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A metric for characterizing the arm nonuse workspace
in poststroke individuals using a robot arm
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An overreliance on the less-affected limb for functional tasks at the expense of the paretic limb and in spite of 
recovered capacity is an often-observed phenomenon in survivors of hemispheric stroke. The difference 
between capacity for use and actual spontaneous use is referred to as arm nonuse. Obtaining an ecologically 
valid evaluation of arm nonuse is challenging because it requires the observation of spontaneous arm choice for 
different tasks, which can easily be influenced by instructions, presumed expectations, and awareness that one 
is being tested. To better quantify arm nonuse, we developed the bimanual arm reaching test with a robot 
(BARTR) for quantitatively assessing arm nonuse in chronic stroke survivors. The BARTR is an instrument that 
uses a robot arm as a means of remote and unbiased data collection of nuanced spatial data for clinical evalu-
ations of arm nonuse. This approach shows promise for determining the efficacy of  interventions designed to 
reduce paretic arm nonuse and enhance functional recovery after stroke. We show that the BARTR satisfies the 
criteria of an appropriate metric for neurorehabilitative contexts: It is valid, reliable, and simple to use.
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INTRODUCTION
Stroke is a leading cause of serious long-term disability in the
United States (1). Without sufficient rehabilitation efforts, func-
tional decline will ensue, leading to increased difficulty in complet-
ing activities of daily living (ADLs), which contributes to decreased
quality of life (2, 3). The goal of poststroke neurorehabilitation is to
restore functionality to the affected limb and enable stroke survivors
to improve their quality of life. Several poststroke rehabilitative in-
terventions, such as task-oriented training (4), biofeedback (5), and
constraint-induced movement therapy (6), have demonstrated sub-
stantial improvements along levels of the International Classifica-
tion of Functioning, Disability, and Health (7), including
domains of body structure/function, activity limitations, and
participation.
Despite these functional improvements, a subset of stroke survi-

vors may still experience a discrepancy between what they are able to
do in tests where they are constrained to using their stroke-affected
arm and what they spontaneously do in real-world ADLs. This is of
particular concern for individuals with hemiparetic stroke and
other unilateral motor disorders, because the less-affected side
can be used to compensate for movements of the impaired side,
and such compensation interferes with the “use it or lose it” foun-
dational principle of neurorehabilitation. The nonuse phenome-
non, the discrepancy between capacity and actual use (8), was
first characterized in an article titled “Stroke recovery: He can but
does he?” (9). Nonuse has been shown to have a learned component
(10) and can thus be reduced through practice. This makes nonuse a
key behavioral phenomenon to assess when evaluating patient re-
covery, one with high clinical and scientific importance.
In neurological rehabilitation contexts, outcome metrics must

meet three criteria to be considered useful for evaluation: validity,
reliability, and ease of use (11). However, the two currently widely

accepted instruments that provide metrics for nonuse, the motor
activity log (MAL) (12) and the actual amount of use test
(AAUT) (13), do not satisfy all three of those criteria. Although
both tests have been found to be valid (14), they lack the other
two desired qualities of neurorehabilitation assessment metrics: re-
liability and ease of use. The MAL relies on a structured interview
for user-reported arm use over the course of a specified duration,
for example, 1 week or 3 days. Because of the difficulty associated
with remembering and accurately describing one’s arm use over the
period of a week, this test is not simple for the participants to com-
plete. The AAUT is a covert assessment that is valid only if the par-
ticipant is unaware that the test is being conducted. Once the test is
revealed, it becomes invalid for repeated use, making the scale un-
reliable. Inspired by the current state of the field, this work intro-
duces a metric for nonuse that meets all three criteria.
Previous work demonstrated that the bilateral arm reaching test

(BART) can be used to reliably quantify nonuse (15). BART ran-
domly lights up one of 100 equally spaced points between 10 and
30 cm in front of the user, and the user is required to reach to the
lit-up point within a time limit. In the first condition, the user is
instructed to choose either hand to reach the point as quickly and
as accurately as possible. Because of the imposed time limit, the user
must make a fast and spontaneous hand choice, even if they know
they are being tested. In the second condition, the user is con-
strained to use only their stroke-affected arm to reach for the
point. The automatic performance in the first condition is com-
pared with the functional performance in the second condition to
assess the level of nonuse. This approach has been shown to be both
reliable and valid; however, it only assesses patients on a single plane
of motion. Reaching tasks required to accomplish ADLs involve
three-dimensional (3D) movements. In this study, we introduce a
robot arm that enables a reaching task to quantify arm nonuse in
three dimensions, allowing clinicians to tailor the rehabilitation
process to specific patterns of nonuse as they occur in the user’s
real-world environment.
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We describe the modified bimanual arm reaching test with a
robot (BARTR), depicted in Fig. 1. The testing apparatus consisted
of a general-purpose robotic arm that queried points in front of the
user and a socially assistive robot (SAR) that supported the testing
procedure by providing instruction and motivation. In a session of
BARTR, the user completed two phases: a spontaneous phase and a
constrained phase. Each phase can be completed in about 20 min.
We used identical instructions to the original validated BART (15).
In the spontaneous phase, the user was instructed to use the hand
that can reach the button as quickly and accurately as possible.
These instructions ensured that participants acted spontaneously
while being aware that they were being tested. In the constrained
phase, the user reached for the button with their stroke-affected
hand. The nonuse metric, nuBARTR, was quantified from the
reaching data collected from each session and repeated sessions
that occurred at least 4 days apart, as in previous work (15).
To validate nuBARTR as a useful clinical metric, we developed

the three following hypotheses based on the criteria for useful
metrics in neurorehabilitation: First, nuBARTR is a valid metric,
showing high correlation with the established metric for assessing
nonuse, the amount of use (AOU) subscale of the AAUT. Second,
nuBARTR is a reliable metric, having high test-retest reliability, as
evidenced by high absolute agreement across repeated sessions
taken at least 4 days apart. Third, nuBARTR is a simple-to-use
metric, achieving a score of 72.6 of 100 or greater on the system us-
ability scale (SUS), indicating above-average user experience as es-
tablished in usability literature (16).
We found that nuBARTR satisfies these three criteria for a useful

neurorehabiliation metric: It had high validity and high test-retest
reliability, and study participants found it easy to use. The system
can be used to aid clinicians in the quantification and tracking of
stroke survivor arm nonuse.

