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Figure 1: Given a live point cloud stream or RGB-D images as input, our VoCAPTER can track the per-part pose at all frames 𝑡 > 0 in
an online manner. Our main contributions are: 1) we turn the articulated object pose tracking task into an inter-frame pose increment
estimation task instead of tracking frame by frame. 2) We leverage the SE(3)-invariant parameters to conduct per-part pose voting
instead of direct pose regress. Experiments demonstrate the superiority of our VoCAPTER, not only on the synthetic dataset but also
on real-world scenarios.
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Abstract
Articulated objects are common in our daily life. However, current
category-level articulation pose works mostly focus on predicting 9D
poses on statistical point cloud observations. In this paper, we deal
with the problem of category-level online robust 9D pose tracking
of articulated objects, where we propose VoCAPTER, a novel 3D
Voting-based Category-level Articulated object Pose TrackER. Our
VoCAPTER efficiently updates poses between adjacent frames by
utilizing partial observations from the current frame and the esti-
mated per-part 9D poses from the previous frame. Specifically, by
incorporating prior knowledge of continuous motion relationships
between frames, we begin by canonicalizing the input point cloud,
casting the pose tracking task as an inter-frame pose increment es-
timation challenge. Subsequently, to obtain a robust pose-tracking
algorithm, our main idea is to leverage SE(3)-invariant features dur-
ing motion. This is achieved through a voting-based articulation
tracking algorithm, which identifies keyframes as reference states
for accurate pose updating throughout the entire video sequence. We
evaluate the performance of VoCAPTER in the synthetic dataset
and real-world scenarios, which demonstrates VoCAPTER’s gener-
alization ability to diverse and complicated scenes. Through these
experiments, we provide evidence of VoCAPTER’s superiority and
robustness in multi-frame pose tracking of articulated objects. We
believe that this work can facilitate the progress of various fields,
including robotics, embodied intelligence, and augmented reality.
All the codes will be made publicly available.
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1 INTRODUCTION
Articulated objects are omnipresent in human daily life. Effectively
conducting many downstream tasks relies heavily on articulated
object pose estimation and tracking, encompassing human-object
interaction [16, 17, 25, 43], robotic manipulation [4, 47], augmented
reality [2, 3, 6, 7], and 3D scene understanding [1, 5, 9]. Unlike
merely predicting single-frame articulated object poses from statisti-
cal point clouds or RGB-D images [15, 36, 40], articulated object
pose tracking tasks necessitate handling multi-frame point cloud
sequences, thus amplifying challenges. Specifically, point cloud
sequences furnish temporal continuity information of articulated
objects, hence demanding consideration of pose variations over time.
Objects may undergo rotations and translations between different
frames, therefore increasing task complexity due to this dynamic
nature.

To deal with category-level articulated object 9D pose tracking,
a straightforward idea is to migrate the single-frame articulation
pose estimation methods (such as keypoint based DAKDN [45]
and reinforcement learning based ArtPERL [21]) into the multi-
frame pose tracking task. However, these solutions face two main
challenges:

(i) Tracking Manner. The efficacy of these methods is hampered
by the need for per-pixel representation learning, which consequently
impacts the tracking speed in live point cloud streams. Consequently,
these constraints obstruct the ability of category-level articulated
object trackers to attain satisfactory robust and real-time tracking
performance.

(ii) Pose Modeling Problem. Objects have their inherent struc-
tures, which are invariant to rotations and translations (e.g., the
relative position of the handle does not change during the rotation of
the mug). However, prior arts often directly regress 9D poses without
accounting for these intrinsic properties. This oversight results in
ill-posed pose modeling issues, making convergence challenging
and compromising the retention of useful features.

To address the first challenge, our core idea involves leveraging
the prior information between adjacent frames. While single-frame
pose estimation methods can be directly applied to pose tracking
tasks, this approach essentially predicts frame by frame, overlooking
crucial prior information. In other words, previous methods fail to
adequately consider the continuous motion relationships between
frames, which hinders the improvement of inference speed. Secondly,
to alleviate the difficulty of predicting point cloud poses observed in
camera space, our strategy involves using the inverse pose transfor-
mation of the previous frame’s point cloud to normalize the input
space of the current frame. Based on this strategy, we transform
the articulated object pose tracking task into an inter-frame pose
increment estimation task to better utilize the temporal coherence
and structural consistency of consecutive frames in video sequences,
thereby improving the network’s inference speed and accuracy.

To handle the second challenge, the basic mechanism behind
our method is to conduct a voting-based prediction, which takes
the SE(3)-invariant features into consideration. The key idea is to
turn the geometric features into the probability features on the point
cloud, which is more friendly for learning. Concretely, we first
globally model each rigid part’s structure by defining key geometric
relationships (i.e., some SE(3)-invariant parameters). Then we seek
local geometric features by adopting a local matching strategy where
each part independently casts votes for its estimated pose based
on local features from point pairs and the global structure from
the corresponding part. Furthermore, to get a robust prediction, we
additionally introduce a part awareness mechanism to assign scores
for the candidate point pairs instead of the noisy data that participates
in voting.

