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ABSTRACT

Convex quadratically constrained quadratic programs (QCQPs) involve finding a so-
lution within a convex feasible region defined by quadratic constraints while minimiz-
ing a convex quadratic objective function. These problems arise in various industrial
applications, including power systems and signal processing. Traditional methods for
solving convex QCQPs primarily rely on matrix factorization, which quickly becomes
computationally prohibitive as the problem size increases. Recently, graph neural
networks (GNNs) have gained attention for their potential in representing and solv-
ing various optimization problems such as linear programs and linearly constrained
quadratic programs. In this work, we are the first to investigate the representation
power of GNNs in the context of QCQP tasks. Specifically, we propose a new tri-
partite graph representation for general convex QCQPs and properly associate it with
message-passing GNNs. We demonstrate that there exist GNNs capable of reliably
representing key properties of convex QCQPs, including feasibility, optimal value,
and optimal solution. Our result deepens the understanding of the connection be-
tween QCQPs and GNNs, paving the way for future machine learning approaches to
efficiently solve QCQPs.

1 INTRODUCTION

Quadratic programs (QPs) are a pivotal class of optimization problems where the objective function is
quadratic, and the constraints are typically linear or quadratic. Based on the nature of constraints, QPs
can be further classified as linearly constrained quadratic programs (LCQPs) and quadratically con-
strained quadratic programs (QCQPs). When the objective and constraint matrices are positive semi-
definite, the problem becomes a convex QCQP, making it both theoretically interesting and practically
important. Convex QCQPs arise in various critical applications such as robust optimization in uncer-
tain environments (Ben-Tal & Nemirovski, 2001; Boyd & Vandenberghe, 2004), power flow (Bienstock
et al., 2020), and signal processing (Luo et al., 2010), while ensuring optimality and computational
efficiency is paramount.

Solving QPs, especially those with quadratic constraints, presents significant challenges. Traditional
methods often involve computationally intensive procedures that would struggle with scalability and
real-time processing requirements. For example, the interior-point method (Nocedal & Wright, 1999)
for a general n-variable QP involves solving a sequence of linear systems of equations, necessitating
matrix decomposition with a runtime complexity of Rs(n3). This leads to substantial computational
burden in the large-scale case. Similarly, active-set algorithms (Gill et al., 2019), which work by itera-
tively adjusting the set of active constraints, can also become computationally demanding as the number
of constraints and variables increase.

In recent years, advances in machine learning (ML) have opened new avenues for enhancing the solv-
ing process of QPs. There are mainly two categories of ML-aided QP methods. The first category
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aims to learn adaptive configurations of a specific QP algorithm or solver to accelerate the solving
process (Bonami et al., 2018; Ichnowski et al., 2021; Jung et al., 2022), while the second focuses on
predicting an initial solution of QPs, which is either directly taken as a final solution or further refined
by subsequent algorithms or QP solvers (Bertsimas & Stellato, 2022; Gao et al., 2021; Sambharya et al.,
2023; Tan et al., 2024; Wang et al., 2020). Most of these methods utilize graph neural networks (GNNs)
to leverage the structural properties of graph-structured data, making them particularly well-suited for
representing the relationships and dependencies inherent in QPs. By encoding QP instances into graphs,
GNNs can capture intricate features and provide adaptive guidance or approximate solutions efficiently.

In addition to these empirical studies, theoretical research on the expressive power of GNNs (Zhang
et al., 2023; Li & Leskovec, 2022) and their relation to optimization problems has further strengthened
the understanding of their capabilities. For instance, Chen et al. (2022a) and Chen et al. (2022b) estab-
lished theoretical foundations for applying GNNs to solving linear programs (LPs) and mixed-integer
linear programs, respectively. Further, such foundations are extended to LCQPs and their discrete vari-
ant, mixed-integer LCQPs in Chen et al. (2024).

Previous studies have empirically and theoretically demonstrated the utility of GNNs in speeding up
existing QP solvers and directly approximating solutions for various QP instances. However, there is a
noticeable lack of research on their use in QCQPs, particularly in how they handle quadratic constraints.
Existing graph representations used for LCQPs (Chen et al., 2024) are inadequate for QCQPs as they
can not capture the complex interactions introduced by quadratic constraints. Moreover, the question of
whether GNNs can accurately predict key properties of QCQPs, such as feasibility, optimal objective
value, and optimal solution, remains open.

This paper aims to address the aforementioned gap by exploring both theoretical foundations and prac-
tical implementation of using GNNs for solving convex QCQPs. Specifically, we propose a tripar-
tite graph representation for general convex QCQPs, and establish theoretical foundations of applying
GNNs to optimize QCQPs. The distinct contributions of this paper can be summarized as follows.

• Graph Representation. We propose a novel tripartite graph representation for general QC-
QPs, which divides a QCQP into three types of nodes: linear-term, quadratic-term, and con-
straint nodes, with edges added between heterogeneous nodes to indicate problem parameters.
This representation effectively addresses the limitations of existing graph representations for
LCQPs, i.e., those graphs are unable to capture the interactions imposed by quadratic con-
straints.

• Theoretical Foundation. We conduct analysis on the separation power as well as approxima-
tion power of message-passing GNNs (MP-GNNs). We showed that MP-GNNs are capable of
capturing some key properties of convex QCQPs.

• Empirical Evidence. We conduct initial numerical tests of the tripartite message-passing
GNNs on small QCQP instances. The results showed that MP-GNNs can be trained to ap-
proximate the key properties well.

NOTATIONS

Throughout this paper, scalars or vectors are denoted by lowercase letters (e.g., a), and matrices are
denoted by uppercase letters (e.g., A). For a vector a, we denote its i-th entry by ai. For a matrix A,
the entry in the i-th row and the j-th column is denoted by ai,j . We use 0 and 1 to denote vectors or
matrices with all-zero and all-one entries, respectively. For any positive integers m,n with m < n, we
define [m,n] := {m,m + 1, · · · , n} to be the set of all integers ranging from m to n. For brevity, we
define [n] := [1 : n] = {1, 2, · · · , n}.
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2 GRAPH REPRESENTATION OF QCQPS

2.1 QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS

In this work, we study QCQPs defined in the following form:

min
x∈Rn

1

2
x⊤Qx+ p⊤x

s.t.
1

2
x⊤Qix+ (pi)⊤x+ bi ≤ 0 ∀ i ∈ [m]

xL ≤ x ≤ xU

(2.1)

where Q,Qi ∈ Rn×n, p, pi ∈ Rn, bi ∈ R, xL ∈ (R∪{−∞})n, and xU ∈ (R∪{+∞})n. The problem
has n optimization variables and m constraints. We refer to the tuple (m,n) as the problem size of
QCQP. Both the objective function and the constraints are associated with quadratic functions. Without
loss of generality, we assume Q and Qi’s are all symmetric matrices. The QCQP problem is convex if
Q and Qi’s are all positive semidefinite.

We denote the feasible set of Problem 2.1 by

X :=

{
x ∈ Rn :

1

2
x⊤Qix+ (pi)⊤x+ bi ≤ 0, ∀i ∈ [m], xL ≤ x ≤ xU

}
. (2.2)

If X ̸= ∅, the QCQP is said to be feasible; otherwise, it is said to be infeasible. A feasible QCQP
is said to be bounded if the objective is bounded from below on X , i,e., there exists z ∈ R such that
1
2x

⊤Qx+ p⊤x ≥ z for every x ∈ X ; otherwise, it is said to be unbounded. For a feasible and bounded
QCQP, x∗ ∈ X is said to be an optimal solution if

1

2
x∗⊤Qx∗ + p⊤x∗ ≤ 1

2
x⊤Qx+ p⊤x (2.3)

for every x ∈ X . We remark that a QCQP always admits an optimal solution if it is feasible and
bounded, but such an optimal solution might not be unique.

