the relative effect sizes, making it
easier to see how the Dropout rate affects each order.

Fig.[E3] we see results from the same experiment on NNs with 128 units in each hidden layer; as our
analysis predicts, the effects of Input Dropout are just as strong for this larger network (Fig. [E.3¢).

5.3 OPTIMAL DROPOUT RATE DEPENDS ON TRUE INTERACTIONS

This understanding of Dropout as a regularizer against high-order interaction effects suggests that
Dropout should be used at higher rates where we would like to regularize against high-order interaction
effects. To test this guideline, we perform two experiments.

Modified 20-NewsGroups Data We use the 20-NewsGroups datasetﬂ which is a classification
task on documents from 20 news organizations. We modify this dataset by adding &k new features
(each feature is IID Unif(0, 1)) and a 21st class which is the correct label if all of the k new features
take on a value greater than 0.5. This modified dataset then has a strong k-way interaction effect, and
as k grows, we would expect the optimal Dropout rate to be lower. As predicted by our understanding
of Dropout, indeed the optimal Dropout rate is lower for larger k; with optimal rates of 0.375 for
k =1,0.25 for k = 2, and 0.125 for & = 3 (full results are shown in Tab1e|1'|).

BikeShare The New York City BikeShare dataseﬂ (preprocessing fromEI) is a large dataset designed
to help predict the demand of Citi Bikes in New York City. Because individuals base their travel
plans on hourly, daily, and weekly cycles, there are real 2nd- and 3rd-order interaction effects in

*http://qwone.com/~jason/20Newsgroups/
Ynttps://www.citibikenyc.com/system-data
5https ://www.kaggle.com/akkithetechie/new-york—-city-bike-share-dataset


http://qwone.com/~jason/20Newsgroups/
https://www.citibikenyc.com/system-data
https://www.kaggle.com/akkithetechie/new-york-city-bike-share-dataset
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Figure 3: Learned interaction effects of order 1, 2 and 3 (cols 1, 2, and 3 respectively), and model
error on train and test (col 4) vs. epochs. Each row corresponds to a different generator as described
in Sec.[5.4.1} the generator in the top row has only 1-way interactions, the generator in the middle
row has only 2-way interactions, and the bottom row has only true 3-way interactions. The figure is
complex; key findings are described in Sec. [5.4.T}

this dataset (Tan et al.,|2018)). As predicted by the interaction view of Dropout, the optimal rate of
Dropout for this dataset is actually 0 (full results in Fig.[E-4).

5.4 D0 OTHER REGULARIZERS PENALIZE INTERACTION EFFECTS?

Seeing that Dropout regularizes against interaction effects, it is natural to ask whether other effective
regularizers of NNs also achieve better generalization by penalizing high-order interaction effects.
Here, we examine early stopping and weight decay as potential regularizers of interaction effects. We
find that neither of these regularization techniques specifically target interaction effects. However,
because Dropout changes the effective learning rate of interaction effects, it can act in concert with
early stopping to magnify the regularization against interaction effects.

5.4.1 EARLY STOPPING

It has long been known that the effective capacity of NN increases during training (Weigend, |1994),
and recent work supports the view that randomly-initialized NNs start as simple functions that are
made more complex through training (De Palma et al.| 2018} [Nakkiran et al., 2019; Jacot et al.|
2018)). Thus, it makes sense that early stopping can help select models that generalize well (Prechelt|
1998;; (Caruana et al., | 2001)). To see how early stopping interplays with the Dropout-induced effective
learning rates, we study the learned effects over the course of optimization.

We generate 1500 samples of 25 input features where X; ~ Unif(—1,1) and the target is gener-
ated according to one of three settings: (1) only main effects: Y ~ N(sin(Xp) + cos(X1),0?),
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Figure 4: Strong weight decay can have a mild regularization effect against interaction effects;
however, the regularization effect comparable to Dropout occurs at extremely strong weight decay
for which training is very unstable.