We evaluate our VoCAPTER on category-level pose tracking
tasks on both point clouds dataset (PartNet-Mobility) as well as
an RGB-D images dataset (ReArt-48). Experiments on real-world
scenarios (RobotArm) also demonstrate the generalization capacity
of our VoCAPTER. Our contributions can be summarized as follows:
• We tailor a novel Voting-based Category-level Articulated object

Pose TrackER (VoCAPTER) to break the performance bottleneck
of existing methods.
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• We turn the articulated object pose tracking task into an inter-
frame pose increment estimation task via the inter-frame priors.
Besides, a universal voting strategy is applied to track the pose
frame by frame to avoid the weakness of direct pose regression
methods.

• The efficiency and robustness of the VoCAPTER are demonstrated
through the evaluation of either synthetic or real-world scenarios.
The experimental results show the dramatic performance improve-
ment and generalization capacity of our method.

2 RELATED WORK
2.1 Category-level Articulation Pose Estimation
Category-level object pose estimation involves predicting the pose
of objects that may not have been encountered previously [8, 23, 27,
35]. Unlike rigid objects[11, 28, 29], articulated objects present a
more intricate challenge due to the interdependence and coordinated
movement of multiple joints [30, 32, 40]. It surely adds difficulty to
the pose estimation task, as it requires considering the constrained
relationships and coordinated movements among the joints in com-
puter vision tasks [33? ]. Addressing the challenge of category-level
pose estimation for articulated objects, A-NCSH [18] pioneers the
extension of Normalized Object Coordinate Space (NOCS) [35] to
articulate structures, enabling the estimation of part-level poses. To
go further, Liu et al. [24] advance the approach towards real-world
articulated object analysis by introducing part pairs to investigate
previously unseen instances. Additionally, Xue et al. [42] propose a
novel approach utilizing key-points as articulation models, aiming to
speed up the inference while maintaining accurate pose estimation.

Although the aforementioned studies effectively address category-
level articulation pose estimation with satisfactory performance,
their applicability as ready-to-use solutions in pose tracking tasks is
limited. This limitation arises from the dense prediction paradigm,
which constrains both the robustness and the inference speed of
these methods.

2.2 Category-level Articulation Pose Tracking
Unlike traditional articulated object pose estimation tasks [8, 12, 35],
category-level articulation pose tracking [26, 34, 39] extends the
scope to real-time point cloud streams. Specifically, this task aims to
update the pose at the frame level, utilizing the depth point cloud of
the current frame along with the estimated pose from the preceding
frame. One notable approach in prior research, BundleTrack[37],
leverages the complementary attributes of recent advances in deep
learning for segmentation and robust feature extraction for both
instance and category-level objects Pose Tracking. Alternatively,
another set of methodologies aims at keypoint-based object represen-
tation and modeling. These approaches typically involve selecting
appropriate key points based on the object’s structural characteris-
tics, analyzing their spatial positions and relationships, modeling
the object’s representation and shape, and ultimately inferring its
attitude information. Examples of such techniques include tracking
objects using predicted 2D keypoints in RGB sequences [20], incor-
porating depth information for tracking [13], and leveraging tracked
articulated object poses for 3D reconstruction [38].

Despite significant progress, the 9D pose of an articulated object
(comprising 3D translation, 3D rotation, and 3D scale) introduces

additional degrees of freedom and complexity, posing challenges
if a direct prediction is applied. Consequently, direct pose track-
ing methods often yield unstable results. Drawing inspiration from
BeyondPPF [44], we use a universal voting strategy for articulated
object pose tracking in this paper. Our method employs a voting-
based strategy, integrated into an end-to-end pipeline, which dynam-
ically updates the pose relative to previous frames for per-part pose
tracking.

3 Notations and Problem Statement
In this paper, we address the task of tracking per-part 9D pose of
articulated objects belonging to known categories. We build upon
the category-level articulated object and part definitions introduced
in A-NCSH [18] and assume a constant number of rigid parts and
kinematic structures for all objects within the same category. The
problem of pose tracking is defined as follows: the task takes the
live point cloud stream {P𝑡 }𝑡≥0 as input, where 𝑡 denotes the 𝑡-th
frame in the video. Each point cloud P𝑡 consists of 𝐾 rigid parts,
and 𝑆 (𝑘 ) represents the points of the 𝑘-th part. Along with each point
cloud, there exists a per-part pose 𝑇 (𝑘 )

𝑡 = [𝑅 (𝑘 )𝑡 | t(𝑘 )𝑡 ]𝐾
𝑘=1 at the

𝑡-th frame. Here, 𝑅 (𝑘 )𝑡 ∈ 𝑆𝑂 (3) represents the rotation and t(𝑘 )𝑡 ∈ R3

represents the translation. Our target is to track the per-part pose
𝑇
(𝑘 )
𝑡 = [𝑅 (𝑘 )𝑡 | t(𝑘 )𝑡 ]𝐾

𝑘=1 at all frames 𝑡 > 0 in an online manner,
given a live stream of point clouds {P𝑡 }𝑡≥0 containing the per-part
pose 𝑇 (𝑘 )

0 = [𝑅 (𝑘 )0 | t(𝑘 )0 ]𝐾
𝑘=1 at the 0-th frame.

