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Abstract

We introduce FairAlign, a new method to reduce bias and improve group fairness in deepfake
detection by aligning conditional distributions of embeddings in a high-dimensional kernel
space. Our approach reduces information related to sensitive attributes in the embedding
space that could potentially bias the detection process, thus promoting fairness. FairAlign
is a versatile plug-and-play loss term compatible with various deepfake detection networks
and is capable of enhancing group fairness without compromising detection performance.
In addition to applying FairAlign for reducing gender bias, we implement a systematic
pipeline for the annotation of skin tones and promotion of fairness in deepfake detection
related to this sensitive attribute. Finally, we perform the first comprehensive study toward
quantifying and understanding the trade-off between fairness and accuracy in the context
of deepfake detection. We use three public deepfake datasets FaceForensics++, CelebDF,
and WildDeepfake to evaluate our method. Through various experiments, we observe that
FairAlign outperforms other bias-mitigating methods across various deepfake detection
backbones for both gender and skin tone, setting a new state-of-the-art. Moreover, our
fairness-accuracy trade-off analysis demonstrates that our approach demonstrates the best
overall performance when considering effectiveness in both deepfake detection and reducing
bias. We release the code at: https://anonymous.4open.science/r/FairAlign-170F.

1 Introduction

The ease of creating deepfakes necessitates the development of sophisticated methods for detection of content
produced by generative AI models. To detect deepfakes, deep learning models have been recently utilized
to discern subtle inconsistencies and artifacts common in synthetic content (Das et al., 2023; Wang et al.,
2023; Cao et al., 2022). Although recent deepfake detectors achieve high detection rates, several studies
(Trinh & Liu, 2021; Xu et al., 2022b; Nadimpalli & Rattani, 2022; Masood et al., 2022; Ju et al., 2024) have
shown that detectors can exhibit bias toward specific groups with regards to sensitive attributes like gender,
racial background, and others. For instance, it has been shown that certain state-of-the-art deepfake detectors
output higher accuracies when deepfake content involve individuals with lighter skin tones (Hazirbas et al.,
2021; Trinh & Liu, 2021). This can enable attackers to create malicious deepfakes aimed at more vulnerable
groups. This highlights the need to consider group fairness as an equally important factor alongside detection
accuracy in deepfake detectors.

We identify three key open problems with the current state of deepfake detection research: (1) Although a
number of bias-mitigating strategies have been proposed for deepfake detection (Ju et al., 2024; Nadimpalli
& Rattani, 2022), the embeddings generated by these detectors continue to retain information related to
sensitive attributes, which could cause biases in detection of deepfake content. As a result, we suggest that
there is substantial room for improvement at the core of this problem. (2) Despite efforts to develop less
biased deepfake detectors that work fairly across different populations, gender has been the main area of focus.
While a few works have focused on ‘ethnicity’ as a second factor, we argue that ‘skin tone’ (Hazirbas et al.,
2021) is an equally critical and, at the same time, more practical factor to focus on. We believe skin tone is
possibly a different source for bias, since: (i) Each ethnicity might itself contain a variety of skin tones; (ii)
Encoders are highly likely to discriminate based on color given its strong visual prominence; (iii) Ethnicity
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labels are prone to label noise (Heldreth et al., 2023a). (3) Lastly, there exists a phenomenon referred to as
the ‘fairness-accuracy trade-off’, which indicates that enhanced fairness may come at the cost of reduced
accuracy (Little et al., 2022; Hazirbas et al., 2021). While some studies suggest variability in the existence
of this trade-off (Maity et al., 2021; Wick et al., 2019; Dutta et al., 2020), the intertwined relationship of
fairness and accuracy has been widely confirmed in prior works (Wang et al., 2021a; Li et al., 2021; Zhang
et al., 2021). However, to our knowledge, this trade-off has not been studied in prior works in the context of
deepfake detectors.

In this paper, to address the first problem mentioned above, we propose a novel loss term called FairAlign,
for enhancing fairness via the alignment of conditional distributions of the embeddings in higher-dimensional
kernel space. Our method aims to reduce the gap in detection performance across different sensitive attributes
such as gender, thus mitigating the risk of biased outcomes. By leveraging the kernel space, our method
integrates the cross-covariance and covariance operators of the conditional distributions of the embeddings
given sensitive attributes obtained from deepfake detectors into the training process. Our method is a plug-
and-play technique that can be integrated with other existing loss functions used in deepfake detection. Using
our method, we perform multiple bias-mitigation experiments in deepfake detection on three public, real-world
datasets (Celeb-DF (Li et al., 2020), FaceForensics++ (FF++) (Rossler et al., 2019), and WildDeepfake (Zi
et al., 2020)), wherein we demonstrate the effectiveness of our method in improving the fairness of several
state-of-the-art deepfake detectors while retaining strong detection performance. For the second problem,
we propose a simple yet effective pipeline for detecting skin tones and using them to mitigate bias for this
factor. Our method uses ArcFace (Deng et al., 2018) to detect and extract the face. Subsequently, we select
the facial skin regions using a pre-trained U-Net model (Xu et al., 2022a), based on which the average skin
color is measured. Finally, we use the shortest Euclidean distance between the skin tone with respect to
Monk Skin Tone (MST) (Heldreth et al., 2023b) scale to determine the final skin tone. We then apply
this pipeline to deepfake detection datasets for the first time, following which we perform skin tone bias
mitigation experiments. We find that our method, FairAlign, is effective at reducing skin tone biases in
deepfake detection datasets. Lastly, to address the third problem, we utilize two different metrics, Fairea
(Hort et al., 2021) and Harmonic Mean (Lesota et al., 2022; Li et al., 2023), to combine both fairness and
accuracy into unified indices, for the first time in the area of bias mitigation for deepfake detection. Our
analysis shows that while some existing fairness-promoting techniques do indeed reduce bias to a good degree,
this improvement comes at the cost of accuracy, hence not ideal for practical applications. The analysis
further demonstrates that our proposed FairAlign maintains the highest performance in terms of both fairness
and accuracy as per the unified metrics.

Our contributions are summarized as follows:

(1) For promoting group fairness in deepfake detection we propose a new loss term, FairAlign, that operates
in the kernel space to reduce the distance between distributions of the representations learned by deepfake
detectors given different sensitive attributes. Our method demonstrates effectiveness in improving the group
fairness for state-of-the-art deepfake detectors while maintaining strong detection performance on three
large-scale datasets, FF++ (Rossler et al., 2019), CelebDF (Li et al., 2020), and WildDeepfake (Zi et al.,
2020).

(2) We analyze and improve fairness based on skin tones for deepfake detection tasks. We extract skin tones
from existing deepfake datasets using the guidelines given by the MST scale(Heldreth et al., 2023b), and
apply our proposed FairAlign method for enhanced fairness. Our experiments demonstrate that FairAlign
improves skin tone fairness across all state-of-the-art deepfake detectors. To our knowledge, this is the first
attempt at reducing bias against different skin tones in the context of deepfake detection. Additionally, we
enhance fairness based on the intersection of gender and skin tone in the context of deepfake detection for
the first time.

(3) To objectively quantify the fairness-accuracy trade-off, we analyze two unified metrics for the first time in
the realm of fair deepfake detection. Results show that our method is highly favorable as a bias-mitigating
method that strikes a healthy balance between fairness and accuracy.