2.2 TRIPARTITE REPRESENTATION OF QCQPS

The first theoretical result demonstrating the representation power of GNNs in solving optimization
problems was provided by Yin et al. Chen et al. (2022a). In this work, the information of an LP prob-
lem is encoded into a bipartite graph, where variables and constraints are modeled as nodes, and their
association is represented as edges. They showed that GNNs based on this graph representation can
universally approximate the optimal solution of LPs, as well as properties of feasibility and bounded-
ness. This bipartite graph modeling was later extended to analyze the representation power of GNNs
for LCQPs (Chen et al., 2024).

Despite these advances, it remains challenging to develop graph representation to encode all information
of general QCQPs while maintaining simplicity for GNN processing. Due to the presence of quadratic
terms, a QCQP generally involves O(n2 ×m) coefficients. Consequently, a graph encoding all QCQP
information inherently exhibits a complexity of the same order, O(n2 × m). There are two natural
extensions of the traditional bipartite representation of LP/LCQP to QCQP.

– Hyperedge Representation. This approach adds hyperedges to the traditional bipartite graph
to represent quadratic coefficients, turning the graph into a hypergraph. However, to the best
of our knowledge, current GNN architectures struggle to handle hyperedges efficiently.

– Vector Feature Representation. In this method, all coefficients are encoded as features asso-
ciated with the n variable nodes and the m constraint nodes, resulting in a graph with vector
features of varying sizes, depending on the problem. However, existing GNNs are generally
incapable of processing features of varying dimensions.
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2

1

Variable Nodes

Quadratic-term Nodes

Constraint Nodes

(𝑏𝑖)

QCQP formulation Tripartite representation

(𝑝𝑗 , 𝑥𝑗
𝐿, 𝑥𝑗

𝑈)

(1/2 𝑄𝑗𝑗)

(𝑄𝑗𝑘)

Figure 1: A tripartite representation of QCQPs. It consists of three types of nodes: variable nodes,
quadratic-term nodes, and constraint nodes. All nodes and the edges connecting them are associated
with coefficients from the formulation as features.

To fill this gap, we introduce an undirected tripartite graph representation GQCQP := (V,E) that
encodes all elements of a QCQP (2.1). Compared to the traditional bipartite graph modeling for LPs
and LCQPs, our tripartite graph representation introduces an additional class of nodes to model the
quadratic terms of variables. This modification allows us to represent QCQPs without any loss of
information. In this paper, we will show that the tripartite representation enables GNNs to universally
approximate solutions for convex QCQPs.

Formally, a tripartite graph modeling a QCQP consists of three types of nodes, representing variables,
constraints, and quadratic terms respectively. Specifically, we define V1 := {u1, u2, . . . , un} as the set
of nodes where each ui corresponds to the variable xi. Each node ui is associated with a feature tuple
(pi, x

L
i , x

U
i ). Next, we define V2 := {vj,k : (j, k) ∈ L} as the set of nodes representing the quadratic

terms, where L := {(j, k) ∈ [n]× [n] : j ≤ k, |qj,k|+
∑

i∈[m] |qij,k| > 0}. We remark that if (j, k) ∈ L,
the coefficient of the quadratic term xjxk is non-zero in the objective function or at least one of the
constraints. For each node in V2, if j > k, vi,j is associated with a feature 2qj,k; if j = k, vj,j is
associated with a feature qj,j . Further, we define V3 := {c1, c2, . . . , cm} as the set of nodes where each
ci represents the i-th constraint, with each node ci associated with a feature bi. Therefore, the set of all
nodes in the QCQP graph is given by V := V1 ∪ V2 ∪ V3.1

The QCQP graph also includes three types of edges. Let E12 :=
{(uj′ , vj,k) ∈ V1 × V2 : j′ = j ∨ j′ = k} be the set of edges connecting nodes from V1 to those in V2.
The weight of an edge (uj′ , vj,k) is 1 if j > k and 2 otherwise. Let E13 := {(uj , ci) ∈ V1×V3 : pij ̸= 0}
be the set of edges connecting nodes from V1 to those in V3. The weight of an edge (uj , ci) is pij . Let
E23 := {(vj,k, ci) ∈ V2 × V3 : qij,k ̸= 0} be the set of edges connecting nodes from V2 to those in V3.
The weight of an edge (vj,k, ci) is 2qij,k if j > k and qij,j otherwise. Thus, the set of all edges is given
by E := E12 ∪ E13 ∪ E23. Throughout this paper, we denote the weight of the edge between u ∈ V1

and v ∈ V2 by wu,v = wv,u, and similarly wu,c = wc,u for edges between V1, V3, wv,c = wc,v for
edges between V2, V3.

We illustrate this representation in Figure 1. We remark that there is a one-to-one mapping between a
QCQP and its tripartite graph representation GQCQP.

Definition 1 (Spaces of Convex QCQP-graphs). We denoted by Gm,n
QCQP the set of tripartite graph rep-

resentations for all convex QCQPs with n variables and m constraints. 2

1We always denote a variable node by u, a quadratic node by v, and a constraint node c. We always index the
constraint nodes by i, and the variable/quadratic nodes by j, k, unless otherwise specified.

2For any QCQP graph in Gm,n
QCQP, the associated convex QCQP can be characterized by its coefficient tuple

(Q, {Qi}mi=1, p, {pi}mi=1, {bi}mi=1, x
L, xU) ∈ (Sn

+)
m+1 × Rn×(m+1) × Rm × (R ∪ {−∞})n × (R ∪ {+∞})n,

where Sn
+ denotes the space of positive semidefinite matrices of dimension n. We define a topology on GQCQP:

for Q,Qi and p, pi we use the topology induced by the norm of the linear mappings defined by the matrices

4
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Figure 2: An overview of the GNN architecture.

3 THEORETICAL RESULTS

3.1 TRIPARTITE MESSAGE-PASSING GNNS

To study the capability of GNNs in representing QCQPs, we tailor the general message-passing GNNs
for the tripartite nature of the introduced QCQP graph representation. An overview is depicted in Figure
2. Specifically, we consider the family of tripartite message-passing GNNs consisting of an embedding
layer, T message-passing layers (each comprised of four sub-layers), and a readout layer, detailed as
follows:

• Embedding Layer. For all nodes, the input features h0,u, h0,v, h0,c are initialized by embed-
ding the node features into a hidden space Rh0 , where h0 is the space dimension. Specifically,

h0,u ← g01(h
u),∀u ∈ V1 h0,v ← g02(h

v),∀v ∈ V2, h0,c ← g03(h
c),∀c ∈ V3

where g0l ’s are learnable embedding functions, l = 1, 2, 3, and hu, hv, hc are the node features
carried by u ∈ V1, v ∈ V2, c ∈ V3.