The pipeline of our VoCAPTER can be illustrated as follows:
for 𝑡-th frame, our framework needs to track the per-part pose 𝑇 (𝑘 )

𝑡

with the given estimated 𝑇 (𝑘 )
𝑡−1 from the last frame and the point

cloud P𝑡 . A change of pose consists of the increments in rotation
Δ𝑅

(𝑘 )
𝑡 ∈ 𝑆𝑂 (3) and translation Δt(𝑘 )𝑡 ∈ R3. Then the absolute pose

of any part can be retrieved by applying the increments of pose by
Equation 1:

𝑇
(𝑘 )
𝑡 = Δ𝑇

(𝑘 )
𝑡 ·𝑇 (𝑘 )

𝑡−1 = Δ𝑇
(𝑘 )
𝑡 · Δ𝑇 (𝑘 )

𝑡−1 · · ·𝑇 (𝑘 )
0 (1)

To track the pose in the current frame, our key idea is to generate the
SE(3)-invariant parameters 𝜇 (𝑘 )𝑡 , 𝜈

(𝑘 )
𝑡 , 𝛼

(𝑘 )
𝑡 , 𝛽

(𝑘 )
𝑡 , 𝛾

(𝑘 )
𝑡 and conduct

the voting procedure based on these parameters (Details can be seen
in Section 4.4). To this end, we can effectively predict the pose of
the current frame with the assistance of the last frame.

4 METHOD
The overview of our VoCAPTER can be seen in Figure 3, in this
section, we will introduce each module in detail. Formally, taking a
3D partial point cloud or an RGB-D image as input, the 𝑡-th frame
point cloud is first canonicalized via the estimated 9D pose𝑇𝑘

𝑡−1 from
the last frame, as discussed in Section 4.1. Then we use PointNet++
to conduct the segmentation at the per-part level, as elaborated in
Section 4.2. We propose a part awareness mechanism to filter the
noisy point pairs in Section 4.3. Finally, given the SE(3)-invariant
parameters, we perform the pose voting frame by frame, with details
in Section 4.4.
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Figure 2: The illustration of inter-frame priors implementation.
Since we perform the pose tracking task at each rigid-part level,
we choose a rigid object bottle to illustrate the process.

4.1 Canonicalization
Canonicalization of the point cloud helps simplify the training
and optimization of the network, which is widely used in previ-
ous arts [18, 21, 42]. However, It’s impractical to canonicalize the
current frame directly. To take full advantage of the priors between
adjacent frames, we pseudo-canonicalize the point cloud at the 𝑡-th
frame via the pose from the last frame. Here, we give the theorem
with the corresponding proof that this all holds in Theorem 4.1:

THEOREM 4.1. During the object motion, the transformation ma-
trix between the adjacent frames is approximately equal to the trans-
formation matrix from the canonical space to the pseudo-canonical
space.

PROOF. As depicted in Figure 2, denote the transformation matrix
of the adjacent frames by Δ𝑇 , whose action on the 𝑡 − 1-th frame
point cloud P𝑡−1 can transform the 𝑡 − 1-th frame point cloud into
the 𝑡-th frame point cloud P𝑡 . By the assumption in the task of
tracking, Δ𝑇 is approximately the identity matrix 𝐼 , which means
that the transformation matrix 𝑇𝑡−1: canonical space −→ P𝑡−1 is
approximately equal to the transformation matrix𝑇𝑡 : canonical space
−→ P𝑡 . Since the action of𝑇𝑡−1 on P𝑡 can get the pseudo-canonical
space and the action of 𝑇𝑡 on P𝑡 can get the canonical space, the
transformation matrix Δ𝑇 from the canonical space to the pseudo-
canonical space is approximately equal to the identity matrix 𝐼 .Then
there exists 𝜖, such that:

∥Δ𝑇 − 𝐼 ∥2 < 𝜖/2 (2)

∥Δ𝑇 − 𝐼 ∥2 < 𝜖/2 (3)

Then,

∥Δ𝑇 − Δ𝑇 ∥2 = ∥Δ𝑇 − 𝐼 + 𝐼 − Δ𝑇 ∥2 (4)

≤ ∥Δ𝑇 − 𝐼 ∥2 + ∥𝐼 − Δ𝑇 ∥2 (5)

≤ 𝜖/2 + 𝜖/2 = 𝜖 (6)

Here 𝜖 is a threshold for the approximation. Then we can draw the
conclusion that Δ𝑇 is approximately equal to Δ𝑇 . □

