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Abstract

Large language models (LLMs) demonstrate advanced reasoning abilities, enabling
robots to understand natural language instructions and generate high-level plans
with appropriate grounding. However, LLM hallucinations present a significant
challenge, often leading to overconfident yet potentially misaligned or unsafe plans.
While researchers have explored uncertainty estimation to improve the reliability of
LLM-based planning, existing studies have not sufficiently differentiated between
epistemic and intrinsic uncertainty, limiting the effectiveness of uncertainty esti-
mation. In this paper, we present Combined Uncertainty estimation for Reliable
Embodied planning (CURE), which decomposes the uncertainty into epistemic and
intrinsic uncertainty, each estimated separately. Furthermore, epistemic uncertainty
is subdivided into task clarity and task familiarity for more accurate evaluation. The
overall uncertainty assessments are obtained using random network distillation and
multi-layer perceptron regression heads driven by LLM features. We validated our
approach in two distinct experimental settings: kitchen manipulation and tabletop
rearrangement experiments. The results show that, compared to existing methods,
our approach yields uncertainty estimates that are more closely aligned with the
actual execution outcomes. The code is at https://github.com/Firesuiry/CURE.

1 Introduction

Large Language Models (LLMs) have shown exceptional versatility [1} 2, [3], as evidenced by their
ability to handle a wide array of tasks. These tasks include answering complex questions [4], solving
mathematical problems [3]], generating computer code [[6], and performing sophisticated reasoning
during inference [[7]. When robots try to execute tasks instructed by language descriptions, they can
leverage LLM capabilities to interpret task instructions in natural language [8| 9], apply the common
sense reasoning of LLMs to understand their environment [[10], and formulate high-level action plans
based on the robot’s abilities and available resources.

However, a significant challenge with current LLMs is their propensity to hallucinate [11]—i.e.,
to confidently generate outputs that appear plausible but are actually incorrect and practically in-
feasible. [12]]. This misplaced confidence in erroneous outputs presents a considerable obstacle to
LLM-based planning in robotics. Additionally, natural language instructions in real-world environ-
ments often contain inherent or unintentional ambiguity from human instructors [[13]. And following
a flawed plan with excessive confidence may lead to undesirable or even unsafe actions. Consequently,
offering an uncertainty estimation for the planning model prior to execution is desirable to reflect the
level of confidence in their plans, allowing for halting execution or seeking human assistance in cases
of high uncertainty.
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Previous studies on uncertainty in reinforcement learning (RL) typically distinguish two components
of model uncertainty: epistemic uncertainty and intrinsic uncertainty [[14]. However, in research on
robotics LLM planners, these uncertainty components have not been analyzed at a fine-grained level.
This lack of comprehensive analysis can lead to inaccurate assessments of model capabilities, such as
misattributing uncertainty caused by environmental randomness to the model itself, thereby underes-
timating its true abilities [15]. Furthermore, when environmental changes occur, it is challenging to
isolate and update intrinsic uncertainty, hindering rapid adaptation to new conditions.

The empirical evidence from cognitive research reveals that clear task descriptions significantly
enhance decision accuracy by providing a precise framework for cognitive processing and reducing
the cognitive load associated with ambiguity [[16]. Conversely, vague objectives tend to introduce
substantial cognitive dissonance, thereby increasing hesitation and the likelihood of errors [17].
Similarly, the familiarity of tasks plays a crucial role in execution efficiency. Familiar tasks, which
have been ingrained through repeated exposure and practice, allow for streamlined cognitive and
motor processes, thereby optimizing performance [18]. In contrast, unfamiliar tasks necessitate
additional cognitive resources for schema construction and adaptation, thus introducing greater
uncertainty and potential inefficiencies. These cognitive insights indicate that epistemic uncertainty
can be decomposed into components related to task description clarity and task familiarity, enabling
more precise uncertainty modeling for LLM task planning.

In this paper, we separately estimate planning uncertainty and introduce a new method for uncertainty
estimation. First, we examine epistemic uncertainty in planning tasks, further breaking it down
into two factors: task clarity and task familiarity. Second, we model intrinsic uncertainty as the
expected success rate of a given plan. A lower expected success rate indicates a higher level of
intrinsic uncertainty as it implies that despite following the plan, there still exist factors within the
environment that may lead to failure. To evaluate these uncertainties, we use multi-layer perceptrons
regression heads driven by LLM features to estimate task clarity and expected success rate, while a
Random Network Distillation (RND) network is employed to assess task familiarity. In addition, we
propose a slower yet more precise task clarity evaluation method based on LLM-query. By combining
these components, we provide a comprehensive uncertainty assessment for LLM-based planning,
enhancing the accuracy of uncertainty estimation.