• Message-Passing Layer. Each message-passing layer consists of four sub-layers for updating
the features of nodes with learnable functions f t

l , g
t
l . Specifically, each sub-layer updates node

features in one of V1, V2, V3 by gathering information from certain neighboring nodes.
– First sub-layer updating quadratic nodes (V1 → V2)

h̄t,v ← gt1

(
ht,v,

∑
u∈V1

wu,vF
t
1(h

t,u)

)
,∀v ∈ V2

– Sub-layer updating constraint nodes (V1 + V2 → V3):

ht+1,c ← gt2

(
ht,c,

∑
u∈V1

wu,cf
t
2(h

t,u),
∑
v∈V2

wv,cf
t
3(h̄

t,v)

)
,∀c ∈ V3

– Second sub-layer updating quadratic nodes (V3 → V2):

ht+1,v ← gt3

(
h̄t,v,

∑
c∈V3

wc,vf
t
5(h

t+1,c)

)
,∀v ∈ V2

– Sub-layer updating variable nodes (V3 + V2 → V1):

ht+1,u ← gt4

(
ht,u,

∑
c∈V3

wc,uf
t
5(h

t+1,c),
∑
v∈V2

wv,uf
t
6(h

t+1,v)

)
,∀u ∈ V1

and vectors, and for xL, xU, bi we use euclidean topology on R and discrete topology on the infinite values. In
numerical experiments, we represent the infinite values by introducing an extra infinity indicator.
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• Readout layer The readout layer applies a learnable function fout to map the features hT,v ,
v ∈ V = V1 ∪ V2 ∪ V3 output by the T -th (i.e. last) message-passing layer, to a readout y
in a desired output space Rs, where s is the dimension of the output space. In this paper, we
consider the following two types of output space:

– Graph-level scalar output (s = 1). In this case, we set

y = fout

(∑
u∈V1

hT,u,
∑
v∈V2

hT,v,
∑
c∈V3

hT,c

)
– Node-level vector output with s = n. In this case, we only consider the output associated

with the variable nodes in V1, given by

yj = fout

hT,uj ,
∑

k∈[n]\{j}

hT,uk ,
∑
v∈V2

hT,v,
∑
c∈V3

hT,c

 , j ∈ [n]

Definition 2 (Spaces of GNNs). Let FQCQP(Rs) denote the collection of all tripartite message-passing
GNNs, parameterized by continuous embedding functions g0l1 , l1 = 1, 2, 3, continuous hidden functions
in the message passing layers gtl2 , l2 = 1, 2, 3, 4, ht

l3
, l3 = 1, 2, 3, 4, 5, 6, and the continuous readout

function fout. Specifically, for a given problem size (m,n) of QCQP, there exists a subset of GNNs in
FQCQP(Rs) that maps the input space Gm,n

QCQP to the output space Rs. This subset of GNNs are denoted
by Fm,n

QCQP(Rs).

We define the following target functions, characterizing some key properties on learning an end-to-end
network to predict the optimal solutions of convex QCQPs:
Definition 3 (Target mappings). Let GQCQP be a tripartite graph representation of a QCQP problem.
We define the following target mappings.

• Feasibility mapping: We define Φfeas(GQCQP) = 1 if the QCQP problem is feasible and
Φfeas(GQCQP) = 0 otherwise.

• Boundedness mapping: for a feasible QCQP problem, we define Φbound(GQCQP) = 1 if the
QCQP problem is bounded and Φbound(GQCQP) = 0 otherwise.

• Optimal value mapping: for a feasible and bounded QCQP problem, we set Φopt(GQCQP) to
be its optimal objective value.

• Optimal solution mapping: for a feasible, bounded QCQP problem, there must exist at least
an optimal solution, but the optimal solution might not be unique. However, if the QCQP is
convex, there exists a unique optimal solution x∗ with the smallest ℓ2-norm among all op-
timal solutions. Therefore, for convex QCQP we define the optimal solution mapping to be
Φsol(GQCQP) = x∗. Since the optimal solution with the smallest ℓ2-norm may not be unique
for non-convex QCQP, we do not define its optimal solution mapping.3

3.2 UNIVERSAL APPROXIMATION FOR CONVEX QCQPS

Now, we demonstrate that for convex QCQPs, any target function in Definition 3 can be universally
approximated by message-passing GNNs. Formally, we have the following theorem.
Theorem 1. For any probability measure P on the space of convex QCQPs Gm,n

QCQP and any δ, ε >

0, there exists F ∈ Fm,n
QCQP(Rs) such that for any target mapping Φ : Gm,n

QCQP → Rs defined in
Definition 3, we have

P {||F (GQCQP)− Φ(GQCQP)|| > δ} < ε. (3.1)
3In fact, Section 3.3 shows that there exists a pair of non-convex QCQPs that cannot be distinguished by any

GNNs. Thus, even if an optimal solution mapping for non-convex QCQPs is defined, GNNs cannot universally
approximate it.

6
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Figure 3: Left: two QCQP instances for proving Prop. 1. Right: Parts of the corresponding tripartite
graph representations to show the difference.

Theorem 1 highlights that sufficiently expressive GNNs can predict the feasibility, boundedness, optimal
value, and optimal solution for convex QCQP problems with an arbitrarily small error. The proof of
Theorem 1 is provided in Appendix A.

3.3 MESSAGE-PASSING GNNS CAN NOT REPRESENT NON-CONVEX QCQPS

In contrast to convex QCQPs, message-passing GNNs based on tripartite graph representation do not
possess universal representation power for non-convex QCQPs. Formally, we have the following propo-
sitions.
Proposition 1. There exists non-convex QCQP instances I, Ī encoded by tripartite graph repre-
sentation G, Ḡ respectively, such that Φ(G)feas ̸= Φfeas(Ḡ), but any GNN F ∈ FQCQP(R) gives
F (G) = F (Ḡ).
Proposition 2. There exists non-convex QCQP instances I, Ī encoded by tripartite graph representa-
tion G, Ḡ respectively, such that

1. Φ(G)opt ̸= Φopt(Ḡ)

2. the optimal solution sets of I and Ī do not intersect

3. any GNN F ∈ FQCQP(R) gives F (G) = F (Ḡ).

Proposition 1 implies that GNNs cannot universally predict the feasibility of non-convex QCQPs.
Proposition 2 implies that GNNs can neither universally predict the optimal value nor the optimal so-
lution of non-convex QCQPs. We prove both propositions by constructing counter-examples. Below
we present the counter-example for Proposition 2. We defer the formal proof of both propositions to
Appendix C.

Consider the following pair of non-convex QCQPs:

min x1x2 + x2x3 + x3x1 + x4x5 + x5x6 + x6x4

s.t.
∑
i

x2
i ≤ 1 (3.2)

min x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x1

s.t.
∑
i

x2
i ≤ 1 (3.3)

For the former, the optimal objective value is Φobj = − 1
2 , and all optimal solutions are given by

{x : x1 + x2 + x3 = 0, x4 + x5 + x6 = 0,
∑
i

x2
i = 1}.

7
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For the latter, the optimal objective value Φobj = −1, and all optimal solutions are given by

{x : x1 = x3 = x5 = −x2 = −x4 = −x6 = ±
√
6

6
}.

We see that the optimal values of Problem 3.2 and Problem 3.3 are different, and their optimal solution
sets do not intersect. The tripartite graph representations of the two instances are illustrated in Figure
3. We will further demonstrate in appendix C that any GNN on the two tripartite graphs gives the same
output. Thus, Problem 3.2 and Problem 3.3 serve as a valid counter-example for proving Proposition 2.

4 COMPUTATIONAL EXPERIMENTS

In this section, we present empirical experiments to validate the proposed theoretical results. The cor-
responding source code is available at https://anonymous.4open.science/r/l2qp-6B56/.

Learning tasks: In Theorem 1, we established that there exists a fucntion F ∈ Fm,n
QCQP(Rs) capa-

ble of approximating the target mapping Φ with an arbitrarily small error. To empirically confirm this
claim, we design three supervised learning tasks to find such functions Ffeas, Fobj and Fsol, which are
responsible for predicting feasibility, objective values, and optimal solutions, respectively. For each
task, a dataset {(Gi, yi)}Ni=1 is provided, where Gi represents a QCQP instance and yi denotes its cor-
responding label. The function family Fm,n

QCQP(Rs) is constructed using the tripartite message-passing
GNNs as defined in Definition 2. With all these ingredients ready, the learned function is obtained
by F = argminf∈Fm,n

QCQP(Rs)
1
N

∑N
i=1 L (f(Gi), yi), where L(·, ·) is the loss function. Specifically, we

use mean squared error for predicting objective values and optimal solutions, while binary cross-entropy
loss is employed for predicting feasibility.