Therefore, the foundational idea behind our canonicalization is as
follows: firstly, we canonicalize the 𝑡-th frame point cloud {P𝑡 }𝑡≥0
with the per-part pose 𝑇 (𝑘 )

𝑡 into the pseudo canonical space by us-

ing the per-part pose 𝑇 (𝑘 )
𝑡−1 at the previous frame. In the articulation

pose canonicalization process, the canonicalized point cloud P̂𝑡 is
obtained by the action of the inverse transformation 𝑇 (𝑘 )

𝑡−1 on P𝑡 . We
conduct this procedure at the per-part level with the relative transfor-
mation matrix Δ𝑇 of the adjacent frames using the Equation 7:

P̂ (𝑘 )
𝑡 = (𝑇 (𝑘 )

𝑡−1 )
−1P (𝑘 )

𝑡 = (Δ𝑇 (𝑘 )
𝑡−1 · Δ𝑇 (𝑘 )

𝑡−2 · · ·𝑇 (𝑘 )
0 )−1 · P (𝑘 )

0 (7)

As specified in Theorem 4.1, to predict the Δ𝑇 here, we can
predict the Δ𝑇 which transforms the canonical space to the pseudo-
canonical space.

After the canonicalization at per-part level, we only need to pre-
dict the per-part pose increment Δ𝑇 (𝑘 )

𝑡 = [Δ𝑅 (𝑘 )𝑡 | Δt(𝑘 )𝑡 ] between 𝑡-
th and 𝑡−1-th frame. Given the minimal rotation angle and translation
between adjacent frames along the XYZ-axis, the neural network
becomes more sensitive to subtle pose changes, thereby significantly
improving tracking performance.

4.2 Part Segmentaion
Given the canonicalized point cloud P𝑡 ∈ R𝑁×3 in Section 4.1, we
use the PointNet++ [31] to extract the helpful feature F1. Once we
get the features, we use a decoder to decouple F1 into 𝐾 masks{
𝑚

(𝑘 )
𝑡 ∈ R𝑁×1 |𝑘 = 1, ..., 𝐾

}
. Mathematically, the part-level point

cloud can be retrieved by Equation 8:

P (𝑘 )
𝑡 = P𝑡 ·𝑚 (𝑘 )

𝑡 , where𝑚 (𝑘 )
𝑡 = 1(𝑆𝑡 = 𝑘) (8)

Loss Function. During the training, we adopt the MSE loss to
conduct the part segmentation optimization:

L𝑠𝑒𝑔 =
𝐾∑︁
𝑘=1

∥𝑚 (𝑘 )
𝑡 − �̂� (𝑘 )

𝑡 ∥2 (9)

where �̂� (𝑘 )
𝑡 denotes the predicted mask and𝑚 (𝑘 )

𝑡 denotes as the GT
mask.

4.3 Part Awareness
As mentioned before, our method needs to sample the point pairs to
conduct the per-part pose tracking. Intuitively, only the point pair
chosen from the same part is valid. Upon the consideration of such
situation, we propose the part awareness mechanism to filter the
noisy point pairs (point pairs that come from different parts) before
the pose voting.

Concretely, denote all the sampled point pairs by T , we first de-
fine a point pair score {𝑐 𝑗 | 𝑗 = 1, ..., 𝐽 } (𝐽 is the number of sampled
point pairs), which serves as a filter for noisy point pairs originating
from different parts. Mathematically, given the part segmentation
{P (𝑘 )

𝑡 |𝑘 = 1, ..., 𝐾}, point pair score 𝑐 𝑗 can be formulated as Equa-
tion 10:

𝑐 𝑗 =

{
1, if T𝑗 = (𝑝1, 𝑝2) ∈ (P (𝑘 )

𝑡 ,P (𝑘 )
𝑡 )

0, otherwise
(10)
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Figure 3: The overview of our VoCAPTER framework. Taking the partial observation as input, our VoCAPTER consists of the
following components: (1) Canonicalization. The canonicalized point cloud used for the downstream network. (Section 4.1) (2) Part
Segmentation. We use the decomposed features to predict the 𝐾 Part Segmentation (Section 4.2). (3) Part Awareness is used to filter the
noisy point pairs (Section 4.3). (4) Pose Voting. A voting-based strategy is used to conduct 9D pose tracking results (Section 4.4).

During the inference stage, we retain only point pairs with scores
𝑐 𝑗 greater than 0.5 to feed into the pose voting. Point pairs above
this threshold are considered to be sampled from the same rigid part,
effectively reducing interference from noisy point pairs.