(4) To enable fast and reliable reproducibility, we release the code at:
https://anonymous.4open.science/r/FairAlign-170F.
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2 Related work

Fairness in deepfake detection. Prior works have demonstrated the existence of bias in deepfake detection
tasks with respect to gender, age, and ethnicity (Hazirbas et al., 2021; Trinh & Liu, 2021; Pu et al., 2022;
Xu et al., 2022b), while a few works have proposed solutions to mitigate this bias (Nadimpalli & Rattani,
2022; Ju et al., 2024). The work in (Trinh & Liu, 2021) evaluates bias in existing deepfake datasets and
detection models for the first time in the literature; however, it doesn’t take into account the intersectional
bias. The evaluation of bias for a popular detection model (MesoInception-4) on FF++ dataset is done
in (Pu et al., 2022). This work is limited in terms of the number of detection methods evaluated. A more
comprehensive study is proposed in (Xu et al., 2022b), which evaluates fairness over three deepfake detection
models. One recent work (Nadimpalli & Rattani, 2022) has attempted to mitigate the aforementioned biases
through data-centric approaches, i.e., making the datasets like FF++ balanced with regards to different
sensitive attributes like gender. The process of gender-balancing via data annotation is time-consuming and
also showed limited improvement in fairness. The work in (Ju et al., 2024) applies conditional-value-at-risk
loss to mitigate bias with regard to both gender and ethnicity in the context of deepfake detection. To our
knowledge, this paper is the first and only one to directly provide a solution for bias in deepfake detection.

Skin tone fairness. While ethnicity has been considered for promoting fairness (Ju et al., 2024; Trinh & Liu,
2021; Xu et al., 2022b) in several deepfake detection literature, skin tone as a factor in reducing bias is more
commonly addressed in areas like skin lesion classification (Kinyanjui et al., 2019; Heldreth et al., 2023a). To
our knowledge, (Hazirbas et al., 2021) is the only prior work to study skin tone in the context of deepfake
detection. In their study, researchers evaluate biases in deepfake detection by analyzing top models from the
DeepFake Detection Challenge (DFDC) (Dolhansky et al., 2020) on the Casual Conversations dataset, which
is rich in diversity across age, gender, and skin tone. Their analysis confirms the importance of skin tone as a
crucial sensitive attribute for bias mitigation in deepfake detection.

Fairness-accuracy trade-off. While fairness-accuracy trade-off is a well-known phenomenon (Little et al.,
2022; Dutta et al., 2020; Maity et al., 2021), only a handful of works have focused on introducing a quantitative
measure to assess this trade-off (Dutta et al., 2020; Little et al., 2022; Wang et al., 2021b), although none are
positioned in the context of deepfake detection. One such work defines the Fairness-Area-Under-the-Curve
(FAUC) to empirically define the fairness-accuracy Pareto frontier (Little et al., 2022). FAUC provides
a model-agnostic metric to measure the Pareto frontier. However, as mentioned in their work, FAUC is
ineffective when intersectional fairness is involved or in cases where fairness and accuracy typically do not
have an inversely proportional relationship. Another work (Wang et al., 2021b) approaches this trade-off
through the lens of multi-task learning by proposing two metrics: Average Relative Fairness Gap and Average
Relative Error. These metrics compare the Fairness-Performance Rate Gap and error rates of multi-task
models to those of single-task models with the same architecture, providing a nuanced assessment of the
balance between fairness and accuracy in multi-task learning. With a different perspective, (Dutta et al., 2020)
approaches the trade-off between fairness and accuracy by quantifying separability with Chernoff information,
challenging the use of biased datasets for performance measures, and advocating for ideal, unbiased datasets.
Our work utilizes Fairea (Hort et al., 2021) and Harmonic Mean (Lesota et al., 2022), which were previously
not explored in the context of deepfake detection. Fairea quantifies the trade-off by computing the area within
an enclosed region formed by the baseline fairness values and the coordinates of any bias-mitigation method
in a two-dimensional fairness-accuracy space. Harmonic Mean computes the trade-off using a straightforward
formula that balances accuracy and fairness, ensuring neither is overlooked in the evaluation process.

3 Proposed method

We introduce a novel loss term called FairAlign for enhancing group fairness in deepfake detection. Training
a deepfake detector using FairAlign causes the alignment of conditional distributions of embeddings given
different sensitive attributes. Our fairness-enhancing approach is inspired by domain adaptation tasks
(Mukherjee et al., 2022; Truong et al., 2023; Joshi & Burlina, 2021) and is considered an in-processing fairness
technique (Han et al., 2024), as it intervenes directly within the learning algorithm to promote fairness.
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Problem setup. Let us represent a triplet {(xi, yi, zi)}N
i=1, where xi denotes the embedding generated

by deepfake detection model for the ith input image, yi is its corresponding forgery label (real, fake), and
zi is the associated sensitive attribute (e.g., female, male, etc.). For simplicity, we can assume that the
embeddings xi are independent and identically distributed. Additionally, let X, Y , and Z be the random
variables associated with the embeddings, their labels, and the sensitive attributes, respectively. Let the
distribution of X be defined over the set X and the distribution of Z be defined over the set Z. Also, let the
cardinality of the set Z be equal to ζ; for example, in the FF++ dataset, ζ = 2 for gender, which corresponds
to male and female. We alternatively denote embeddings xi as xa

i and xb
i where a and b denote elements in

the set Z. Let us denote P( . ) as the probability distribution of an arbitrary random variable. Accordingly,
the optimum condition for a fair classifier is denoted by

PŶ (ŷ|Z = za) = PŶ (ŷ|Z = zb) ∀za, zb ∈ Z, (1)

where Ŷ represents the random variable associated with the classifier’s output, i.e., the predicted forgery
category. This optimum condition is also known as demographic parity, which is the objective of many
bias-mitigating methods (Srivastava et al., 2019). In this paper, we aim to reduce the information related to
the sensitive attribute zi from the embeddings using our proposed loss.

FairAlign. Our overall goal is to accurately capture and minimize the distance between the distributions
of embeddings given different sensitive attributes, through a novel loss term. The discrepancy between two
distributions can be captured with regard to different statistical measures like expected value, covariance, etc.
However, it has been shown that simply considering the arithmetic difference of such statistical measures,
particularly in lower dimensions, cannot effectively capture the discrepancy (Luo & Ren, 2021). As an
example, Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) uses the difference in expected values
of two distributions in high dimensions (specifically, Reproducing Kernel Hilbert Space (RKHS) (Steinke
& Schölkopf, 2008)) to render the discrepancy between two distributions. As another example, the Bures
metric (Bhatia et al., 2017), which defines the discrepancy between two distributions as the difference between
their covariance matrices, cannot effectively capture the discrepancy unless the data are mapped onto a high
dimensional space. To avoid explicit data projection onto higher dimensions and the additional computational
load required to measure the difference in high-dimensional space, kernel functions (Zhang et al., 2020) can
be used to operate directly in low-dimensional space. Usage of kernel functions allows establishing the Bures
metric in RKHS (Steinke & Schölkopf, 2008) where it is viable to be used as a distance metric (Zhang et al.,
2020). This is also termed the Kernel Bures metric. Building on this concept, we utilize the Conditional
Kernel Bures (CKB) metric, which is particularly designed for conditional distributions (Fukumizu et al., 2009;
Luo & Ren, 2021). Another noteworthy point is that other domain adaptation methods like MMD are effective
in aligning marginal discrepancy. Although effective, this can lead to discarding valuable discriminating
information in label distributions (Luo & Ren, 2021). As CKB aligns conditional distributions, it preserves
such information leading to higher classification accuracy.