Table 1: Sizes of the base instances.

Base ins. # Var. # Cons. # Non-zeros
1157 40 9 399
1493 40 5 240
1353 50 6 350

Data generation: To support the supervised learn-
ing scheme mentioned above, datasets are generated
by perturbing the coefficients of instances in QPLib
(Furini et al., 2019). Specifically, for an arbitrary co-
efficient a in a given instance, the coefficients of new
instances are sampled from the uniform distribution
U(−a, a). Using instances 1157, 1493 and 1353 from
QPLib as base instances, we generated three datasets, each consisting of 500 instances for training and
100 ones for testing. The sizes of the base instances are listed in Table 1. To ensure convexity in these
generated instances, the matrices {Qi}mi=0 corresponding to the quadratic term in both the objective
function and constraints are adjusted by replacing them with Qi − αiI , where αi < 0 is the minimal
eigenvalue of Qi. This modification guarantees that the matrices are positive semi-definite, thereby
making the corresponding QCQP instances convex. All instances are solved using the solver IPOPT
solver (Wächter & Biegler, 2006) and the resulting feasibility, objective values, and optimal solutions
are collected as labels.

GNN architecture and training settings: For the GNN described in Section 3.1, there are
three classes of functions {gt1, . . . , gt4}Tt=1, {ht

1, . . . , h
t
6}Tt=1 and R remain unspecified. The first

class,{gt1, . . . , gt4}Tt=1, are two-layer MLPs with layer widths of [d, d], and ReLU as activations, where
the inputs of each function are concatenated together. The second class, {ht

1, . . . , h
t
6}Tt=1, are linear

transformations with output dimension d followed by ReLU activations. The last one, R, is also a two-
layer MLP with ReLU activation, with widths of [d, 1] for predicting feasibility and objective values,
and [d, n] for predicting solutions. The hyper-parameters are set as T = 2 and d = 64. For training, we
utilized the Adam optimizer alongside a one-cycle learning rate scheduler, with a maximum learning
rate of 0.0001 and a batch size of 16.
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Main results: Figure 4 illustrates the training losses for the three tasks. The subfigures from left to
right correspond to the tasks of predicting feasibility, objective values, and optimal solutions, respec-
tively. Each curve in the subfigures represents a dataset generated from one of the base instances. The
results show that, for all three tasks, the training losses decrease gradually as the number of epochs
increases, eventually converging to small values. Beside the curves, the best training and validation loss
values during the training processes are reported in Table 2. These results validate the claim made in
Theorem 1.
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Figure 4: Training losses of predicting feasibility, objective values and optimal solutions.

Table 2: Best training and validation loss values of predicting feasibility, objective values and optimal
solutions.

feasibility objective value optimal solution
Dataset train validation train validation train validation

Perturbed from QPLIB 1157 1.00e-5 3.53e-2 3.67e-2 9.78e-2 4.41e-2 8.39e-2
Perturbed from QPLIB 1493 4.32e-7 1.00e-4 2.05e-2 8.22e-2 9.76e-3 2.23e-2
Perturbed from QPLIB 1353 2.63e-7 1.00e-4 3.42e-4 6.10e-3 6.66e-3 3.70e-2

5 CONCLUSIONS

This paper introduces a new tripartite graph representation specifically designed for QCQPs. By lever-
aging the capabilities of message-passing GNNs, this approach shows theoretical promise in predicting
key properties of QCQPs with arbitrary desired accuracy, including feasibility, boundness, optimal val-
ues, and solutions. Initial numerical experiments validate the effectiveness of our framework.

This research contributes to the field of learning to optimize by expanding the application of GNNs to
QCQP problems, which were previously challenging for traditional graph-based L2O methods. This
could encourage future exploration in designing more specialized GNN architectures to handle QCQPs
in practice, beyond the basic GCN structure employed here.
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A DETAILED PROOF OF MAIN THEOREM

A.1 SKETCH OF THE PROOF

We provide a brief outline of this complex proof:

1. Separation Power of WL-Test: We first establish that the WL-test has sufficient separation
power on the defined target functions.

2. Connection to tripartite message-passing GNNs: We then demonstrate the relationship be-
tween the separation power of tripartite message-passing GNNs and that of the Tripartite WL-
tests, showing that the GNNs can separate our target functions. This result, combined with the
generalized Weierstrass theorem, leads to our approximation power conclusions.

3. Universal Approximation: Assuming the target functions are continuous and have compact
support, we prove universal approximation. In this step, we also specify the problem size and
apply the Generalized Weierstrass Theorem (Theorem 22 of Azizian & Lelarge (2020)).

4. Addressing Discontinuities: Since the target functions are neither continuous nor compactly
supported, particularly at the boundary of the convex QCQPs universe Gm,n

QCQP, we construct
a continuous approximation of the target function to apply universal approximation, ensuring
convergence in measure.

A.2 WL-TEST ON TRIPARTITE GRAPH REPRESENTATION

Here we describe our Tripartite WL-test, which is the WL-test counterpart of the tripartite message-
passing GNNs:

• Embedding. Initial colors C0,u, C0,v , and C0,c are assigned based on their corresponding
features and node types (e.g., from V1, V2, or V3):

– C0,u ← HASH1(f(u)) for u ∈ V1,
– C0,v ← HASH2(f(v)) for v ∈ V2,
– C0,c ← HASH3(f(c)) for c ∈ V3.

Here, we refer to the color of a node after the t-th message-passing layer as Ct,·.
• Update quadratic nodes via variable nodes (V1 → V2):

C̄t,v ← HASH

(
Ct,v,

∑
u∈V1

wu,vHASH(Ct,u)

)
,∀v ∈ V2

• Update constraint nodes via variable and quadratic nodes (V1, V2 → V3):

Ct+1,c ← HASH

(
Ct,c,

∑
u∈V1

wu,cHASH(Ct,u),
∑
v∈V2

wv,cHASH(C̄t,v)

)
,∀c ∈ V3

• Update quadratic nodes again via constraint nodes (V3 → V2):

Ct+1,v ← HASH

(
C̄t,v,

∑
c∈V3

wc,vHASH(Ct+1,c)

)
,∀v ∈ V2

• Update variable nodes via constraint and quadratic nodes (V3, V2 → V1):

Ct+1,u ← HASH

(
Ct,u,

∑
c∈V3

wc,uHASH(Ct+1,c),
∑
v∈V2

wv,uHASH(Ct+1,v)

)
,∀u ∈ V1

12
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• Termination and Readout. Once a termination condition is met, we return the color collection
(CT,u)u∈V1

, (CT,v)v∈V2
, (CT,c)c∈V3

.4

• All hash functions are real-valued and assumed to be collision-free.

In this paper, we terminate the Tripartite WL-test only when the algorithm stabilizes5, i.e., when the
number of distinct colors no longer changes in an iteration (after all four color updates). Despite not
imposing a forced iteration limit, the WL-test is guaranteed to terminate in a finite number of iterations,
denoted by T :
Proposition 3 (Tripartite WL-test terminates in finite iterations). The Tripartite WL-test stabilizes in a
finite number of iterations.

Proof. It is straightforward to observe from the formulation that if two nodes have different colors,
they will continue to have different colors after an (sub-)iteration. Therefore, the number of iterations
required for stabilization is capped by the number of distinct nodes, which is finite.

