
Deep latent position model for node clustering in
graphs

Dingge Liang1, Marco Corneli1, Charles Bouveyron1, and Pierre Latouche2

1 Université Côte d’Azur, Inria, CNRS, Laboratoire J.A.Dieudonné, Maasai team,
Nice, France

2 Université Paris Cité, CNRS, Laboratoire MAP5, UMR 8145, Pairs, France

Abstract. With the significant increase of interactions between indi-
viduals through numeric means, the clustering of vertex in graphs has
become a fundamental approach for analysing large and complex net-
works. We propose here the deep latent position model (DeepLPM), an
end-to-end clustering approach which combines the widely used latent
position model (LPM) for network analysis with a graph convolutional
network (GCN) encoding strategy. Thus, DeepLPM can automatically
assign each node to its group without using any additional algorithms and
better preserves the network topology. Numerical experiments on simu-
lated data and an application on the Cora citation network are conducted
to demonstrate its effectiveness and interest in performing unsupervised
clustering tasks.

Keywords: Network analysis · Graph clustering · Unsupervised learn-
ing.

1 Introduction and related work

Networks are employed in a wide range of applications, from social media and
email communications to protein-protein interactions, because they are simple
structures yet are capable of modeling complex systems. In this context, vertex
clustering is a key branch of clustering which attempts to partition the nodes of
the graph into different groups to extract patterns summarizing the data.

On the one hand, a long series of statistical methods have been developed
to discover the underlying features in networks. The stochastic block model
(SBM) [9] is widely used to detect communities or more general clusters of
nodes. Based on SBM, many extensions looking for overlapping clusters have
been proposed, such as MMSBM [1] and OSBM [7]. On the other hand, a different
approach to model network data relies on latent position models (LPMs) [3].
Afterwards, LPCM [2] was developed to incorporate a clustering structure into
LPM. Nevertheless, these models have a challenging inference procedure that
primarily relies on MCMC and do not scale easily to large and complex networks.

From another aspect, deep learning based techniques have been intensively
investigated in clustering. In this line of methods, VGAE [6] adopts a graph
convolutional network (GCN) [5] encoder to produce nodes embeddings in the

2 D. Liang et al.

latent space. By introducing adversarial learning into the generation process,
ARVGA [10] enforced the latent representation to match a prior distribution.
Lately, DGLFRM [8] combined OSBM with GCN by positing each node of the
graph to have an embedding modeled by a Beta-Bernoulli process. All of the
aforementioned methods employ inner-product-based decoders, whereas we ar-
gue that a different solution, accounting for the Euclidean distance between
nodes in the latent space might be more suited. Additionally, these approaches
adopt a two-step clustering procedure, simply relying on external clustering al-
gorithms (e.g. k-means) to group the embedded nodes, independently from the
generative model.

In order to overcome the limitations of the methods listed above, while ex-
ploring their benefits, we introduce the deep latent position model (DeepLPM),
allowing to simultaneously learn vertex representations and obtain node parti-
tions. By combining a GCN encoder with a LPM-based decoder, our model aims
at capturing the best of both worlds described so far: it is a flexible represen-
tation learning tool based on the deep learning architecture, yet comprehensive
and interpretable thanks to the statistical model considered.

2 Deep latent position model

Notations In this work, networks are modeled as undirected, unweighted graphs
G = (V ;E) with N = |V | nodes. We introduce an N ×N adjacency matrix A,
where Aij = 1 if there is a link between node i and node j, 0 otherwise. The set
of edges E can be associated with an additional covariate information, collected
into matrix Y ∈ R|E|×D. The generic entry of Y , denoted yij , is a D-dimensional
feature associated with the edge connecting i to j. For instance, yij could encode
the text that author i sends to author j in a communication network. We aim
at learning well-represented, latent, node embeddings Z in a lower dimension P
and to partition the nodes into K clusters.

Generative model As in LPM [3], we assume that each node i = {1, · · · , N}
has an unknown position zi ∈ RP in a latent space. The probability of a link
between two individuals is modeled as a function of the distance between their
latent positions. The generative process is as follows. First, each node is assigned
to a cluster via a random variable ci encoding its cluster membership

ci
iid∼ M(1, π), with π ∈ [0, 1]K ,

K∑
k=1

πk = 1. (1)

Then, conditionally to its cluster, a latent embedding zi is generated

zi|(cik = 1) ∼ N (µk, σ
2
kIP), with σ2

k ∈ R+∗, (2)

independently for each node. Finally, the probability of a connection between
nodes i and j is modeled through a Bernoulli random variable related to the

Deep latent position model for node clustering in graphs 3

distance between latent positions

Aij |zi, zj ∼ B(fα,β(zi, zj)), (3)

with

fα,β(zi, zj) = σ(α+ βT yij − ||zi − zj ||2), (4)

where fα,β can be seen as a decoding, one-layer, neural network parametrized
by α and β and σ is the logistic sigmoid function and yij is the covariate of the
edge connecting i with j.

