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I. INTRODUCTION

Model-based robotic planning techniques, such as inverse
kinematics and motion planning, can endow robots with the
ability to perform complex manipulation tasks, such as grasp-
ing, object manipulation, and precise placement. However,
these methods often assume perfect world knowledge and
leverage approximate world models. For example, tasks that
involve dynamics such as pushing or pouring are difficult to
address with model-based techniques [1] as it is difficult to
obtain accurate characterizations of these object dynamics. Ad-
ditionally, uncertainty in perception prevents them populating
an accurate world state estimate.

Recent works have shown that integrating learning with
model-based planning can address some of these limitations [2,
3, 4]. Following a similar direction, we integrate a geometric
model-based motion planner with learning in a mixture-of-
experts fashion to solve manipulation problems where the
world model and dynamics are only approximately known.

Specifically, we propose using a model-based motion plan-
ner to build an ensemble of plans under different environment
hypotheses. Then, we train a meta-policy to decide online
which plan to track based on the current history of obser-
vations. By leveraging history, this policy is able to switch
ensemble plans to circumvent getting “stuck” in order to
complete the task. Additionally, the meta-policy holds the
potential to learn aspects of the task that the provided model
does not encompass but are necessary for task completion, e.g.,
the dynamics of pushing. We tested our method on a 7-DOF
Franka-Emika robot pushing a cabinet door in simulation, as
shown in Fig. 1. We demonstrate that a successful meta-policy
can be trained to push a door in settings high environment
uncertainty, all while requiring little data (≤ 1000 episodes).

The main contributions of this work are:
1) An ensemble approach for manipulation policies, which

outperforms single-trajectory planners.
2) Learning a meta-policy to select among the ensemble.
3) Simulated experiments that show our method results in

40% higher success rate than the non-learning baseline.

II. RELATED WORK

At the core of model-based planning techniques for robot
manipulation lies motion planning [5]. Such techniques in-

Fig. 1. Example of the panda robot pushing the left door of the cabinet.
In this setting, the robot knows its own state and geometry along with the
state and geometry of the cabinet. However, the position of the cabinet is
only approximately estimated, and the dynamic properties of the objects are
unknown. In this work, we attempt to solve this task by combining a model-
based planner and learning from experience.

clude constrained motion planning [6], Multi-Modal Mo-
tion Planning [7] (MMMP), and Task and Motion Planning
(TAMP) [8]. The main advantages of these methods are that
they are general, i.e. work with any geometries, and have
theoretical guarantees with respect to their models, e.g. prob-
abilistic completeness [9]. However, they depend critically on
the fidelity of their models, limiting their effectiveness when
there are state estimation errors and unmodeled constraints,
e.g. dynamic constraints such as limited pushing force or
friction between objects and the environment. Finally, these
methods often have long (several seconds) planning times,
making the unsuitable for real-time to unexpected events.

Recent advances in learning have prompted researchers
to combine learning with model-based planning to address
these limitations. Some techniques try to learn world models
[10, 11, 12, 13], warm start policy-learning with model-based
techniques [14, 15], or improve planning efficiency [3, 16]. We
also leverage learning to improve the downstream performance
of a model-based planner. However, we focus on approximate
world models with uncertain object poses and geometries and
problems that involve dynamics such as pushing.

III. METHODOLOGY

In this work, we aim to endow a robotic agent with advanced
manipulation skills regarding grasping, pushing, and even



throwing objects under realistic assumptions. The realistic
assumptions that we consider are that a world model can
be engineered but is not entirely accurate. These inaccuracies
could be due to pose uncertainty, lack of dynamic modeling,
or approximate geometric representations. Our method uses
a model-based planner to produce candidate plans using the
approximate world model and then uses learning from expe-
rience to learn a meta-policy that improves task performance.

We will use the toy problem shown in Fig. 2 a) to demon-
strate the key concepts in this work. In this toy problem,
the robot aims to push the red object to the shaded red goal
location. The modeled constraints include collision avoidance
and joint limits. Unknown aspects include dynamics, namely
how the object moves upon contact with the end-effector.
Task failure can occur if the object falls over due to the
pushing angle. Uncertainty exists in the object’s x-axis position
estimation and its exact geometry.