As defined earlier, {xa
i , z

a
i }n

i=1 and {xb
j , z

b
j}m

j=1 are sets of embeddings corresponding to different sensitive
attributes, drawn from the conditional distributions PX|Z=za

and PX|Z=zb
, respectively. Let’s define kernel

functions kX and kZ on the space of embeddings X and Z, respectively. Further, we define ϕ(x) = kX (x, .)
and ψ(z) = kZ(z, .) as feature mappings from X to RKHS HX and Z to RKHS HZ respectively. Now, let us
denote either a or b by the notation a/b. Accordingly Ka/b

XX , Ka/b
ZZ , and Kba

XX are the kernel matrices, where
(Ka/b

XX)ij = kX (xa/b
i , x

a/b
j ), (Ka/b

ZZ )ij = kZ(za/b
i , z

a/b
j ), and (Kba

XX)ij = kX (xb
i , x

a
j ).

The feature mappings can therefore be represented by Φa/b =
[
ϕ(xa/b

1 ), . . . , ϕ(xa/b
n/m)

]
and Ψa/b =[

ψ(za/b
1 ), . . . , ψ(za/b

n/m)
]
. Consequently, as illustrated in (Luo & Ren, 2021), the empirical cross-covariance

matrices are denoted by Âa
XZ = 1

n ΦaJnΨ⊤
a and Âb

XZ = 1
m ΦbJmΨ⊤

b , with Jn = (In − 1
n1n1

⊤
n ) as the centering

matrix of size n × n, In as the identity matrix, and 1n as a vector of ones of dimension n (similarly for
Jm, Im, and 1m). The covariance matrices Âa/b

XX and Â
a/b
ZZ are defined in a similar fashion. Moreover, the

empirical conditional covariance is defined as:

Â
a/b
XX|Z = Â

a/b
XX − Â

a/b
XZ

(
Â

a/b
ZZ + ϵI

)−1
Â

a/b
ZX , (2)
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where ϵI acts as a regularizer to the ÂZZ matrix and ϵ > 0 is the regularization factor. The regularization is
done due to the rank deficiency of the matrix ÂZZ . We denote the matrices

Qa ≜ In − 1
nϵ

[
Ma

Z −Ma
Z (Ma

Z + ϵnIn)−1
Ma

Z

]
(3)

Qb ≜ Im − 1
mϵ

[
M b

Z −M b
Z

(
M b

Z + ϵmIm

)−1
M b

Z

]
(4)

where the centralized kernel matrices are defined as: Ma
Z = JnK

a
ZZJn and M b

Z = JmK
b
ZZJm. Using the

Cholesky decomposition (Schulman & Cramer, 1975) Qa/b = Sa/bS
T
a/b, where Q is a positive-definite matrix

(Luo & Ren, 2021) and S is the lower-triangular matrix obtained from the decomposition. Accordingly, we
can reformulate the conditional covariance operator Âa

XX|Z as:

Âa
XX|Z = 1

n
ΦaJnSa (ΦaJnSa)T (5)

and respectively for Âb
XX|Z . The empirical CKB metric is accordingly defined as:

d̂2
CKB(PX|Z=za

, PX|Z=zb
) = d̂2

CKB(Âa
XX|Z , Â

b
XX|Z)

= ϵ tr
[
Ma

X (ϵnIn +Ma
Z)−1

]
+ϵ tr

[
M b

X

(
ϵmIm +M b

Z

)−1]
− 2√

m× n

∥∥∥(JmSb)T
Kba

XX (JnSa)
∥∥∥

∗
,

(6)

where ∥ · ∥∗ is the nuclear norm. The empirical CKB metric is differentiable and highly suitable for usage as
a loss function.

Total loss. Based on Eq. (6), we define LFairAlign as:

LFairAlign =
∑

∀(zi,zj)∈Z

d̂2
CKB(PX|Z=zi

, PX|Z=zj
) (7)

Additionally, we use a binary cross-entropy loss, Lce for supervising the deepfake detector to discriminate
between real and fake samples, defined as:

Lce = − 1
Ω

Ω∑
j=1

[yj log(ŷj) + (1 − yj) log(1 − ŷj)] (8)

Here, Ω denotes the total count of samples in the batch. Finally, we define the total loss as:

L = Lce + λ · LFairAlign (9)

where λ controls the contribution of the CKB term.

Skin tone fairness enhancement. As indicated earlier, in addition to a fair deepfake detection solution,
we aim to detect skin tone. To this end, we first perform face detection using MobileFaceNet backbone (Chen
et al., 2018) along with the ArcFace loss (Deng et al., 2018). We then employ the U-Net model presented in
(Xu et al., 2022a) to segment skin regions from the extracted facial image. Next, we compute the average
color of the facial skin pixels to obtain the overall skin tone. Finally, we intend to use a standard definition
for characterizing the estimated skin tone. To do so, we use the Monk Skin Tone (MST) scale (Heldreth
et al., 2023b). Therefore, to identify the corresponding tone from the MST scale, we compute the closest
neighbour based on the Euclidean norm between the average tone and the tones in the MST scale.

Fairness-accuracy trade-off assessment. The final goal of our work is to conduct a comprehensive
analysis of fairness-accuracy trade-off in the context of deepfake detection. Multiple studies have previously
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indicated the presence of an intrinsic trade-off between fairness and accuracy (Little et al., 2022; Hazirbas
et al., 2021; Dutta et al., 2020; Wick et al., 2019), although not in the area of deepfake detection. To this end,
we employ two metrics to characterize this trade-off in this context for the first time. (1) Fairea: The Fairea
approach (Hort et al., 2021) first assesses how a model’s predictions would change if it were less biased. This
is done by manipulating the model’s predictions to reflect a range of hypothetical scenarios from slightly to
fully unbiased, which is referred to as ‘mutation’ in (Hort et al., 2021). The range of mutation can be from
10% to 100%, with 10% increments at each step. These adjusted predictions create a spectrum of potential
fairness values within the model, referred to as the ‘baseline’. This baseline, along with the coordinates of
an arbitrary bias-mitigation method, form an enclosed region whose area quantifies the trade-off. When
evaluating two bias mitigation methods, the one with the larger area is considered to have achieved a better
fairness-accuracy trade-off. We illustrate this approach in Fig. 1. (2) Harmonic Mean: The Harmonic Mean
(HM) takes into account both accuracy and fairness in the form of HM = 2A×F

A+F , where A represents accuracy
and F stands for fairness. We apply the same rationale as various works that use F1 score (Lesota et al.,
2022), wherein a harmonic mean formulation has been used to balance two diverging objectives (Li et al.,
2023).