(2) only pair effects: Y ~ N(sin(Xg)cos(X1),02), and (3) only three-way effects: Y ~
N (sin(Xp) cos(X1)X2,0?). We optimize fully-connected NNs on these data and measure effect
sizes as described in Sec.[5.1] Results are shown in Fig.[3] The key findings are: 1) the rightmost
column shows that NNs with low rates of Dropout tend to massively overfit due to a reliance on high-
order interactions; 2) the different levels of Dropout have different steady-state optima; 3) because
Dropout slows the learning of high-order effects, early stopping is doubly effective in combination
with Dropout. NNs tend to learn simple functions earlier (regardless of Dropout usage), and Dropout
slows the learning of high-order interactions. As a result, early stopping reduces the complexity of
the learned function and Dropout increases this effect by delaying learning high-order interactions so
early stopping can halt training before they are learned.

5.4.2 WEIGHT DECAY

Another popular regularization mechanism is weight decay: placing an /5 penalty on the weights of
the network. We study weight decay on the same data generator as we studied Dropout in Sec.[5.2} As
the results in Fig. @] show, strong weight decay (large values of ) has a modest effect of regularizing
against interaction effects. However, achieving the same practical benefit from weight decay as from
Dropout is untenable due to the training instability that strong weight decay introduces: when weight
decay was set larger than about 0.2 the NNs learned simple constant functions.

6 DISCUSSION AND IMPLICATIONS

In this paper, we examined a concrete mechanistic explanation of how Dropout works: by regularizing
higher-order interactions. We see that Dropout does not introduce unbiased noise into learning —
training with higher levels of Dropout produces models that are less likely to learn strong interaction
effects. This explanation of Dropout has several implications for its use and crystallizes some of the
conventional wisdom regarding how and when to use Dropout.

6.1 DROPOUT FOR EXPLANATIONS

While Dropout has been used for measures of model confidence (Gal & Ghahramani, 2016 [Gal et al
and to aid model interpretability (Chang et al., 2017ba), it does not treat all effects equally.
This must be taken into consideration both during training a NN and when querying a trained NN.
when Dropout is used to train the NN, true statistical patterns that are in the training data may or may
not be learned by the NN depending on the Dropout rate. And when a trained NN is probed with
Dropout enabled, a false picture of the function learned by the NN can also emerge. For example,
there are important 2" and 3™ order interactions in the New York City BikeShare dataset (Fig. ;
using Dropout to examine a NN trained on this dataset will underweight these interaction effects.
Thus one should be careful when using Dropout to interpret NN, or interpreting what NNs trained
with different Dropout rates tell us about patterns in the data.




Under review as a conference paper at ICLR 2021

6.2 SETTING DROPOUT RATE

The Dropout rate should be set according to the desired magnitude of the anti-interaction regularization
effect. If the dataset is large or sufficient augmentation can be performed, lower rates of Dropout can
be used or Dropout can be omitted entirely(Hernandez-Garcia & Konig, [2018) (e.g. the New York
City BikeShare dataset discussed in Section [5.3).

In addition, it is often suggested to use larger Dropout rates in deeper layers than in initial layers
(Ba & Frey, 2013). This conventional wisdom can be explained from the interaction point of view:
this regularization scheme encourages NNs to do representation learning in their initial layers as this
may require learning interactions between input features such as pixels or words, while encouraging
deeper layers to focus more on summing evidence from multiple sources.

In CNNs, Dropout is typically used at lower rates than in fully-connected networks (Park & Kwakl

2016)). The convolutional architecture creates constraints that prevent arbitrary high-order interactions

by restricting N in (],\c[ ) to be a carefully selected set of local input features or hidden unit activations.

Also, operators like max pooling further restrict the model’s ability to learn complex interactions. In
other words, convolutional nets create a strong bias for or against different kinds of interaction effects
via architecture and thus depend less on a mechanism like Dropout to blindly regularize interactions.

6.3 EXPLICITLY MODELING INTERACTION EFFECTS

In this investigation, we have seen that the main challenge of estimating interaction effects is the
hypothesis space which grows exponentially with the order of the interaction effect. If we were able
to hone down the hypothesis space by specifying a small number of interaction effects before looking
at data, our models could efficiently learn the correct parameters for these few interactions from data.
Several recent works have proposed to do this by explicitly specifying the interaction effects the NNs
may consider. Of particular note is (Jayakumar et al.}2020), which proposed to use multiplicative
interactions to combine data modalities, and found that many common architectures can be seen
in the lens of multiplicative interactions. These works make sense given the difficulty of picking
interaction effects from the exponentially-growing haystack of possible interactions: if we know a
priori which high-order interactions exist, it is better to explicitly model them rather than hope the
NN learns them from data.

