
Published as a conference paper at ICLR 2023

LEARNING A DATA-DRIVEN POLICY NETWORK FOR
PRE-TRAINING AUTOMATED FEATURE ENGINEERING

Liyao Li1 Haobo Wang1 Liangyu Zha2 Qingyi Huang2
Sai Wu1 Gang Chen1 Junbo Zhao1∗
1College of Computer Science and Technology, Zhejiang University
2Institute of Computing Innovation, Zhejiang University

ABSTRACT

Feature engineering is widely acknowledged to be pivotal in tabular data analysis
and prediction. Automated feature engineering (AutoFE) emerged to automate
this process managed by experienced data scientists and engineers conventionally.
In this area, most — if not all — prior work adopted an identical framework from
the neural architecture search (NAS) method. While feasible, we posit that the
NAS framework very much contradicts the way how human experts cope with the
data since the inherent Markov decision process (MDP) setup differs. We point
out that its data-unobserved setup consequentially results in incapability to gener-
alize across different datasets as well as also high computational cost. This paper
proposes a novel AutoFE framework Feature Set Data-Driven Search (FETCH1), a
pipeline mainly for feature generation and selection. Notably, FETCH is built on a
brand-new data-driven MDP setup using the tabular dataset as the state fed into the
policy network. Further, we posit that the crucial merit of FETCH is its transfer-
ability where the yielded policy network trained on a variety of datasets is indeed
capable to enact feature engineering on unseen data, without requiring additional
exploration. This is a pioneer attempt to build a tabular data pre-training paradigm
via AutoFE. Extensive experiments show that FETCH systematically surpasses the
current state-of-the-art AutoFE methods and validates the transferability of Aut-
oFE pre-training.

1 INTRODUCTION

Tabular data — also known as structured data — abound in the extensive application of database
management systems. Modeling tabular data with machine learning (ML) models has greatly influ-
enced numerous domains, such as advertising (Evans, 2009), business intelligence (Quamar et al.,
2020; Zhang et al., 2020), risk management (Babaev et al., 2019), drug analysis (Vamathevan et al.,
2019), etc. In resemblance to the other data forms like images or text, building a proper repre-
sentation for the tabular data is crucial for guaranteeing a decent system-wide performance. In this
regime, this process is also known as feature engineering (FE), which was conventionally conducted
by highly experienced human experts. In other words, as many empirical studies show (Heaton,
2016), FE almost always serves as a necessary prerequisite step in ML modeling pipelines.

The recent advances in reinforcement learning (RL) have provided a new possibility for auto-
mated feature engineering (AutoFE) and automated machine learning (AutoML). Neural architec-
ture search (NAS) (Zoph & Le, 2016) has nearly become a synonym for AutoML in the field of
computer vision, based on an RL setup dedicated to searching for undesigned neural network ar-
chitectures with excellent performance. As for tabular data, a series of well-known open-source
packages (such as TPOT (Olson & Moore, 2016), AutoSklearn (Feurer et al., 2015) and Auto-
Gluon (Erickson et al., 2020)) claim to implement the AutoML pipeline. However, they do not
generally cover AutoFE, especially feature construction and selection, which is supposed to be part
of AutoML as shown in Figure 1. To date, AutoFE has been a significant and non-negligible compo-

∗Correspondence to j.zhao@zju.edu.cn.
1Source code is available at https://github.com/liyaooi/FETCH, implemented by Mindspore.

1

https://github.com/liyaooi/FETCH

Published as a conference paper at ICLR 2023

1. process null values

2. discrete string to numbers

3. preprocess

4. normalization

1. +, -, ×, ÷, ⊗
2. abs, square, inverse, log, sqrt, power3

3. groupby, min, max, mean

4. selection

1 25 M 75 1.82

2 37 F 52 1.57

… … … … …

10000 19 M 58 1.75

1 25 0 75 1.82 22.64 0.0728

2 37 1 62 1.57 25.15 0.0424

… … … … … … …

10000 19 0 53 1.75 17.31 0.9111

AutoFE

AutoML

97%

Accuracy:

Figure 1: The different pipelines of automated feature engineering (AutoFE) and automated machine
learning (AutoML). Existing AutoML frameworks focus more on model setup and lack concern for
feature engineering.

nent of AutoML on tabular datasets because it not only constructs better features to facilitate model
fitting but also enjoys high interpretability.

Recently, the mainstream line of AutoFE is based on a trial-and-error NAS-like process. For in-
stance, Neural feature search (NFS) (Chen et al., 2019) was introduced to find the best performing
FE plans by drawing inspiration from the NAS framework — for the first time embedding past FE
actions into its policy network as the states in its Markov decision process (MDP) for RL training to
iteratively select better FE actions. The follow-up work DIFER (Zhu et al., 2022) extends its NAS-
like setup to a differentiable one. However, a data scientist or engineer usually tends to investigate
the data — such as analyzing its distribution, identifying the outliers, measuring the correlation be-
tween columns, etc. — and then proposes an FE plan. They may further use the derived plan to
test the prediction performance and repeat this process considering the evaluated score. Meanwhile,
they also can accumulate knowledge to accelerate decision-making.

As we scrutinize these works, we posit that existing NAS-like AutoFE frameworks on tabular data
have two shortcomings, largely deviating from how human experts cope with the data. First, they
have stuck themselves with the data-unobserved paradigm because their policy network does not
even see the tabular data itself and proposes data-unrelated FE plans. Second, the inherent data-
unobserved setup makes them lack transferability, unfeasible to borrow knowledge from previous
training experience to speed up the exploration process when facing a completely new dataset.

A B C D ...

1

2

3

…

num_features N
Data-Unobserved

FE Approach

Data-Driven

FETCH (Ours)

input: N

input: Table

Add(B, Square(Log(Abs(A))))

Multiply(C, Sqrt(Inverse(D)))

……

Subtract(D, Power3(Log(A)))

……

Add(A, Divide(B, Sqrt(D)))

iterate: Past FE Actions

iterate: Generated TableN

Figure 2: The difference between data-driven FETCH
and data-unobserved approach. See text for details.

This paper hopes to bridge this methodol-
ogy gap between the human experts and
data-unobserved methods for AutoFE and
validate its feasibility based on the above
discussions. In particular, we establish a
new form of MDP setup where the state
is defined simply as a processed dataset
drawn from its original counterpart. The
policy network yielded is a succinct map-
ping from the input data table directly to its
(sub)optimal feature engineering actions
plan. To this end, we present FEature
SET DaTa-Driven SearCH (FETCH) — a
brand new RL-based framework for Aut-
oFE but with a completely distinct data-
driven MDP setup to emulate the human experts. As shown in Figure 2, FETCH outputs FE actions
well-designed for the input data, and iteratively constructs more appropriate actions based on the
newly generated data. In contrast, traditional data-unobserved methods only take in the number of
features to be processed and iteratively update with the sequence of past actions.

Thanks to the aforementioned design principles of FETCH, another favored by-product is that it
enables transferability by pre-training for the AutoFE workflow. Simply put, we validate that FETCH
can be pre-trained in a collaborative manner where we feed multiple tabular datasets and maximize

2

Published as a conference paper at ICLR 2023

the expected sum of the reward altogether. In particular, we could directly exploit it to unseen
datasets, with little or even no further exploration required. The “transferability” underlines that
the policy network in FETCH manages to accumulate knowledge from the fed datasets to be able
to transfer them to other scenarios. We argue that this behavior of FETCH is indeed similar to the
human experts’ in that the richer experiences accumulated from handling various types of datasets
may offer them better insights when facing the unseen ones. It is also worth noting that the NAS-like
AutoFE frameworks would demand exploration from scratch given any new dataset, profoundly due
to their inherent inability to derive associations across datasets with their data-unobserved MDP. Last
but not the least, this can also be understood from a standpoint of pre-training — connected to what
has been recently prompted in other domains — such as BERT (Devlin et al., 2018) / GPT-3 (Brown
et al., 2020) for natural language processing or the SimCLR (Chen et al., 2020) for computer vision.

To sum up, the main contributions are listed as follows.

1. We identify a crucial methodology gap between the data scientist/engineer with the current ex-
isting AutoFE frameworks.

2. We propose a novel AutoFE framework for both classification and regression tasks, dubbed
FETCH, on bridging this gap, including a data-driven feature engineering pipeline for data clean-
ing, feature generation and selection. Empirical results show its on-par or superior performances
to the previous state-of-the-art method.