4 Experiment setup

Datasets. We conduct all the experiments based on three popular datasets, FF++ (Rossler et al., 2019),
CelebDF (Li et al., 2020), and WildDeepfake (Zi et al., 2020). FF++ comprises 1000 Baseline and 4000
forged videos with several visual quality levels, raw (no compression), high quality, and low quality. CelebDF
contains 590 real and 5639 fake videos. WildDeepfake comprises real-world 7314 face sequences obtained
from 707 deepfake videos. Since both the FF++ and CelebDF provide only the video-level labels, we sample
frames out of these videos using FFMPEG (Tomar, 2006) and perform facial cropping on these frames using
the ArcFace detection model (Deng et al., 2018).

Evaluation metrics. To assess fairness, we employ five bias metrics. First, following (Wang et al., 2022; Ju
et al., 2024), we use the maximum difference in false positive rate (FPR) gap, equal FPR, and equal odds,
denoted by GFPR, FFPR, and FEO respectively. These metrics are defined as:

GFPR := max
∀zi,zj∈Z

∣∣FPRzi − FPRzj

∣∣ (10)

FFPR :=
∑

zi∈Z

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Z=zi,Yi=0]∑n
i=1 1[Z=zi,Yi=0]

−
∑n

i=1 1[Ŷi=1,Yi=0]∑n
i=1 1[Yi=0]

∣∣∣∣∣ (11)

FEO :=
∑

zi∈Z

1∑
q=0

∣∣∣∣∣
∑n

i=1 1[Ŷi=1,Z=zi,Yi=q]∑n
i=1 1[Z=zi,Yi=q]

−
∑n

i=1 1[Ŷi=1,Yi=q]∑n
i=1 1[Yi=q]

∣∣∣∣∣ (12)

where FPRzi
represents the FPR scores of group zi, 1[ ] denotes the indicator function, and q represents the

forgery label (1 is real and 0 is fake). Also note that in the special case when Z corresponds to gender, i.e.
ζ = 2, metrics GFPR and FFPR return the same value. Additionally, following (Weerts et al., 2023), we use
demographic parity difference (DPD) and demographic parity ratio (DPR), formulated as:

DPD = max
zi∈Z

P (Ŷ = 1|Z = zi) − min
zi∈Z

P (Ŷ = 1|Z = zi) (13)

DPR = minzi∈Z P (Ŷ = 1|Z = zi)
maxzi∈Z P (Ŷ = 1|Z = zi)

. (14)

DPD measures the disparity in positive outcomes across different groups, with an ideal value of 0 indicating
no disparity. Conversely, DPR assesses the relative disparity, with an ideal value of 1 suggesting equal positive
outcome rates across all groups. We report DPD and DPR results in the Appendix.

Finally, to assess the performance of different deepfake detectors, we utilize four widely-used metrics (Ju
et al., 2024): the area under the curve (AUC), FPR, true positive rate (TPR), and top-1 accuracy (ACC).
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Table 1: Results on FF++. Best results in each column are in bold and second-best results are underlined.

Methods Backbones
Bias Metrics (%)↓ Detection Metrics (%)

Gender Skin Tone Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC↑ FPR↓ TPR↑ ACC↑

Baseline

EfficientNet-B3 1.97 1.97 8.15 11.05 10.86 32.19 14.38 22.65 44.13 94.72 20.25 97.21 94.09
RECCE 1.27 1.27 9.14 18.81 29.65 25.07 30.26 69.38 82.34 98.05 21.20 98.21 94.74

EfficientNet-B4 1.97 1.97 7.85 11.56 10.86 34.12 23.89 20.56 42.13 95.91 20.25 97.21 94.09
MASDT 1.38 1.38 19.71 14.64 11.89 11.39 18.07 14.32 41.46 96.21 3.65 97.13 97.60

AltFreezing 2.82 2.82 10.54 18.37 9.85 18.09 12.02 33.74 40.74 97.84 8.42 96.27 98.10
Average 1.88 1.88 11.08 14.89 14.62 24.17 19.72 32.13 50.16 96.55 14.75 97.21 95.72

DROχ2

EfficientNet-B3 0.23 0.23 4.42 4.71 6.58 12.38 6.30 12.32 42.85 94.37 8.06 89.60 89.66
RECCE 0.33 0.33 5.46 6.15 9.08 11.71 20.27 24.97 64.89 98.32 7.99 96.48 95.98

EfficientNet-B4 0.54 0.54 3.64 11.40 17.00 19.89 15.03 35.28 51.11 93.90 1.96 98.10 96.77
(Hashimoto et al., 2018) MASDT 0.64 0.64 15.68 6.51 9.04 7.24 12.93 13.04 41.15 98.29 3.22 98.96 97.37

AltFreezing 2.67 2.67 9.83 5.10 9.20 17.36 11.55 31.60 26.19 98.86 8.03 97.22 98.75
Average 0.88 0.88 7.81 6.77 10.18 13.72 13.22 23.44 45.24 96.75 5.85 96.07 95.71

MMD

EfficientNet-B3 0.35 0.35 6.65 5.88 4.78 12.91 5.62 12.84 44.95 93.57 8.49 94.11 94.01
RECCE 0.16 0.16 6.19 7.14 10.18 9.19 18.98 20.08 66.46 96.96 8.42 93.65 93.53

EfficientNet-B4 0.39 0.39 2.59 8.72 13.03 15.05 10.34 25.47 39.50 92.64 1.58 97.08 95.60
(Deka & Sutherland, 2022) MASDT 0.32 0.32 14.20 5.89 6.94 5.87 10.20 11.43 29.18 97.04 1.23 98.02 98.32

AltFreezing 2.02 2.02 7.06 3.74 7.18 12.61 7.78 22.30 21.01 97.82 5.78 96.14 98.05
Average 0.65 0.65 7.34 6.27 8.42 11.13 10.58 18.42 40.22 95.61 5.10 95.80 95.90

DAG-FDD

EfficientNet-B3 0.67 0.67 5.36 11.48 9.58 13.50 12.87 19.34 46.08 97.01 8.40 92.87 92.65
RECCE 0.75 0.75 5.71 14.68 19.41 19.33 25.40 38.17 76.24 98.33 12.01 96.80 95.23

EfficientNet-B4 0.61 0.61 4.86 13.81 16.85 20.55 17.50 30.88 52.63 94.15 21.58 95.60 92.92
(Ju et al., 2024) MASDT 0.58 0.58 18.70 10.60 9.84 7.36 16.04 14.27 30.39 96.95 5.67 97.63 98.29

AltFreezing 2.64 2.64 10.01 11.18 9.27 17.42 11.30 32.62 37.69 97.10 7.87 95.59 97.44
Average 1.05 1.05 8.93 12.35 12.99 15.63 16.62 27.06 48.61 96.71 11.11 95.70 95.31

DAW-FDD

EfficientNet-B3 0.34 0.34 6.53 6.79 11.67 12.63 8.43 12.57 43.72 95.96 8.22 91.43 91.49
RECCE 0.45 0.45 7.95 6.99 9.96 13.95 23.54 25.44 54.95 98.35 8.15 94.59 94.10

EfficientNet-B4 0.55 0.55 3.71 13.65 17.35 20.30 15.34 36.00 56.19 90.44 2.00 96.91 95.40
(Ju et al., 2024) MASDT 0.45 0.45 17.71 8.62 8.86 9.87 12.05 13.29 33.42 96.86 5.41 97.81 98.13