We say that the Tripartite WL-test separates two graphs if the resulting collection of colors differs
between the two graphs. We claim that the Tripartite WL-test has the same separation power as its
network counterpart, specifically the tripartite message-passing GNNs:
Proposition 4 (tripartite message-passing GNNs have equal separation power as the Tripartite
WL-Test). Given two instances I and Ī (correspondingly encoded by graphs G and Ḡ), the follow-
ing holds:

1. For graph-level output cases, the two instances are separated by Fm,n
QCQP(R), i.e.,

F (G) = F (Ḡ),∀F ∈ Fm,n
QCQP(R)

if and only if the two instances are also separated by the Tripartite WL-test.

2. For node-level output cases, i.e., Rs = Rn, the two instances are separated by Fm,n
QCQP(R),

i.e.,
F (G) = F (Ḡ),∀F ∈ Fm,n

QCQP(R
n)

if and only if the two instances are separated by the Tripartite WL-test, and additionally, the
variables are correspondingly indexed. Specifically, CT,uj = CT,ūj must hold for all j ∈ [n].

For the detailed proof of this proposition, see Appendix B.3.

A.3 PROOF OF MAIN THEOREM

Now we can prove the main theorem. First, we state our key lemma:
Lemma 1. Let I, Ī (with given sizes m,n, encoded by G, Ḡ ∈ Gm,n

QCQP) be two QCQP instances. If the
following holds:

• The tripartite WL-test cannot separate the two instances;

• x is a feasible solution of I.

Then there exists a feasible solution x̄ for Ī whose objective and ℓ2-norm are controlled by x, such that:

x̄⊤Q̄x̄+ p̄ · x̄ ≤ x⊤Qx+ p · x
||x̄|| ≤ ||x||

4Multiple occurrences of members are counted instead of rejected.
5For simplicity, we exclude the final iteration showing that the algorithm has stabilized and return the last

iteration in which stabilization occurred.
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For the detailed proof of this lemma, see Appendix B.2. With this key lemma, we derive the follow-
ing corollary, which establishes the separation power of the Tripartite WL-test and tripartite message-
passing GNNs, since they have equal separation power.

Proposition 5. Let I, Ī (encoded by G, Ḡ ∈ Gm,n
QCQP) be two QCQP instances. If the tripartite WL-test

fails to separate the two instances, then the following holds:

1. If one is feasible, the other is also feasible, i.e., Φfeas(G) = Φfeas(Ḡ).

2. Assume both instances are feasible. If one is unbounded, the other is also unbounded.

3. Assume both instances are bounded. Then they have equal optimal values, i.e., Φobj(G) =
Φobj(Ḡ).

4. Assume both instances are bounded and that the variables and constraints are indexed such
that CT,uj = CT,ūj . Then they have the same optimal solution, with the least L2-norm, i.e.,
Φsol(G) = Φsol(Ḡ).

Proof. Passing feasibility. Assume that I is feasible, and let x be a feasible solution. By Lemma 1, we
obtain another solution x̄ for instance Ī, which implies the feasibility of Ī. By switching the roles of I
and Ī, we prove the reverse claim.

Passing unboundedness. Assume that I is unbounded, i.e., for any M > 0, there exists a solution xM

such that the objective f(x) ≤ −M . For each xM , we can construct a solution x̄M for Ī such that the
objective f̄(x̄M ) ≤ f(xM ) ≤ −M , implying that Ī is also unbounded. Again, by switching the roles
of I and Ī, we prove the reverse claim.

Passing optimal value. Assume that I is feasible and bounded, and let x be its optimal solution. By
Lemma 1, we construct a solution x̄ for Ī such that:

f̄(x̄) ≤ f(x) = Φobj(G)

implying that Φobj(Ḡ) ≤ Φobj(G). Similarly, we can show that Φobj(G) ≤ Φobj(Ḡ), and thus
Φobj(Ḡ) = Φobj(G).

Passing optimal solution. To prove the last claim, we need the construction of x̄ from the detailed
proof of Lemma 1 (see Appendix B.2). Assume that I is feasible and bounded, and let x be its optimal
solution (with the least L2-norm). By Lemma 1, we construct y for Ī and z for I by switching the roles
of I and Ī.

We have f(z) ≤ f̄(y) ≤ f(x) and ∥z∥ ≤ ∥y∥ ≤ ∥x∥, which implies that z is not worse than the given
optimal solution x, and thus z = x. By the construction of the averaged solution (and the assumption
CT,uj = CT,ūj ), we have y = z. Combining the two equalities, we conclude that x = y.

Let x̄ be the optimal solution of Ḡ, and we have ∥x̄∥ ≤ ∥y∥ = ∥x∥. By switching the roles of I and Ī,
we obtain ∥x∥ ≤ ∥x̄∥, and thus ∥x̄∥ = ∥x∥. Similarly, we have f̄(x̄) ≤ f̄(y) ≤ f(x), and by switching
the roles, f̄(x̄) = f(x).

Since ∥y∥ = ∥x∥ = ∥x̄∥ and f̄(y) = f(x) = f(x̄), by uniqueness, we conclude that y = x̄, proving
the fourth claim.

The next step is to extend this separation power to approximation power, which leads to our main
theorem. We utilize the generalized Weierstrass-Stone theorem (Theorem 22 and Lemma 36 of Azizian
& Lelarge (2020)) and Lusin’s theorem.

By applying the generalized Weierstrass-Stone theorem, we establish the following proposition, which
demonstrates the approximation power on equivariant functions with compact support:
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Proposition 6 (Uniform Approximation on Continuous Equivariant Functions with Compact Support).
Let Φc : Gm,n

c → Rs be a general continuous target function defined on a compact subset Gc ⊆ Gm,n
QCQP,

such that:

• If s = 1, the output remains unchanged if the input graph is re-indexed.

• If s = n, the output re-indexes accordingly if the input graph is re-indexed.

If the following holds:(
F (G) = F (Ḡ),∀F ∈ Fm,n

QCQP(R
s)⇒ Φ(G) = Φ(Ḡ)

)
,∀G, Ḡ ∈ Gm,n

c (A.1)

i.e., the family Fm,n
QCQP(Rs) separates the target function Φ, then for any δ > 0, there exists a function

Fδ ∈ Fm,n
QCQP(Rs) such that:

∥Fδ(G)− Φ(G)∥ < δ (A.2)

For the detailed proof, see Appendix B.4.

However, the requirement for the target function to apply the proposition is too strong. In fact, all
target functions defined in 3 are non-continuous and not defined on a compact subset, although equiv-
ariance naturally holds. Therefore, we seek a continuous approximation with compact support that
can be uniformly approximated. By applying Lusin’s theorem, we construct the following continuous
approximation:

Proposition 7 (Continuous Approximation with Compact Support). Let Φ : Gm,n
QCQP → Rs be a general

target function that is measurable under the probability measure P. For any ε > 0, there exists a
compact subset Gm,n

c ⊆ Gm,n
QCQP, such that P{G ∈ Gm,n

c } > 1− ε, and Φ|Gm,n
c

is continuous.

By combining all the lemmas and propositions, we can now prove the main theorem.

Proof of Theorem 1. Let Φ be any target function defined in Definition 3.

By Proposition 7, Φ is continuous on a compact subset Gm,n
c ⊆ Gm,n

QCQP, with P(G ∈ Gm,n
c ) ≥ 1− ε

|Σ| .