3. For the first time, we characterize a transferability principle for AutoFE. It reflects how much
knowledge or experience a trained policy may be able to accumulate to enable the exploration
of unseen datasets. FETCH concept-proves its feasibility. This is also linked to the pre-training
paradigm.

2 RELATED WORK

Automated feature engineering AutoFE aims to find the best-performing set of features on fea-
ture engineering plans (e.g. transformation or selection) with minimal human intervention. For
instance, the LFE algorithm (Nargesian et al., 2017) pioneers parametrizing the feature transfor-
mation that is only applicable to classification problems. To generate higher-order features, Trans-
Graph (Khurana et al., 2018) was introduced by formulating the feature engineering plan via a
data structure of the graph and Q-learning (Watkins & Dayan, 1992) algorithm. While conceptually
promising, this approach is shown to suffer from severe feature dimension explosion problems where
excessive feature columns are appended to the raw data. The Neural feature search (NFS) frame-
work (Chen et al., 2019), primarily stealing the setup from the RL-based NAS architecture (Zoph
et al., 2018), shed some light on how to tackle this problem. It employs a separate recurrent neural
network (RNN) controller (Medsker & Jain, 2001) to generate a new feature for every feature col-
umn individually, yielding that N features require N computationally expensive RNN controllers.
On a separate but related line, the differentiable NAS framework (Luo et al., 2018) is employed to
perform AutoFE, named DIFER (Zhu et al., 2022) by transferring a discrete optimization problem
to be continuous. However, NFS and DIFER only use the data for feature evaluation, not for feature
generation. Also, they only evaluate the effect of each individual feature, rather than considering
the comprehensive performance of the entire generated feature set. While this data-unobserved ap-
proach to constructing features works to some extent, we believe it is inconsistent with the pattern
of human experts scrutinizing the data before proposing feature engineering plans.

3 OVERVIEW OF FETCH

3.1 THE FE CONTROL PROBLEM

Given a prediction-involved problem with its dataset D = (X,Y) containing: (i)-a set of features,
X = {x1, x2 . . . xd} where X ∈ Rn×d denotes the tabular data containing n rows (instances)
and d columns (features); (ii)-a corresponding target label vector, Y, which can be either discrete
or continuous, compatible with classification or regression problems respectively. Similar to most
prior work around AutoFE (Khurana et al., 2018; Chen et al., 2019; Zhu et al., 2022), a pre-selected
learning algorithm L (e.g. Random Forest Classifier or Xgboost) with its hyperparameters fixed

3

Published as a conference paper at ICLR 2023

and a measure of cross-validation performance E (e.g. F1-score) are considered in the experimental
verification.

In addition, we denote T = {t1, t2 . . . tm} as a feature engineering plan where it consists of an
ordered sequence of m feature transformation actions t initiated from the raw data. Each transfor-
mation action t in T is applied on an internally specified feature x instead of whole features X. The
whole set of derived features that may be deduced from X through T is referred to as X̂T . Note
that, transformations can lead to a higher-order feature (i.e. combined by three or more features)
because it is equivalent to applying binary operation recursively.

The purpose (or objective function) of feature engineering is defined as Equation 1. Given a dataset
D = (X,Y) with a set of original features X and the target Y, search a sequence of transformation
actions T to derive a transformed feature set X̂T , which maximizes the cross-validation performance
E(L(X̂T ,Y)) for a given algorithm L and a metric E.

T = argmax
T

E(L(X̂T ,Y)) (1)

3.2 RL SETTING OF FETCH

The RL learning scheme, as illustrated in Figure 3, is employed in order to output an extended tabular
dataset concatenated with generated and selected features. The core to FETCH is a policy network of
the RL agent which is often instantiated by a well-designed deep neural network model introduced
in the following Section 3.3. The policy network takes the dataset itself, or a bootstrapped coun-
terpart to cope with the scaled dataset as a state, and produces a feature engineering plan through
an inference pass. In that regard, quite different from prior work of AutoFE, FETCH is —
in theory — capable to fully observe, perceive, and recognize the pattern concealed in the
dataset. At its core, FETCH formulates feature engineering as a control problem, elaborated in
above Section 3.1. Diving into this control problem, we propose a complete MDP setup including
an environment involving an observed dataset and a reward function assessing the quality of the
FE plans. The environment allows the agent to first employ an FE actions/operations sequence to
generate a new table, then receive back a positive/negative reward vector that summarizes its results,
derived from the reward function. The goal of the RL agent is to learn, by repeated interactions with
the environment, a policy network capable of mapping input data to a sequence of FE actions with
maximum cumulative reward. Once the learning phase is finished, the output tabular data provided
to the downstream ML model is generated upon the sequence of FE actions. To enable transfer-
ability to a certain degree in FETCH, we facilitate the training phase of this control problem via the
reinforcement learning (RL) paradigm. Due to space limitation, the MDP detail settings such as FE
action space and reward function R are covered in Appendix A.1.

As the informative architecture of FETCH shown in Figure 3, FETCH outputs a sequence of trans-
formation actions plan T = {t1, t2 . . . tm} after a tabular dataset is conceived by our framework.
To get the final prediction result, we sequentially apply the actions list on the tabular data X and
then feed it into an ML predictor (e.g. LR, RF, Xgboost) for the feature set evaluation and reward
calculation. This process is identically employed in both the training and evaluation phases. Within
each rollout, at time step i, we run the current data Xi through the policy network π to get an action
probability over pe-supported operators. We then sample the sequence of transformation actions
T following multinomial distribution by softmax. For the higher-order feature generation search,
while we only include binary operators in the set, we generally run FETCH by multiple steps so that
it covers more complex higher-order features that may involve more than two feature vectors. We let
T interact with the environment yielding transformed tabular data Xi+1 which integrates the input
Xi. We repeat this process multiple times until it reaches a pre-defined limit value K or converges.

A table generated by FETCH on a healthcare example is depicted in Figure 1. As shown in the figure,
FETCH initially cleans and encodes the data so that the label M/F in the column Gender becomes 0/1
respectively. Then the processed data is fed into our policy network, which learns how to generate
and select features, and eventually applies appropriate FE actions to the input table to obtain the
output table. For improved readability, each generated feature is named by the action path that
constructs it. For example, a more effective feature Weight/Height2 (a.k.a Body Mass Index (Lee
et al., 2013)) is calculated by column Weight and the square of column Height. This interpretable
path-like illustration of the operations allows experts to easily understand feature meanings and
strengthens interpretability.

4

Published as a conference paper at ICLR 2023

A B C D ...

1

2

3

…

Table Xi

Policy Network

Add(A, B);

……
Delete(C);

Q K V

Input

Layer

Dense

Layers

Attention

Encoder

Layers

Action

Decoder

Layers

Softmax

Layer

A B C D ...

+A 0.03 … 0.04 … …

+B 0.22 0.13

…

-A 0.07 0.12

-B 0.11 0.06

…

Log 0.01 0.02

Sqrt 0.01 0.08

...

None 0.13 0.14

Delete 0.08 … 0.36 … …

Actions Probability

A B D A+B ...

1

2

3

…

New Table Xi+1

Replace Repeat K steps for higher-order features

Sampled
Actions 𝒯

Reward LR; RF;

……
Xgboost;

LightGBM;

Evaluation

Figure 3: An architecture of the data-driven FETCH framework. For step i in each epoch, the newly
generated feature set Xi+1 will replace its previous counterpart Xi to construct higher-order features
and further selection. The subfigure of the middle dashed box reveals the micro-composition of
modules inside the policy network.

3.3 POLICY NETWORK ON FEATURE SET

As discussed above, the RL agent in FETCH framework is primarily represented by a policy network
π, where the main challenge of architectural design is centered on. Notably, to characterize the
tabular dataset and properly learn a decent representation of it, we must let the policy network be
capable of handling the permutation-invariant and variable-length natures of tabular data.

In contrast to the data forms of computer vision or natural language, when swapping or permuting
the columns of tabular data, it remains the same dataset. This property is identical to a “set” data
form as permutation invariant, which requires the neural network to be able to perceive the lists of
different sequential features as still the same data set. When conducting feature engineering, the
column number of the tabular would often change. Some of the column features might be replaced
or deleted, while some others (especially for iterative generation of higher-order features) might get
appended. This property of variable length demands that the neural network be more flexible with
respect to the shape of the input data. Note that, the nature of this data form has prevented us from
employing the convolutional network family or the recurrent network family because these models
encode positions as part of their inductive bias.

To that end, we finalize our design by viewing the tabular data as a set of feature (column) vectors.
Specifically, we draw inspiration from the Transformer architecture (Vaswani et al., 2017) and we
carefully choose our neural operators to equip into the policy network. A brief depiction of it is
shown in the middle (Policy Network) of Figure 3.