Loss Function. The part awareness loss L𝑝𝑎𝑟𝑡 is defined as the
binary entropy loss of the ground truth 𝑐 𝑗 and the predicted score 𝑐 𝑗 :

L𝑝𝑎𝑟𝑡 = − 1
𝐽

𝐽∑︁
𝑗=1

{𝑐 𝑗 𝑙𝑜𝑔(𝑐 𝑗 ) + (1 − 𝑐 𝑗 )𝑙𝑜𝑔(1 − 𝑐 𝑗 )}. (11)

4.4 Pose Voting
For each rigid-part P (𝑘 )

𝑡 at 𝑡-th frame, we sample the point pairs
randomly from the same part as mentioned in Section 4.3. Subse-
quently, the point pair feature 𝐹 (𝑝1, 𝑝2) [10] and the masked feature
F2 are fed into the PPF encoder to get the re-modulated feature.
Then, we use a three-layer MLP to output the SE(3)-invariant fea-
tures, which is applied to generate the key parameters of voting
𝜇
(𝑘 )
𝑡 , 𝜈

(𝑘 )
𝑡 , 𝛼

(𝑘 )
𝑡 , 𝛽

(𝑘 )
𝑡 , 𝛾

(𝑘 )
𝑡 . We use the following strategy to obtain

the Δ𝑇
(𝑘 )
𝑡 .

Universal Voting Strategy. In this section, we use a universal
voting strategy that creates a global model description via ran-
domly sampled oriented points. The essence of this method lies
in leveraging feature sparsity. Concretely, pose tracking tasks for

non-uniformly distributed objects (e.g., points of a mug primarily
concentrated on the body rather than the handle) can be transformed
into a sparse feature modeling problem with uniform distributions
of local point pairs.

We transform local point pairs into probability distributions via
bins. For translation voting, A circle is divided into bins to determine
the center. For orientation voting, bins are evenly distributed in a Fi-
bonacci sphere to count the votes. The final prediction of the tracked
pose will emerge with the largest vote count. For optimization, we
place each part in a zero-center coordinate before voting. The uni-
versal voting strategy for each rigid part at 𝑡-th frame is conducted
as follows:

⋆ Translation Voting. Denote the center by 𝑜 with the
input point cloud. Therefore, the translation voting can be regarded
as voting for the center of the part P (𝑘 )

𝑡 in the camera space for the
𝑡-th frame point cloud P𝑡 .

For each point pair 𝑝1 and 𝑝2, we estimate the following two
offsets:

𝜇
(𝑘 )
𝑡 = (𝑜 − 𝑝1) · 𝑑 (12)

𝜈
(𝑘 )
𝑡 = ∥𝑜 − (𝑝1 + 𝜇 (𝑘 )𝑡 𝑑)∥2 (13)

𝑤ℎ𝑒𝑟𝑒 𝑑 =
𝑝2 − 𝑝1

∥𝑝2 − 𝑝1∥2
(14)
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Figure 4: Illustration for Translation voting scheme (Figure (𝑎1)
and Figure (𝑎2)) and Orientation voting scheme (Figure (𝑏1) and
Figure (𝑏2)). Please note that we conduct the voting scheme on
each part but only one part is on demonstrating for simplicity’s
sake.

As depicted in Figure 4 (𝑎1), once we get the key parameters 𝜇 (𝑘 )𝑡 , 𝜈
(𝑘 )
𝑡 ,

we can determine the center with one degree-of-freedom ambiguity.
To elaborate further, as depicted in Figure 4 (𝑎2) the object center
will lie on a circle with its center 𝑐 and radius ∥𝑜 − 𝑐 ∥2 . During
inference, divide the circle into bins to generate multiple votes. The
bin with the most votes will be regarded as the final prediction.

⋆ Orientation Voting.
During the rotation process, the direction of upward and right-

ward exhibit invariance under SO(3), thus enabling voting for the
prediction of these directions. To elaborate further, we vote for the
upward and rightward direction in the camera space for all the parts
of P𝑡 . The remaining direction is derived using the cross product.
Mathematically, we define the upward orientation as 𝑒1 and right-
ward orientation as 𝑒2 (they are both unit vectors). Then we estimate
the two angles using the point pair 𝑝1 and 𝑝2:

𝛼
(𝑘 )
𝑡 = 𝑒1 ·

𝑝2 − 𝑝1
∥𝑝2 − 𝑝1∥2

(15)

𝛽
(𝑘 )
𝑡 = 𝑒2 ·

𝑝2 − 𝑝1
∥𝑝2 − 𝑝1∥2

(16)

Afterward, we conduct an elaborate partition with a Fibonacci
sphere [14]. Bins can be evenly distributed on the sphere, which
makes our orientation voting more accurate. As depicted in Figure 4
(𝑏1), once we get the key parameters 𝛼 (𝑘 )

𝑡 , 𝛽
(𝑘 )
𝑡 , we can determine

the orientation up to one degree-of-freedom ambiguity, which lies
in a cone. During inference, we may generate multiple candidates
with a constant degree interval around the sphere for each point
tuple, demonstrated in Figure 4 (𝑏2). The final prediction will be the
orientation with the most votes. Here, the orientation bin size is set
to be 1.5◦.