3 Model inference

By denoting Θ = {π, µk, σ2
k, α, β} the set of the model parameters introduced so

far, we rely on a variational approach to approximate the intractable integrated
log-likelihood

log p(A|Θ) = L(q(Z,C);Θ) +DKL(q(Z,C)||p(Z,C|A,Θ)), (5)

where DKL denotes the Kullback-Leibler divergence between the true and ap-
proximate posterior distributions of (Z,C) given the data and model parameters.
Then, in order to deal with a tractable family of distributions, q(Z,C) is assumed
to fully factorize (mean-field assumption)

q(Z,C) = q(Z)q(C) =

N∏
i=1

q(zi)q(ci). (6)

Moreover, to benefit from the representational learning capabilities of GCN,
we assume

q(zi) = N (zi; µ̃φ(A)i, σ̃
2
φ(A)iIP), (7)

where µ̃φ(·) : RN×N 7→ RN×P (respectively σ̃2
φ(·) : RN×N 7→ R+N) is the

function mapping the normalized adjacency A = D−
1
2AD−

1
2 into the matrix of

the variational means (vector of the standard deviations), parametrized by the
two-layer GCN encoder gφ.

Finally, a standard assumption is made for variational cluster probabilities

q(C) =

N∏
i=1

M(ci; 1, γi), with

K∑
k=1

γik = 1, (8)

where γik represents the variational probability that node i is in cluster k.

4 D. Liang et al.

Thanks to Equations (6)-(7)-(8), the evidence lower bound (ELBO) can be
further developed as

L =

∫
Z

∑
C

q(Z,C) log
p(A|Z,α, β)p(Z|C, µk, σ2

k)p(C|π)dZ
q(Z,C)

= E [log p(A|Z,α, β)] + E
[
log p(Z|C, µk, σ2

k

]
+ E [log p(C|π)]− E [log q(Z|A)]− E [log q(C)]

= E [log p(A|Z,α, β)] + E
[
log

p(Z|C, µk, σ2
k)

q(Z)

]
+ E

[
log

p(C|π)
q(C)

]

= E

∑
i6=j

Aij log ηij + (1−Aij) log(1− ηij)

− N∑
i=1

K∑
k=1

γikDKL(N (µ̃φ(A)i, σ̃
2
φ(A)iIP)||N (µk, σ

2
kIP))

+
N∑
i=1

K∑
k=1

γik log(
πk
γik

),

(9)
where ηij = σ(α + βT yij − ||zi − zj ||2), DKL(·) denotes the KL divergence and
the expectation is taken with respect to the variational probability q(·). The
pseudo code of the optimization process is reported in Algorithm 1.

Algorithm 1 Estimation of DeepLPM
Input: adjacency matrix A, edge features Y
pretrain_model = pretrain(A, 50 epochs) . pre-training to save initial weights
while L increases do

µ̃φ, σ̃
2
φ = GCN(A)

update γik, πk, µk and σ2
k by calculating derivations . explicit optimization

calculate the training loss (negative ELBO) −L
update neural net parameters φ, α and β via SGD . implicit optimization

Output: reconstructed graph Â, cluster probability matrix γ̂

4 Numerical experiments

Simulation setup In order to simplify the characterization and to facilitate the
reproducibility of the experiments, we designed three types of synthetic networks
based on LPCM, SBM and from circle data. By varying the values of parameters
δ and δ

′
in scenario A (assortative) and scenario B (dissortative), we can model

the proximity between each cluster and thus test the robustness of our model
in both simple and difficult cases. Then, contrary to standard communities,
with strong transitivity (your-friend-is-my-friend effect), scenario C describes
the construction of three groups of nodes with little transitivity in each.

Benchmark study We benchmark DeepLPMwith SBM [9], LPCM [2], VGAE [6]
and ARVGA [10] on simulated datasets in three scenarios. To facilitate the ex-
periments, we do not consider the covariate information Y in simulated data,
thus β in Eq. (4) is set to 0. For each situation, we generated ten different
networks and calculated the averaged adjusted rand index (ARI) [4].