The primary components of our policy network are the following: (i)-a fully-connected network
(FCN) containing an input layer and dense layers. It changes the dimension of a variable-length
feature vector to a fixed length; (ii)-a multi-head self-attention module containing attention encoder
layers (more details in Vaswani et al. (2017)). It measures the complex relationship between fea-
tures in the set, which can be regarded as encoding the relationship of the feature columns; (iii)-an
action output module including action decoder layers and softmax layer. It decodes the output of
the upstream encoder to map the correlation information of the features to the corresponding action
probabilities. Unlike transformers, we abandon the positional encoding from the multi-head self-
attention module to satisfy the permutation-invariance property due to the nature of this data form.
All these parametric modules allow arbitrary permutation of the feature vectors and can tackle the
variable size of the feature set. Further, we reason that the stacked modules enable representation
learning, coupled with the self-attention mechanisms effectively gauging the correlation and rela-
tionship between the feature columns in the set. The multi-layer setup also assists the higher-order
feature discovery.

The feature-set-based action sampling rules are applied to the probability of the actions yielded by
the policy network to propose an FE action plan (Appendix A.2). Proximal Policy Optimization
(PPO) (Schulman et al., 2017) is adopted as the RL training manner in Algorithm 1 (Appendix A.3).

5

Published as a conference paper at ICLR 2023

3.4 TRANSFERABILITY VIA PRE-TRAINING

With data-driven FETCH, we demonstrate that our approach very much resembles the human experts
who can quickly transfer experience in handling unseen datasets, and it exhibits a certain degree of
transferability. This setup also links to the recent popular topic of pre-training, such as BERT (De-
vlin et al., 2018) or SimCLR (Chen et al., 2020) in natural language processing and computer vision
respectively. The goal of the pre-training paradigm is to drive the model to learn “common-sense”
through large-scale training over a variety of data, with either supervised or unsupervised loss func-
tionals. Common sense is manifested in the representation space, quite aligning the goal of feature
engineering for tabular data. Despite the promise, the research of pre-training on the tabular data
is very much unaddressed. With FETCH, we hope to provide the first viable technical solution and
empirically validate its feasibility. The corresponding experiment of transferability can be found in
Section 4.3.

Formally, given a set of datasets D = {D1,D2 . . .DNd
} where Nd denotes the number of datasets

occurring in the set. We notice that FETCH does not require these tables to possess identical or
similar schemas, nor identical row/column sizes. In particular, closely following the procedures dis-
played in Algorithm 1, we blend these datasets into a key-value data pool struct and initialize the
RL rollouts. Correspondingly, the reward is eventually yielded by

∑Nd

1 R(Di), according to Equa-
tion 2 and line 13 in Algorithm 1. Post to training on this blended set of data tables, we serialize and
save the parameter of the attention encoder module in the policy network. Noted, despite that in the
normal training scenarios for pre-train models in the domains like vision or language understanding,
the input data must conform to a pre-defined shape and form. FETCH gets rid of this limitation
thanks to its architectural design explained in Section 3.3, to guarantee the capability for the various
shapes of data. We believe this flexibility is quite essential for the real-world application of FETCH,
because the tabular data is deemed business-related so it lacks standardized preprocessing pipelines
like image reshaping or text truncating.

In what follows, a set of unseen data tables would be prepared for testing, D′ = {D′
1,D

′
2 . . .D

′
N ′

d
}

where N ′
d denotes the number of testing sets presented. In the corresponding experiment (Sec-

tion 4.3), we simply run the yielded policy network through these datasets and assess the overall
performance as per chosen evaluation metrics. There have not been any AutoFE or AutoML
workarounds for tabular data managing to accomplish this setup of transferability.

We postulate that FETCH achieves this mainly by (i)-having the right MDP setup where the states
are grounded by drawing from the original datasets, paving the way for mapping data to corre-
sponding FE actions; (ii)-having the proper architectural design of the policy network where it treats
the tabular data as a set and satisfies the appropriate properties (i.e. permutation-invariance and
variant-length). One may ask, why could this work? In hindsight, with this scheme of pre-training
on various datasets, FETCH is encouraged to (i)-reinforce the better feature engineering actions
through vast exploration and (ii)-build a proper mapping relationship between the input data to the
action space, with regard to a different form, distribution of the data table (or its columns), etc. The
NAS-like methods only fulfill (i) but fail at (ii), which disallows any pre-training and transferability
across unseen tables. The (ii) in FETCH very much accords to the human professionals because the
experienced ones absorb experiences and are often capable to provide a preliminary feature engi-
neering plan simply by scrutinizing the data — that may or may not require further trial-and-error
processes. The corresponding experiment concept-proofing the transferability and generalizability
of FETCH are provided in Section 4.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Goals of experiments FETCH is proposed to simulate two major characteristics of human experts
in operating feature engineering processes: data-driven observation and the transferability of explo-
ration experience. The first goal is to assess the superiority of our innovative data-driven MDP setup
compared to other data-unobserved AutoFE methods in Section 4.2. The second goal is to verify
the feasibility of the transferability brought by our setup in Section 4.3, i.e., whether it can converge
faster or search for feature engineering action sequences with better performance by pre-training.

6

Published as a conference paper at ICLR 2023

We adopt the same testing protocol (using the same evaluation model Random Forest) on identical
benchmarks as most notable prior work, such as NFS and DIFER. Section 4.4 verifies that FETCH
can boost many ML models. The ablation study in Appendix C presents the efficiency of FETCH
and the influence of generated higher-order features. The fairness settings of experiments and the
hyperparameters settings of various comparison methods are in Appendix B.2.

Performance indicators For the classification tasks, the micro F1-score (the average harmonic
mean of precision and recall) is used as the main metric and (1 − (relative absolute error))
(Shcherbakov et al., 2013) for the regression tasks. Both evaluation metrics are that the higher the
score, the better the performance. Meanwhile, we also use the percentage of score improvement in
the baseline score as a metric of improved efficacy. They are measured using 5-fold cross-validation.

Datasets The experiments are conducted on 27 datasets including 11 regression (R) datasets and
16 classifications (C) datasets. These datasets are from OpenML2, UCI repository3, and Kaggle4.
All datasets are available via the URL links in Appendix B.3. 5 datasets are further utilized to test
the transferability by pre-training in Section 4.3. As a preprocessing step, we clean and encode the
raw data using FETCH, ensuring that the data is readable by various ML models. And the final data
input to each method is the same.

4.2 EFFECTIVENESS OF FETCH

Comparison with AutoFE Methods We select six current widely-used or state-of-the-art AutoFE
methods to show the effectiveness of FETCH on feature engineering. Base represents the baseline
method evaluated on the raw dataset without any FE transformation. Random method randomly
generates FE action sequences by Monte-Carlo exploration. Here we take the highest score among
the same number of explorations as FETCH. DFS (Kanter & Veeramachaneni, 2015)5 and Aut-
oFeat (Horn et al., 2019) are famous and open-source Python libraries for search-based feature
engineering. NFS (Chen et al., 2019) is the current best RL-based NAS-like AutoFE method, which
employs the RNN module as controller of each original feature, and generates new features includ-
ing higher-order ones by a series of actions for the original features. DIFER (Zhu et al., 2022) is the
state-of-the-art AutoFE method, which optimizes the features by a differential NAS-like framework

As shown in Table 1, FETCH generally outperforms all the existing work by a significant margin.
On benchmarking datasets, FETCH achieves state-of-the-art performance on 25 out of 27 datasets
overall and gets a close second place in the remaining datasets. Although DIFER and NFS greatly
outperform the baseline method, FETCH still performs 3.24% higher than DIFER and 3.16% higher
than NFS on average, indicating the superiority of our data-driven setup in the AutoFE pipeline.

Comparison with AutoML Methods To further highlight the superiority of FETCH, we addition-
ally involve two famous AutoML methods. AutoSklearn (Feurer et al., 2015) is a popular open-
source AutoML toolkit focusing on algorithm selection and hyperparameter tuning. AutoGluon (Er-
ickson et al., 2020) is a full-fledged open-source AutoML framework developed by Amazon Inc.,
which covers many types of data. In particular, here uses the AutoGluon-Tabular of it.