We compare the proposed algorithm with state-of-the-art uncertainty estimation techniques in robot
planning, as well as widely-used uncertainty estimation methods in LLMs. The experiments include
mobile manipulator in kitchen tasks and tabletop rearrangement tasks. The results demonstrate that the
uncertainty estimates produced by the proposed method were the most accurate and comprehensive,
showing the strongest correlation with the actual execution result.

Our main contributions are summarized as follows: First, we propose a novel uncertainty
evaluation method CURE that separately assesses epistemic uncertainty and intrinsic uncertainty
to better align model confidence with task success. Second, we present an effective method for
assessing task similarity in task planning, leveraging RND to enhance the foundation for uncertainty
estimation. Third, our experiments with a mobile manipulator in kitchen and tabletop rearrangement
scenarios demonstrate that the proposed algorithm significantly enhances the accuracy of uncertain
estimation, outperforming existing methods in embodied planning and LLM uncertain estimation.

2 Preliminaries

In this section, we introduce the core concepts underlying our proposed CURE framework, including
the definitions of uncertainty, the problem formulation and an overview of RND.

Definitions of uncertainty. Epistemic uncertainty is uncertainty due to a lack of knowledge or
information. It is reducible in principle, as it can be decreased by gathering more data or building
better models. It stems from ignorance. Intrinsic uncertainty (also called aleatoric uncertainty) is the
inherent randomness or variation in a system itself. It is irreducible, meaning it cannot be eliminated
even with perfect information or infinite data. It stems from the fundamental chaosof the world.

Problem statement. We consider a manipulation problem in which a high-level, free-form human
instruction [ is given (e.g., Give me something to drink). The observation O includes an instruction
pertaining to the current environment. An LLM planner decomposes the task into an object-centric
executable task plan A. The central problem investigated in this work is how to generate an uncertainty
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Figure 1: Overview of the proposed uncertainty-aware LLM planning framework. Given a
natural language instruction (e.g., Give me sth to drink) and environmental context (e.g., Coke, Sprite,
Apple), the LLM planner generates a high-level plan (e.g., I will give user Coke). Our framework
estimates the overall planning uncertainty using CURE module, which decomposes uncertainty into
epistemic and intrinsic components. Epistemic uncertainty encompasses task similarity and task
clarity, while intrinsic uncertainty is represented by the expected success rate of the generated plan.
The final uncertainty score then guides the decision to proceed, halt, or request clarification, thereby
enhancing planning reliability in uncertain or ambiguous scenarios.

estimate U that quantifies the planner’s confidence in the task planning process. For the convenience
in subsequent processing, we input I, O, and A into the LLama3.2-8B model to obtain the hidden
activations of the last token from the last layer, which serve as the task encoding vector 7T'.

Let S = {s1, $2,...,5,} represent the set of observed success rates, and U = {uy,ug,...,u,}
denote the corresponding set of planning uncertainty estimates, where n is the number of samples.

The objective is to maximize the statistical dependence between S and U, as measured by Spearman’s
rank correlation coefficient p. Formally, we aim to solve:

max p(S,U) Y]

where p(S,U) is defined as:
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Here, rank(s;) and rank(u;) denote the ranks of s; and u; within their respective datasets.

Random Network Distillation. Random Network Distillation (RND) is an approach initially utilized
to measure the novelty of a given state, aiming to encourage exploration for rarely-visited states in
large state space in RL. The core idea behind RND is to use a randomly initialized neural network,
referred to as the target network, which is kept fixed during training. A separate predictor network is
then trained to predict the output of the target network, typically via a regression loss. The target
network’s weights are not updated throughout the training process, and its outputs remain fixed.
This fixed target network is essentially a source of "random" or "unknown" knowledge, and the
predictor network attempts to minimize the difference between its predictions and the outputs of
the target network. The error in the predictor network’s predictions provides a measure of how well
the predictor is able to capture the structure of the environment. High prediction errors typically
indicate regions in the environment that are novel or unfamiliar to the agent, and low prediction errors
signify regions that are more familiar, as the predictor network has learned to approximate the target
network’s behavior well. Formally, let fo denote the target network with parameters ¢, and let g4
represent the predictor network with parameters ¢. The objective is to minimize the following loss:

L(¢) = Eanx [l9s(2) = fo(@)IIP], (©)



where X’ represents the input space (typically the state or observation space of the task). The error
between gy (z) and fy(x) reflects how well the predictor network approximates the fixed target
network. In environments where the target network is highly unpredictable, the prediction error will
be large, indicating the currently visited states are not familiar to the historical states. Utilizing this
characteristic, we can assess the familiarity of tasks.