The world state is the prorpioceptive state of the robot along
with the potentially uncertain state of the world objects. For
example, in the problem shown in Fig. 2 a), the state includes
the positions of the robot’s five joints and an approximate
estimate of the position and geometry of the red object along
the x-axis. We consider such state estimation realistic as robots
usually have accurate joint encoder measurements but perceive
the objects in the world around them with some uncertainty.

The proposed approach is composed of two main com-
ponents. First, a geometric model-based planner creates an
ensemble of plans as described in subsection III-A and shown
in Fig. 2 b). Second, given the currently observed state, we
learn a meta-policy that chooses plans from the ensemble as
described in subsection IV-C and shown in Fig. 2 b) (the large
black arrows). The proposed hybrid approach leverages the
approximate world model to create plan-ensembles that satisfy
known constraints, such as geometric-constraints. Then we use
learning to train the meta-policy and account for unmodeled
constraints, e.g. dynamics, and be robust to estimation errors.

Algorithm 1 Plan Ensemble Pseudocode
1: procedure PLAN-ENSEMBLE(G, Πp, K)
2: Πp ← ∅ ▷ Plan-Ensembles
3: while i ≤ N do ▷ Create Plan-Ensembles
4: ŝ← SAMPLE-WORLD()
5: p← PLAN(ŝ, G) ▷ Plan Geometric Path
6: πp ← MAKE-POLICY(p) ▷ Create Plan
7: Πp ←Πp ∪ πp

8: while t ≤ T do ▷ Iteratively Reselect Plan
9: o← OBSERVE()

10: πchosen
p ← argmax

πp∈Πp

BEST(o, πp)

11: while PROGRESS(o, p) do
12: o← OBSERVE() ▷ Observe State
13: if o ∈ G then
14: return True ▷ Success!
15: r ← EXECUTE(πchosen

p )

16: return False ▷ Failure
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Fig. 2. a) An illustrative example of a task that combines geometric, dynamic
reasoning and uncertainty. The robot is tasked with pushing the red object
to the goal location, without toppling it over. The robot can control its 5
joints and estimate within some error the position and geometric height of
the red object. b) The proposed method uses model-based planning to create
several path policies. The path shown with green is produced with a model-
based geometric planner and satisfies the geometric (known) constraints of the
problem. The black arrows represent the plan, which is the combination of the
path and a position controller. Note that the plan is shown in the end-effector
2D space but its state space is the 5D space of the joints of the robot.

A. Create Plan-Ensembles

Creating plan-ensembles is described in Line 3 to Line 7
of Alg. 1. In Line 4, SAMPLE-WORLD() samples a possible
world state according to a given uncertainty distribution. In
Line 5, given the currently estimated state of the world ŝ and
a goal G, a model-based planner computes a candidate path
p. A path p is as sequence of waypoints where each waypoint
specifies the position of the robot and other known movable
objects in the world. The first waypoint is the current state,
while the last waypoint must satisfy the goal specification.
Examples of paths are the green lines shown in Fig. 2 b).

In Line 6, the path p is converted into a plan πp. The
path is time-parameterized and a waypoint-tracking trajectory
controller is used to follow it. In this context, a plan is
converted into an atomic policy that provides an action for any
state. Example plan actions are shown as the black arrows that
attract towards the green path p in Fig. 2 b).

Note that each plan is computed for an estimation of the
world state ŝ. This is illustrated in Fig. 2 b), where the objects
for each computed path policy are either in different locations
(inaccurate pose estimation) or have different geometry (in-
accurate geometry estimation). Finally, in Line 7, the plan is
added in the plan-ensemble Πp.

B. Selecting Plans

Selecting and executing a plan is described in Line 8 to
Line 15 of Alg. 1. Given a plan-ensemble Πp, we need to
choose the most appropriate plan to follow for the current
observed state o. In this context, the observed state includes



Fig. 3. Success Rate, Number of Steps, and Distance to Goal different configurations of method. All configurations were tested on a 100 different environments,
with a maximum of 200 timesteps. SINGLE refers to using just a single path policy while MULTI means that 10 path-policies were used for the path-policy
set Πp respectively. FIXED/PROGRESS denotes whether a fixed interval or the PROGRESS rule was used to choose a new path-policy.

the same information as each waypoint of the path. We choose
a simple supervised approach to learn how to select a plan.