AltFreezing 2.72 2.72 10.03 6.20 9.39 17.71 11.79 32.24 37.54 97.64 8.19 95.91 97.81
Average 0.90 0.90 9.19 8.45 11.45 14.89 14.23 23.90 45.16 95.85 6.39 95.33 95.39

FairAlign

EfficientNet-B3 0.16 0.16 5.78 3.97 3.59 10.15 4.74 13.09 45.74 92.87 8.59 95.19 93.66
RECCE 0.19 0.19 4.98 6.02 10.03 10.50 14.21 21.58 57.54 96.74 8.53 93.60 93.03

EfficientNet-B4 0.39 0.39 2.07 6.54 12.29 11.79 8.10 22.95 45.08 91.78 1.47 97.24 95.75
(Ours) MASDT 0.29 0.29 12.00 4.01 5.28 5.38 8.26 11.72 23.07 97.23 1.67 98.11 98.46

AltFreezing 1.74 1.74 6.03 4.10 7.05 10.17 5.90 23.78 31.23 97.97 5.36 96.26 98.13
Average 0.55 0.55 6.17 4.93 7.65 9.60 8.24 18.62 40.53 95.32 5.12 96.08 95.81

Baseline methods. To validate the efficacy of our proposed loss term, LFairAlign, we integrate it into the
training process of 5 state-of-the-art deepfake detector backbones: RECCE (Cao et al., 2022), MASDT
(Das et al., 2023), AltFreezing (Wang et al., 2023), EfficientNet-B3 (Tan & Le, 2019), and EfficientNet-B4
(Coccomini et al., 2022). The objective is to assess the impact of LFairAlign on the fairness of these models.
For a thorough analysis, we benchmark our approach against 4 state-of-the-art bias-mitigating methods:
DAG-FDD (Ju et al., 2024), DAW-FDD (Ju et al., 2024), DRO-χ2 (Chai et al., 2022), and MMD loss
(Deka & Sutherland, 2022). Furthermore, to establish baseline performances, each model is also trained
without any fairness-enhancing module.

Implementation details. All experiments are conducted using the PyTorch framework (Paszke et al., 2019)
on up to 8 NVIDIA A100 PCIE GPU cards. We train all methods using the AdamW optimizer (Loshchilov &
Hutter, 2017) with a batch size of 32, a maximum of 100 epochs, and a learning rate of 0.001. The optimizer
employs first and second momentum decays of 0.9 and 0.999, respectively. Additionally, we use a weight
decay of 0.01 to refine the training process. The learning rate is adjusted using a step scheduler, which
decreases the learning rate by a factor of 0.5 every 5 epochs. The video frame input size is set to 380 pixels,
with training augmentations including resizing, normalization and horizontal flipping. For the face detection
process mentioned in Section 3, we use the InsightFace toolkit (Deng et al., 2022). For the ϵ used in Equation
Eq. (2), we adhere to 0.01 as per the design choice outlined in (Luo & Ren, 2021).

5 Results

Performance. We present a thorough analysis of the performance of our approach on the FF++ and
CelebDF datasets in Tables 1 and 2 respectively. Additionally, we present the results of our method on the
WildDeepfake dataset in the Appendix. First, evaluating the average results of FairAlign against the baselines
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Table 2: Results on CelebDF. Best results in each column are in bold and second-best results are underlined.

Methods Backbones
Bias Metrics (%)↓ Detection Metrics (%)

Gender Skin Tone Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC↑ FPR↓ TPR↑ ACC↑

Baseline

EfficientNet-B3 3.82 3.82 7.54 11.37 9.85 14.09 21.25 45.47 70.74 94.13 9.25 92.27 95.04
RECCE 2.71 2.71 3.14 18.81 27.65 30.07 30.26 67.38 80.34 94.05 12.20 95.21 95.74

EfficientNet-B4 1.21 1.21 5.15 10.05 20.86 34.12 13.38 22.65 40.13 93.91 10.25 97.21 93.09
MASDT 0.48 0.48 3.71 8.64 10.89 9.39 12.07 15.32 16.46 96.61 5.05 94.13 95.60

AltFreezing 1.71 1.71 8.52 7.25 12.63 22.65 23.83 42.65 40.13 95.91 8.25 94.11 96.09
Average 1.99 1.99 5.61 11.22 16.38 22.06 20.16 38.69 49.56 94.92 9.00 94.59 95.11

DROχ2

EfficientNet-B3 3.40 3.40 6.83 8.10 9.20 12.36 11.55 39.60 66.95 93.63 6.32 93.22 96.62
RECCE 0.84 0.84 4.66 6.85 7.80 10.71 13.27 22.97 71.89 91.32 10.99 93.48 90.98

EfficientNet-B4 0.44 0.44 3.64 12.40 17.00 19.89 15.03 35.28 53.11 90.90 11.96 98.10 94.77
(Hashimoto et al., 2018) MASDT 0.22 0.22 3.68 8.51 10.70 9.24 9.93 15.04 16.15 95.29 5.54 93.96 96.37

AltFreezing 0.33 0.33 5.23 6.16 10.83 17.91 11.14 32.32 42.85 94.37 6.62 90.01 95.66
Average 1.05 1.05 4.81 8.40 11.11 14.02 12.18 29.04 50.19 93.10 8.29 93.75 94.88

MMD

EfficientNet-B3 3.02 3.02 5.06 6.74 11.18 10.61 7.78 28.30 51.17 94.20 6.88 92.14 95.25
RECCE 0.76 0.76 4.89 7.14 8.18 12.19 13.98 24.08 64.46 92.96 10.42 92.65 91.53

EfficientNet-B4 0.29 0.29 2.59 8.72 13.03 15.05 10.34 25.47 37.50 92.64 12.58 97.08 94.60
(Deka & Sutherland, 2022) MASDT 0.31 0.31 3.20 6.89 7.94 7.87 9.20 12.43 14.18 96.04 4.40 92.02 97.32

AltFreezing 0.52 0.52 4.54 6.85 10.97 18.83 11.32 28.84 44.95 94.57 6.91 96.15 97.01
Average 0.98 0.98 4.06 7.27 10.26 12.91 10.52 23.82 42.45 94.08 8.24 94.01 95.14

DAG-FDD

EfficientNet-B3 3.65 3.65 8.01 9.18 9.27 11.42 12.30 42.62 67.96 93.02 10.72 92.59 95.20
RECCE 1.45 1.45 3.71 12.68 17.41 19.33 15.40 36.17 64.24 94.33 10.01 95.80 93.23

EfficientNet-B4 0.61 0.61 4.86 12.81 16.85 20.55 17.50 30.88 52.63 92.15 11.58 95.60 94.92
(Ju et al., 2024) MASDT 0.58 0.58 3.70 8.60 10.84 9.36 12.04 15.27 16.39 95.95 5.55 93.63 96.29

AltFreezing 0.97 0.97 6.63 7.81 11.83 18.24 20.81 39.34 46.08 97.20 7.02 94.75 96.65
Average 1.45 1.45 5.38 10.22 13.24 15.78 15.61 32.86 49.46 94.53 8.98 94.47 95.26