3 CURE Method

Sections [3.1] and [3.2] provide a detailed description of the CURE architecture and our approach
to estimating task familiarity. Next, Section [3.3]delves into the evaluation of task clarity and the
prediction of the success rate.

3.1 Method Overview

We propose an overview of our method, CURE, which operates independently of any specific
LLM planner. Additionally, this approach is crafted to be plug-and-play, meaning it requires no
alterations to the foundational structures of the planners. After task planning is completed, we
separately compute epistemic uncertainty and intrinsic uncertainty associated with the planning
process. Epistemic uncertainty is further divided into task familiarity and task clarity. First, we
employ RND to estimate task familiarity, yielding Ag,. Next, task clarity is assessed using two
proposed methods: (i) A query-based approach leveraging the LLM, which is relatively slower. (ii) A
multi-layer neural network inference approach, which is computationally efficient. Both methods
yield a measure of task clarity, denoted as A,np. Finally, intrinsic uncertainty is computed using a
multi-layer neural network to infer the expected success rate p. The final uncertainty U is determined
using the following formula:

U:1—O¢1'(1—(12~Aamb)'p+043'Asima “)

where aq, aio, a3 are tunable parameters that balance the contributions of task clarity, expected task
success rate, and task similarity to overall uncertainty.

3.2 Task Familiarity Assessment

Firstly, we define the two key components in the RND framework: the target network and the
predictor network. The outputs of the target network fiuree; and the predictor network fprq are the
embedding Vectors Zger and Zpreq, respectively. Specifically:

Zarget = ftarget (T) ’
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Zpred = fpred(T) .
where T denotes the feature vector of the task description, as detailed in Section E}
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During the inference phase, the new task description vector T is input into the trained RND network.
By computing the Euclidean distance between the outputs of the target network and the predictor
network, we obtain the contextual similarity metric Agy,:

Agim = Hztarget - zpred||2o @)

This similarity metric reflects the degree of similarity between the current task and the known tasks.
A larger value of Ay, indicates a greater difference between the current task and known tasks,



suggesting that the task is relatively unfamiliar, thereby appropriately increasing the uncertainty in
the output. Conversely, a higher similarity indicates that the current task is more familiar, allowing
for a reduction in the uncertainty assessment.

3.3 Assessment of Task Clarity and Expected Success Rate

Slow Evaluation of Task Clarity Using LLM (Ambiguity) We employed a vanilla approach to
assess task clarity by designing a dedicated prompt for ambiguity evaluation. This prompt requires
the model to determine whether the given task description provides sufficient information to infer the
intended object and location of the user’s intent. The specific prompt can be seen in Appendix [C

Through this prompt, we prompt the model to determine whether the task description is sufficiently
clear to infer the user’s intended object and location. If the model deems the task description
inadequate for inference (choose multi item or target location), we consider the task to exhibit semantic
ambiguity, thereby increasing the uncertainty of the output. Conversely, if the task description is
sufficiently clear (choose one item and one target location), the model’s response indicates that the
task instructions are adequate, thereby reducing uncertainty.

The final assessment result is obtained as follows:

8
1 Insufficient (Ambiguity Present) ®)

A {O Sufficient (Information Complete)
amb —

Fast Evaluation of Task Clarity and Expected Success Rate Using Uncertainty Assessment
Network (UAN) First, we construct a training dataset using either code generation or LLM-generated
data. This dataset comprises the task encoding vector 7', the presence of task ambiguity A,m, € {0, 1},
and whether the planned subtasks were successfully executed y € {0, 1}.

We design a multilayer neural network fyan,
which takes as input the feature vector T and ™ % Llama
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The network training process employs a cross-
entropy loss function: Figure 3: The process of UAN. During the training
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tasks with clear objectives, both task clarity and
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where 1(-) is an indicator function, and the loss terms are defined as follows:
Eamb = - (Aamb log(Aamb) + (1 - Aamb) IOg(l - Aamb)) (10)

ﬁsuccess = - (y IOg(f)) + (]— - y) IOg(l - ]3)) (11)

