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Abstract

Microgroove substrates induce 3D nuclear deformations in various adherent cell types. In
this study, we explore the capacity of a CNN classifier to identify myoblast mutations
through subtle differences in nuclear deformations on 2D fluorescence microscopy images.
A large set of experimental images from immunostained nuclei screened on microgroove
platforms is exploited. Leveraging ResNet-50 in a weakly-supervised setting, we present
preliminary results to accurately classify healthy myoblasts from laminopathy-associated
mutations. We achieved F1 scores of 0.99 and 0.94 at whole-image and patch levels evalu-
ations. These results demonstrate the potential for microgroove screening as a functional
diagnostic device of diseases characterized by aberrant nuclear deformations.
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1. Introduction

Various diseases including laminopathies and certain types of cancer are associated with
abnormal nuclear mechanical properties that influence cellular and nuclear deformations in
complex environments (Zwerger et al., 2011). Recently, microgroove substrates designed
to mimic the anisotropic topography of basement membranes have been shown to induce
significant 3D nuclear deformations in various adherent cell types (Leclech et al., 2024).
Importantly, these deformations appear to be different in muscle precursor (myoblast) cells
derived from laminopathy patients from those derived from normal individuals. This un-
derscores the potential of leveraging deep learning and computer vision to provide rapid
and high throughput classification of cell mutations based on nuclear deformations.

In this study, we test the potential of a weakly-supervised CNN for classifying myoblast
mutation in cells cultured on microgrooves. Our approach involves learning on image-level
labels to capture the complex deformation patterns present across cell populations. We
describe our image preprocessing and motivate our design choices to address the challenges
associated with variability in nuclear deformation, cell densities, and small dataset size. We
apply our method for the binary classification of healthy versus mutant myoblast cells.
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2. Methods

Data Collection. Wild type (WT) control myoblasts from a healthy subject and myoblasts
from a subject carrying the LMNA c.94 96delAAG, p.Lys32del mutation (hereafter denoted
as ∆K32) were derived from muscle biopsies. The cells were seeded at 100,000 cells/cm2

on polydimethylsiloxane (PDMS) microgroove substrates prepared as detailed elsewhere
(Leclech et al., 2022) (schematic in Fig. 1A). The microgrooves were 5 µm wide, 4 or 5.4
µm deep, and had a 5 µm inter-groove spacing. Cells were immunostained for lamin A/C
to demarcate the nuclei. Epifluorescence images were acquired with a 20X objective.
Data Specifications. 16 bit 2044×2048 pixel single channel images at 0.325 µm/pixel
resolution from six independent experiments were acquired. The dataset contained 137
images of either WT (n = 73) or ∆K32 (n = 64) myoblast cells. Each image had lamin
A/C-stained nuclei of WT or ∆K32 cells as shown in Fig. 1B. The dataset was divided into
cross-validation subsets at the experiment level to avoid data leakage due to variations in
experimental conditions, such as image focus or illumination.
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Figure 1: (A) Schematic of cell culture on a microgroove substrate. (B) Sample images of
WT and ∆K32 nuclei on microgroove substrates. Scale bar = 100 µm.

Preprocessing. To mitigate the effects of variable cell density, we excluded images with
extremely low or high density. To address the limited dataset size, nine 1024×1024 pixel
patches were extracted from each image using a sliding window approach with 50% overlap.
99th percentile intensity clippings were applied. Table 1 shows an overview of the dataset.

Table 1: Dataset overview. The average numbers of nuclei per image/patch are balanced.

Mutation #images #patches Avg #nuclei/image Avg #nuclei/patch

WT | ∆K32 73 | 64 657 | 576 82 | 87 22 | 24

Experiment setup. We performed 3-fold cross-validations using patches as inputs, ensur-
ing balanced subsets by pairing experiments based on image quantity. Validation on 15%
of the training subset was used to determine the best-performing model based on validation
loss. Test results on patches are reported on the test subset. Additionally, we also report
test results obtained by labeling directly on whole images, enabled by the adaptive average
pooling layer in ResNet-50. This layer ensures consistent fixed-size feature maps, which
allows direct evaluation of large images.

We trained ResNet-50 networks (He et al., 2016) from scratch with cross-entropy loss and
AdamW optimizer. Patches were downsized to 512×512. Augmentation involved random
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flip, zoom, intensity shift, and gamma shift with probabilities of 0.7, 0.3, 0.4, and 0.4,
respectively. To mitigate potential bias related to nuclei/groove orientation being associated
with label classes, we randomly rotated the patches within the range of [-π, π] radians.
Test images were padded to 2048×2048 then downsized to 1024×1024. We used test-time
augmentations, including horizontal and vertical flipping of the test patches and images.

3. Results and Discussion

Table 2 provides the mean Precision, Recall, and F-1 test scores from our 3-fold cross-
validation. Our method succeeds in classifying WT and ∆K32 at both patch and image
levels. Mean scores are higher with lower variance at the image level due to greater cell
density compared to patch evaluations.

Table 2: Average classification test results at patch and image levels for 3-fold cross vali-
dation. PR - precision, REC - recall. Avg is the weighted average.

Patch scores Image scores
PR REC F-1 PR REC F-1

Avg 0.95 ± 0.04 0.94 ± 0.05 0.94 ± 0.05 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02

Fig. 2 depicts activation maps using GradCAM (Selvaraju et al., 2019) on the last
convolution layer of our trained ResNet-50. We can observe that the high-activation regions
for each class correspond to nuclei with specific deformation patterns. The nuclei activated
for the WT class seem to exhibit mild elongation with major axis lengths of up to 20 µm.
In contrast, those activated for ∆K32 exhibit more pronounced elongation, surpassing 30
µm in length. We also note fewer activated nuclei on the ∆K32 than the WT cases, which
suggests the importance of using a large field of view for mutation characterization.
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Figure 2: GradCAM visualizations at the patch (A) and image (B) levels of the last con-
volution layer of our trained ResNet-50 (scale bar = 100 µm).

4. Conclusion

We presented promising classification results for a novel application of ResNet-50 to classify
myoblast mutation based on nuclear deformations induced by microgroove substrates. Our
models achieved excellent performance in classifying wild type versus mutant myoblasts,
with results explainable through GradCAM visualizations. Future work involves applying
the method to explore multi-mutation classification and classifying genetic mutations in
other cell types such as cancer cells and fibroblasts.
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