Compared with the AutoML frameworks which work on model search and hyperparameter opti-
mization, FETCH still has a great advantage, with 18 out of 27 datasets in total performing better
than them. This serves as strong evidence that FETCH outperforms the other existing methods due
to its human-expert-like data-driven setup with outstanding effectiveness. As a member of the Au-
toML family, these two baselines mostly focus on the model part and barely involve the feature
engineering part. We believe these comparisons would further highlight the effectiveness of FETCH
even beyond the scope of feature engineering.

2 https://www.openml.org/
3 https://archive.ics.uci.edu/ml/index.php
4 https://www.kaggle.com/
5DFS is implemented in FeatureTools Toolkit (https://featuretools.alteryx.com/en/stable/)

7

https://www.openml.org/
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/
https://featuretools.alteryx.com/en/stable/

Published as a conference paper at ICLR 2023

Table 1: Effectiveness comparison of FETCH with other AutoFE and AutoML methods. Bold indi-
cates superior results amongst AutoFE methods. Note that AutoML methods focus on model search
instead of feature engineering.

Dataset C/R Instances\Features AutoFE Methods AutoML Methods
Base Random DFS AutoFeat NFS DIFER FETCH AutoSklearn AutoGluon

Airfoil R 1503\5 0.5068 0.6211 0.6003 0.5955 0.6226 0.6125 0.6463 0.5151 0.5083
BikeShare DC R 10886\11 0.9880 0.9989 0.9990 0.9891 0.9991 0.9995 0.9997 0.9911 0.9967

House King County R 21613\19 0.6843 0.6838 0.6908 0.6917 0.6934 0.6948 0.7475 0.7005 0.7442
Housing Boston R 506\13 0.4641 0.4788 0.4708 0.4703 0.4977 0.5072 0.5224 0.4403 0.4857

Openml 586 R 1000\25 0.6564 0.6646 0.7188 0.7178 0.7223 0.6946 0.7671 0.7297 0.7904
Openml 589 R 1000\25 0.6395 0.6285 0.6956 0.7278 0.7165 0.6789 0.7562 0.7183 0.7998
Openml 607 R 1000\50 0.6363 0.6392 0.6815 0.6499 0.6485 0.6564 0.7404 0.7265 0.7694
Openml 616 R 500\50 0.5605 0.5834 0.5807 0.5927 0.5856 0.5982 0.6749 0.6618 0.6743
Openml 618 R 1000\50 0.6351 0.6277 0.6848 0.6374 0.6461 0.6553 0.7351 0.7198 0.7520
Openml 620 R 1000\25 0.6309 0.6288 0.6528 0.6574 0.6943 0.7262 0.7506 0.7199 0.7855
Openml 637 R 500\50 0.5160 0.5478 0.5105 0.5763 0.5739 0.6006 0.6453 0.6416 0.6742
Adult Income C 48842\14 0.8478 0.8485 0.8502 0.8483 0.8497 0.8584 0.8537 0.8629 0.8738

Amazon Employee C 32769\9 0.9450 0.9442 0.9451 0.9453 0.9461 0.9474 0.9479 0.9471 0.9473
Credit Default C 30000\25 0.8044 0.8089 0.8056 0.8086 0.8101 0.8108 0.8114 0.8194 0.8214

Credit a C 690\6 0.8362 0.8665 0.8216 0.8581 0.8695 0.8638 0.8754 0.8623 0.8377
Fertility C 100\9 0.8700 0.8947 0.7900 0.8910 0.9189 0.8800 0.8900 0.8400 0.8800

German Credit C 1001\24 0.7390 0.7738 0.7490 0.7600 0.7786 0.7730 0.7910 0.7460 0.7590
Hepatitis C 155\12 0.8258 0.8639 0.8516 0.8677 0.8766 0.8839 0.9290 0.8065 0.7871

Ionosphere C 351\34 0.9237 0.9514 0.9373 0.9286 0.9543 0.9515 0.9716 0.8194 0.8214
Lymphography C 690\6 0.8315 0.8480 0.8113 0.8453 0.8614 0.8827 0.9260 0.8418 0.8522

Megawatt1 C 4900\12 0.8655 0.8706 0.8813 0.8893 0.9167 0.9089 0.9209 0.8853 0.8850
Messidor Features C 1150\19 0.6594 0.7026 0.7089 0.7359 0.7417 0.7541 0.7689 0.7402 0.7255

PimaIndian C 768\8 0.7566 0.7609 0.7540 0.7643 0.7784 0.7839 0.7969 0.7462 0.7631
SpamBase C 4601\57 0.9154 0.9211 0.9198 0.9237 0.9341 0.9372 0.9405 0.9272 0.9042

SpectF C 267\44 0.7751 0.8221 0.8125 0.8331 0.8608 0.8538 0.8838 0.7828 0.7010
Wine Quality Red C 999\12 0.5597 0.5774 0.5422 0.5641 0.5814 0.5779 0.6042 0.5804 0.5729

Wine Quality White C 4900\12 0.4976 0.5046 0.4855 0.5023 0.5111 0.5153 0.5235 0.5376 0.5259

4.3 TRANSFERABILITY OF FETCH

As discussed in Section 3.4, FETCH is the first work that enables transferring “experience” across
different datasets and realizes structured data pre-training. In this subsection, the transferability
of FETCH is proven by the following pre-training experiments. The data-driven attention encoder
module of the policy network in FETCH has the capability to encode the context of permutation-
invariant and variable-length feature set of tabular data, which yields the probability of transferring
prior knowledge across different datasets.

To verify the feasibility of transferability, we attempt to train FETCH on a range of datasets and save
parameters of the attention encoder module as a pre-trained model. And apply this model instead of
the initial random weights to the search of the new dataset, and see if it takes less time to achieve the
same performance or better performance with the same number of exploration epochs. We define 4
kinds of pre-trained methods of FETCH. Each of them keeps the same initial parameters, except for
the pre-trained datasets.

No-Pre means the model without any pre-training directly searching the FE plan from the scratch.
Pre-Oml and Pre-Uci are the models pre-trained on 5 datasets from OpenML and UCI repository
respectively (see Appendix B.4 for details). Pre-Mix is the model pre-trained on the whole 10
datasets of Pre-Oml and Pre-Uci.

We use these 4 pre-trained models to search FE plans on 5 previously unobserved datasets respec-
tively, i.e. Housing Boston , Openml 616 , Openml 637 , Ionosphere , and Wine Quality Red .
With the features transformation plan T of each dataset, the evaluation score is the performance of
a learning algorithm L trained on the transformed feature set X̂T by 5-fold cross-validation.

Table 2: Transferability comparison of the best pre-trained model
(Pre-Best) and non-pre-trained one (No-Pre). See text for details.

Dataset No-Pre Pre-Best Max-Diff (%) EpochMax−Diff

Housing Boston 0.5224 0.5357 2.31 123
Openml 616 0.6749 0.6942 4.67 27
Openml 637 0.6453 0.6631 5.51 26
Ionosphere 0.9716 0.9864 1.12 148

Wine Quality Red 0.6042 0.6207 2.59 152

Table 2 demonstrates the
feasibility of transferability,
where we compare the score
of final top-1 FE plans ex-
plored by model searched from
scratch (No-Pre) and the best
model (Pre-Best) from the
above 3 pre-trained models.
And the maximum difference
(Max-Diff) of improvement
percentage between the pre-
trained models and the original model during the exploration and the number of epochs when they
appear (EpochMax−Diff) are also listed in Table 2. It can be seen that the best FE plan found by

8

Published as a conference paper at ICLR 2023

0 1 0 0 2 0 0 3 0 0
0
2
4
6
8

1 0
1 2
1 4

E p o c h

 N o - P r e P r e - O m l P r e - U c i P r e - M i x

Per
cen

tag
e o

f im
pro

vem
ent

 % H o u s i n g B o s t o n

0 1 0 0 2 0 0 3 0 0
0
3
6
9

1 2
1 5
1 8
2 1
2 4

E p o c h

O p e n m l _ 6 1 6

0 1 0 0 2 0 0 3 0 0
0
5

1 0
1 5
2 0
2 5

E p o c h

O p e n m l _ 6 3 7

0 1 0 0 2 0 0 3 0 0
0
1
2
3
4
5

E p o c h

I o n o s p h e r e

0 1 0 0 2 0 0 3 0 0
0
2
4
6
8

1 0

E p o c h

W i n e Q u a l i t y R e d

Figure 4: Transferability comparison of improvement (%) on 6 datasets under the model from
scratch (No-Pre) and 3 kinds of pre-training models (Pre-Oml, Pre-Uci, and large-scale Pre-Mix).
Better view in color.

the pre-trained approaches scored higher than the original model. Roughly the difference in the
scores of the searched FE plans between the pre-trained model and the original one reaches its peak
at around 150 epochs (half of the total epochs).