RESULTS
We performed a user study with neurotypical and poststroke partic-
ipants to evaluate the BARTR interaction. The nuBARTR was cal-
culated from the BARTR interaction and assessed for the properties
of useful neurorehabilitation metrics.

Participant demographics and stroke characteristics
Participants with chronic stroke were recruited from the Los
Angeles, California area to take part in this study. Participants
were recruited through the Institutional Review Board (IRB)–ap-
proved Registry for Aging and Rehabilitation Evaluation database
of the Motor Behavior and Neurorehabilitation Laboratory at the
University of Southern California (USC). All participants were
right-hand dominant before their stroke. In total, 17 poststroke par-
ticipants were recruited. Two participants did not meet the study
criteria after screening, and one participant was excluded from anal-
ysis because of difficulties in completing the task. Of the 14 eligible
participants, 12 completed all three sessions of the BARTR, and two
were only able to complete two sessions because of scheduling con-
straints. One eligible participant did not receive AAUT scores
because of technical problems in recording the exam. The average
age of poststroke participants was 57 ± 11 years. Age and other par-
ticipant demographic information is summarized in Table 1.
We also recruited 10 neurotypical adults to establish a normative

value for performance. All neurotypical participants were right-
hand dominant, and their demographic information is summarized
in Table 2. The average age of neurotypical participants was 67 ±
10 years.

BARTR use characteristics
We performed multiple analyses to assess the validity of the BARTR
interaction as a nonuse metric.

Fig. 1. Example reaching trial with the BARTR apparatus. The participant places their hands on the home position device. The SAR (left) describes themechanics of the
BARTR, and the robot arm (right) moves the button to different target locations in front of the participant. A reaching trial begins when the button lights up, and the SAR
cues the participant to move.
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Arm use characteristics
To establish a normative baseline for comparisons, we examined the
reaching data (time to reach and hand choice) from the 10 neuro-
typical participants. We found that, for the neurotypical group,
there were no significant differences in average time from leaving
the starting position to pressing the button across participant age
(r2 = 0.06 and P = 0.498) or gender (r2 = 0.03 and P = 0.511), as
evidenced by linear regressions. Similarly, for the neurotypical
group, hand choice in the spontaneous condition had no significant
differences due to participant age (r2 = 0.004 and P = 0.861) or
gender (r2 = 0.015 and P = 0.739). Given the similarities across
this group in performance on the BARTR task, we developed a
single model of normative use based on an aggregate of the neuro-
typical participants’ data.
A visualization of the neurotypical group’s interaction metrics is

shown in Fig. 2. On average, there was a handedness bias, where the
right side was used to press the button in 60% of the workspace
across participants, whereas the left side was used to press the
button in 40% of the workspace, identically to the 60 of 40 handed-
ness bias reported in the planar BART (15). In general, the time to
reach the targets was relatively consistent for both hands, with
farther points taking slightly more time, as expected.
In chronic stroke survivors, we observed high variability in hand

choice and in the time to reach targets in the workspace. For illus-
trative purposes, in Fig. 3, we show these two interaction metrics
modeled by Gaussian processes for two participants: one who was
right-dominant affected and had high nonuse (P23) and one who
was left–non-dominant affected and had low nonuse (P31).
These data plots highlight the importance of including 3Dmove-

ment in the evaluation of nonuse. For example, P23 exhibited lower
use of the right hand (63% left handed and 37% right handed), spe-
cifically in areas that appeared higher on the right side but main-
tained a high probability of using the affected arm for lower areas
on the same side. P31 exhibited more symmetric use (37% left
handed and 63% right handed) but also used the less-affected side
slightly more often for points that were higher up and closer to
the midline.
Selecting kernels for Gaussian process modeling
Three quantities were modeled through Gaussian processes to cal-
culate arm nonuse: reaching success in the constrained phase of the
BARTR, arm choice in the spontaneous phase of the BARTR, and
reaching time for the affected arm across both phases of the BARTR.

Success and arm choice are classification problems that leverage the
Laplace approximation to model a non-Gaussian posterior with a
Gaussian process, as is standard for classification (17). Reaching
time is modeled directly as a regression problem. The results
across several kernel choices for the Gaussian processes are shown
in Table 3.
In the context of the reaching task, both the distance the hand

travels and the spatial location of the target are important for pre-
dicting time to reach and the selected reaching arm (15, 18). The
kernels we tested were composed of two key components: the
linear kernel and the radial basis function kernel. The linear
kernel indicates that points of similar distances from the origin
will have similar values and is defined as

klðx; x0Þ ¼ σ20 þ x � x0 ð1Þ

where σ0 is a hyperparameter learned from the data. The radial basis
function kernel indicates that points near each other in space will
have similar values and is defined as

krbfðx; x0Þ ¼ exp �
dðx; x0Þ2

2‘2

 !

ð2Þ

where ‘ is the length-scale hyperparameter learned from the data.
The kernels were combined with addition and multiplication to

represent different relationships between distance and locality, in
accordance with recommendations from Duvenaud et al. (19). In
total, 15 kernels were tested that combined five kernels that encap-
sulated the signal (kl, krbf, kl + krbf, kl × krbf, and kl + krbf + kl × krbf )
and five kernels that encapsulated the noise in responses (kn, kn + kl
× kn, and kn + krbf × kn).
Kernels were evaluated through fivefold cross validation within

each participant visit. The performance was averaged over all par-
ticipant visits to evaluate each kernel. We selected kernels on the
basis of their negative log marginal likelihood for the observed
data. This value reflects the goodness of fit and additionally ac-
counts for model complexity but is only applicable to Bayesian
models. We additionally examined other non-Bayesian models to
compare accuracies and negative log likelihoods.
We found that modeling the interaction data with Gaussian pro-

cesses reached similar levels of accuracy and negative log likelihoods
as other machine learning models. For completeness, we also eval-
uated the use of other classifiers and regressors for calculating our
metric for nonuse and found them to perform similarly to Gaussian
processes, as reported in the Supplementary Materials.