DAW-FDD

EfficientNet-B3 3.56 3.56 7.03 7.20 6.39 9.18 11.79 42.24 67.45 93.41 9.98 92.91 95.17
RECCE 0.95 0.95 4.75 6.99 7.96 11.95 13.54 23.44 62.95 92.35 12.15 94.59 92.10

EfficientNet-B4 0.45 0.45 3.71 12.65 17.35 20.30 15.34 36.00 54.19 91.44 12.00 96.91 93.40
(Ju et al., 2024) MASDT 0.38 0.38 3.71 8.62 10.86 9.37 12.05 15.29 16.02 95.56 4.55 94.81 96.13

AltFreezing 0.43 0.43 5.34 5.96 10.62 17.82 11.53 37.57 43.72 96.30 7.26 93.32 97.49
Average 1.15 1.15 4.91 8.28 10.64 13.72 12.85 30.91 48.87 93.81 9.19 94.51 94.86

FairAlign

EfficientNet-B3 2.67 2.67 4.39 5.19 5.54 7.77 9.08 23.78 41.39 94.71 5.61 93.26 96.33
RECCE 0.86 0.86 4.98 7.32 8.30 10.50 14.21 24.58 55.54 93.74 7.53 91.60 94.03

EfficientNet-B4 0.29 0.29 2.77 6.54 12.99 11.79 12.10 22.95 33.08 93.78 11.47 97.24 94.75
(Ours) MASDT 0.19 0.19 3.00 5.01 7.88 7.38 9.16 12.72 12.07 96.23 5.40 92.11 97.46

AltFreezing 0.29 0.29 4.86 5.78 10.17 16.95 11.45 31.09 45.74 97.87 6.28 96.94 97.66
Average 0.86 0.86 4.00 5.97 8.98 10.88 11.20 23.02 37.56 95.27 7.26 94.23 96.05

 

Figure 1: Left: schematic of the Fairea (Hort et al., 2021). Right: effect of λ on bias mitigation.

demonstrates that our approach substantially promotes fairness across all three metrics for both gender and
skin tone, as well as the intersection of the two. A similar trend is observed for the additional two metrics

Table 3: Bias for ethnicity vs. skin tone.

Ethnicity Skin tone
Methods BB GFPR FFPR FEO GFPR FFPR FEO

Baseline MASDT 10.56 12.99 11.18 14.64 11.89 11.39
AltFreezing 8.11 7.21 21.48 18.37 9.85 18.09
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Table 4: Cross-dataset results.

Methods BB GFPR FEO AUC Acc
Baseline MASDT 1.55 10.51 80.21 88.76

AltFreezing 4.11 18.67 92.61 95.24
Ours MASDT 0.78 6.34 82.78 91.34

AltFreezing 0.91 6.78 94.35 95.87

Table 5: Fairness-accuracy trade-off on the FF++ and CelebDF datasets.

Eff.-B3 RECCE Eff.-B4 MASDT AltFreezing
FF++ CelebDF FF++ CelebDF FF++ CelebDF FF++ CelebDF FF++ CelebDF

Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑ Fairea↑ HM↑
DRO2

χ (Hashimoto et al., 2018) 0.06 1.49 0.02 1.34 0.06 1.46 0.02 1.20 0.04 1.48 0.02 1.27 0.04 1.49 0.03 1.39 0.05 1.77 0.03 1.57
MMD (Deka & Sutherland, 2022) 0.05 1.49 0.03 1.31 0.05 1.50 0.03 1.17 0.06 1.47 0.03 1.36 0.04 1.61 0.03 1.51 0.03 1.82 0.03 1.62

DAG-FDD (Ju et al., 2024) 0.04 1.64 0.03 1.34 0.04 1.35 0.02 1.12 0.05 1.46 0.02 1.26 0.04 1.68 0.03 1.49 0.04 1.82 0.03 1.42
DAW-FDD (Ju et al., 2024) 0.05 1.55 0.02 1.35 0.06 1.27 0.03 1.27 0.05 1.50 0.04 1.20 0.05 1.55 0.04 1.46 0.03 1.68 0.03 1.43

FairAlign (Ours) 0.07 1.80 0.04 1.30 0.05 1.64 0.04 1.24 0.04 1.50 0.03 1.40 0.05 1.73 0.04 1.58 0.06 1.91 0.04 1.70

(DPD and DPR) presented in the Appendix. Comparing the performance of our method averaged across
backbones, against other fairness-promoting solutions, we observe that our method generally achieves the best
fairness scores, with exceptions in the intersection group, where MMD achieves marginally higher scores for
FFPR and FEO on the FF++ dataset. Similarly, MMD obtains slightly better results in the intersection group
with GFPR on CelebDF. While our method achieves the highest detection AUC on the CelebDF dataset with
the AltFreezing backbone, it exhibits a slightly lower AUC compared to the baseline on the FF++ dataset.
In the next subsection, we will analyze this outcome in detail and demonstrate that, considering the trade-off
between detection and fairness, our method remains the strongest.

Delving deeper into the results, we observe that on FF++, FairAlign applied to EfficientNet-B3 achieves
the lowest GFPR (and similarly FFPR) of 0.16% in gender, in a tie with MMD when applied to the RECCE
network. Similarly in CelebDF, FairAlign with MASDT achieves the lowest GFPR (and FFPR) in gender
with a score of 0.19%. For FEO our method obtains the best performance on gender when coupled with
EfficientNet-B4 on FF++, while on CelebDF, MMD results in the best outcome with the same backbone.
For skin tone, on FF++, MMD achieves the best performance for GFPR along with the AltFreezing deepfake
detection method. However, for FFPR and FEO, our method obtains the best results with EfficientNet-B3 and
MASDT backbones respectively. On CelebDF, our method consistently achieves the lowest bias when coupled
with MASDT, EfficientNet-B3, and MASDT, for the three metrics respectively. For the intersection of the two
(gender and skin tone), on FF++, our approach outperforms the others based on GFPR using EfficientNet-B3,
while MMD shows better performance on FFPR and FEO using MASDT and AltFreezing respectively. On
CelebDF, MMD achieves better intersection results based on GFPR and FFPR using EfficientNet-B3 and
MASDT, while ours outperforms others based on FEO using the MASDT method.

Comparing the bias metrics for gender with those of skin tone, we notice considerably higher, i.e., more
biased, values for skin tone. We believe this due to two main reasons. First, gender is currently defined as a
binary class in the dataset, whereas our definition of skin tones consist of 10 unique classes. This difference
between the number of classes is an important reason behind skin tone showing more bias as measured
by the metrics. The second reason could be that skin tone is inherently more challenging in terms of bias
mitigation, for instance due to the heavily imbalanced nature of the datasets in this regard. We present the
distributions for gender and measured skin tones in the Appendix, where we observe a less balanced, i.e.,
long-tailed distribution for skin tones. To compare the bias related to skin color and ethnicity, we present the
fairness metrics for both in Table 3 for the MASDT and AltFreezing backbones. As demonstrated, there is a
significant difference in the bias associated with ethnicity compared to that associated with skin tone. For
instance, the AltFreezing backbone achieves a GF P R of 8.11 for ethnicity, whereas it achieves a GF P R of
18.37 for skin tone. This indicates that skin tone is a distinct/complementary source of bias, introducing
more severe bias into the system.