4 Related Work

LLMs as Planners. Emergent reasoning enables Large Language Models (LLMs) to decompose
tasks into intermediate sub-goals and generate a sequence of planned actions [19]. Through prompting
and in-context learning, LLMs can translate natural language human instructions into executable
robotic actions based on scene descriptions [20}21]. RoboCodeX [22], ProgPrompt [23]] and CaP [24]
decomposes human instructions and leverages code generation to generate actions. RoboMamba [25]]
adopts a Mamba-based end-to-end vision-language-action (VLA) model for robotic manipulation.
RoboMP [26]] method enhanced robotic manipulation by integrating multimodal perception and
planning to improve generalization and decision-making capabilities. Recent studies further enhance
reasoning and planning capabilities by iteratively refining actions via self-reflection during the



planning process [27, 28, 29]. Tool-Planner [30], ReAct [31]] and Reflexion [32]] focus on multi-
step planning scenarios, where a robot can execute certain actions, observe state feedback, and
re-plan to make corrections. Tree-Planner [33] introduces a tree sampling based solution, whch
improvements in error reduction. However, in safety-critical robotic applications, certain invalid
actions may lead to irrecoverable and catastrophic safety failures. Therefore, our approach aims to
provide an uncertainty estimate after planning, enabling the system to withhold execution of plans
with insufficient confidence by anticipating uncertainty before action execution.

Quantifying Uncertainty in LLMs. LLMs often experience hallucinations [34], which present two
major challenges in planning. First, they might struggle to assess if a plan is achievable given a specific
problem description [35,[36]. Second, they can generate inadmissible actions and non-existent objects,
requiring translation or expert intervention to correct them [19, 37]]. To solve hallucinations, the
natural language processing community has shown increasing interest in quantifying uncertainty in
the outputs of large language models (LLMs) [38},139, 140l |41]], calibrating this uncertainty empirically
for accuracy [42) 43| [44], and examining the reliability of models [45] 46]]. Some researchers
have also focused on quantifying uncertainty in LLMs within the domain of robotic task planning.
For instance, the KnowNo framework [47]] treats task-level planning as a multiple-choice question
answering (MCQA) problem, and uses conform prediction to output a subset of candidate plans
generated by the LLM. IntroPlan [48], aligns the robot’s uncertainty with the intrinsic ambiguity
of task specifications before predicting a high-confidence subset of plans. However, these studies
primarily focus on the success rate of the overall task, with less attention given to the quality of
uncertainty estimation, and the distinct sources of uncertainty were overlooked. This paper presents
a supervised learning method using neural network outputs to estimate uncertainty, distinguishing
between epistemic uncertainty and intrinsic uncertainty. This approach offers a more comprehensive
understanding and capture of uncertainty in task planning. It provides a more accurate and faster
estimation of task planning uncertainty compared to existing methods.

S Experiments and Result

We evaluate our methods across a diverse range of language-instructed tasks and environments,
demonstrating their effectiveness in generating uncertainty assessments that are strongly correlated
with success rates.

Baselines. We consider 8 baselines, including KnowNo [47], IntroPlan [48]], and several uncertainty
estimation approaches in large language models (LLMs) [38]]. KnowNo [47] treats task-level planning
as a multiple-choice question answering (MCQA) problem and employs conformal prediction to
output a subset of candidate plans generated by the LLM. Since there is no uncertainty output
value, the softmax probability of the best option is directly used as the uncertainty estimate for task
planning. IntroPlan [48] introduces a knowledge base search process, incorporating the retrieved
knowledge into the context when estimating uncertainty to enhance prediction accuracy. Multi-
step [38]] decomposes the reasoning process into steps and extracts confidence levels for each step,
which can help mitigate overconfidence. Top-k [38] prompts the model to output multiple task plans
and their respective confidence levels. CoT [38]] uses zero-shot chain-of-thought (CoT), which has
been proven effective in inducing reasoning processes and improving model accuracy across various
datasets. Vanilla [38]] directly instructs the LLM to state its confidence. Self-probing [38]] first
generates an answer and then retrieves the confidence expressed verbally in another independent
chat session. Self-probing-log is similar to self-probing but applies softmax to the probabilities of
outputting "yes" and "no," using the probability of "yes" as the LLM’s confidence.

Proposed Methods (Specific introduction provided in Section[3.3|and Appendix[D). Ambiguity
An inquiry is made into whether the directive to the LLM is ambiguous. If it is ambiguous, the
confidence in the question is assessed as 0; otherwise, it is assessed as 1. CURE-Ambiguity The
confidence value is derived based on the value of ambiguity, in conjunction with the output of
CURE. KnowNo-Ambiguity The confidence value is assessed based on the value of ambiguity, in
combination with the output of KnowNo methodologies. CURE w/o sim Confidence is solely derived
from the output of the UAN network. CURE The confidence value is derived from Equation (T3).