BARTR as a metric of nonuse
To evaluate BARTR as a metric for neurorehabilitation, we evaluat-
ed the three criteria of effective metrics: validity, test-retest reliabil-
ity, and ease of use.

Table 1. Demographic information for the poststroke group.

Median Minimum Maximum

FM-UE motor score
(66 maximum)

59.5 42 64

AAUT AOU score (1 maximum) 0.29 0.00 0.85

Age (years) 55 32 85

Time between sessions (days) 6.5 4 19

Gender 8 men, 6 women

Affected side 5 left, 9 right

Ethnicity 4 Asian, 2 Black, 4 Hispanic, 3 White,
1 mixed race

Table 2. Demographic information for the neurotypical group.

Median Minimum Maximum

Age (years) 69.5 45 82

Gender 5 men, 5 women

Ethnicity 2 Asian, 2 Black, 6 White
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Validity
We evaluated the validity of BARTR by comparing the quantifica-
tion of nonuse produced by the system with the values of nonuse
collected from poststroke participants using the AAUT, the clinical
standard for assessing nonuse. Participants had a wide range of
nonuse, with AAUT AOU values ranging from 0.00 to 0.85 and
nuBARTR scores ranging from 0.849 to 1.71. We determined the
validity of nuBARTR with the nonparametric Spearman correlation
between AAUT AOU and the averaged value of nuBARTR across
the three sessions. Figure 4 shows that the calculated nonuse from
BARTR is correlated with the clinical AAUTAOUmetric of nonuse
[r(13) = 0.693 and P = 0.016].
We also examined the correlation with the individual subscales

of the AAUT with the nonparametric Spearman correlation. The
cBARTR shows a high correlation with the cAAUT [r(13) = 0.773
and P = 0.002], and the sBARTR shows a correlation with sAAUT [r
(13) = 0.769 and P = 0.002].
Test-retest reliability
We examined the absolute agreement [intraclass correlation coeffi-
cient (ICC)] of the three BARTR sessions to assess test-retest reli-
ability. Absolute agreement of the BARTR metric is the
recommended test of reliability in the medical field (20). We
found that between sessions there was very high reliability of
nuBARTR scores, ICC(1, k) = 0.908 and P < 0.001. A visualization
of nuBARTR scores by participant is shown in Fig. 4.

We noted correlations between all pairs of sessions via a Pearson
correlation. The first and second session are significantly correlated
[r(14) = 0.662 and P = 0.010], the second and third sessions are sig-
nificantly correlated [r(12) = 0.948 and P < 0.001], and the first and
third sessions are correlated [r(12) = 0.686 and P = 0.012]. We ex-
amined scores across all three sessions and note that the BARTR
interaction showed increased reliability after the first session, sup-
porting repeated evaluations using this method to evaluate partici-
pants’ nonuse over time.
Ease of use
To evaluate ease of use, we applied the standard, commonly used
SUS (16, 21, 22). The SUS is scored out of 100 and calculated
from 10 items. SUS meta-analyses provide full distributions of
SUS scores across 446 extant systems and recommend evaluating
systems on the basis of percentiles of systems examined in the
meta-analysis (16). For example, a mean SUS score of 72.6 repre-
sents a system that is in the top 65% of all systems evaluated in
the meta-analysis, and the meta-analysis provides a rating system
for understanding these percentiles. A score of 78.9 or higher is
in the “A” range, a score of 72.6 to 78.8 is in the “B” range, a
score of 62.7 to 72.5 is in the “C” range, and a score of 51.7 to
62.6 is in the “D” range. The middle values of these ranges are
denoted by the dashed lines in Fig. 4.
We administered the SUS to all participants enrolled in the

study. To determine usability, we examined the SUS scores of
only the poststroke group. The average rating of scores was 8.93 ±

Fig. 2. Normative data collected from neurotypical participants. The normative data consists of hand choice in the spontaneous condition (A) and average time for
participants to reach with their left hand (B) and their right hand (C). Lighter colors indicate high probability of participants choosing their right hand (A) or faster times to
reach (B and C).
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11.67, placing the mean usability of the BARTR apparatus in the
80th percentile of systems included in the SUS meta-analysis.
Because of the high variance in participants’ scores, we determined
that the score is significantly greater than 72.6, which corresponds
to an above-average user experience (16). We found from a non-
parametric Wilcoxon signed-rank test that participants rated our
system significantly above the 72.6 threshold (Z = 16.0 and P =
0.040). On the basis of this result, the system is easy to use and
readily satisfies the ease of use criterion. The distribution of SUS
scores across all participants is shown in Fig. 4.

Qualitative results
The qualitative analysis we performed considered the semi-struc-
tured interviews from 12 poststroke participants who completed
all three study sessions. The full set of interview questions is provid-
ed in the Supplementary Materials. The interviews were conducted
after the third session of the BARTR and lasted for an average of 14
min (minimum, 4 min and maximum, 44 min). The questions were
structured around the four themes that prior work identified as im-
portant for interaction with rehabilitation systems (23): safety
throughout interaction, ease of interpretation, predictability of
actions, and adaptation of behaviors to task. We show an overview
of the participants’ responses to these four themes in Fig. 5. Positive

responses described the system as being unequivocally helpful
within the theme, mixed-positive responses described the system
as helpful but provided room for improvement, and mixed respons-
es were unsure whether the system was helpful with respect to the
theme. No participants found the system unhelpful. We also report
the participants’ suggestions for improvement and future tasks.
Safety throughout interaction
All participants (n = 12) found the interaction to be safe. In addition
to the safety precaution we took of moving the arm slowly, partic-
ipants also reported feeling safe because they “figured [the experi-
menter] knew what [they] were doing” (P29) and that “it felt pretty
safe because I had this shoulder harness on” (P27).
Some participants (n = 3) identified that they worried about the

robot armwhen it came close to the home position but reported that
this did not influence how safe they felt throughout the interaction.
One participant viewed the perceived risk as beneficial to them
because “it was good to have my brain react to having it come
close” (P36).
Ease of interpretation
All participants (n = 12) also found the robot easy to use. Most par-
ticipants (n = 9) specified that they felt this way because the inter-
action itself was easy to learn. Participants found that they “got used
to the robot after the first command it gave” (P37) and that the