We construct Gm,n
c,eq = ∩(σ,τ)∈Σ(σ, τ)(Gm,n

c ). This subset is continuous with compact support, ensuring
that Φ|Gm,n

c,eq
remains an equivariant function, with the following measure control:

P(G ∈ Gm,n
c,eq ) > 1− ε (A.3)

Since by Proposition 5 and the fact that the Tripartite WL-test has equal separation power as the tripartite
message-passing GNNs, the target functions are equivariant and separated by Fm,n

QCQP(Rs). Thus, we
may apply Proposition 6 and obtain F ∈ Fm,n

QCQP(Rs) such that:

∥F (G)− Φ(G)∥ < δ, ∀G ∈ Gm,n
c,eq

This implies that P{∥F (G)− Φ(G)∥ < δ} > 1− ε.

B PROOF OF PROPOSITIONS IN SECTION A

This section provides complete proofs of several propositions in Section A that were not immediately
proven.
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B.1 EQUIVARIANCE

We begin by describing equivariance, a key tool used to capture the fact that the indexing of variables
and constraints is irrelevant:
Definition 4. Given a function f : X → Y , where X and Y are subsets of Euclidean spaces, and a
group Σ that acts continuously on X and Y , the function f is called equivariant (with respect to the
group Σ) if the following holds:

σ ◦ f(x) = f ◦ σ(x), ∀x ∈ X,σ ∈ Σ

Since the indexing of variables and constraints does not affect the problem, we take Σ = Sn × Sm,
which represents all possible re-indexings of variables and constraints. When applied to both the input
and output spaces, we re-index the variables, constraints, and possible solutions (in cases where the
output is a solution x ∈ Rn). Specifically, we have:

q̃π(j),π(k) = qj,k

p̃π(j) = pj

q̃
τ(i)
π(j),π(k) = qij,k

p̃
τ(i)
π(j) = pij

b̃τ(i) = bi

x̃L
π(j) = xL

j

x̃U
π(j) = xU

j

where the tilde symbols Q̃, p̃, b̃, x̃L, x̃U denote the re-indexed vectors and matrices.

For Rs = R, the action on the output space is the identity map: (π, τ)(·) = id. For Rs = Rn, we
correspondingly re-index the output, i.e., (π, τ)(y)π(j) = yj .

We can also apply the permutations to:

• A point in Rn (such as a solution), by (π, τ)(x)π(j) = xj .
• A subset of Rn, by applying the permutation to each element in the subset, or to its indicator

function by permuting the underlying set.

Equivariance allows us to show that the indices do not matter, while the inputs (in the form of coefficient
tuples) necessarily carry these indices.

Remark: Given the group Σ and its action on both the input and output, all message-passing layers are
automatically equivariant. Thus, requiring F ∈ Fm,n

QCQP(Rs) to be equivariant is equivalent to requiring
the readout layer R to be equivariant. This is why the readout function must take specific forms in the
two cases. While the defined forms do not cover all possible equivariant readout functions, they are
general enough to capture the separation power.

B.2 PROOF OF CORE LEMMA

For simplicity of proof, we extend the definitions of Φobj and Φsol to the entire space Gm,n
QCQP by as-

signing a default value of 0 (or 0, depending on the output dimension s) when the target function is not
defined at a graph G. This occurs when the corresponding instance is either infeasible or unbounded,
and the optimal value or optimal solution does not exist. By doing so, all target functions are defined
on the same space Gm,n

QCQP. Moreover, since we approximate feasibility and boundedness, we can dis-
tinguish whether the output is the default value or genuinely happens to be 0 (or 0).
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Let I and Ī be two instances (with Tripartite graph representations G and Ḡ ⊆ Gm,n
QCQP) that are

not separated by the Tripartite WL-test. Without loss of generality, we assume that the variables and
constraints are correspondingly indexed, i.e., CT,uj = CT,ūj and CT,ci = CT,c̄i hold for all i, j.

We first introduce the following notations. Let I be any color, and we collect all nodes of a graph G
with color I , denoting this collection as G(I). Throughout this paper, we use J for the colors of variable
nodes, K for quadratic nodes, and I for constraint nodes.

We now present the following lemma:

Lemma 2. Given the graph G, let the Tripartite WL-test stabilize after T ≥ 0 iterations. The sum of
weights from a certain node of one color to all nodes of another color depends only on the color of
the given node. Specifically, the sum (taking J for variable nodes and K for quadratic nodes as an
example) is:

S(J,K;G) :=
∑

CT,v=K

wu,v

and is well-defined with u ∈ G(J) arbitrarily chosen.

Similarly, for any color of constraints I , color of variables J , and color of quadratic terms K, the
following sums are well-defined:

S(J, I;G) :=
∑

CT,c=I

wu,c, CT,u = J

S(I,K;G) :=
∑

CT,v=K

wc,v, CT,c = I

S(K, I;G) :=
∑

CT,c=I

wv,c, CT,v = K

S(J,K;G) :=
∑

CT,v=K

wu,v, CT,u = J

S(K,J ;G) :=
∑

CT,u=J

wv,u, CT,v = K

Proof. Let v, v′ be two nodes with color K = CT,v = CT,v′
. Since the Tripartite WL-test has stabi-

lized, further iterations do not separate additional node pairs, i.e.,∑
u

wu,vHASH(CT,u) =
∑
u

wu,v′HASH(CT,u).

Rearranging according to J = CT,u, we get:∑
J

∑
CT,u=J

wu,v ·HASH(J) =
∑
J

∑
CT,u=J

wu,v′ ·HASH(J).

Assuming that the hash function is collision-free, we conclude that:∑
CT,u=J

wu,v =
∑

CT,u=J

wu,v′ ,

i.e., S(K,J ;G) :=
∑

CT,u=J wv,u, CT,v = K is well-defined.

The other claims follow similarly.

By summing all weights between two colors I and J , we derive the following lemma:
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Lemma 3. Let J and K be arbitrary node colors. Then, the following holds:

|G(J)|S(J,K;G) = |G(K)|S(K,J ;G),

and similar equalities hold between I and J , and between I and K.

Proof. Summing all edges between all nodes with CT,u = J and CT,v = K, and re-arranging the sum
according to u and v, by Lemma 2, we have:

|G(J)|S(J,K;G) = |G(K)|S(K,J ;G).

The other two claims are similar.

We are now ready to proceed. We construct x̄j = 1
|G(J)|

∑
j′:C

T,u
j′=C

T,ū
j′=J

xj′ , where J = CT,xj .
We claim that x̄ satisfies all the required conditions.

First, we analyze the linear part of the constraints and the objective. Let f i
lin(x) := pi · x represent the

linear part of the i-th constraint. For a certain color I of constraint nodes, we have:

f̄ i
lin(x̄) =

∑
j

p̄ij x̄j

=
∑
J

∑
v̄j∈G(J)

p̄ij x̄j

=
∑
J

S(I, J)x̄J

=
1

|G(I)|
∑
J

S(J, I)|G(J)|x̄J

=
1

|G(I)|
∑
J

S(J, I)
∑

uj∈G(J)

xj

=
1

|G(I)|
∑

ci∈G(I)

∑
J

∑
j∈G(J)

pijxj

=
1

|G(I)|
∑

ci∈G(I)

f i
lin(x).

(B.1)

Here, x̄j is the average over the nodes with color J , so it is determined by J , and we denote its value as
x̄J .

We define flin(x) = p · x. For the objective part, we have:∑
j

p̄j x̄j =
∑
J

pJ |Ḡ(J)|x̄J

=
∑
J

pJ
∑

uj∈G(J)

xj

=
∑
j

pjxj ,

(B.2)

where pj , p̄j are the features of the variables, which are determined by the color J = CT,uj = CT,ūj .
We denote this value by pj = p̄j = pJ .