To further investigate the performance of the pre-trained model, Figure 4 visualize the smoothed
curves of percentage of improvements in evaluation scores during searching under different types of
pre-trained FETCH. In that, we find that the Pre-Mix model has higher scores than others, especially
No-Pre (no pre-training), from the beginning to the end of the search in most cases. Other pre-
trained models (i.e. Pre-Oml and Pre-Uci) share a similar trend, although their performance is not
stable. The gap between Pre-Mix and No-Pre is larger in the early stage of the search, and No-
Pre gradually chases up as the number of epochs increases. However, eventually the pre-training
approaches still score higher than the original model.

These results suggest that the pre-training approach can be effective in improving scores and finding
more appropriate feature engineering actions faster. Pre-training on data-driven FETCH can accumu-
late and transfer prior knowledge to unobserved datasets and improve FE efficacy more effectively.
Despite experimental serendipity, the above experimental data still indicate to some extent the fea-
sibility of simulating the knowledge transferability of human experts through pre-training AutoFE.

4.4 FLEXIBILITY TOWARD MODEL CHOICES

G e r m a n
C r e d i t H e p a t i t i s I o n o s p h e r e M e s s i d o r

F e a t u r e s

5 0
6 0
7 0
8 0
9 0

Ev
alu

atio
n s

cor
e (

%)

(a) L o g i s t i c R e g r e s s i o n

 B a s e (w i t h o u t F E) F E T C H (w i t h F E)

G e r m a n
C r e d i t H e p a t i t i s I o n o s p h e r e M e s s i d o r

F e a t u r e s

5 0
6 0
7 0
8 0
9 0

(b) R a n d o m F o r e s t
G e r m a n
C r e d i t H e p a t i t i s I o n o s p h e r e M e s s i d o r

F e a t u r e s

5 0
6 0
7 0
8 0
9 0

(c) X g b o o s t

Figure 5: Flexibility comparison of evaluation scores (%) on dif-
ferent datasets and models.

In this section, we measure the
flexibility of using different ML
models. We chose Logistic Re-
gression (Wright, 1995), Ran-
dom Forest (Liaw et al., 2002)
and Xgboost (Chen & Guestrin,
2016) model for boosting com-
parisons on several datasets. We
compare these models on the
situation of no feature engineer-
ing (Base) and doing feature
engineering with FETCH. As
shown in Figure 9, our framework has the effect of promoting the fitting effect for all these models.
This also reveals the excellent flexibility of FETCH to different kinds of machine learning models.

5 CONCLUSION AND OUTLOOK

In this work, we propose FETCH, a novel RL-based end-to-end framework developed for AutoFE.
The pivotal design of FETCH is to treat the tabular data as a “set” and use the datasets themselves
as the state formulation in the MDP setup. The resultant framework achieves (surpassing or on-par)
state-of-the-art performances on the standardized benchmarks adopted by prior work. Thanks to
the methodological and architectural design of FETCH, we further concept-prove the feasibility of
pre-training and transferability schemes for the tabular data. In summary, our work is to FETCH
insights from data for better feature engineering and data mining. In the future, we hope to pre-train
extremely large-scale models across various tabular data.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is majorly supported by the National Key Research and Development Program of China
(No. 2022YFB3304101), and in part by the NSFC Grants (No. 62206247) as well as the Key
Research and Development Program of Zhejiang Province of China (No. 2021C01009). LL, HW,
and JZ also thank the sponsorship by CAAI-Huawei Open Fund and the Fundamental Research
Funds for the Central Universities.

REFERENCES

Dmitrii Babaev, Maxim Savchenko, Alexander Tuzhilin, and Dmitrii Umerenkov. Et-rnn: Applying
deep learning to credit loan applications. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2183–2190, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71–80.
IEEE, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

David S Evans. The online advertising industry: Economics, evolution, and privacy. Journal of
economic perspectives, 23(3):37–60, 2009.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. In SoutheastCon
2016, pp. 1–6. IEEE, 2016.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

10

Published as a conference paper at ICLR 2023

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30:3146–3154, 2017.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Bum Ju Lee, Keun Ho Kim, Boncho Ku, Jun-Su Jang, and Jong Yeol Kim. Prediction of body mass
index status from voice signals based on machine learning for automated medical applications.
Artificial intelligence in medicine, 58(1):51–61, 2013.

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news, 2(3):
18–22, 2002.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
Advances in neural information processing systems, 31, 2018.

Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications, 5:64–67, 2001.

Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and Deepak S Turaga.
Learning feature engineering for classification. In Ijcai, pp. 2529–2535, 2017.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Abdul Quamar, Fatma Özcan, Dorian Miller, Robert J Moore, Rebecca Niehus, and Jeffrey Kreulen.
Conversational bi: an ontology-driven conversation system for business intelligence applications.
Proceedings of the VLDB Endowment, 13(12):3369–3381, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna Shcherbakova, An-
ton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Valeriy Anatol’evich Kamaev, et al. A
survey of forecast error measures. World Applied Sciences Journal, 24(24):171–176, 2013.

Jessica Vamathevan, Dominic Clark, Paul Czodrowski, Ian Dunham, Edgardo Ferran, George Lee,
Bin Li, Anant Madabhushi, Parantu Shah, Michaela Spitzer, et al. Applications of machine learn-
ing in drug discovery and development. Nature reviews Drug discovery, 18(6):463–477, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Raymond E Wright. Logistic regression. 1995.

Tianping Zhang, Yuanqi Li, Yifei Jin, and Jian Li. Autoalpha: an efficient hierarchical evolutionary
algorithm for mining alpha factors in quantitative investment. arXiv preprint arXiv:2002.08245,
2020.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: Differentiable automated
feature engineering. In First Conference on Automated Machine Learning (Main Track), 2022.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

11

Published as a conference paper at ICLR 2023

A DETAILS OF RL SETUP

A.1 MDP MODEL FOR FE

As discussed above, the feature engineering (FE) process conforms well to the exploration and
exploitation paradigm, and is also a trial-and-error process. Therefore, the Markov decision process
(MDP) can be employed to automate the simulation of the FE control problem. Also,the the goal
of reinforcement learning (RL) is to find the optimal policy with the given MDP by an agent, where
the policy is the mapping from states to actions, so that the final cumulative reward is maximized.

We unify the general problems of the FE process by casting it into an episodic MDP defined by a
tuple (X ,A, ξ,R,X0), where an agent A interacts with the environment ξ which receives the agent’s
transformation actions and returns the transformed tabular data from initial data X0. Intuitively, in
our case, the set of actions is the set of all possible (and supported) FE operations. Here, we define
the variable X = Xi as the state of MDP which is identical to the raw or transformed tabular data.
In a single training step i, the agent receives the current state (feature set) Xi, next it is required
to choose a plan of feature transformation actions to synthesize the table data Xi+1. Then the
environment evaluates Xi+1, and returns a reward R to update the agent and transmit it to a new
state.

Next, we define the underlying concepts of MDP in the FE context, namely action space, state,
agent, environment, and reward.

FE Action Space Analogous to prior work (Zhu et al., 2022; Chen et al., 2019), our overall oper-
ation set (the space of action t) includes the following6:

• The unary operation: 6 lower-order value-conversion functions including abs, square,
inverse, log, sqrt, power3.

• The binary operation: 4 combinatorial arithmetic functions including addition,
subtraction, multiplication, and division.

Besides the operators on the numeric features, we also include operators for categorical ones:

• Cross-combine operation means to cross-product two categorical feature vectors to generate a
combined one.

• Binning operation means discretizing numerical features by binning to further combine with
categorical features.

As a framework that integrates feature generation and feature selection, FETCH also includes feature
selection operators:

• None means taking no action on the specific feature.

• Terminate means stopping generating higher-order features based on the specific feature.

• Delete means deleting the specific feature from the original dataset.

The resulting FETCH framework is quite universal in terms of the types of datasets as well as their
feature column properties. FETCH supports operations including unary, binary, selection operators,
etc. Beyond, FETCH can easily integrate user-defined feature engineering operators that achieve a
certain level of extensibility.

State One core innovation of FETCH is our data-driven MDP setup where it parametrizes the
tabular data both prior- and post-transformation into the state formulation. The details on how the
agent “sees” the tabular data itself as a state are in Section 3.3. We argue that this further bridges
the AutoFE with human experts who determines the next action move by scrutinizing the data rather
than past actions sequence like prior work.

6For the sake of fairness, operators like “groupby” and “mean” are not added but are actually compatible
with FETCH.