Fig. 3. Comparisons of data collected from two participants. P23 was right-dominant affected and showed lower right arm use (A) as well as longer reaching times (C).
P31 was left–non-dominant affected and showed more balanced right arm use (B) and faster reaching times (D). Raw data are shown for arm choice data, with a red “x”
denoting right hand reaches and an orange triangle denoting left hand reaches (A and B).
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interaction was “a normal everyday task, so it wasn’t hard to learn”
(P27). Participants also found the task easy to learn because “there
wasn’t anything...that you have to put on” (P23). Two participants
(P29 and P36) mentioned that they had done several other studies
using other devices and that this interaction was easy because “it was
all right in front of me and the instructions were clear” (P29).
Eight participants also directly described the SAR’s voice as

easily understandable. One participant (P29) noted that they
“liked the mouth moving, it helped to understand the speech” of
the SAR providing instructions. In addition to understanding the
words, another participant (P27) also found that “the voice was
comforting and the instructions were very clear.” Participants
found the instruction from the SAR valuable toward understanding
the task as well as socially motivating.
Predictability of actions
Seven participants directly commented on the predictability of the
interaction. The comments addressed both the physical predictabil-
ity of the task and the social predictability of the SAR. Participants
found the task predictable because it was repetitive and simple. A
participant (P37) found this to be particularly important because
“with stroke you’re also going through a psychological situation,
and with [this task], you don’t have to grapple with anything.
This way is straightforward.”

Participants had a variety of interpretations of the social compo-
nent of the interaction. Because we used randomness in the SAR’s
movements and feedback to make it appear more natural and life-
like [as is standard in human-robot interaction work (24–26)], some
participants viewed the unpredictability as a benefit. One partici-
pant (P27) referred to the unpredictable social behaviors as
“natural” and thought the SAR “doesn’t feel like technology”;
another participant (P25) became engaged in “trying to find a
pattern in the robot’s eyes.” Another participant (P21) had a more
neutral reaction to the randomness and said, “The fluctuations in
cuing, I don’t know if that was a hindrance or a help.” One partic-
ipant (P37) greatly appreciated that the exercise was led by a robot,
because the overall social interaction was predictable and the robot
was not getting tired, and stated, “With the SAR it is like no judge-
ment...there is no feeling of changing in the delivery...if a person had
to repeat ‘go, go, go’, sometimes they might get tired, and when
you’re doing the exercise you can see that.”
Adaptation of behaviors to task
Eight participants commented on how the system could adapt to
them specifically throughout the task. The participants were also
concerned with either the task or the social component of the
task. For the task, six participants identified that the robot could
adapt more to different levels of task difficulty. With the goal of de-
veloping a standardized test, the robot sampled points randomly in

Table 3. Modeling results for the three interactionmetrics. Arrows indicate direction of better fits. Values with asterisks represent best values for each column.
ACC, accuracy; NLL, negative log likelihood; NLML, negative logmarginal likelihood; MSE, mean squared error; ME, maximum error; kl, linear kernel; krbf, radial basis
function kernel; kcomb., kl ∗ krbf; N1, constant noise; N2 constant noise + linear noise; N3, constant noise + radial basis function noise; k-NN, k-nearest neighbors;
MLP, multilayer perceptron; SVM, support vector machine. Dash entries indicate not applicable.

Kernel ACC↑ NLL↓ NLML↓ ACC↑ NLL↓ NLML↓ MSE↓ ME↓ NLML↓

kl + N1 0.838 0.330* 31.100 0.909 0.193 29.829 0.545 1.306 72.005

kl + N2 0.838 0.332 31.018 0.909 0.195 29.539 0.545 1.307 69.675

kl + N3 0.837 0.330* 31.100 0.909 0.193 29.829 0.545 1.306 72.005

krbf + N1 0.838 0.342 31.664 0.912* 0.193 29.039 0.542 1.314 66.644

krbf + N2 0.836 0.342 31.637 0.912* 0.196 29.003 0.546 1.313 64.941

krbf + N3 0.836 0.342 31.660 0.912* 0.193 29.039 0.541 1.317 66.417

kl + krbf + N1 0.837 0.331 30.814* 0.910 0.193 28.933 0.540* 1.308 66.762

kl + krbf + N2 0.838 0.334 30.859 0.910 0.196 28.899 0.540* 1.306 65.210

kl + krbf + N3 0.839* 0.330* 30.865 0.910 0.193 28.933 0.541 1.307 66.762

kcomb. + N1 0.834 0.345 31.209 0.910 0.193 29.071 0.542 1.305 66.462

kcomb. + N2 0.836 0.346 31.274 0.911 0.195 29.017 0.541 1.304 64.863

kcomb. + N3 0.836 0.345 31.268 0.911 0.192* 29.046 0.542 1.303* 66.462

kl + krbf + kcomb. + N1 0.837 0.342 30.870 0.910 0.192* 28.942 0.542 1.310 65.978

kl + krbf + kcomb. + N2 0.836 0.341 30.983 0.910 0.194 28.858* 0.541 1.307 64.718*