⋆ Scales. Denoting the average bounding box scales as
s̄(𝑘 )𝑡 ∈ R3 and the bounding box scale in a particular stream as

s(𝑘 )𝑡 ∈ R3, we predict the following statistic:

𝛾
(𝑘 )
𝑡 = log(s(𝑘 )𝑡 ) − log(s̄(𝑘 )𝑡 ) . (17)

During inference, 𝛾 (𝑘 )𝑡 is first averaged among sampled point pairs,

and then the predicted scale 𝑠 (𝑘 )𝑡 can be retrieved using the function:

Algorithm 1 Tracking algorithm with the universal voting scheme

1: Input: A live point cloud stream {P𝑡 }𝑡≥0, Per-part 9D pose
𝑇
(𝑘 )

0 at the first frame.

2: Output: Per-part 9D pose 𝑇 (𝑘 )
𝑡 at all the 𝑡 > 0 frames.

3: Initialize the reference state pool 𝐵 = {}.
4: Add frame 𝑡 = 0 into reference state pool 𝐵.
5: for 𝑡 > 0 frames do
6: if 𝑡%𝑁 == 0 then
7: Add 𝑡-th frame into reference state pool 𝐵.
8: end if
9: Obtain the nearest reference state 𝑡 ′ for 𝑡-th frame from refer-

ence state pool 𝐵.
10: for 𝐾 rigid-parts do
11: Pseudo-canonicalize the 𝑘-th part of cloud point P (𝑘 )

𝑡 via
the pose of reference state.

12: Sample the point pairs and filter the noisy point pairs by
part awareness.

13: Predict the delta pose Δ𝑇
(𝑘 )
𝑡 for the 𝑘-th part using the

universal voting strategy.
14: Compute the pose 𝑇 (𝑘 )

𝑡 at current 𝑡-th frame.
15: end for
16: end for

ŝ(𝑘 )𝑡 = 𝐹 (𝛾 (𝑘 )𝑡 , s̄(𝑘 )𝑡 ) = exp(𝛾 (𝑘 )𝑡 ) ⊙ s̄(𝑘 )𝑡 , (18)

where ⊙ is the element-wise production.
Loss Function. During training, the 𝜇 (𝑘 )𝑡 , 𝜈

(𝑘 )
𝑡 , 𝛼

(𝑘 )
𝑡 , 𝛽

(𝑘 )
𝑡 would

be transformed into the corresponding probability distributions ac-
cording to the bins used for voting. To measure the difference be-
tween the prediction and GT, we adopt the KL-divergence as the
loss function, take 𝜇 (𝑘 )𝑡 for an example:

L(𝜇 (𝑘 )𝑡 ) =
∑︁
𝑖

𝜇
(𝑘 )
𝑡𝑖

log

(
𝜇
(𝑘 )
𝑡𝑖

𝜇
(𝑘 )
𝑡𝑖

)
(19)

where 𝜇
(𝑘 )
𝑡𝑖

is the prediction and 𝜇
(𝑘 )
𝑡𝑖

is GT(𝑖 refers to the 𝑖-th
probability of the 𝑖-th bin in the distribution).

For the scale, we adopt the MSE loss as the objective function:

L(s(𝑘 )𝑡 ) = ∥ŝ(𝑘 )𝑡 − s(𝑘 )𝑡 ∥2 (20)

The total loss for voting is the sum of all the loss functions above:

L𝑣𝑜𝑡𝑖𝑛𝑔 =
𝐾∑︁
𝑘=1

{L(𝜇 (𝑘 )𝑡 ) +L(𝜈 (𝑘 )𝑡 ) +L(𝛼 (𝑘 )
𝑡 ) +L(𝛽 (𝑘 )𝑡 ) +L(s(𝑘 )𝑡 )}

(21)
With all the voting methods above, we can easily obtain the

Δ𝑇
(𝑘 )
𝑡 . Then the 𝑡-th frame pose can be obtained according to Equa-

tion 1. The overall articulation tracking procedure for the video is
summarized in Algorithm 1.
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Table 1: Comparison with state-of-the-art on the synthetic dataset with the articulated objects from PartNet-Mobility.

Category Method
Average Precision (%) ↑

Inference Time (s)↓
3D25 3D50

5◦

5 cm
10◦

5 cm
15◦

5 cm

Laptop

A-NCSH [18] 47.3, 35.3 29.7, 14.4 17.6, 8.3 33.2, 17.8 37.4, 24.2 1.67
OMAD [42] 33.5, 27.3 18.9, 9.5 8.7, 5.3 23.8, 13.8 26.9, 15.8 0.34
Oracle ICP [46] 37.6, 22.8 13.6, 10.0 7.9, 6.1 19.0, 12.6 24.8, 15.2 0.72
PA-Pose [26] 59.8, 45.8 38.9, 23.6 27.6, 14.5 44.1, 30.2 49.3, 34.6 0.10
VoCAPTER (Ours) 79.6, 58.3 58.3, 35.8 47.3, 24.6 63.2, 41.2 68.7, 46.3 0.07