Deep latent position model for node clustering in graphs 5

First, focusing on scenario A demonstrated in Figure 2, we can see that al-
though the networks are simulated according to the LPCM, it does not exhibit
the best performance. The ARVGA always obtains the worst performance in
scenario A, which means it is not adaptive to assortative networks. Instead,
DeepLPM always outperforms other competitors with the highest ARI and a
small variance in all situations. Second, considering scenario B in Figure 3, SBM
is expected to have good performance in all models since the networks are sim-
ulated according to SBM. Indeed, it shows better performance than LPCM,
VGAE and ARVGA. As a matter of fact, LPCM cannot find clusters on dissor-
tative network structures and VGAE as well as ARVGA only work well in the
simple situation. Again, DeepLPM shows the best performance in all cases with
high ARI values and outperforms SBM when the value of δ

′
is less than 0.7.

Lastly, on the circular-structured data, all deep learning-based methods perform
better than the ones based on statistical models. ARVGA presents the highest
ARI compared to the other deep models, DeepLPM and VGAE have a slightly
lower ARI, as shown in Table 1. However, Figure 3 shows the embeddings learned
by ARVGA, VGAE and DeepLPM with latent dimension equal to 2 in scenario
C. It can be seen that only DeepLPM better preserves the network topology.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rate of proximity ()

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Fig. 2. Clustering ARI with different
proximity rates in Sc.A.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rate of proximity (′)

0.0

0.2

0.4

0.6

0.8

1.0

Cl
us

te
rin

g
AR

I

SBM
DeepLPM
VGAE
LPCM
ARVGA

Fig. 3. Clustering ARI with different
proximity rates in Sc.B.

Table 1. Clustering ARI with different proximity rates in Sc.C.

Method SBM LPCM VGAE ARVGA DeepLPM
Sc.C 0.443±0.00 0.415±0.20 0.610±0.03 0.631±0.04 0.625±0.03

1.00 0.75 0.50 0.25 0.00 0.25 0.50

1.5

1.0

0.5

0.0

0.5

1.0

Latent embeddings of ARVGA

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Latent embeddings of VGAE

4 2 0 2 4

6

4

2

0

2

4

6
Latent embeddings of DeepLPM

Fig. 3. Embeddings learned by ARVGA, VGAE and DeepLPM in Sc.C.

6 D. Liang et al.

Model selection A key element of an unsupervised learning technique such as
DeepLPM is to be able to automatically determine both the latent dimension (P)
and the number of clusters (K). We highlight here the ability of our methodology
to auto-penalize the ELBO for selecting both the intrinsic dimension of the latent
space and the number of groups appropriately.

Figure 5 shows the averaged training loss (-ELBO) and ARI on 50 networks
simulated according to scenario B (δ

′
= 0.5) with different latent dimensions

(P ∈ {2, 4, 8, 16, 32}). We fixed the number of clusters to the actual value K = 3.
As we can see, DeepLPM shows a minimal value of the negative ELBO when
P = 16, which is also associated with the highest ARI. Similarly, by varying
the number of clusters from 2 to 6, Figure 6 illustrates how the training loss
can also be used to find the appropriate number of clusters. In this experiment,
we trained another 50 synthetic data in scenario B (δ

′
= 0.5) with the latent

dimension P = 16. The results show that when K = 3, the training loss is
minimal, thus recovering the actual value of K for the simulation setting.

5 10 15 20 25 30
Latent dimension

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Cl
us

te
rin

g
AR

I

5 10 15 20 25 30
Latent dimension

44550

44600

44650

44700

44750

44800

Tr
ai

ni
ng

 lo
ss

Fig. 5. Averaged training loss (-ELBO)
and ARI with different latent dimensions
on 50 networks based on scenario B.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Number of clusters

44375

44380

44385

44390

44395

44400

44405

44410
Tr

ai
ni

ng
 lo

ss

Fig. 6. Averaged training loss (-ELBO)
with different number of clusters on 50
synthetic data in scenario B.

5 Analysis of Cora network

The Cora dataset contains 2,708 scientific publications classified in seven classes
and consists of 5,429 citation links. Most related works assume that the number
of clusters is equal to the number of classes used in supervised classification tasks,
whereas we argue that the class labels might not be in a one-to-one relation with
the detected communities in unsupervised clustering. Instead, an appropriate
cluster number should be obtained through model selection. Thus, we decided
to use the class membership of each paper to build a tensor Y of dimension
D = 7 × 7 encoding the similarities between articles. For each pair of papers i
and j with category labels si and sj , Ysisj = 1 indicates that paper i belongs to
the class si and j belongs to the class sj , 0 otherwise.