kl + krbf + kcomb. + N3 0.836 0.343 30.983 0.910 0.193 28.927 0.541 1.312 66.110

Non-GP method

AdaBoost 0.809 0.570 - 0.889 0.264 - 0.586 1.399 -

k-NN 0.832 1.131 - 0.899 0.731 - 0.614 1.457 -

MLP 0.842* 0.331* - 0.908 0.195 - 0.568* 1.368* -

Random forest 0.834 0.437 - 0.899 0.327 - 0.617 1.476 -

Linear SVM 0.834 0.332 - 0.905 0.192* - 0.606 1.453 -

RBF SVM 0.842* 0.339 - 0.914* 0.193 - 0.623 1.407 -
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the interaction, but participants asked whether the arm “could go all
the way up or all the way back...it would be nice if I could extend my
whole arm” (P25), while recognizing that “if you had more damage
in your arm it would be harder to do” (P28). Four participants also

described the timing of the robot placing points. Three of them
found the speed appropriate; one of these participants (P37) de-
scribed it as “when the arm was moving it was moving at the
right speed.” One participant (P21) thought that the arm “could
move faster or something...it was very methodical where it went.”
With regard to the SAR’s verbal communication, four partici-

pants described the feedback that the SAR gave as evidence of it
adapting to their good performance. P26 also specified that the
SAR’s progress updates were helpful because they “gave you an
idea of where you stand at the time.” However, one participant
(P30) wished that the SAR would be “more responsive” to the spe-
cifics of their performance, for example, by commenting on how
fast their reach was.
Suggestions for improvements and future tasks
Participants also provided feedback on how the system could be im-
proved or adapted to other forms of exercises for evaluating arm
nonuse. The suggestions for improvement largely addressed how
the system could be more personalized to individual tastes. Partic-
ipants discussed how visual components could be adapted, for
example, how the SAR’s exterior could “change to USC colors,
which would work better...I have some stickers I could put on the
robot” (P37) or how the button could “turn green when you press it”
(P23). Other participants described how the SAR’s audio could be
personalized by “choosing music to play, just to make it more pleas-
ant” (P25). Participants also suggested gestures for the robot to
perform, such as “when you make a mistake, you could have the
robot hold its arms up and point to the button” (P37).

Fig. 4. Evaluations of the proposed metric.We demonstrate the BARTR metrics’ validity through its correlation with clinical measurements of nonuse through a non-
parametric Spearman correlation, r(13) = 0.693 and P = 0.016 (A). We demonstrate reliability with the absolute agreement of BARTR scores across three sessions through
the ICC(1,k) = 0.908 and P < 0.001 (B). We demonstrate its ease of use through usability ratings of the system, showing that the average rating is above 72.6 through a
nonparametric Wilcoxon signed-rank test, Z = 16.0 and P = 0.040 (C).

Fig. 5. Qualitative responses from participants.We show overall perceptions of
each of the four factors of trust (23) that each participant mentioned.
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Despite these suggestions, participants (n = 10) described the
system as being effective and helpful. Several (n = 4) explicitly
stated that they thought about the interaction outside of the exper-
iment. One participant reported that when they were “trying to
open a cabinet, I had a flashback to this button pressing when I
was thinking about how to orient my hand to open the cabinet”
(P37). Participants found the “fact that it is 3D is effective” (P37)
and suggested several other 3D interactions that would be useful.
The most popular tasks that the participants described as being

useful were “3D tasks that involved more finger dexterity” (n = 7).
Participants described how the interaction could “integrate a little
ball...because once you put it in your hand your fingers start
working” (P36) or how the robot arm could “hold a pocket or some-
thing and have people put pennies over here or over there” (P37).
One participant also described how they would like to control the
robot to practice finger dexterity by using “a glove or something to
control the robots, so you simulate grabbing and the robot moves
with the glove” (P23).
The second type of task that multiple participants suggested was

gross motor tasks (n = 4). For example, two participants suggested
using the robot arm to passively move their more stroke-affected
side by “grabbing what the robot is holding and have it drag my
arm around” (P25). Two other participants suggested actively
pushing against the arm as a form of strength training. One partic-
ipant suggested “you could add on pressure sensing...I am interested
in seeing the pressure and strength of both sides” (P27).

DISCUSSION
This work introduced robotics as an enabling methodology for the
evaluation of difficult-to-evaluate yet clinically substantial con-
structs such as arm nonuse poststroke. We demonstrated that
robots can provide a way to objectively and reliably assess motor
behaviors that are meaningful for neurorehabilitation. The follow-
ing discussion highlights the efficacy of using a SAR and a robot arm
together for rehabilitation and evaluation to complement the work
of neurorehabilitation clinicians. The quantitative and qualitative
results and insights contributed by this work, including the inter-
views with poststroke participants after their BARTR sessions,
inform the design of future systems for effective rehabilitation
and assessment of patients’ rehabilitation progress.

Robots as tools for evaluation
A key benefit of using a robotic system for administering rehabili-
tation assessments is in enabling highly controlled, repeatable, and
precise measurements. Robot arms/end effectors can administer
tests with exact instruction, intonation, pacing, and placement of
reaching targets as well as randomize variables that may affect out-
comes, allowing these variables to be assessed covertly, an impor-
tant aspects of valid assessment methods. In addition, SARs can
provide instruction and motivation for sustained effort of long-
term rehabilitation exercises. Users do not need to wear any
sensors, allowing for unencumbered, natural behavior more repre-
sentative of ADLs, a key consideration that allows the BARTR to
achieve high reliability and usability compared with other interac-
tions that rely on wearable sensors to collect data (27), because worn
sensors can affect behavior by encumbering or being uncomfort-
able (28).
In the context of other metrics, using robotics provides the

benefit of precise spatial information, enabling quantification of
areas of difficulty for arm use. Precise quantification of those
regions can be tedious or difficult for clinicians to obtain, yet the
data can support the development of personalized therapy regi-
mens. Once the regions are quantified, they can be used to adapt
the system’s behavior to select targets for the user that are at the ap-
propriate level of challenge, with sufficient variety as well. Another
alternative is to use environmental or ambient sensors to track
human movement, but such sensors can present privacy concerns.
With the increased richness of the resulting data from robotic

systems administering physical assessments, more nuanced infor-
mation can be communicated to rehabilitation therapists and clini-
cians. For example, machine learning techniques can be applied to
summarize a patient’s data for easy visualization by clinicians, who
can then indicate where in the workspace the patient may need to
focus most. These techniques can be connected with data visualiza-
tion techniques to effectively communicate particular measure-
ments of interest and enable more personalized care.
Past research has also shown that end-effector robots can be

functionally effective in rehabilitation (29). This work further dem-
onstrates that such robots have the potential to be used for assess-
ments that are otherwise difficult to obtain because of lack of
reliability or ease of use. Our metric of nonuse is not specific to a
particular robot embodiment and can be applied to any robot that