Metrics. We introduces a novel metric, termed SR-HR-AUC, to more fairly assess the performance
of uncertainty estimation methods. The metric quantifies the accuracy of uncertainty estimation by



analyzing the variation in the success rate (SR) of a task at different help rates (HR). In addition to
the SR-HR-AUC metric, we also utilize the Spearman’s rank correlation coefficient to evaluate
the relationship between uncertainty estimation and task success rate. To further assess whether the
correlation is significant, we compute the corresponding p-value. Both the Spearman coefficient and
the associated p-value together provide a quantitative evaluation of whether a significant monotonic
relationship exists between uncertainty estimation and task success rate, offering additional statistical
support for the validity of the uncertainty estimation method. A detailed explanation of these metrics
can be found in Appendix [A]

Implementation Details. To facilitate reproducibility, we adopt open-source large language mod-
els (LLMs) as the planner in our approach. For the kitchen operation experiments, we utilize
Llama-3.3-70B-Instruct to accomplish the tasks. In the case of the rearrangement experiments,
which are relatively simpler, we employ L1ama-3.2-8B-Instruct to complete the tasks. In this
paper, we set a1 = 1, as = 0.6, and as = 30. Appendix [E| contains the hyperparameter search
experiments for these parameters. All experiments were conducted on a computing server equipped
with dual Intel Xeon Gold 6348 processors , 512GB of RAM, and four NVIDIA A100-PCIE-40GB
GPUs. Conducting the experiment took approximately 12 hours.

5.1 Mobile Manipulator in a Kitchen

Table 1: Results for Mobile Manipulator in a Kitchen

experiment name spearman p-value SR-HR-AUC
introplan 0.030 0.599929 0.005
self-probing-log 0.181 0.001 651 0.094
self-probing 0.111 0.054 750 0.120
vanilla 0.221 0.000115 0.236
cot 0.247 1.467 x 10° 0.273
top-k 0.254 8.286 x 106 0.286
multi-step 0.247 1.520 x 10~° 0.297
KnowNo 0.336 2.441 x 10~° 0.395
Ambiguity(Ours) 0.433 3.802 x 10715 0.371
CURE w/o sim(Ours) 0.417 4.431 x 10714 0.483
KnowNo-Ambiguity(Ours) 0.426 1.114 x 10~ 14 0.501
CURE(Ours) 0.454  1.079 x 10716 0.534
CURE-Ambiguity(Ours) 0.466 1.460 x 10~17 0.547

For this environment, we adopt the task specifications defined in KnowNo [47]]. Each scenario involves
a mobile robot positioned in front of a kitchen counter, adjacent to a set of recycling/compost/trash
bins. The task entails picking up objects from the counter and placing them either into one of the
bins or elsewhere on the counter. The environment exhibits certain ambiguities, including scenarios
involving potentially unsafe actions.

The results presented in Table[T] offer a comprehensive evaluation of various uncertainty estimation
methodologies applied to the mobile manipulator task in a kitchen environment.

The baseline methods demonstrate varying degrees of effectiveness in estimating uncertainty and
predicting task success, as evidenced by both Spearman correlation and SR-HR-AUC metrics.
IntroPlan shows a relatively low Spearman correlation of 0.030 (p = 0.60) and the lowest SR-
HR-AUC value of 0.005, possibly due to its high initial success rate. Self-probing-log achieves
a Spearman coefficient of 0.181 (p = 0.0017) and an SR-HR-AUC value of 0.094. The vanilla
approach yields a higher correlation of 0.221 (p = 0.000115) and an SR-HR-AUC value of 0.236.
CoT performs slightly better, with a Spearman coefficient of 0.247 (p = 1.467¢e-5) and an SR-HR-AUC
value of 0.273.Top-k and Multi-step methods exhibit the highest correlations among the baseline
methods—0.254 and 0.247, respectively—and corresponding SR-HR-AUC values of 0.286 and
0.297. Notably, KnowNo outperforms the other baselines with a correlation coefficient of 0.336 (p =
2.441e-9) and an SR-HR-AUC value of 0.395, highlighting its superior performance in this context.



The proposed methods significantly outperform the baseline approaches. The Ambiguity method
achieves a Spearman correlation of 0.433 (p-value: 3.802e-15), confirming the importance of ambi-
guity recognition in uncertainty estimation. The CURE w/o sim and KnowNo-Ambiguity methods
further enhance performance, with correlations of 0.417 and 0.426, respectively, both showing highly
significant p-values. The CURE method achieves an even higher correlation of 0.454 (p-value: 1.079e-
16), demonstrating the benefits of integrating UAN and RND approaches. The CURE-Ambiguity
method emerges as the most effective, achieving the highest Spearman correlation of 0.466 (p-value:
1.460e-17) and the best SR-HR-AUC value of 0.547.