Eyeglasses

A-NCSH [18] 41.8, 31.2, 30.8 29.8, 18.3, 17.3 14.8, 9.8, 9.3 23.9, 17.3, 16.5 32.9, 24.5, 23.6 2.59
OMAD [42] 21.0, 19.8, 20.6 13.1, 11.2, 12.8 7.2, 5.5, 6.3 14.9, 12.6, 14.0 17.0, 14.1, 15.9 0.84
Oracle ICP [46] 20.0, 17.8, 17.7 13.5, 10.3, 12.6 7.5, 5.8, 6.9 14.8, 11.7, 12.8 16.1, 12.8, 12.6 0.96
PA-Pose [26] 51.3, 39.6, 38.3 41.3, 28.9, 27.8 32.4, 17.6, 16.9 42.3, 31.2, 30.8 45.8, 35.2, 34.2 0.14
VoCAPTER (Ours) 65.3, 68.3, 65.8 52.1, 49.8, 50.3 41.1, 40.2, 39.6 56.8, 54.2, 54.1 61.3, 57.4, 57.8 0.09

Dishwasher

A-NCSH [18] 66.5, 47.5 52.2, 31.5 39.7, 22.3 56.1, 38.2 59.3, 42.1 1.70
OMAD [42] 51.3, 35.6 36.2, 16.9 25.3, 8.5 40.4, 21.3 45.0, 23.8 0.36
Oracle ICP [46] 47.6, 27.8 33.3, 16.8 20.8, 8.9 35.6, 14.3 40.6, 22.1 0.67
PA-Pose [26] 84.1, 57.8 68.3, 42.1 55.3, 36.3 72.9, 48.3 76.3, 51.1 0.11
VoCAPTER (Ours) 91.3, 76.8 74.3, 59.3 62.3, 47.3 78.6, 64.5 84.2, 68.0 0.06

Scissors

A-NCSH [18] 37.8, 36.3 24.3, 23.8 16.3, 14.5 23.7, 20.6 30.8, 29.2 0.05
OMAD [42] 31.2, 33.5 18.3, 18.6 9.8, 10.1 17.3, 17.9 24.3, 25.6 0.29
Oracle ICP [46] 27.8, 25.6 15.6, 13.8 7.8, 5.9 18.4, 15.7 21.3, 17.3 0.49
PA-Pose [26] 43.6, 46.8 33.6, 31.3 24.6, 19.8 36.0, 33.9 39.1, 37.1 0.12
VoCAPTER (Ours) 48.3, 50.1 38.2, 36.8 29.8, 28.3 40.3, 39.8 42.5, 42.2 0.08

Drawer

A-NCSH [18] 70.1, 66.3, 61.9, 65.8 54.3, 51.3, 49.6, 50.8 42.3, 40.1, 38.9, 41.6 51.7, 49.2, 46.3, 49.4 61.2, 57.4, 54.4, 57.1 3.64
OMAD [42] 61.5, 58.3, 55.6, 58.6 47.9, 42.3, 43.2, 41.2 38.2, 31.3, 32.1, 32.2 49.8, 46.3, 45.3, 45.7 53.9, 51.0, 49.3, 51.0 0.62
Oracle ICP [46] 55.9, 56.8, 52.3, 51.8 42.3, 39.2, 36.6, 40.2 29.8, 30.1, 25.8, 29.9 44.9, 43.2, 40.8, 44.8 49.2, 46.9, 44.8, 47.3 1.03
PA-Pose [26] 90.3, 81.3, 78.6, 80.3 75.3, 68.6, 64.1, 66.0 62.3, 54.3, 52.1, 53.5 77.3, 70.8, 68.8, 70.3 83.1, 74.2, 70.8, 72.8 0.25
VoCAPTER (Ours) 94.5, 87.5, 83.6, 84.9 79.8, 72.3, 66.5, 71.3 65.3, 61.3, 53.2, 59.8 83.6, 77.3, 71.4, 75.0 86.9, 80.3, 74.0, 77.2 0.12

5 EXPERIMENT
5.1 Experimental Setup
Datasets. To train our VoCAPTER, we generate the corresponding
datasets for training and validation following [22]. Concretely, we
first conduct experiments on a synthetic articulated object track-
ing dataset with the objects from PartNet-Mobility [41]. Next, we
generate a semi-synthetic dataset for the articulated object tracking
task from ReArt-48 repository [24], which generates more than 50K
frames for each category. To further validate the generalization ca-
pacity of our VoCAPTER in real-world scenarios, we test the model
trained by RobotArm. Please refer to the supplementary materials
for more details about the datasets.

Metrics. We use the average precision to conduct the comparison
between different methods, which is reported under both intersec-
tions over union (3D IoU) and pose error (translation and rotation
error). 3D IoU is calculated between the predicted and GT bound-
ing boxes with a threshold 𝛿 . 3𝐷𝛿 is used to represent the Average
Precision (%) of over 𝛿% IOU. For pose error, we report the Av-
erage Precision (%) under (5◦, 5 cm), (10◦, 5 cm), (15◦, 5 cm)
following [19, 48].