Fig. 6. Visualization of the participant’s workspace. Viewed above, the workspace tested extends radially from the home position from a distance of 10 to 30 cm (A).
Viewed from the side, the workspace extends upward 40 cm (B).
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can reach points within the 3D space around the patient in a cylin-
drical region 30 cm in radius and 40 cm in height (as illustrated in
Fig. 6). Such robots can be used for other forms of assessment (30),
adaptive exercise practice that requires a model of the difficulty of
reaching different points in the participant’s workspace (31, 32),
and other gamified tasks to practice reaching (33). In addition to
rehabilitation exercise, other assistive tasks throughout the rehabil-
itation process can be completed by end-effector robots, such as
dressing (34), hair combing (35), shaving (36), etc. Because of
their multiple possible uses and their portability, end-effector
robots have the potential to facilitate the in-home rehabilitation
process. Analogously, SAR systems have been shown to be effective
in increasing user motivation for a wide variety of tasks, from phys-
ical exercise (37) to cognitive and social skill learning (38), in early
work on SAR for supporting stroke rehabilitation exercises (39).
This paper demonstrates a synergistic combination of both a
robot arm and a SAR in a rehabilitation context.

Considerations for using robots for in-home assessments
Incorporating robots into home environments is a broad and highly
active area of robotics research. In-home rehabilitation, also called
in-place rehabilitation, is a frontier that presents a unique set of
challenges. Naturally, safety is a key concern. In this work, a robotics
specialist was present for all sessions to monitor any potential
system failures. More than 8000 trials were conducted as part of
this work, and there was only one case of the robot moving
outside of the workspace. The error was quickly corrected, but
such expert intervention would not be readily available for in-
home systems. Although all of our study participants reported not
feeling scared or anxious of the robots’movements, future unsuper-
vised systems must be developed with considerations for all failure
cases, no matter how improbable.
Another concern is the privacy of the collected user data. Some

data used in this work were personally identifiable; for example, the
robot used the participants’ names when addressing them, which
was appreciated by participants, who noted that it added to the in-
teraction (P25). Although identifiable data are valuable for engaging
and personalizing interactions, they also represent a data secur-
ity risk.
Another barrier to bringing robots to users’ homes is cost.

Design guidelines for robotic systems for rehabilitation therapy in-
dicate that, to be useful in home settings, such systemsmust cost less
than US $10,000 (40). Hospital loans and insurance coverage are
necessary to subsidize patient costs. Low-cost (under US $1000)
SAR systems have already been developed (41), andmore cost-effec-
tive end-effector robots are also being developed (42). In our work,
poststroke participants reported that they wouldmiss the robot after
their third session. If the system is used for a longer period of time in
the home, a stronger bond may develop, and thus future work
should evaluate how removal of the system may affect users (43).

Limitations and future work
Although the AAUT is still used for clinical evaluation of nonuse, it
may have become outdated. It includes tasks such as inserting a Po-
laroid into a photo album and opening a physical newspaper; such
tasks are commonly accomplished digitally and therefore may com-
promise the covert nature of the test. Although no participants re-
ported being aware that they were being observed before the nature
of the test was revealed, outdated/atypical tasks may also influence

arm use because of task unfamiliarity within the context of ADLs.
The question of aptness of the AAUT provides a further impetus to
develop additional assessments of nonuse, such as the BARTR.
Although we show that the BARTR meets the criteria for a good

neurorehabilitation metric, we note that there are two important
considerations to make for its use in clinical contexts. First, we ob-
served much higher reliability in the second and third BARTR ses-
sions and variability in some of the participants between sessions.
We recommend one abbreviated session to habituate the partici-
pants to the BARTR assessment for increased reliability. Second,
the BARTR is focused on reaching motions and does not include
finger/hand manipulation tasks. Therefore, a limitation of the pre-
sented study is that the button task was relatively simple compared
with the fine manipulation tasks used to evaluate nonuse in the
AAUT, such as removing business cards from a box and placing a
picture in a scrapbook. Such tasks may not be correctly evaluated
through our current system; however, future extensions of the
BARTR test can include fine manipulation tasks. Our qualitative
results show participants suggesting the inclusion of additional
held objects as part of the BARTR trials to enable the assessment
of grasping and stabilization motions in addition to reaching
motions (44). The participants suggested tasks that involved the
manipulation of pennies and golf balls; the BARTR could include
a screwdriver-like instrument to press the button, analogous to
the cylindrical grasp item of the Fugl-Meyer upper extremity
(FM-UE). Such additional tools can also be equipped with
sensors to evaluate grasp force, which cannot be evaluated visually
(45).
Our results are limited to only right-hand–dominant partici-

pants; we did not recruit any left-handed poststroke participants
to reduce variance in our tested population, because handedness
affects baseline hand choice. Previous work has shown that the
side of the stroke lesion is more important in determining limb se-
lection than pre-morbid handedness (46). As more data are collect-
ed from BARTR sessions, stronger results can be drawn about
premorbid handedness in this specific task. However, because of
well-known difficulties in recruiting premorbidly left-hand–domi-
nant stroke survivors, data scarcity may be a barrier for evaluating
all participants’ nonuse. A potential direction may be to evaluate
whether techniques from domain adaptation (47) may be used to
leverage data collected from right-handed participants to perform
more accurate assessments of future left-handed users.
Our qualitative results are influenced by the particular identity of