12

Published as a conference paper at ICLR 2023

The agent and policy network The agent is modeled by a policy network π: X → P (A) where
P is the probability of the actions sampled by the agent A and X is the state parametrized by tabular
data.

The environment The environment ξ encompasses the machine learning algorithm L with pre-
configured hyperparameters and the evaluation metric E. The interaction between the actions and
the environment is intuitive; that is, FETCH performs feature engineering guided by the set of pre-
dicted actions on the processed feature columns, and runs it through L and E. This induces the
definition of the reward function.

Reward Function It is crucial to get a precise reward estimation for training FETCH. In particular,
our reward calculation process consists of an evaluation metric E related to a pre-selected model L
(hyperparameters fixed), for example, a Logistic Regression classifier or a Random Forest predictor.

Similar to (Zhu et al., 2022; Chen et al., 2019; Khurana et al., 2018), we employ a standardized
cross-validation strategy to enhance the precision of the reward estimation. The prior work generally
adopts a most straightforward reward definition by using the average performance obtained on the
k-fold split. However, we empirically observe that this causes great training instability, especially
from the early stages. We conjecture that this is because the average operation has lost some non-
neglectable information. For instance, a policy is optimal and needs to be reinforced if all k-fold
exhibits superior performance. Nevertheless for the situations when the policy disagrees with the
k-fold evaluation, we still need to punish the model according to the suboptimal results. Formally,
the reward calculation can be written as:

R(Xi) = Ē(Xi) + Ediff(Xi) (2)

where Ē represents the average performance obtained from k-fold cross-validation and

Ediff(Xi) =
∑
k

min(0, Ek(Xi)− Ē(Xi−1)) (3)

where Ek(Xi) represents the k-th fold evaluation result, Ē(Xi−1) as the average performance from
the tabular data from the previous step. Notably, this reward formulation prompts the agent to punish
inferior results appearing in any fold, rather than simply looking at the average performance (Zhu
et al., 2022). We found this means of reward calculation quite beneficial for training stability, espe-
cially in the early training epoch, and potentially leads to better sample efficiency.

A.2 SAMPLING TRANSFORMATION ACTIONS

A final softmax is placed at the top stage after the policy network to obtain transformation actions
probability, and further sample according to them to get actions plan T = {t1, t2 . . . tm}:

T ∼ sample(softmax(h)) (4)

where h denotes the hidden representation fed into the softmax layer. During the exploration, we ob-
tain a stochastic action set in correspondence to the original feature sets by sampling actions through
a multi-nomial distribution, provided by the above softmax operator. Then FETCH comprehensively
evaluate the entire feature set generated by the actions set. This takes into account the overall per-
formance of the entire feature set instead of the assumption in previous work that only evaluates a
single performance improvement for each feature.

A.3 TRAINING POLICY NETWORK WITH PPO

Proximal Policy Optimization (PPO) (Schulman et al., 2017) has been successfully applied to train
RL agents in several fields. In FETCH, we employ the PPO algorithm to train the overall system. It
allows our framework to sample several sets of action plans in each epoch, assign them to multiple
threads (or workers) for parallel evaluation, and later compute the policy gradient to update the
network. This way reduces sample complexity, which is also a kind of exploration cost, so that
the policy network can be converged with fewer training epochs. The overall training algorithm of
FETCH is shown as Algorithm 1 and the following.

13

Published as a conference paper at ICLR 2023

Algorithm 1 Training algorithm of FETCH

Input: Raw tabular data X0, policy network π, agent A, metric E, pre-selected ML model L, label
Y
Parameter: Total exploration epochs N , maximum step (or order) to generate features K, number
of workers (or threads) W
Output: New dataset X̂T generated by the transformation T satisfying Equation 1

1: while epoch e ∈ [0, N] do
2: while worker index w ∈ [0,W] do
3: Initiate worker[w]
4: while step i ∈ [0,K] do
5: X = Xi

6: Sample a sequence of actions plan Ti through the
π: X → P (A)

7: Obtain the generated tabular data Xi+1 by letting the actions Ti interact with Xi

8: Evaluate Xi+1 by E(L(Xi+1,Y))
9: i = i+ 1

10: end while
11: w = w + 1
12: end while
13: Calculate the reward R based on Equation 2
14: Compute gradient based on the proximal policy optimization (Schulman et al., 2017)

algorithm
15: Update the policy network
16: e = e+ 1
17: end while

rθ is defined as the ratio of sampling importance between new policy πθ and old policy πθ′ , it can
be computed as follows.

rθ =
πθ (at|st)
πθ′ (at|st)

(5)

C is defined as the advantage function Aθ (st, at) with the clip method.

clip (rθ, 1− ε, 1 + ε) =

{
1 + ε, rθ > 1 + ε
rθ, 1− ε ≤ rθ ≤ 1 + ε

1− ε, rθ < 1− ε
(6)

C(st, at) = clip (rθ, 1− ε, 1 + ε)Aθ (st, at) (7)

What needs a special explanation is that in our paper, we take the moving average of the past reward
as the baseline for each time step. We compute the difference between the current reward and the
baseline as the value of the reward function. The loss function is defined as the following formula.

JPolicy(θ) ≈
∑

(st,at)

min
(
rθA

θ (st, at) , C(st, at)
)

(8)

To maintain exploratory properties, we add entropy ENloss to the loss function. The objective
function of PPO can be summarized as follows:

JPPO(θ) = JPolicy(θ) + ENloss(θ) (9)

B DETAILS OF EXPERIMENTS

B.1 ENVIRONMENTS

All experiments are carried out on a server with Ubuntu 20.04.1 LTS, Nvidia GeForce RTX 3090
(24GB GPU memory), Intel(R) Xeon(R) CPU (Gold 5218R CPU @ 2.10GHz, 64 cores), 256GB
memory and 1TB hard drive. All experimental results are run with open-source code under the
environment of Python 3.8.

14

Published as a conference paper at ICLR 2023

B.2 HYPERPARAMETERS

RL-agent learning rate lr = 0.001, discount factor γ = 0.95. The hyperparameters of Multi-Head
Attention in the policy network are as follows, dmodel = 64, nhead = 6, dv = 32, dk = 32. The
maximum number of search epochs N is limited to 300 (including DIFER and FETCH). Due to the
requirements of NFS in their paper, we set N to 100 epochs for it. The number of sampling also
parallelized workers per round, is W = 24. The maximum feature order K is set by K = 3. Other
methods are limited to run for 5 hours respectively, which is the average running time of FETCH.
All methods take their default parameters wherever possible.

We choose DIFER mostly because of its state-of-the-art performance on many benchmarks, while
NFS is picked as a major rivalry due to the primary comparison between the MDPs. As being
identical to their setup, we employ Random Forest (Liaw et al., 2002) as the pre-selected model
in Experiment 4.2, 4.3 and Appendix C.6. All the hyperparameters of Random Forest (except
n estimator = 10) are preset by default, and a stratified 5-fold cross-validation protocol is used
to evaluate the effect of the selected feature engineering actions. In addition, we employ Logistic
Regression (Wright, 1995), Xgboost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and Cat-
boost (Prokhorenkova et al., 2018) as supplementary evaluation algorithms in Experiment 4.4 and
Appendix C.5.

B.3 DATASETS

• Airfoil: https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise

• BikeShare DC: https://www.kaggle.com/itssuru/bike-sharing-system-washington-dc

• Housing Boston: https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

• House King County: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction

• Openml 586: https://www.openml.org/d/586

• Openml 589: https://www.openml.org/d/589

• Openml 607: https://www.openml.org/d/607

• Openml 616: https://www.openml.org/d/616

• Openml 618: https://www.openml.org/d/618

• Openml 620: https://www.openml.org/d/620

• Openml 637: https://www.openml.org/d/637

• Adult Income: https://archive.ics.uci.edu/ml/datasets/adult

• Amazon Employee: https://www.kaggle.com/c/amazon-employee-access-challenge/data

• Credit Default: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

• Credit a: https://archive.ics.uci.edu/ml/datasets/Credit+Approval

• Fertility: https://archive.ics.uci.edu/ml/datasets/Fertility

• German Credit: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

• Hepatitis: https://archive.ics.uci.edu/ml/datasets/hepatitis

• Ionosphere: https://archive.ics.uci.edu/ml/datasets/ionosphere

• Lymphography: https://archive.ics.uci.edu/ml/datasets/Lymphography

• Megawatt1: https://www.openml.org/d/1442

• Messidor Features: https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set