Quadratic part. We define f i
quad(x) =

1
2x

⊤qix as the quadratic part of the i-th constraint.
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For a certain color I of constraint nodes, we have the following:

f̄ i
quad(x̄) =

1

2

∑
vj,k∈V2(Ḡ)

q̄ij,kx̄j x̄k

=
1

2

∑
K

∑
v̄j,k∈Ḡ(K)

q̄ij,kx̄j x̄k

=
1

2

∑
K

S(I,K)|Ḡ(K)|x̄K .

Since all v̄j,k ∈ V2(Ḡ) have ūj , ūk as neighbors in V1(Ḡ), x̄K := x̄j x̄k is well-defined. This equation
shows that the value f̄ i

quad(x̄) depends only on the color I = CT,c̄i , and not on the specific selection of
c̄i ∈ Ḡ(I). Therefore, f i

quad(x̄) reduces to the sum, and we claim that f i
quad(x̄) = f̄ i

quad(x̄) holds.

Next, we consider the partial derivative. Let J := CT,uj , and we have:

∂j
∑

ci∈G(I)

f i
quad(x̄) =

∑
ci∈G(I)

∑
k

w(uj , vj,k)w(vj,k, ci)x̄k

=
∑

ci∈G(I)

∑
K

∑
k:vj,k∈G(K)

w(uj , vj,k)w(vj,k, ci)x̄k

=
∑
K

S(K, I)
∑

k:vj,k∈G(K)

w(uj , vj,k)x̄k

=
∑
K

S(K, I)S(J,K)xK;J .

(B.3)

Since uj is one of the neighbors in vj,k, and vj,k ∈ G(K) has exactly two neighbors in V1(G), we know
that the color of uk depends only on the colors K = CT,vj,k and J = CT,vj . This makes x̄K;J := x̄k

well-defined, with uj ∈ G(J) and vj,k ∈ G(K).

Thus, the derivative ∂j
∑

ci∈G(I) depends only on J = CT,uj , i.e.,

CT,vj1 = CT,vj2 ⇒ ∂j1
∑

ci∈G(I)

f i
quad(x̄) = ∂j2

∑
ci∈G(I)

f i
quad(x̄). (B.4)

By Equation equation B.4, we know that x̄ is a local optimal point within the linear space:

{y ∈ Rn :
∑

uj∈G,CT,uj=J

yj =
∑

uj∈G,CT,uj=J

xj}.

With the convexity assumption, the local optimal point is a global minimum. Since x is in this linear
space, we claim that: ∑

ci∈G(I)

f i
quad(x̄) ≤

∑
ci∈G(I)

f i
quad(x). (B.5)

Combining Equation equation B.5 with the fact that f i
quad(x̄) and f̄ i

quad(x̄) are equal for all ci ∈ G(I),
we can control the quadratic parts:

f̄ i
quad(x̄) = f i

quad(x̄)

=
1

|G(I)|
∑

ci∈G(I)

f i
quad(x̄)

≤ 1

|G(I)|
∑

ci∈G(I)

f i
quad(x).

(B.6)
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For the objective part, we define fquad(x) =
1
2x

⊤Qx. Similarly, we have:

f̄quad(x̄) =
1

2

∑
v̄j,k

f0(v̄j,k)x̄j x̄k

=
1

2

∑
K

∑
v̄j,k∈Ḡ(K)

f0(v̄j,k)x̄j x̄k

=
1

2

∑
K

∑
vj,k∈G(K)

f0(vj,k)x̄j x̄k

= fquad(x̄).

We also have:

∂jfquad(x̄) =
∑
k

f0(vj,k)w(uj , vj,k)x̄k

=
∑
K

∑
k:vj,k∈G(K)

f0(vj,k)w(uj , vj,k)x̄k

=
∑
K

f0(K)S(J,K)x̄K;J ,

which depends only on J = CT,uj . Here, f0(K) = f0(vj,k), and vj,k ∈ G(K) is well-defined by the
stable color assumption.

Combination of the two parts.

The color CT,ci = CT,c̄i = I determines the RHS bI := bi. Defining f i
cons(x) = f i

quad(x) + f i
lin(x),

and similarly for Ī, we have:

f̄ i
cons(x̄) = f̄ i

quad(x̄) + f̄ i
lin(x̄)

=
1

|G(I)|
∑

ci∈G(I)

(
f i
quad(x) + f i

lin(x)
)

=
1

|G(I)|
∑

ci∈G(I)

f i
cons(x)

≤ bI .

For the objective, we similarly have:

f̄quad(x̄) + f̄lin(x̄) ≤ fquad(x) + flin(x).

This completes the proof that x̄ is the solution for Ī, satisfying the condition given in Proposition 1.

B.3 PROOF OF PROPOSITION 4

We prove the separation power by simulating the tripartite WL-test using tripartite message-passing
GNNs. We define the hidden representation ht,·, produced by some network, as a one-hot represen-
tation of the colors Ct,· if all ht,· are one-hot vectors, and they take the same value if and only if they
have the same color Ct,·.

First, we consider the color initialization. We collect all the features paired with the node types (i.e.,
variable nodes, quadratic nodes, and constraint nodes). Then we select g01,2,3 to map the features to
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one-hot vectors, where the enumeration serves as the only index with the value 1.0. For example, if the
feature huj of a variable node is enumerated by r, then g01 maps huj to h0,uj = er.

It’s easy to see that the embedded hidden feature h0,· is a one-hot representation of the initial color C0,·.

Next, we consider the first refinement. Assuming that ht,· is a one-hot representation of Ct,· and gt1 = id
is a simple and proper hash function, the concatenated vector[

ht,v,
∑
u∈V1

wu,vf
t
1(h

t,u)

]

is a representation of the colors C̄t,·, which is generally not one-hot. The same holds for the other
three concatenated vectors from the remaining three sub-layers. By Theorem 3.2 of Yun et al., 2019,
a network with four fully connected layers and ReLU activation maps these values back to one-hot.
Therefore, we select f t

1 to concatenate the inputs and then pass them through a 4-layered MLP with
ReLU activation, so that the aggregated hidden representation h̄t,· is once again one-hot.

Similarly, we get ht
2,3,4 and gt2,3,4,5,6 and simulate an iteration of the Tripartite WL-test with a round of

four message-passing sub-layers.

In the case of graph-level output, the readout function takes the following form:

R(·) = fout

∑
j

hT,uj ,
∑
j,k

hT,vj,k ,
∑
i

hT,ci

 .

Since the hidden representation is a one-hot representation of CT,·, if two instances are not separated
by the tripartite message-passing GNN, they are not separated by this subset of GNNs (given a fixed
initialization and a free readout function). Consequently, all entries must be equal, and the two instances
are not separated by the Tripartite WL-test.

Similarly, in the case of node-level output, all equivariant readout functions take the form:

R(·)j = fout

hT,uj ,
∑
j

hT,uj ,
∑
j,k

hT,vj,k ,
∑
i

hT,ci

 .

Thus, all entries must be equal, and the two instances are not separated. Moreover, the variables are
correspondingly indexed.

Conversely, we use induction to prove that for all t ∈ N, the colors Ct,· separate more than the hidden
features ht,·, i.e.,

Ct,u = Ct,u′
⇒ ht,u = ht,u′

, ∀u, u′ ∈ V1 ∪ V̄1, F ∈ Fm,n
QCQP(R

s), (B.7)

and similar claims hold for the other three sub-iterations.

For t = 0 (i.e., right after embedding), the statement is obviously true. Now, assume that after some
sub-iteration (say, before the first sub-iteration of iteration t ≥ 1, with the other sub-iterations following
similarly), the statement holds.

Let v, v′ satisfy: ∑
u

wu,vHASH(Ct,u) =
∑
u

wu,v′HASH(Ct,u).