the analyst. One author (N.D.) conducted the interviews and ana-
lyzed the interview data. In the spirit of reflexivity (48), it is impor-
tant to understand that the analysis represents the views of a
nondisabled computer scientist who designed the interaction and
values the co-construction of knowledge with participants. N.D.
has experience both as a facilitator and a participant of participatory
design in several contexts and views the feedback of the users of
systems as a requirement in the design process.
The most important direction for future work is to deploy and

evaluate this methodology for longer periods of time as a tool for
clinicians to assess and develop progress throughout the patients’
rehabilitation process. Several opportunities for further research
would arise from such deployments. Researchers could examine
how information is communicated to neurorehabilitationists, how
information from the BARTR test can improve functional outcomes
or other behavioral metrics in users, how SAR personality and
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communication styles may be adapted to participants over time,
how BARTR tests could use data from previous sessions with the
same participant to be more efficient and engaging, and how assess-
ment can be combined with regular rehabilitation exercises. Overall,
the combination of social and functional components offers a
unique opportunity for more personalized, engaging, and effective
human-robot interaction for neurorehabilitation.

MATERIALS AND METHODS
Participants
Participants who had experienced a hemispheric stroke at least 6
months before enrollment were recruited for this study. Participants
were screened for eligibility before the interaction and were deemed
eligible if they satisfied the following criteria: 18 years of age or
older, able to reach at least 30 cm anterior to the midline of the
trunk and at least 30 cm high without pain or assistance, normal
or corrected-to-normal hearing and vision, proficiency in under-
standing English, right-hand–dominant prestroke, and a score
greater than 25 of 66 on the Fugl-Meyer upper extremity motor as-
sessment (49).
The Fugl-Meyer assessment was administered to all participants

by a board-certified physical therapist specializing in neurorehabi-
litation who had more than 2 years of experience. We also admin-
istered the mini-mental state exam (MMSE) (50) to ensure that the
participants could give consent. If a participant scored lower than
25 of 30 on the MMSE, a caregiver was required to be present as a
witness for consent.
We additionally recruited neurotypical participants of similar

ages to establish normative use of the robot system. These partici-
pants provided a baseline for zero nonuse, because neurotypical
participants favor their dominant hand in bimanual tasks (15).
The purpose of the neurotypical adult group was to establish a nor-
mative value for handedness bias and for the time it takes to reach
different points in the task workspace.
All participants reviewed and signed a consent form before the

experiment. Participants with chronic stroke performed up to three
sessions using the BARTR testing apparatus, scheduled at least 4
days apart. Neurotypical adults performed one session with the
BARTR testing apparatus. Participants were paid US $50 for each
hour-long session they completed. All study protocols and
consent forms were approved by the USC IRB under #UP-22-00461.

Actual amount of use test
Before the first session of BARTR, the experimenter (N.D.) admin-
istered the AAUT to the chronic stroke survivors, and the research
physical therapist (A.C.) rated performance from the offline video
data. The AAUT is a covert assessment of spontaneous arm use for
14 tasks that regularly occur in daily life, such as pulling out a chair
from a table before sitting in it and flipping through the pages of a
book. First, the tasks were completed covertly (spontaneous
AAUTs), so the participant did not know that they were being
video-recorded and tested. Then, the experimenter revealed that
arm use was being observed, and participants completed the 14
tasks again while being encouraged to use their stroke-affected
arm as much as possible (constrained AAUTc).
The research physical therapist rated both the AAUT amount

(binary yes or no) if the participant attempted to use their stroke-
affected arm (AAUT AOU score) for that task and the AAUT

quality of movement (QOM; on an ordinal scale of 0 to 5) if they
used the paretic arm in the task. In the context of this study, we con-
sidered the AAUT AOU score as the metric of interest for three
reasons. First, the AOU and QOM scales have been found to be re-
dundant (51). Second, in our sample, the AOU achieved higher
values of internal consistency for each participant (α = 0.87) than
the QOM scale (α = 0.72). Last, the poststroke participants exhibited
a high coverage of the values of the AOU scale. The final nonuse
score for each participant was calculated as the average of the differ-
ences between the constrained AAUT AOU score and the sponta-
neous AAUT AOU score over all tasks, resulting in a scalar value
between 0 and 1.

Testing apparatus
The BARTR apparatus, designed to test arm nonuse, consists of a
robot arm and a SAR. The robot arm was the Kinova JACO2 assis-
tive arm (52), selected because it has already been used in assistive
domains, is lightweight, and safely interacts with and around
people. The arm has the same affordances as end-effector robots
typically used for other rehabilitative interactions that have been
shown to be effective in the rehabilitation context (29). The SAR
was the Lux AI QTRobot (53) that consists of a screen face on a
2–degree-of-freedom head and two 3–degree-of-freedom arms
that can gesture. This SAR platform has already been validated in
our past work with children with arm weakness due to cerebral
palsy (24) and in other human-robot interaction contexts (54).
The SAR provided the participant with verbal instructions at the
start of the BARTR session and with positive feedback on a
random schedule, similarly to previous SAR use in other rehabilita-
tion contexts (24, 55, 56).
In addition to the two robots, we developed two low-cost devices

for the BARTR apparatus: the target object and the home position.
Both devices were 3D printed, had self-contained power supplies
and processors, and communicated wirelessly with the BARTR ap-
paratus using low-level UDP protocols.
The target device, held by the robot arm, consisted of a 3D-

printed housing with a single button. It received commands to
turn on a light and start a timer to begin each reaching trial and
logged the time taken by the participant to reach for and press the
button to turn off the light.
The home position was the location that participants returned to

between reaching trials, implemented as a 3D-printed block with
two shallow holes 2 cm in diameter and 5 cm apart, with capacitive
touch sensors inside. Participants placed their left pointer finger in
the left hole and their right pointer finger in the right hole. The
device communicated at 20 Hz, reporting the locations that were
being actively touched by the participant.