• PimaIndian: https://www.kaggle.com/uciml/pima-indians-diabetes-database

15

https://archive.ics.uci.edu/ml/datasets/airfoil+self-noise
https://www.kaggle.com/itssuru/bike-sharing-system-washington-dc
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://www.kaggle.com/datasets/harlfoxem/housesalesprediction
https://www.openml.org/d/586
https://www.openml.org/d/589
https://www.openml.org/d/607
https://www.openml.org/d/616
https://www.openml.org/d/618
https://www.openml.org/d/620
https://www.openml.org/d/637
https://archive.ics.uci.edu/ml/datasets/adult
https://www.kaggle.com/c/amazon-employee-access-challenge/data
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://archive.ics.uci.edu/ml/datasets/Credit+Approval
https://archive.ics.uci.edu/ml/datasets/Fertility
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/ionosphere
https://archive.ics.uci.edu/ml/datasets/Lymphography
https://www.openml.org/d/1442
https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set
https://www.kaggle.com/uciml/pima-indians-diabetes-database

Published as a conference paper at ICLR 2023

• SpamBase: https://archive.ics.uci.edu/ml/datasets/Spambase

• SpectF: https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart

• Wine Quality Red & White: https://archive.ics.uci.edu/ml/machine-learning-databases/wine-
quality/

• Medical Charges: https://www.openml.org/d/42559

• Give Me Some Credit: https://www.kaggle.com/competitions/GiveMeSomeCredit/data

• Poker hand: https://archive.ics.uci.edu/ml/datasets/Poker+Hand

B.4 PRE-TRAINED MODELS

• No-Pre: A model without any pre-training directly searching FE plan from the scratch.

• Pre-Oml: A model pre-trained on 5 datasets from OpenML. They are Openml 586 ,
Openml 589 , Openml 607 , Openml 618 , and Openml 620 .

• Pre-Uci: A model pre-trained on 5 datasets from the UCI repository, i.e. Bikeshare DC ,
Credit a , SpamBase, Wine Quality White , and Credit Default .

• Pre-Mix: A model pre-trained on the whole 10 datasets of Pre-Oml and Pre-Uci.

C ABLATION STUDY

C.1 EFFICIENCY OF FETCH

Figure 6: Exploration promotion process of several data
sets, little improvement after 150 rounds, which means
the policy network is converged.

To measure the efficiency of FETCH,
we plot the relationship between the
improvements owing to feature engi-
neering versus the exploration rounds,
in Figure 6. As we can see the FETCH
framework can generally obtain decent
results by 100-150 epochs of explo-
ration and then stably converges. Fur-
ther, as a comparison with NFS, we
count the feature evaluation times and
use them as a proxy for a sample com-
plexity comparison. The main ratio-
nale is that this process usually takes
up a majority of the total running time
in each round. Notably, FETCH re-
quires around 15,000 times to con-
verge while the NFS needs 160,000
times (Zhu et al., 2022). This indi-
cates that FETCH is about 11x more
sample efficient than its counterpart,
which may further concept-proof our
data-driven setup for MDP.

C.2 INFLUENCE OF HIGHER-ORDER FEATURES

In this section, we evaluate the influence of higher-order features extracted by FETCH on the eventual
results. Figure 7(a) and Figure 7(b) show the effects of our algorithm on the Random Forest (RF)
and Logistic Regression (LR) models, respectively. The vertical axis represents the percentage of
improvement, and the horizontal axis represents the order. According to the experimental results,
we get two conclusions: (i)-FETCH can significantly improve the score of both the two models,
especially LR; (ii)-higher-order search leads to better performance for the LR model but is not
guaranteed for RF.

16

https://archive.ics.uci.edu/ml/datasets/Spambase
https://archive.ics.uci.edu/ml/datasets/SPECTF+Heart
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
https://www.openml.org/d/42559
https://www.kaggle.com/competitions/GiveMeSomeCredit/data
https://archive.ics.uci.edu/ml/datasets/Poker+Hand

Published as a conference paper at ICLR 2023

(a) Random Forest (b) Logistic Regression

Figure 7: Effect of low/high order on different models. Apply the top-1 action series T to generate
features and evaluate.

Figure 8 shows the proportion of high and low-order features. We stipulate that the second-order
and above features are higher-order features. It can be seen from the figure that the proportion of
higher-order features is very high.

Figure 8: Low/high order features proportions of the experimental feature sets.

C.3 SCALABILITY COMPARISON UNDER LIMITED TIME

Table 3: Scalability comparison of FETCH and other RL-based AutoFE
methods on large-scale datasets under limited time (2 days).

Dataset C/R Instances\Features Base NFS DIFER FETCH
Medical Charges R 163065\11 0.8821 0.8831 0.8832 0.8834

Give Me Some Credit C 150000\10 0.9329 0.9339 0.9340 0.9341
Poker hand C 1025010\10 0.6907 0.9259 0.9647 0.9971

Since the RL agent of
FETCH only performs
simple inference and data
processing, empirically,
the agent itself runs in a
much smaller percentage
of time than the training
during downstream ML
model evaluation. Thus,
as with the time-consuming model validation in NAS, the time performance of ML models is
a bottleneck in increasing the speed of exploration in FETCH. We now evaluate the scalability
of our approach on large-scale data (more than 50K rows) in Table 3. As a comparison, we
use RL-based AutoFE approaches (i.e. NFS and DIFER) for our experiments. We compare the
highest scores that can be achieved by different approaches to explore FE plans with the same
runtime (2 days), hardware resources and software environment. The final score is evaluated
by 5-fold cross-validation after applying the highest-score FE actions plan on the entire original

17

Published as a conference paper at ICLR 2023

dataset. The experimental datasets are from actual life scenarios. Table 3 demonstrates that our FE
constructed on large-scale datasets can also lead to score improvements, which yields the capability
for scalability at the same scale of running time.

C.4 TIME EFFICIENCY COMPARISON

This section is an extended comparison of Experiment 4.2 in terms of time efficiency. Table 4 shows
the total running time (in minutes) of several AutoFE methods on the above datasets. The results
show that the time efficiency of the three AutoFE methods varies on different datasets. The overall
time efficiency of each method is on the same scale. DIFER, as stated in their paper, outperforms
the RL-based AutoFE in time efficiency. But FETCH can achieve higher scores.

Table 4: Time efficiency comparison of FETCH with other AutoFE methods. Here is the total
execution time (in minutes).

Dataset C/R Instances\Features Execution Time
NFS DIFER FETCH

Airfoil R 1503\5 50 85 70
BikeShare DC R 10886\11 652 217 434

Housing Boston R 506\13 54 154 158
House King County R 21613\19 5098 602 939

Openml 586 R 1000\25 329 167 192
Openml 589 R 1000\25 326 176 197
Openml 607 R 1000\50 1171 288 1383
Openml 616 R 500\50 558 200 322
Openml 618 R 1000\50 1224 238 365
Openml 620 R 1000\25 318 70 181
Openml 637 R 500\50 552 158 300
Adult Income C 48842\14 897 141 300

Amazon Employee C 32769\9 379 237 187
Credit Default C 30000\25 1622 205 1246

Credit a C 690\6 59 116 99
Fertility C 100\9 53 133 62

German Credit C 1001\24 69 130 158
Hepatitis C 155\12 50 90 96

Ionosphere C 351\34 92 106 248
Lymphography C 690\6 50 142 122

Megawatt1 C 4900\12 92 85 256
Messidor Features C 1150\19 73 116 160

PimaIndian C 768\8 55 115 59
SpamBase C 4601\57 439 117 800

SpectF C 267\44 110 182 238
Wine Quality Red C 999\12 61 292 76

Wine Quality White C 4900\12 1622 205 114
Average Rank 2.0 1.7 2.3

C.5 FLEXIBILITY TOWARD MORE MODEL CHOICES

G e r m a n
C r e d i t H e p a t i t i s I o n o s p h e r e M e s s i d o r

F e a t u r e s

5 0
6 0
7 0
8 0
9 0

Ev
alu

atio
n s

cor
e (

%)

(a) L i g h t G B M

 B a s e (w i t h o u t F E) F E T C H (w i t h F E)

G e r m a n
C r e d i t H e p a t i t i s I o n o s p h e r e M e s s i d o r

F e a t u r e s

5 0
6 0
7 0
8 0
9 0

(b) C a t b o o s t

Figure 9: Flexibility comparison of evaluation scores (%) on
different datasets and models.