In Line 9, the known state of the robot and the world is
observed, which can be used to determine if we have reached
a terminal state. An episode terminates when the goal is
reached or when maximum number of steps has passed. An
important implementation choice is the decision-frequency at
which a new plan is chosen. One end of the spectrum would
be choosing a single plan and following it until the end of
the episode. The opposing end would be choosing a new plan
at every timestep. In this work, we propose using a simple
rule that leverages the computed path p to decide when to
switch. Taking advantage of this knowledge, in Line 11, the
PROGRESS function monitors if progress towards the planned
path p is made and returns False if no progress has been made
in the last k timesteps. When this function returns False, a new
plan is chosen, as shown in Line 10.

To generate training data, we first create the plan-ensemble
Πp and then execute plans πp randomly. After execution, we
collect the state, action, and progress triplet and then store
it to later train the network BEST. We define the distance
to goal that was covered by the execution of the plan as
progress. We use the collected data to train the network in
supervised manner. The network learns to predict the progress
that will be achieved, if we execute the plan πchosen

p from the
current observed state o. During testing, we use the trained
network BEST Line 10 to choose the most promising plan and
execute it. Execution continues until the goal is reached or the
PROGRESS returns False.

IV. EXPERIMENTS

We applied our framework to a pushing a cabinet door
problem, as shown in Fig. 1. The robot task is to push the
left cabinet door from the open state to the closed state.

A. Experiment Setup

The initial state uncertainty we consider lies in the position
of the cabinet relative to the robot. Thus, the SAMPLE-
WORLD() function samples a random position of the cabinet
relative to the robot according to the given uncertainty distri-
bution. Here, we only consider translational uncertainty.

Given the random sample from this distribution ŝ, the
planner produces a geometric path p that maintains contact

perpendicular to the door and intends to push it until it
closes. The pushing contact location on the cabinet door is
chosen randomly; different contact points are sampled for each
computed path. We use TRAC-IK [17] combined with a PID
controller to convert the geometric path p to a policy which
we refer to as a plan πp. To represent the geometric world
and generate the plan-ensembles Πp, we use PyBullet [18].
We use IsaacGym [19] for physics and control simulation.

We conducted 2 experiments to examine the performance of
our proposed method. The first experiment(subsection IV-B),
studies the choices of the switching frequency rule and the
use of ensembles. Specifically, we investigate the effect of the
PROGRESS rule, and choosing to use a plan-ensemble instead
of a single plan . The second experiment (subsection IV-C),
benchmarks the proposed method with respect to a non-
learning baseline and ablates different input features to the
BEST neural network. We evaluated with these metrics:

• Distance to goal (Progress): This simply measures how
much the door closed. A distance of 0 means that the
door closed (i.e. the goal was reached), and a distance of
π/2 means that the door did not move at all.

• Success rate: The percentage of tasks solved successfully
within the given horizon. The task is considered success-
ful if the door is closed up to some error threshold.

• Number of steps: The number of timesteps to complete
the episode. The episode terminates if the door is closed
or if the maximum of 200 timesteps is reached.

B. Using Plan Ensembles and Progress Rule

Here, the uncertainty was emulated as a uniform distribution
±10 cm on the position of the cabinet and applied across x,y,z
dimensions independently. We tested the following:

1) SINGLE/MULTI paths: SINGLE means that only one plan
was used, while MULTI means that we had a plan-
ensemble of 10 plans. The plan to follow at each time-
step was chosen randomly. This comparison motivates
why using multiple plans(an ensemble) is better than a
single one.

2) FIXED/PROGRESS rule: FIXED means that the decision to
switch plan was every 10 fixed timesteps, and PROGRESS
means that the rule described in subsection IV-C was
used to determine the switching frequency. In both cases,



Fig. 4. The 1) Success Rate, 2) Number of Steps, and 3) Distance to Goal for both the two random baselines, with and without the PROGRESS
(RandNoProgress/RandProgress) rule, as well as the two different feature sets (LearnedF1/LearnedF2) used for training the BEST network. The x-axis denotes
the translational estimation error on the cabinet position. The error bars indicate 0.25 of the standard deviation.

the new plan πp is chosen randomly. For SINGLE, FIXED
has no effect, while PROGRESS added noise ± 10cm in
the end-effector space to help unstuck the robot.