Our method demonstrates strong deepfake detection performances across all four metrics for FF++ and
CelebDF datasets. On the FF++ dataset, FairAlign obtains very competitive results, while on CelebDF,
it generally achieves better performances with respect to others. A detailed comparison between both
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performance aspects (fairness alongside deepfake detection) highlights that drawing a high-level conclusion
about the best fairness promoting approach remains complicated and nuanced when considering the deepfake
detection results. This is especially the case on FF++ where the trade-off between fairness and performance
seems more complex. The next subsection discusses this phenomenon.

To investigate the generalization and fairness of the proposed method on unseen data, we conduct cross-dataset
experiments. We train MASDT and AltFreezing on FF++, both without any fairness-enhancing loss as
a baseline and with the proposed loss. We then evaluate their performances on CelebDF. The results are
presented in Table 4, where we observe that for deepfake detection with MASDT, our proposed method
outperforms the baseline by nearly 3% in accuracy and over 2% in AUC, indicating that our loss can
help improve generalization on unseen data while mitigating bias. Furthermore, the proposed loss achieves
significantly lower FEO and GF P R compared to the baseline, highlighting enhanced group fairness. Similar
results are observed for the AltFreezing backbone, as presented in the table.

Finally, we evaluate the computational overhead of our method on CelebDF. First we observe that at test
time, our method does not add any overhead given that the loss is only measured during training. Next,
when evaluating the overhead during trainig, we observe that our method averages 167 seconds per epoch,
compared to 187 seconds for (Hashimoto et al., 2018) and 142 seconds for (Deka & Sutherland, 2022).

Trade-off analysis. To perform an analysis on fairness-accuracy trade-off, we use 1/FEO following (Ju
et al., 2024) to represent fairness performance for the intersection of gender and skin tone to capture a
holistic view of both sensitive attributes. Moreover, following (Wang et al., 2023) we select AUC to represent
the the deepfake detection performance of different methods. Using these metrics, we present Fairea and
HM as discussed in Section 3, and present the results in Table 5. We observe that FairAlign generally
outperforms other bias-mitigation methods across different backbones when considering both fairness and
accuracy. For instance, FairAlign achieves the highest scores on FF++ for EfficientNet-B3 and AltFreezing
according to Fairea and HM respectively. On the CelebDF dataset, the best results are obtained by our
method using all four backbones as per Fairea, while HM indicates the highest score using AltFreezing.
An important observation from this analysis is that while theoretically both metrics (Fairea and HM) are
capable of quantifying the fairness-accuracy trade-off, Fairea seems to produce less discriminatory outcomes.
In contrast, HM generates a wider range of values, offering a more effective and discriminative means of
capturing the trade-off.

Impact of λ on fairness. We further investigate the impact of the λ hyperparameter in Eq. (9) on the
bias metrics. Fig. 1 illustrates the relationship between FFPR (Intersection) and various values of λ using
the AltFreezing backbone on the CelebDF dataset. The figure demonstrates a significant reduction in bias,
especially between λ = 0.50 and λ = 1.0. We illustrate the impact of λ for the remainder of the bias metrics
in the Appendix. According to these experiments, we set λ = 1.0 throughout all the experiments.

6 Conclusion

We introduced FairAlign, a novel loss term aimed at enhancing group fairness in deepfake detection by
aligning conditional embedding distributions in a high-dimensional kernel space. Additionally, we consider
skin tone as an important factor toward bias in deepfake detection for the first time. Our method shows
state-of-the-art or competitive performance in mitigating bias, while maintaining a strong balance when
considering the fairness-accuracy trade-off.
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A Appendix

A.1 Additional Results

A.1.1 Metrics

In addition to utilizing bias metrics GFPR, FFPR, and FEO in our experiments, we also employ DPR and DPD
metrics and present the results in Tables 6 and 7. We observe that the findings align with those reported
in the main paper. Averaging across different backbones, our method records the lowest DPD and highest
DPR for all groups categorized by gender, skin tone, and intersectional attributes. Among the backbones,
AltFreezing detector consistently ranks as the best or second-best for gender metrics across both FF++ and
CelebDF benchmarks. Similarly, EfficientNet-B3 frequently secures the top scores for metrics related to skin
tone and intersectional groups in both datasets.

Table 6: DPR and DPD results on FF++. Best results in each column are in bold and second-best results are
underlined.

Methods Backbones
Bias Metrics

Gender Skin Tone Intersection
DPD ↓ DPR ↑ DPD ↓ DPR ↑ DPD ↓ DPR ↑

Baseline

EfficientNet-B3 0.29 0.79 0.38 0.64 0.55 0.56
RECCE 0.39 0.77 0.39 0.67 0.49 0.72

EfficientNet-B4 0.49 0.69 0.46 0.73 0.53 0.66
MASDT 0.47 0.77 0.54 0.68 0.42 0.52

AltFreezing 0.38 0.67 0.47 0.73 0.54 0.65
Average 0.40 0.74 0.45 0.69 0.51 0.62

DROχ2

EfficientNet-B3 0.29 0.82 0.29 0.85 0.40 0.87
RECCE 0.13 0.89 0.20 0.88 0.28 0.83

EfficientNet-B4 0.39 0.70 0.36 0.84 0.37 0.87
(Hashimoto et al., 2018) MASDT 0.17 0.88 0.34 0.79 0.35 0.63

AltFreezing 0.18 0.88 0.27 0.84 0.30 0.76
Average 0.23 0.83 0.29 0.84 0.34 0.79

MMD

EfficientNet-B3 0.20 0.85 0.19 0.87 0.35 0.89
RECCE 0.16 0.90 0.31 0.89 0.26 0.86

EfficientNet-B4 0.40 0.61 0.47 0.85 0.44 0.89
(Deka & Sutherland, 2022) MASDT 0.28 0.90 0.48 0.81 0.27 0.74

AltFreezing 0.14 0.90 0.28 0.85 0.24 0.83
Average 0.24 0.83 0.35 0.85 0.31 0.84

DAG-FDD

EfficientNet-B3 0.20 0.82 0.22 0.85 0.32 0.88
RECCE 0.22 0.80 0.41 0.89 0.36 0.85

EfficientNet-B4 0.30 0.72 0.27 0.85 0.24 0.88
(Ju et al., 2024) MASDT 0.32 0.89 0.35 0.79 0.33 0.74

AltFreezing 0.29 0.89 0.48 0.84 0.43 0.56
Average 0.27 0.82 0.35 0.84 0.34 0.78

DAW-FDD

EfficientNet-B3 0.21 0.88 0.30 0.89 0.39 0.91
RECCE 0.24 0.84 0.41 0.92 0.20 0.87

EfficientNet-B4 0.21 0.84 0.28 0.87 0.54 0.90
(Ju et al., 2024) MASDT 0.28 0.92 0.46 0.83 0.17 0.86

AltFreezing 0.21 0.92 0.39 0.87 0.37 0.79
Average 0.23 0.88 0.37 0.88 0.33 0.87

FairAlign

EfficientNet-B3 0.17 0.90 0.11 0.97 0.23 0.93
RECCE 0.12 0.94 0.32 0.93 0.20 0.90

EfficientNet-B4 0.12 0.76 0.29 0.87 0.39 0.92
(Ours) MASDT 0.18 0.93 0.37 0.83 0.18 0.85

AltFreezing 0.11 0.94 0.29 0.89 0.15 0.89
Average 0.14 0.89 0.28 0.90 0.23 0.90
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Table 7: DPR and DPD results on CelebDF. Best results in each column are in bold and second-best results are
underlined.