This section is a supplement to the
experiments in Section 4.4. We
measure the flexibility of FETCH
using two more ML models, i.e.
LightGBM (Ke et al., 2017) and
Catboost (Prokhorenkova et al.,
2018), for boosting comparisons
on several datasets. We com-
pare these models on the situ-
ation of no feature engineering
(Base) and doing feature engineer-
ing with FETCH. As shown in Fig-
ure 9, our framework has the effect
of promoting the fitting effect for
all these models. This also reveals
the excellent flexibility of FETCH to different kinds of machine learning models.

C.6 EFFECTIVENESS COMPARISON ON TEST SET

It is important to note that prior work such as NFS (Chen et al., 2019) and DIFER (Zhu et al.,
2022) was coded with the goal of continuously improving the cross-validation scores over the entire
dataset, i.e., not holding out the test set. We adopt this setup in Table 1 of Experiment 4.2, and

18

Published as a conference paper at ICLR 2023

Table 5: Effectiveness comparison of FETCH with other AutoFE methods on test set. Underline
means highest cross-validation score on training set. Bold indicates superior test score amongst
AutoFE methods. “CV” denotes the highest cross-validation score obtained on the training set, and
“Test” denotes the test score of the corresponding feature engineering plan on the test set.

Dataset Base DFS AutoFeat NFS DIFER FETCH
CV Test CV Test CV Test CV Test CV Test CV Test

Airfoil 0.7119 0.7360 0.7338 0.7477 0.7307 0.7380 0.7424 0.7424 0.7367 0.7584 0.7572 0.7694
Bikeshare DC 0.9895 0.9901 0.9994 0.9993 0.9918 0.9922 0.9992 0.9993 0.9937 0.9945 0.9997 0.9997

House King County 0.6737 0.6842 0.6762 0.6884 0.6725 0.6812 0.6751 0.6879 0.6903 0.6943 0.6838 0.6844
Housing Boston 0.5992 0.6552 0.5938 0.6638 0.5982 0.6750 0.6353 0.6622 0.6310 0.6827 0.6576 0.6891

Openml 586 0.6218 0.6594 0.6616 0.7189 0.6807 0.7153 0.7173 0.7310 0.7216 0.7369 0.7473 0.7688
Openml 589 0.6298 0.6296 0.6587 0.6906 0.6598 0.6937 0.6804 0.6868 0.7033 0.6979 0.7189 0.7368
Openml 607 0.6116 0.5923 0.6534 0.6172 0.6657 0.6201 0.6371 0.5780 0.6699 0.6365 0.7225 0.6860
Openml 616 0.5073 0.5251 0.5019 0.5600 0.5620 0.5578 0.5390 0.5477 0.5637 0.5187 0.6275 0.6442
Openml 618 0.5931 0.6470 0.6366 0.6397 0.6523 0.6860 0.6490 0.6450 0.6552 0.6832 0.7086 0.7187
Openml 620 0.5911 0.6634 0.6073 0.6556 0.6456 0.6771 0.6401 0.6925 0.6760 0.6896 0.7197 0.7515
Openml 637 0.5199 0.4319 0.5242 0.4894 0.5726 0.4563 0.5217 0.4523 0.5528 0.4570 0.6586 0.5756
Adult Income 0.8464 0.8529 0.8478 0.8496 0.8488 0.8382 0.8563 0.8565 0.8556 0.8580 0.8561 0.8553

Amazon Employee 0.9436 0.9458 0.9430 0.9450 0.9423 0.9440 0.9462 0.9475 0.9464 0.9447 0.9466 0.9460
Credit Default 0.8045 0.8022 0.8034 0.8026 0.8065 0.8053 0.8092 0.8054 0.8113 0.8069 0.8110 0.8027

Credit a 0.8506 0.8942 0.8465 0.8702 0.8403 0.8702 0.8817 0.8558 0.8817 0.8606 0.8983 0.8846
Fertility 0.8429 0.8667 0.8286 0.8667 0.8571 0.8000 0.9286 0.8000 0.9429 0.8333 0.9143 0.9000

German Credit 0.7386 0.7233 0.7586 0.7900 0.7543 0.7833 0.7857 0.7500 0.7829 0.7333 0.7871 0.7367
Hepatitis 0.7974 0.8085 0.8160 0.8085 0.8797 0.8723 0.9173 0.8511 0.8896 0.8085 0.9537 0.8298

Ionoshpere 0.9265 0.9245 0.9347 0.9057 0.9429 0.8962 0.9592 0.9151 0.9551 0.9340 0.9796 0.9434
Lymphography 0.7962 0.8667 0.7862 0.8000 0.8348 0.8222 0.8548 0.8444 0.8543 0.8444 0.9029 0.8667

Megawatt1 0.8925 0.8816 0.8870 0.8816 0.8981 0.8947 0.9265 0.8684 0.9322 0.8684 0.9379 0.9211
Messidor Features 0.6534 0.6387 0.7006 0.7486 0.7106 0.6965 0.7416 0.7312 0.7528 0.7254 0.7677 0.7775

PimaIndian 0.7449 0.7056 0.7691 0.6883 0.7524 0.7229 0.7953 0.7403 0.7971 0.7446 0.8120 0.7359
SpamBase 0.9410 0.9464 0.9366 0.9435 0.9385 0.9522 0.9484 0.9522 0.9484 0.9522 0.9516 0.9522

SpectF 0.8276 0.7901 0.7905 0.8148 0.7743 0.8148 0.8602 0.8148 0.8708 0.8272 0.8818 0.8395
Wine Quality Red 0.6265 0.6563 0.6533 0.6625 0.6140 0.6667 0.6622 0.6458 0.6613 0.6625 0.6774 0.6667

Wine Quality White 0.6144 0.6347 0.6161 0.6429 0.6144 0.6347 0.6377 0.6299 0.6365 0.6442 0.6415 0.6463

the experimental results show the superiority of FETCH. However, this setup may be contrary to
real-life application scenarios where we often need to explore good features on the training set and
validate them on the test set, which is often used only once as the final evaluation metric, rather than
repeatedly using the test set scores to optimize feature engineering.

To simulate the authentic situation, we split the original dataset into a training set and a test set in
the ratio of 0.7/0.3 and let all AutoFE methods optimize the feature engineering plan on the training
set to obtain higher cross-validation scores and apply it to the test set to obtain the final test scores.
Unlike previous experiments using the default order of the datasets, in this experiment we shuffled
the original data using the same random seeds, which may result in differences in scores of Table 1.
The experimental results are displayed in Table 5.

The experimental results show that FETCH achieves both the highest cross-validation scores and
test scores on 19/27 datasets. Empirically, an effective and robust feature engineering plan tends to
achieve high scores on both the training and test sets. Therefore, the previous setup of directly op-
timizing the cross-validation scores is reasonable and can largely improve the generalization ability
of the searched feature engineering plans.

D DISCUSSION

D.1 FEASIBILITY OF APPLYING FETCH TO OTHER FORMS OF DATA

We may generalize our framework to other domains by regarding the feature outputs of an encoder
(e.g. convolutional neural networks for images, recurrent neural network for speech and graph neural
network for graphs (Goodfellow et al., 2016)) as tabular inputs. However, vision and language
tasks have a large amount of data collection sharing common sequential/spatial structures. In view
of the rich literature on these data, we suppose existing full-fledged pre-trained feature extractors
(ResNet (He et al., 2016), SimCLR (Chen et al., 2020), and BERT (Devlin et al., 2018)) would be
a better choice. In contrast, tabular data has the properties of permutation invariance and variable
length, and our FETCH is more suitable to tackle these.

Nevertheless, our approach also opens the door to learn from tabular-included multimodal data.
For example, when the dataset contains both image and tabular attributes, we can concatenate pre-
extracted image features with tabular inputs and run our FETCH model to obtain a better combination
of features.

19

	Introduction
	Related work
	Overview of Fetch
	The FE Control Problem
	RL Setting of Fetch
	Policy Network on Feature Set
	Transferability via Pre-Training

	Experiments
	Experimental Setting
	Effectiveness of Fetch
	Transferability of Fetch
	Flexibility toward Model Choices

	Conclusion and Outlook
	Details of RL Setup
	MDP Model for FE
	Sampling Transformation Actions
	Training Policy Network with PPO

	Details of Experiments
	Environments
	Hyperparameters
	Datasets
	Pre-trained Models

	Ablation Study
	Efficiency of Fetch
	Influence of Higher-order Features
	Scalability Comparison under Limited Time
	Time Efficiency Comparison
	Flexibility toward More Model Choices
	Effectiveness Comparison on Test Set

	Discussion
	Feasibility of applying Fetch to other forms of data