The help-success curves of these methods are 104 — CURE
shown in Figures@]and[6} It can also be observed L URE losim
from the figures that the curve of the proposed 091

method has a larger area. As observed from
Figure[d] the confidence interval of the proposed
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performance of CURE is highly stable.

0.8

Success Rate
o
9

e
o

In conclusion, the proposed methods consis-
tently outperform the baseline approaches, pro-
viding more accurate and reliable uncertainty
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5.1.1 Result for CURE+IntroPlan

We conducted additional experiments to evalu-
ate the Overstep Rate, Overask Rate, and Help
Rate of the IntroPlan method, CURE method, and IntroPlan + CURE method when the target success
rate is 90%. The experimental results are shown in Table 2]

Table 2: Comparison of Overstep Rate, Help Rate and Overask Rate for CURE and IntroPlan.

Metric CURE IntroPlan + CURE IntroPlan
Overstep Rate | 34.88% 21.58% 31.82%
Help Rate | 71.33% 53.67% 19.33%
Overask Rate | 29.44% 53.42% 51.72%

The results show that the IntroPlan + CURE method achieved the absolute optimal effect in terms of
Overstep Rate, significantly reducing unsafe incidents. In terms of Help Rate, IntroPlan demonstrated
the lowest rate, indicating higher confidence and reduced need for human intervention. However,
considering the small difference between IntroPlan + CURE and IntroPlan in the Overask Rate metric,
it suggests that the help behavior of IntroPlan + CURE was not ineffective, significantly improving
safety performance. CURE performed best in the Overask Rate, partly due to the lower initial success
rate of its base method, KnowNo, making the effectiveness of the help more significant.

5.2 Tabletop Rearrangement

In this task, the robot arm is required to rearrange objects on a table within the PyBullet simulator.
Each scene is initialized with three bowls and three blocks, each of which is colored blue, green, and
yellow, respectively. The task requires the robot to move a specific number of blocks or bowls to a
designated position relative to another object. For example, “Move the green block to the left of the
blue bowl.”

In the tabletop rearrangement task, we use the task definitions from KnowNow and conduct ex-
periments within the PyBullet simulation environment. The robot is required to parse ambiguous
user instructions and perform the appropriate object rearrangement actions. The primary goal of the
experiment is to evaluate the effectiveness of different uncertainty estimation methods in handling



Table 3: Results for Tabletop Rearrangement

experiment name spearman p-value SR-HR-AUC
vanilla 0.328 6.519 x 107° 0.293
cot 0.312 3.901 x 1078 0.320
self-probing 0.282 7.751 x 1077 0.301
multi-step 0.161 5.222 x 1073 0.192
top-k 0.155 7.281 x 1073 0.146
KnowNo 0.302 9.609 x 10~8 0.351
CURE w/o sim(Ours) 0.610 6.347 x 1032 0.703
CURE(Ours) 0.635 2.827 x 1073° 0.732

ambiguous instructions. Due to the simplicity of the experiment and the effectiveness of the fast
methods, we did not test the slower methods(LLM based Ambiguity method).

The results presented in Table 3| offer a comparative analysis of the baseline and proposed methods
in estimating uncertainty during object rearrangement tasks. Among baseline methods, the Vanilla
approach achieves a Spearman correlation of 0.328 (p = 6.519e-9), outperforming other baselines
such as CoT (0.312, p = 3.901e-8) and Self-probing (0.282, p = 7.751e-7). This suggests that direct
confidence elicitation from LLMs can provide moderately reliable uncertainty estimates for simpler
rearrangement tasks. However, decomposition-based methods like Multi-step (Spearman = 0.161) and
Top-k (Spearman = 0.155) exhibit notably weaker correlations, indicating that stepwise confidence
aggregation may not generalize well to this domain. KnowNo, while achieving a competitive
Spearman coefficient of 0.302 (p = 9.609¢-8), remains limited compared to our proposed methods,
highlighting inherent constraints of KnowNo approaches in handling instruction ambiguities.