Bilateral arm reaching test with a robot
Participants were seated at a table with the home position aligned
with the center of their chest, as shown in Fig. 6. They were instruct-
ed to maintain approximately 90° angles of their elbows when their
index fingers were resting at the home position. To limit upper-
body compensatory movement, participants wore a shoulder
harness attached to the chair (57). Participants were instructed to
verbally cue the experimenter when they were ready to begin each
section of BARTR. Following previous work, the two experiment
phases were the spontaneous BARTR phase (sBARTR), where the
participants were instructed to use either arm to reach the target,
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and the constrained BARTR phase (cBARTR), where the partici-
pants were instructed to use their more-affected arm to reach the
target (15).
For both phases of BARTR, the robot arm placed the reaching

target at a different location in 3D space in front of the participant.
The participant was instructed to reach the target as quickly and ac-
curately as possible when prompted by the SAR. Each reaching trial
began with the robot arm moving to one of the randomly sampled
locations. When the robot arm arrived at the location and the par-
ticipant was in the home position, the light on the target device
turned on, and the SAR cued the participant to reach to the target
after a random interval between 0 and 2 s to prevent the participant
from anticipatingmovement to the target. After the audiovisual cue,
the participant was given 3.1 s to reach to the target. When the par-
ticipant pressed the button, the light turned off. If the participant
did not reach the target in 3.1 s, the light turned off after the 3.1 s
had elapsed. This time period was selected to make the maximum
time of each experiment phase approximately 20 min in duration,
given the variability in travel time between points for the robot arm.
This period was sufficient for all neurotypical participants to reach
all of the target placements.
In total, 100 locations were tested each for sBARTR and

cBARTR. The locations were evenly spaced in the 3D workspace
volume in front of the participant, defined by the region that was
10 to 30 cm from the center of the home position, forming a semi-
circle that extended in front of the participant in their transverse
plane, and heights that ranged from 0 to 40 cm above the table, as
shown in Fig. 6. These points were selected randomly without re-
placement, namely, each point was selected exactly one time; partic-
ipants reached for all 100 targets one time per session. Participants
attempted up to 100 reaching trials for each section of BARTR, for a
total of 200 reaches.

Calculation of the BARTR metric
We used the data collected through the BARTR interaction to esti-
mate a user ’s workspace. Following previous work, nonuse was
modeled as the subtraction of two components: the constrained
component and the spontaneous component (15). The constrained
component of the workspaceW is defined for every point x ∈ W for
a particular participant p as

cBARTRpðxÞ ¼ ppðsuccess j X ¼ x; S ¼ spÞ ð3Þ

where pp(·) denotes the function that returns the probability of the
poststroke participants selecting each side in the spontaneous con-
dition. The side of the participant that was affected by stroke is
denoted as sp and is in the set of values {0left0, 0right0}. This quantity
represents the total area that the participant is expected to be able to
reach within the time limit, 3.1 s, based on the times from the neuro-
typical group.
The spontaneous component of the workspace is defined over all

points x ∈ W as

sBARTRpðxÞ ¼ ppðS ¼ Sp j X ¼ xÞ�pnðS ¼ sp j X

¼ xÞ�E½tspn ðxÞ � tspn ðxÞ j X ¼ x� ð4Þ

–where pp(·) denotes the probability of the poststroke participants
selecting either side in the spontaneous condition and pn(·) denotes
the probability of the neurotypical group selecting either side in the
spontaneous condition. tspn ðxÞ and tspn ðxÞ represent the movement

time for the poststroke and neurotypical participants, respectively,
to reach the point x in the workspace with the arm on the partici-
pant’s more affected side, sp. This quantity represents how close the
participants’ spontaneous arm use is to spontaneous neurotypical
use. Higher usage of the participant’s more-affected arm and
faster movements result in higher spontaneous scores.
The final value for nonuse is calculated as the difference of these

functions summed over all of the points in the workspace:

nuBARTR ¼
X

x[W
cBARTRðxÞ � sBARTRðxÞ ð5Þ

To obtain these values, we modeled the interaction metrics, time
to reach points and arm choice, as Gaussian processes for the nor-
mative participants and for each poststroke participant. We
summed more than 10,000 samples from a uniform distribution
over the workspace to accurately estimate the difference of these
two functions.

User-reported data
In addition to the data-driven evaluation of nonuse, we asked par-
ticipants for their perceptions about using the system with two self-
reported surveys: the SUS (16, 21, 22) and a semi-structured inter-
view (58).
SUS
The SUS (21) is a 10-item scale that assesses the ease of use of a
technological system. Each item is rated on a five-point Likert
scale that ranges from “strongly agree” to “strongly disagree.” Five
of the items are positively worded, where higher ratings indicate a
highly usable system, and five items are negatively worded, where
lower ratings indicate a more usable system. This scale was selected
for its high reliability, validity, and broad applicability to technolog-
ical systems. Participants completed the SUS after their second
session with the system.
Semi-structured interviews
The combination of a SAR and a robot arm has the potential to
support participants throughout their rehabilitation process at
home. Because of the socially interactive nature of the BARTR
session, rehabilitation effectiveness depends on how much users
can trust the robots to help them. Trust in rehabilitation robotics
has four key facets: safety throughout the interaction, predictability
of actions, ease of interpretation, and adaptation of behaviors to the
task (23). We developed questions to identify ways that our system
could support participants in other exercises and how the system
they interacted with achieved or did not achieve the above four
key aspects of trust. Participants qualitatively reflected on their ex-
perience of the system and discussed improvements for future
systems after the third session.
One of the authors conducted and analyzed all of the interviews.

We used an iterative four-phase deductive qualitative analysis ap-
proach to analyze the interview data (59). The first phase consisted
of the transcription and open coding of interview data, assigning
specific meaning to the phrases participants spoke. The second
phase grouped similar codes into subthemes. The third phase cate-
gorized the subthemes according to the themes found in previous
research in rehabilitation with SARs (23). Some codes did not fit
into the theorized categories, and thus new emergent categories
were developed. The fourth phase iterated on the second and
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third phases, developing categories on a subset of six interviews that
were expanded to include all the interviews until the final categori-
zation reached theoretical saturation, similar to the method used by
Ando et al. (60).

Supplementary Materials
This PDF file includes:
Text
Fig. S1
Tables S1 to S3
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