Another approach to explicitly model interaction effects is the Deep and Cross Network (Wang et al.}
2017), which uses a two-part architecture consisting of a fully-connected network and a “cross"
network in which each layer has its activation crossed with the vector of input variables before
being transmitted to the next layer. This “cross" network increases the interaction order at every
layer. Interestingly, the experiments of (Wang et al.l 2017) (especially Fig. 3 within) show that the
best-performing architecture has only a single cross layer — this is exactly what we would expect
based on the amount of spurious interaction effects which the model is otherwise capable of learning.

Finally, we can see these experiments as another view on the success of CNNs: when interactions are
important (such as in image recognition), it is important to make the form of expected interactions
explicit. High-order interactions in the data are not strong enough to cut through the hypothesis space
of all potential interactions, so explicitly encoding the form can make a tremendous difference in
model accuracy.

7 CONCLUSIONS

In this paper, we have examined a concrete explanation of Dropout as a regularization against
interaction effects. We have shown that the effective learning rate of interaction effects decreases
exponentially with the order of the interaction effect, a crucial balance against the exponentially-
growing number of potential interactions of k variables. Although Dropout can work in concert with
weight decay and early stopping, these do not naturally achieve Dropout’s regularization against
high-order interactions. By reducing the tendency of NNs to learn spurious high-order interaction
effects, Dropout helps to train models which generalize more accurately to test sets.
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Figure A.1: Measuring the accuracy of the estimated interactions in NNs trained on simulation data
of pure interactions of order 1, 2, or 3. Each pane shows results for a given number of samples used
for model distillation. For small numbers of samples, the distillation procedure can over-estimate the
variance contained by high-order interaction effects. For large numbers of samples, the distillation
procedure accurately recovers the true interaction order. Error bars represent the variance of the
estimate over 10 experimental runs.

A ACCURACY OF FUNCTIONAL ANOVA DECOMPOSITION BY DISTILLATION

This section is the most important part of the Appendix and we plan to include this material in
Section 5] of the main body of the final paper (which is 1 page longer).

A critical step in our experimental framework is accurately calculating the fANVOA decomposition
of the function estimated by the NN. Because the fANOVA captures a high-dimensional function
as a sequence of lower-dimensional functions, each function is a constrained approximation of the
function represented by the NN. Thus, we do not recommend always using model compression as a
general-purpose explanation of NNs. However, in this paper we care about only a single aspect of

the compressed models: approximation error of the NNs. From the NN function F'(X), we estimate
an additive model f;(X) € S(F, F)) = arg minge z Ex [ﬁ(f(X), F(X))| where F is the class

of additive models and L is squared loss. The set of possible explanations S (13’ ,F1) may have
more than one member; however, all of these explanations must have the same compression loss

Ex [E( f(X), F(X ))] . Since the only metric we are reporting about these models is the compression

loss (how much of the variance of the NN could be explained by a model in F7), in this paper it does
not matter which explanation in S(F', 1) is chosen.

To empirically measure this approximation error, we test the distillation procedure using simulation
data. Our goal in this experiment is to accurately fit a NN to a known function so that we can measure
the approximation error of the distillation procedure against the known function encoded in the NN.
For each run, we generate data according to X ~ Unif(—1,1)®, and train the NN to fit a function
of pure k-order interactions (a multiplication of k uncorrelated features of X). In this way, the NN
represents a function of pure k-order interactions and a perfect distillation procedure would assign
100% of the variance to the interactions of order k. Code for this simulation, with hardcoded values
of hyperparameters, are available at the main repository.

In Fig.[AT] we show the results for distillation with various numbers of samples. In each pane, there
are 4 bars which each represent a pure interaction of a different order. The height of the bars (and the
corresponding colors) represent the normalized effect size estimated by the distillation procedure
for each of these underlying interaction effects. In Fig.[A.Ta] only 100 samples are used to fit the
distilled models; as a result, the distilled models underfit the NN’s behavior and the implied effects of
high-order interactions are exaggerated. When the number of samples is increased to 1000 (Fig.[A-Tb)
or to 10000 (Fig. [A.Ic), the distillation procedure is increasingly accurate at recovering the true
interaction order in the NN.