The results demonstrate that the PROGRESS rule and using
an ensemble significantly improves performance. Intuitively as
long as progress is made along the path, the current plan is
good and it should not be switched. The advantage of using
an ensemble of plans lies in the fact that part of one plan
could apply for part of the episode and part of another plan
can apply to another part of the episode. Thus an ensemble
can complete tasks that a single plan could never complete.
The MULTI/PROGRESS combination achieves both the best
distance to goal and also requires the least number of steps
to complete the task. The main takeaways from these results
are first that the PROGRESS rule helps significantly in all
uncertainty settings.

C. Learning a Meta Policy

In this experiment, we investigated the improvements in task
performance of learning the subroutine BEST. First, we use a
random strategy to choose and execute path-policies for the
pushing task in Fig. 1 using the same setting as the experiment
setup of subsection IV-B with MULTI paths and the PROGRESS
rule enabled. We collected data from 1000 episodes.

We trained a regressor neural network BEST, which takes as
input the plan πp as well as the current observation o and possi-
bly the history of observations and predicts the progress toward
the goal after executing πp. The neural network architecture
has three fully connected layers with batch normalization[20].
Each hidden layer has 64 units, and the network was trained
to minimize Mean Squared Error (MSE).

An important decision is how to represent the path and
history of observations as the input to the neural network.
We use the following values are input features:

• Current End-Effector(EE) State: the position, expressed
in Cartesian coordinates (3 dim) and the orientation
expressed as a quaternion (4 dim).

• Current Robot State: joint values of the robot (7 dim).
• Current Door State: the joint value of the door (1 dim).
• Final End-Effector State (7 dim).
• Next Immediate End-Effector State (7 dim).
• Midpoint End-effector State: the midpoint between Cur-

rent and Final End-Effector States (7 dim), using spheri-
cal linear orientation interpolation.

The observed state of the world includes the current end
effector state, robot joint state, and door state (15 dim).
The first set of features F1 includes the observation, the
next end-effector goal, and the end effector goal (29 dim).
The second set of features F2 extends F1 by adding the
midpoint end-effector state, the difference between the current
end-effector state and the next end-effector state, and the
difference between the current end-effector state and the final
end-effector state. Additionally, the last 5 observations are
included (175 dim).

We trained the neural network with the same data from
±10 cm uncertainty and tested it in 100 environments under
±0,±2,±5,±10 cm of translational uncertainty. We also
tested a random strategy when using and not using the progress
rule. In Fig. 4, the success rate, number of steps included, and
distance to goal are shown for the four uncertainty settings.

The learned strategies are better than the random strategy,
and the F2 set of features seems to help best in the lower
uncertainty regime. We hypothesize that the ±10 cm regime is
too uncertain to leverage the observation history or potentially
over-fits, while in the lower regime the observation history can
help disambiguate the error in position estimation. Overall,
incorporating the observation history helps, and it is possible
to learn the meta policy over the plan-ensemble. A video
demonstration of the experiments is available 1.

V. CONCLUSION

In this work, we proposed a method for manipulation that
learns a meta policy over plan-ensembles using approximate
world models. In our preliminary results, we demonstrated the
efficacy of the method over simple baselines in a simulated
environment where the robot is tasked with pushing the door
of cabinet. The main assumptions of the proposed method are
that an approximate model of the world is given and a quan-
tification of the uncertainty of the model is also available, both
of which rely on the given perception system. In the future, we
would like to test these assumptions by applying the proposed
method to a real-world setting and investigate the feasibility of
these assumptions. One potential perception system that could
give us this information could be PoseCnn[21]. We would
also like to investigate extending to more manipulation skills,
multi-modal planning, and image-based predictions.

1https://www.dropbox.com/s/8gosmt9e838icqg/RSS2023-LTAMP.mp4?dl=0

https://www.dropbox.com/s/8gosmt9e838icqg/RSS2023-LTAMP.mp4?dl=0
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