Organizing the sum by Ct,u = J , and assuming the hash function is collision-free, we have:∑
u:Ct,u=J

wu,v =
∑

u:Ct,u=J

wu,v′ , ∀J. (B.8)
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Next, we organize the sum
∑

u wu,vf
t
1(h

t,u) by the value of ht,u. By the induction assumption, the
set {u : ht,u = h} is the union of {u : Ct,u = Jl} for some colors Jl. Summing the equality
in equation B.8 over the colors, we have:∑

ht,u=h

wu,v =
∑

ht,u=h

wu,v′ , ∀h.

Thus, we conclude:∑
u

wu,vf
t
1(h

t,u) =
∑
h

∑
u:ht,u=h

wu,vf
t
1(h) =

∑
h

∑
u:ht,u=h

wu,v′f t
1(h) =

∑
u

wu,v′f t
1(h

t,u),

which completes the induction.

For the case of graph-level output, this means that all entries of the input to the readout function are
equal for the two graphs, i.e.,∑

j

hT,uj ,
∑
j,k

hT,vj,k ,
∑
i

hT,ci

 =

∑
j

hT,ūj ,
∑
j,k

hT,v̄j,k ,
∑
i

hT,c̄i

 ,

and the GNNs give the same output for all possible readout functions.

For the case of node-level output, we again have:hT,uj ,
∑
j

hT,uj ,
∑
j,k

hT,vj,k ,
∑
i

hT,ci

 =

hT,ūj ,
∑
j

hT,ūj ,
∑
j,k

hT,v̄j,k ,
∑
i

hT,c̄i

 .

Here, we use the assumption that the variables are correspondingly indexed to guarantee hT,uj = hT,v̄j .

B.4 PROOF OF PROPOSITION 6

The requirement for the general target function Φc is simply equivariance under re-indexing. Thus, we
need to verify the conditions required by the generalized Weierstrass theorem (Theorem 22 of Azizian
& Lelarge (2020)) to apply.

First, we verify that F = Fm,n
QCQP(Rs) is a sub-algebra. By multiplying the readout function by λ,

we construct λF ∈ Fm,n
QCQP(Rs). Now, we construct the sum and product of two functions F1, F2 ∈

Fm,n
QCQP(Rs).

Given F1 and F2, we proceed as follows:

• We construct
g01,F (h

0,u) :=
[
g01,F1

(h0,u), g01,F2
(h0,u)

]
.

We give similar constructions for g02,F and g03 .

• After initialization, all hidden features take the form ht,u = [ht,u
F1

, ht,u
F2

] (considering variable
nodes as an example, and similarly for quadratic nodes). We construct

gt1,F (h
t,u) :=

[
gt1,F1

(ht,u
F1

), gt1,F2
(ht,u

F2
)
]
,

and

f t
1,F (h

t,v,
∑
u

wuvh
t,u) :=

[
f t
1,F1

(ht,v
F1

,
∑
u

wuvh
t,u
F1

), f t
1,F2

(ht,v
F2

,
∑
u

wuvh
t,u
F2

)

]
.

We give similar constructions for other gt·,F , f
t
·,F . Using this construction, we compute both

hidden representations in one concatenated network.
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• Finally, we obtain F = F1 + F2 by constructing R(·) = R1(·F1
) +R2(·F2

), and similarly for
F = F1 × F2.

Thus, we conclude that F1 + F2, F1 × F2 ∈ Fm,n
QCQP(Rs).

Next, we verify the inclusion ρ(Fscal) ⊆ ρ(πΣ ◦ F):
Graph-level output case. In this case, we have Fscal = F and πΣ = id, so the two sides are exactly
the same.

Node-level output case. Given any R1 that maps the final hidden representation to a graph-level output,
R1 · 1n = (R1, R1, . . . , R1) is a valid equivariant readout function in the node-level case. Thus, given
any F ∈ Fm,n

QCQP(R), we can construct F ′ ∈ Fm,n
QCQP(Rn) using R1 · 1n, along with all the f and g

functions, and conclude that any pair (G1, G2) ∈ ρ(Fscal) is not separated by the Tripartite WL-test.

For any pair of graphs (G, Ḡ) that is not separated by the Tripartite WL-test, after re-indexing variables
and constraints, all F ∈ F map them to the same output. This means that, without re-indexing, all
F ∈ F map the two graphs to outputs that differ at most by a re-indexing. Thus, (G, Ḡ) is contained in
ρ(πΣ ◦ F). This completes our verification.

Applying the Generalized Weierstrass-Stone theorem to the sub-algebra F = Fm,n
QCQP(Rs) completes

the proof.

C PROOF OF PROPOSITIONS IN SECTION 3.3

The two instances are QCQP instances. Both graphs G and Ḡ consist of the following:

• 6 variable nodes, i.e., uj or ūj , where j ∈ [6]. All nodes carry the feature huj = (0,−1, 1).
here we assume that −1 ≤ xi ≤ 1 by the unit ball constraint.

• 12 effective quadratic nodes. The squared nodes carry hvj,j = (0), while others carry the
feature hvj,k = (1).

• 1 constraint node c representing the unit ball constraint. The node carries feature (−1) for both
graphs.

We now verify that the Tripartite WL-test does not separate the two graphs:

• After initialization, we have h0
1 := h0,u = h0,ū = HASH1((0,−1, 1)), h0

2 := h0,vj,j =
h0,v̄ = HASH2((0)), h0

3 := h0,vj,k = HASH2((1)) and h0
4 := h0,c = h0,c̄ = HASH3((−1)).

• After the first sub-iteration, we have

h̄0
2 := h̄0,vj,k = HASH(h0

2, 2h
0
1),

and
h̄0
3 := h̄0,vj,k = HASH(h0

3, 2h
0
1),

which remains equal for all v ∈ V2(G) and v̄ ∈ V2(Ḡ).
• After the second sub-iteration, we have

h1
4 := h1,c = h1,c̄ = HASH(h0

4, 0, 1 · h̄0
2),

which remains equal for both graphs.
• After the third sub-iteration, we have

h1
2 := h1,vj,j = HASH(h̄0

2, 1 · h1
3),

and
h1
3 := h1,vj,k = HASH(h̄0

3, 0),

which remains equal for both graphs.
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• After the final sub-iteration, we have

h1
1 := h1,u = h1,ū = HASH(h0

1, 0, 2 · h1
2 + 1 · h1

3),

which remains equal for both graphs.
• The Tripartite WL-test terminates after one iteration since no further node pairs are separated.

The Tripartite WL-test returns C0,·, which is the same for both instances. Thus, we conclude that the
two graphs are not separated, with variables and constraints correspondingly indexed. By Proposition 4,
we conclude that, in both the node-level and graph-level cases, tripartite message-passing GNNs cannot
separate the two instances.

Therefore, we conclude that tripartite message-passing GNNs cannot approximate the optimal solution
or optimal value for non-convex QCQP instances (even QP instances). To demonstrate that tripartite
message-passing GNNs cannot accurately predict feasibility, we slightly modify the two instances:

Proof of Proposition 1. We reconstruct the objective as a constraint. Specifically, consider the following
two instances:

min 0

s.t. x1x2 + x2x3 + x3x1 + x4x5 + x5x6 + x6x4 ≤ −
3

4∑
i

x2
i ≤ 1

(C.1)

and
min 0

s.t. x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x1 ≤ −
3

4∑
i

x2
i ≤ 1

(C.2)

Clearly, instance C.1 is not feasible, while instance C.2 is feasible.

In the graph generated by the Tripartite graph representation, we change the objective to another special
constraint and add a new dummy objective. Similarly, we see that tripartite message-passing GNNs fail
to separate I and Ī.
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