We have also run this experiment on data generated from a mixture of interaction effects and obtain
similar recovery results.
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(b) p = 0.99

Figure B.2: A toy example of decomposing a function into pure interaction and main effects. In each
(E[) and (IEI), there are four panes: (left) an overall function, (middle left) a pure interaction effect
of X and X5, (middle right) a pure effect of X, and (right) a pure effect of X5. In both [a and
[B the overall function is Y = X; X, but the decomposition changes based on the coefficient p of
correlation between X and Xs. For X; and X5 uncorrelated, the multiplication is a pure interaction
effect; for X; and X5 correlated, much of the variance can be moved into effects of the individual
variables. The decomposition is unique given the joint distribution of the three variables.

B INTERACTION EFFECTS
An example of the distribution changing the meaning of a pure interaction effect is shown in Fig.[B.2}

B.1 THE UNREASONABLE EFFECTIVENESS OF MODELS WITH FEW INTERACTION EFFECTS

Generalized additive models (GAMs) Hastie & Tibshirani| (1990) are a restrictive model class which
estimate functions of individual features, i.., functions of the form f(X;,...,X,) = >" | ¢:(X;).
There have been a large number of methods for estimating these functions, including functional forms
such as splines, trees, wavelets, etc. (Eilers & Marx| 1996} [Lou et al.} 2012} [Wand & Ormerod, 201T).
While vanilla GAMs describe nonlinear relationships between each feature and the label, interactions
are sometimes added to further capture relationships between multiple features and the label
et all, 200T} [Cou et al}, 2013}, [Tay & Tibshirani, [2019).

In the age of deep learning, it is surprising that GAMs with a small number of added interaction
effects could be state-of-the-art on any dataset with a moderately large number of samples. However,
successful tree-based ensembles such as XGBoost (Chen & Guestrin, 2016) often require only a few
interaction effects to win competitions 2016). In certain cases, polynomial regression of
order 2 can be competitive with fully-connected deep NNs (Cheng et al.| [2018), and even generalized
additive models have a surprising capability to approximate deep NNs (Tan et al.,[2018). Similar
phenomena have been observed for Gaussian Processes (Delbridge et al., 2019) and computer vision
models (Yin et al.} 2019; [Wang et al.} [2020; [Tsuzuku & Satol,[2019). How are these models, which
ignore the majority of interaction effects, so effective?

B.2 STATISTICAL (UN)RELIABILITY OF INTERACTION EFFECTS

One reason why models which ignore high-order interaction effects can perform so well is the
tremendous difficulty that higher-order interaction effects present to learning algorithms. When
trying to learn high-order interaction effects, we are stuck between a rock and a hard place: the
number of possible interaction effects grows exponentially (the number of k-order interaction effects
possible from N input features is N ), while the the variance of an interaction effect grows with the
interaction order (Leon & Heol, [2009). This quandry is intensified when the effect strength decreases
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with interaction order, which is reasonable for real data (Gelmanl 2018). It is like searching for a
needle in a haystack, but as we increase k, the haystack gets larger and the needle gets smaller. For
large k, we are increasingly likely to select spurious effects rather than the true effect — at some point
it is better to stop searching the haystack. Viewed this way, it is less surprising that in the absence of
prior knowledge of which interaction effects are true, simple models are able to outperform large
models.

B.3 PARITY AND INTERACTION EFFECTS

Interaction effects are intricately linked to a classically difficult function class: parity. In the case
of two Boolean variables, a pure interaction effect is exactly a weighted XOR function and for
continuous variables, pure interaction effects are a continuous analog of parity (Lengerich et al.|
2020). Parity functions are notoriously difficult to learn with NNs (Wilamowski et al.| [2003} |Selsam
et al., [2018)). Does this suggest that NNs are already robust against interaction effects, and if so, why
is the extra regularization of Dropout against interaction effects necessary?

It is important for us to distinguish between learning the correct interaction effect against learning
a spurious interaction. Given N variables, there are O(IN) possible main effects, O(N?) possible
pairwise interactions, O(N?) possible 3-way interactions, O(N*) possible 4-way interactions, etc.
This exponential growth in the hypothesis space of interaction terms simultaneously increases the
probability that a universal approximator would estimate some interaction effect while decreasing the
probability that the same universal approximator selects the correct interaction effect. For this reason,
it can be possible for model classes to struggle with accurate recovery of parity functions without
being inherently biased against high-order interactions. As shown in Figure[I] the exponential growth
in the number of potential interaction terms is balanced by the exponential decay in learning rate
induced by Dropout. In this way, large NNs trained with Dropout can have the convenient property
that they are capable of learning high-order interactions but will put off the difficult task of learning
these high-order interactions until simpler functions have been thoroughly explored.