Implementation Details. During data pre-processing, input point
clouds are downsampled to 2,048 points, and objects in RGB-D
images are cropped and projected into the point cloud as network
inputs. We set the initial learning rate to 0.001 and utilize cosine
learning rate decay during training, with a total of 100 training
epochs. All experiments were conducted on four NVIDIA GeForce
RTX 4090 GPUs with 24GB of memory.

5.2 Comparison with the State-of-the-Art Methods
In this section, we conduct experiments on the synthetic dataset
containing the articulated objects from PartNet-Mobility [41]. Quan-
titative experimental results of our VoCAPTER are reported in Ta-
ble 1. Compared with single-frame pose estimation methods such
as those proposed by A-NCSH [18] and OMAD [42], VoCAPTER
demonstrates a significant improvement in per-part pose tracking
performance, as evidenced by the 3𝐷25 and 3𝐷50 Average Precision
metrics. For instance, considering the category Scissors, VoCAPTER
achieves Average Precision scores of 65.3%, 68.3%, 65.8%, surpass-
ing the scores obtained by A-NCSH [18] (41.8%, 31.2%, 30.8%) and
OMAD [42] (21.0%, 19.8%, 20.6%) in the 3𝐷25 Average Precision
metric. In terms of inference time, VoCAPTER achieves the fastest
speed, averaging only 0.08 seconds per frame, surpassing both A-
NCSH and OMAD. While our method exhibits only a slight improve-
ment in pose tracking compared to PA-Pose, it demonstrates superior
real-time performance. Therefore, we conclude that VoCAPTER ef-
fectively implements the voting strategy and fully leverages it in
the pose tracking task. Figure 5 shows the qualitative results. It is
evident from the results that VoCAPTER closely approximates the
GT. This can be attributed to the effectiveness of the universal voting
scheme in accurately modeling the geometry of rigid parts, thus
enhancing registration accuracy.

5.3 Ablation Study
In this section, we conduct various ablation studies on our Vo-
CAPTER. Only the results of base part from the category Dish-
washer are reported, which are conducted in the PartNet-Mobility
dataset.
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Figure 5: Qualitative results on PartNet-Mobility dataset. Two categories (Dishwater and Laptop) are shown.

Table 2: Effects of point pair number and orientation bin size.

Orientation
Bin Size (◦)

Average Precision (%) ↑

3D25 3D50
5◦

5 cm
10◦

5 cm
15◦

5 cm

I 1 90.9 74.1 61.3 78.6 83.9
II (Ours) 1.5 91.3 74.3 62.3 78.6 84.2

III 3 90.2 71.9 62.0 78.3 84.0

Awareness Average Precision (%) ↑
IV - 88.3 71.2 59.6 75.0 80.4

V (Ours) ✓ 91.3 74.3 62.3 78.6 84.2

Orientation bin size. As mentioned in Section 4.4, bins are used
for orientation voting and the bin size is set to be 1.5◦. To verify
the effects of orientation bin size, the ablation study results can be
seen in Table 2 (I - III). From it, we infer that 1.5◦ is a better choice
for orientation bin size, while larger or smaller bin sizes tend to
introduce a big marginal error.

Part Awareness. With the aid of the part awareness mechanism,
we filter the sampled point pairs for per-part pose tracking (i.e.,
point pairs for per-part pose tracking should be from the target part
meantime). Table 2 (IV - V) shows the ablation experiment results. It
can be concluded that the proposed part awareness mechanism helps
to achieve better performance. we conjecture this can be attributed
to the elimination of noisy point pairs.

5.4 Generalization Capacity
Experiments on Semi-Synthetic Scenarios. We evaluate the effect
of our VoCAPTER on the dataset ReArt-48 with semi-synthetic sce-
narios. Qualitative results are shown in Figure 6 (Top). The tracking
results show that our method can perform well in the semi-synthetic
scenarios.

Experiments on Real-world Scenarios. To investigate the track-
ing performance in real-world scenarios, we train and evaluate Vo-
CAPTER on the 7-part RobotArm dataset [24]. Figure 6 (Down)
shows the qualitative results. It is undeniable to suffer from the effect
of the multi-depth structure of the robot arm instance.

Figure 6: Demonstrations on semi-synthetic articulated objects
(ReArt-48, Top). Qualitative results on real-world scenarios
(RobotArm dataset, Down). Please zoom in for better visual-
ization.

6 CONCLUSION
In this paper, we propose a novel framework, VoCAPTER, to conduct
the category-level articulated object tracking task. Our method first
leverages the inter-frame priors to conduct adjacent pose increment
estimation task. Afterward, we perform the segmentation at per-part
level and filter the noisy point pairs via proposed part awareness.
Finally, we use the SE(3)-invariant parameters to vote for the pose at
all t frames (𝑡 > 0). Empirical results demonstrate the superiority of
our VoCAPTER compared to state-of-the-art methods not only on
the synthetic dataset but also on real-world scenarios, which turns
out to be a robust and real-time tracking framework.
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