The proposed methods exhibit substantial improvements. CURE w/o sim achieves a Spearman
correlation of 0.610 (p = 6.347e-32), nearly doubling the performance of the best baseline. This
demonstrates the effectiveness of the UAN in capturing task-specific uncertainties. The integration of
RND in CURE further enhances performance, yielding the highest Spearman coefficient of 0.635
(p = 2.827e-35) and SR-HR-AUC of 0.732. The extreme statistical significance (p < 1e-30) of both
methods underscores the robustness of their uncertainty estimates.

The SR-HR-AUC metric reveals practical implications: CURE’s AUC of 0.732 indicates superior
ability to modulate help requests based on uncertainty, compared to KnowNo’s 0.351. This 108%
improvement demonstrates that our methods more effectively align uncertainty estimates with actual
task success probabilities, critical for safe human-robot collaboration.

To further visually demonstrate the performance of different methods, we plotted the help rate-success
rate curves for the baseline method and the proposed method (Figures[7). As shown in the figures,
the area under the curve for the CURE method is significantly larger than that of the baseline method,
indicating its superior ability to identify tasks with high uncertainty and take appropriate actions.

In summary, the proposed CURE methodologies markedly outperform the baseline methods, provid-
ing more accurate and reliable uncertainty estimates in the tabletop rearrangement task.

6 Conclusion

This paper presents CURE, an innovative framework designed to enhance reliable planning within
robotics applications through the utilization of LLMs. CURE significantly improves the alignment
between uncertainty estimates and actual execution outcomes. Empirical evaluations conducted on
tasks involving kitchen manipulation and tabletop rearrangement demonstrate that CURE surpasses
existing methodologies, offering uncertainty estimates that exhibit a stronger correlation with the rates
of task success. Furthermore, CURE is characterized by its ease of integration with any LLM-based
planner, thereby requiring minimal effort for implementation.

Limitations and Future Work. A primary limitation of our current work is that the predictive
model necessitates pretraining on existing datasets, and the model lacks generalizability, requiring
deployment tailored to specific task sets. Secondly, the current generation of uncertainty has not



been calibrated with actual success rates, necessitating an additional calibration step to align with the
confidence in execution.

Future research endeavors will focus on refining the CURE framework by integrating dynamic task
familiarity models capable of real-time adaptation, thereby augmenting the framework’s robustness
across a broader array of increasingly complex task scenarios. Additionally, the incorporation of
physical concepts into the uncertainty prediction model is proposed as a means to enhance the model’s
generalizability, allowing it to better accommodate a wider variety of tasks and conditions.

7 Broader Impact

In this article, we propose a fine-grained method for uncertainty estimation by quantifying the
inference confidence of a foundational model through both the model’s epistemic uncertainty and the
intrinsic uncertainty of the environment. CURE operates as a plug-and-play approach, which requires
no modification of existing workflows, and can be seamlessly integrated into current LLM-based
robotic planners as a supplement. Furthermore, we contend that CURE can serve as a general method,
extending the inference capabilities of foundational models beyond robotic applications.

However, as previously mentioned, during the implementation of our model, our approach continues
to yield high uncertainty in unseen environments. This maintains safety but necessitates new training
to improve accuracy. This limitation in generalization performance restricts the applicability of
CURE.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We confirmed that the main claims made in the abstract and introduction have
been accurately reflected and supported by experiment results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discuss the limitations of our work in Secl6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theory assumptions and proofs in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discussed models and implementation details in Section[5] Specifically,
the prompt used for evaluation are listed in Appendix [C] The datasets used for evaluation
are identical to those in the KnowNo[47]]. The code and datasets are included in the
supplementary materials. They will be released to the public upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included the code and datasets for task familiarity assessment and
assessment of task clarity and expected success rate in the supplementary materials. They
will be released to the public upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have documented the implementation details of our approach in Section [3]
including the model, hyperparameters. Additionally, we have provided comprehensive
information on the datasets utilized and the baselines employed in Appendix [D]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Table[I]and Table[3] the significance of the results is reported as p-values,
while in Figure |4} the confidence intervals of the proposed method are illustrated.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational requirements and costs for the proposed method are
discussed in Section 3

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have ensured that this paper conform the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the broader impacts of proposed CURE in Section [7}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of authors’ knowledge, the proposed method and corresponding
datasets do not pose such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adopted datasets originally proposed by KnowNo [47]], published under
Apache-2.0 license. We evaluated our proposed CURE using LLaMA models under LLaMA
Community License.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our proposed method does not does not involve crowdsourcing nor research
with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our proposed method does not does not involve crowdsourcing nor research
with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper uses LLMs solely for language polishing, grammar correction, and
translation.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Matrics Detail

Al SR-HR-AUC

SR-HR-AUC offers a more equitable evaluation of the performance of uncertainty estimation
methods. This metric quantifies the accuracy of uncertainty estimation by analyzing the variation in
the success rate (SR) at different help rates (HR). Specifically, in a given task, a robot can ensure the
success of the task by requesting human assistance; if no assistance is requested, the task success
rate is determined by the success rate of the planning model based on a large language model (LLM).
Assume there are 100 tasks, each planned using an LLM, and uncertainty is evaluated using an
uncertainty estimation module. At various help rates, tasks with the highest uncertainty are selected
for human intervention, while the remaining tasks are autonomously executed by the robot based on
the LLM’s plan, resulting in an overall success rate.