C PROOF OF THEOREM 1

Proof. Let E[Y|X] =}, (4 fu(Xy) and E[Y] = 0. Then with Input Dropout,

EY|X©M| =Y PXoOM=X)fuX,)+ (1-PX6oM=X))E[fu(X,©M")]
u€ld] )
= u%;ﬂ(l =) fu(X) + (1= (1= p)"DE[fu(Xy © MT)] (4b)
= Z (L—p) f(Xu) + (1= (1 —p)) /fu(Xu\v,Xv)dXv for some v € u
u€ld]
(4c)
= > (1 -p)fu(Xy) (4d)
u€ld]

where M is drawn uniformly from the Dropout masks with at least one zero value and the final
equality holds by the orthogonality condition of the fANOVA decomposition (Eq. 1b in the main
text). L]
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D PROOF OF THEOREM 2

Proof.
VX, Y) Vu(X, ©M,)Y)
E 5
SR | oo ST R .
1
=1 -p) V. (X,,Y) + m(l — (1= p)"NEp+ [Vu(Xu @ MT,Y)] (5b)
= (1-p)"IVu (X, Y) (5¢)
where the final equation holds by the orthongonality of fANOVA. O

E ADDITIONAL EXPERIMENTS

Pure Noise Data Figure [E.3|shows the results of various Dropout rates on a NN with 128 hidden
units in each layer. These results are analogous to the results shown in Fig. 2| of the main text for a
NN with 32 hidden units in each layer.

Modified 20-NewsGroups Table|l|displays the results of various Dropout Rates on the Modified
20-NewsGroups datasets described in Section[5.3]

k Dropout Rate

0.0 \ 0.125 \ 0.25 \ 0.375 \ 0.5 | 0.625
1]0524+£0.01 | 0.564+0.01 | 0.54+0.03 | 0.57+£0.02 | 0.55£0.02 | 0.47+£0.02
21039+0.01 | 0.38+0.03 | 0.40£0.02 | 0.40+0.01 | 0.38+0.01 | 0.27 £ 0.02
31039+0.01 | 0.41+0.01 | 0.41 £0.01 | 0.40+0.02 | 0.40+0.02 | 0.27 +0.04

Table 1: Test accuracies of the models trained on the modified 20-Newgroups datasets (Sec. [5.3).
Reported values are (mean = std) of the test accuracies over 5 experiments, with the best setting in
each row bolded. Each row indicates k, the order of the added interaction effect. As k is increased,
lower levels of Dropout tend to outperform. Different modifications of the dataset change the difficulty
of the task, so the accuracy values are not comparable across rows.

BikeShare Figure displays results of various Dropout rates on a NN trained on the New York
City Bikeshare dataset. Because this dataset contains real 2nd and 3rd-order interaction effects (Tan
et al.| 2018), the optimal Dropout rate for generalizing to the test set is actually 0.
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Figure E.3: In this experiment, we train fully-connected neural networks on a dataset of pure noise
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(details in Sec.[5.2). Displayed values are the (mean + std. over 10 initializations) of the proportion

of the trained model’s variance explained by each order of interaction effect. All neural networks
in this figure have 128 units in each hidden layer (compared to 32 units per layer in Figure[2), and
we see that Activation Dropout has only a small impact, while Input Dropout significantly reduces
the estimated effect sizes of the high-order interactions. As expected, increasing the size of the
hidden layers from 32 in Figure[2]to 128 in this Figure decreases the impact of Activation Dropout

on high-order interactions, but does not reduce the effectiveness of Input Dropout.
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Figure E.4: Learned interaction effects and model errors over epochs training on the BikeShare
Dataset. In this dataset, there are true interaction effects of orders 2 and 3, so the models with high
Dropout rates generalize worse than the models with low Dropout rates. This behavior is expected
under our perspective of Dropout as an interaction regularizer, but unexpected under the perspective
of Dropout as a generic model regularizer.
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