Methods Backbones
Bias Metrics

Gender Skin Tone Intersection
DPD ↓ DPR ↑ DPD ↓ DPR ↑ DPD ↓ DPR ↑

Baseline

EfficientNet-B3 0.39 0.89 0.28 0.84 0.44 0.86
RECCE 0.36 0.77 0.39 0.67 0.45 0.62

EfficientNet-B4 0.38 0.72 0.36 0.83 0.43 0.62
MASDT 0.37 0.63 0.44 0.78 0.42 0.62

AltFreezing 0.38 0.87 0.31 0.83 0.34 0.85
Average 0.38 0.78 0.36 0.79 0.42 0.71

DROχ2

EfficientNet-B3 0.39 0.90 0.28 0.85 0.54 0.87
RECCE 0.31 0.78 0.40 0.68 0.45 0.63

EfficientNet-B4 0.35 0.73 0.36 0.84 0.43 0.57
(Hashimoto et al., 2018) MASDT 0.17 0.88 0.34 0.79 0.32 0.63

AltFreezing 0.18 0.88 0.35 0.84 0.34 0.86
Average 0.28 0.83 0.35 0.80 0.42 0.71

MMD

EfficientNet-B3 0.40 0.91 0.29 0.87 0.25 0.89
RECCE 0.19 0.87 0.41 0.69 0.56 0.66

EfficientNet-B4 0.29 0.75 0.37 0.85 0.24 0.79
(Deka & Sutherland, 2022) MASDT 0.10 0.90 0.30 0.81 0.22 0.64

AltFreezing 0.15 0.90 0.38 0.85 0.30 0.88
Average 0.23 0.87 0.35 0.81 0.31 0.77

DAG-FDD

EfficientNet-B3 0.40 0.92 0.28 0.85 0.45 0.88
RECCE 0.22 0.79 0.41 0.69 0.56 0.65

EfficientNet-B4 0.28 0.73 0.37 0.85 0.64 0.58
(Ju et al., 2024) MASDT 0.27 0.79 0.32 0.79 0.33 0.64

AltFreezing 0.29 0.89 0.38 0.84 0.44 0.86
Average 0.29 0.82 0.35 0.80 0.48 0.72

DAW-FDD

EfficientNet-B3 0.41 0.94 0.30 0.89 0.66 0.91
RECCE 0.24 0.73 0.41 0.62 0.36 0.67

EfficientNet-B4 0.29 0.77 0.38 0.87 0.34 0.60
(Ju et al., 2024) MASDT 0.28 0.62 0.27 0.83 0.53 0.66

AltFreezing 0.25 0.92 0.39 0.87 0.25 0.89
Average 0.29 0.80 0.35 0.82 0.43 0.75

FairAlign

EfficientNet-B3 0.27 0.96 0.29 0.97 0.35 0.93
RECCE 0.20 0.88 0.42 0.63 0.37 0.67

EfficientNet-B4 0.24 0.77 0.29 0.87 0.20 0.72
(Ours) MASDT 0.08 0.93 0.22 0.89 0.19 0.65

AltFreezing 0.10 0.94 0.39 0.89 0.25 0.89
Average 0.18 0.90 0.32 0.85 0.27 0.77
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Table 8: Results on WildDeepfake dataset. Best results in each column are in bold.

Methods Backbones
Bias Metrics (%)↓ Detection Metrics (%)

Gender Skin Tone Intersection Overall
GFPR FFPR FEO GFPR FFPR FEO GFPR FFPR FEO AUC↑ FPR↓ TPR↑ ACC↑

Baseline
RECCE 5.39 5.39 8.38 10.09 11.19 14.63 13.54 39.59 66.95 64.31 20.25 83.21 83.25

EfficientNet-B4 3.45 3.45 5.17 14.86 16.14 21.32 17.04 38.71 66.42 67.39 21.19 87.24 89.67
Average 4.42 4.42 6.77 12.47 13.66 17.97 15.29 39.15 66.68 65.85 20.72 85.22 86.46

DAG-FDD
RECCE 5.34 5.34 8.18 15.32 14.12 12.12 12.12 37.12 62.11 65.34 20.33 87.38 88.89

EfficientNet-B4 4.32 4.32 6.38 16.09 22.45 24.21 19.21 40.75 69.98 65.46 22.09 85.33 89.16
(Ju et al., 2024) Average 4.83 4.83 7.28 15.70 18.28 18.16 15.66 38.93 66.04 65.40 21.21 86.35 89.02

FairAlign
RECCE 4.27 4.27 6.83 9.01 12.22 14.07 10.55 29.16 60.95 67.11 21.78 86.34 86.22

EfficientNet-B4 1.15 1.15 3.13 12.83 17.11 19.29 15.01 35.78 63.49 69.42 19.11 88.09 90.11
(Ours) Average 2.71 2.71 4.98 10.92 14.66 16.68 12.78 32.47 62.22 68.26 20.44 87.21 88.16
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Figure 2: Distribution of genders and skin tones in the FF++ and CelebDF datasets.

A.1.2 Performance on WildDeepfake Dataset

We report the performance of our proposed method on the WildDeepFake dataset in Table 8. For the gender
sensitive attribute and its intersection with skin tone, FairAlign outperforms both DAG-FDD and the Baseline
across all three metrics. For skin tone-sensitive attributes, FairAlign achieves a state-of-the-art GF P R of 9.01,
while the Baseline with the RECCE backbone and DAG-FDD with the same backbone attain slightly better
FF P R and FEO, respectively. Importantly, FairAlign achieves state-of-the-art detection performance in all
scenarios, demonstrating that our method enhances fairness without compromising detection efficacy.

A.1.3 Distributions of Gender and Skin tone in FF++ and CelebDF Datasets

We present the distributions for gender and skin tone sensitive attributes within the FF++ and CelebDF
datasets in Fig. 2. In the FF++ dataset, a noticeable imbalance is evident in the distribution of skin tones
compared to gender. Notably, skin tone 8 (Black) is significantly underrepresented, whereas skin tone 3
(White) is the most prevalent. The resulting imbalance factor—defined as the ratio of the highest to the
scarcest category—is calculated to be 8.6. In contrast, the gender distribution exhibits a more modest
imbalance, with a male-to-female ratio of 1.8. These findings suggest that biases associated with skin tone
are likely to be more severe than those related to gender. A same pattern is observed for CelebDF dataset.

A.1.4 Impact of λ on Fairness

In addition to the the impact of λ on bias (FFPR Intersection) in the main paper, here we explore the
relationship between and the other seven metrics for the CelebDF dataset versus λ in Fig. 3. From this figure,
we observe that for five out of the seven plots, λ = 1 results in the least amount of bias, while for FEO for
Intersection and GFPR for Skin Tone, λ = 0.25 and λ = 0.75 are marginally better than 1. For consistency,
we set λ = 1 throughout all the experiments in this work.
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Figure 3: Effect of tuning the λ hyperparameter on bias metrics for AltFreezing backbone trained on CelebDF dataset.
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