The model selection was conducted by varying the number of clusters from
5 to 11, with the dimensionality of the latent space equal to 16. Based on the
evolution of training loss, the number of groups was estimated to be K = 6 with
a clear minimum. Figure 6 shows the paper distributions when considering the
class labels for six groups. In contrast to the fact that each group contains only

Deep latent position model for node clustering in graphs 7

one defined class, it is clear that new similarities between papers in different
categories emerge as a result of the addition of paper labels as covariates.

Next, to better understand the clustering results, we plotted the latent po-
sitions learned by DeepLPM using PCA in Figure 7, highlighting nodes with
degrees higher than 10. Those papers are more often cited by other papers and
can be more representative. Interestingly, when looking at this figure from left to
right, the content is changing from applied research to more theoretical learning,
and then from bottom to top, the topic of the articles is changing from case-
based methods and reinforcement learning to genetic algorithms, and finally to
neural networks and statistical models.

Fig. 6. Partitions with covariates taking into account classes in each group on Cora.
Each group now contains a variety of categories that represent the hidden patterns
discovered through the addition of covariates.

Latent space learned by deepLPM

15

42

67

75

77

85

110

130

137 146

158

164189
220

251

259

295

343

345

360

379

416

427

428

431

439

454

466

478

479

480

520

524

539

553

559

563566

567 570

571

577

592

612

636

637

639

641

650

673

687739

746

748
773

794

810

882

911

966

968

996 1004

1017

1137

1154

1179
1219

1241

1291

1329

1334

1336

1355

1379

1460

1485

1499

1521

1528

1551

1570

1596

1645

1688

1697

1714

1719

1911

2154

2176

2221

2335

2422

2424
2500

Grp 1

Grp 2

Grp 3

Grp 4

Grp 5

Grp 6

Fig. 7. Learned hidden space (PCA compression on the first two principal components),
highlighting the nodes with degrees higher than 10.

Furthermore, based on the publications ID, we selected several articles with
relatively large degree from each group and analyzed the information. For in-
stance, according to paper titles, we find that group #1 (red) focuses on dynamic
or temporal learning algorithms using probabilistic methods or reinforcement
learning; in group #3 (blue), papers are largely based on the analysis and devel-
opment of case studies; then, group #4 (cyan) contains articles on applications
of genetic algorithms and neural networks; group #6 (yellow) typically involves
statistical and machine learning models, etc.

8 D. Liang et al.

Finally, we emphasize that, unlike most related works that consider super-
vised class labels as clusters in unsupervised learning, we encode this information
into edge features and estimate the number of clusters via model selection, which
aids in the discovery of new node similarities hidden behind the supervised in-
formation, as demonstrated by the results.

6 Conclusion

We introduced DeepLPM to perform node clustering in an end-to-end man-
ner by integrating the GCN encoder with the LPM-based decoder. Numerical
experiments show that DeepLPM outperforms state-of-the-art methods. More-
over, real-world application on a scientific citation network was also proposed to
illustrate the interest of the methodology for unsupervised analysis.

Acknowledgements This work has been supported by the French government,
through the 3IA Côte d’Azur, Investment in the Future, project managed by the
National Research Agency (ANR) with the reference number ANR-19-P3IA-
0002.

References

1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic
blockmodels. Journal of machine learning research (2008)

2. Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social
networks. Journal of the Royal Statistical Society: Series A (Statistics in Society)
170(2), 301–354 (2007)

3. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social net-
work analysis. Journal of the american Statistical association 97(460), 1090–1098
(2002)

4. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–
218 (1985)

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations (ICLR-
17) (2016)

6. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NeurIPS Workshop
on Bayesian Deep Learning (NeurIPS-16 BDL) (2016)

7. Latouche, P., Birmelé, E., Ambroise, C.: Overlapping stochastic block models with
application to the french political blogosphere. The Annals of Applied Statistics
pp. 309–336 (2011)

8. Mehta, N., Duke, L.C., Rai, P.: Stochastic blockmodels meet graph neural net-
works. In: International Conference on Machine Learning. pp. 4466–4474. PMLR
(2019)

9. Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstruc-
tures. Journal of the American statistical association 96(455), 1077–1087 (2001)

10. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized
graph autoencoder for graph embedding. In: International Joint Conference on
Artificial Intelligence (IJCAI-18). pp. 2609–2615 (2018)