At a help rate of 0, the task success rate is y, which reflects the actual performance of the planning
model; at a help rate of 1, the task success rate is necessarily 100%. By plotting the curve of help rate
versus success rate, the area under the curve (AUC) can be used to assess the precision of uncertainty
estimation. However, to eliminate the influence of the model’s planning performance on uncertainty
estimation, this study introduces an additional normalization procedure.

Specifically, two benchmark curves are defined in this study:

1. Random Evaluation Curve: Assumes that the uncertainty of all tasks is a random value.
This curve linearly ascends from the baseline success rate point (0,y) to (1,1).

2. Perfect Uncertainty Evaluation Curve: Indicates a strong correlation between uncertainty
and task success rate. It ascends from (0, y) to (1 — y, 1), then remains constant.

where y is the task success rate when help rate is 0.

By calculating the area difference between the actual uncertainty evaluation curve and the random
evaluation curve, and dividing this by the area difference between the perfect evaluation curve and the
random evaluation curve, a normalized AUC value is obtained. This normalization process effectively
eliminates the influence of the baseline success rate, allowing SR-HR-AUC to more accurately reflect
the quality of uncertainty estimation.

As shown in the figure, the actual uncertainty evaluation curve (orange curve) lies between the
random evaluation curve (purple dashed line) and the perfect evaluation curve (green solid line). By
calculating the areas under each curve and applying the normalization formula described above, the
resulting SR-HR-AUC value provides a reliable measure of whether uncertainty estimation is closely
related to task success rate, thus offering a robust evaluation of uncertainty estimation methods.

Actual AUC — Random AUC

SR-HR-AUC = Ni lized AUC =
ormahize Perfect AUC — Random AUC

A.2 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient is a non-parametric statistical method used to assess the
monotonic relationship between two variables. Unlike Pearson’s correlation coefficient, Spearman’s
coefficient does not require the data to follow a normal distribution or exhibit a linear relationship,
making it suitable for various data types, particularly when the data does not conform to a linear
relationship, thus demonstrating better robustness.

Specifically, the Spearman coefficient evaluates the relationship between variables by ranking them
and then calculating the correlation between these ranks. Its value ranges from [—1, 1], where:
* A value of 1 indicates a perfect positive correlation between the two variables (i.e., as one
variable increases, the other variable monotonically increases);

* A value of -1 indicates a perfect negative correlation between the two variables (i.e., as one
variable increases, the other variable monotonically decreases);

* A value of 0 indicates no monotonic relationship between the two variables.
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SR-HR-AUC Metric for Uncertainty Estimation

1-y

Success Rate (SR)

Legend:

= Actual Estimation
=== Random Estimation

—— Perfect Estimation

0 0.4 0.8 1.0
Help Rate (HR)

Figure 5: The SR-HR-AUC metric is used to evaluate the performance of uncertainty estimation. The
figure shows three curves: the actual uncertainty evaluation curve (orange solid line), the random
evaluation curve (purple dashed line), and the perfect uncertainty evaluation curve (green solid line).
The horizontal axis represents the help rate (HR), and the vertical axis represents the success rate
(SR). By calculating the area difference between the actual curve and the random curve, and dividing
by the area difference between the perfect curve and the random curve, a normalized AUC value is
obtained. This metric effectively eliminates the influence of the baseline success rate, providing a
more accurate reflection of the quality of uncertainty estimation.

To further assess the significance of the correlation, we compute the corresponding p-value. The p-
value is used to measure the consistency between the observed result and the null hypothesis (usually
"no correlation"). A small p-value (typically less than 0.05) indicates that the null hypothesis is
rejected, suggesting that the correlation between the two variables is statistically significant, meaning
there is a significant monotonic relationship. Conversely, a larger p-value indicates that the null
hypothesis cannot be rejected, suggesting that the correlation is not significant.

Therefore, the Spearman coefficient, along with the corresponding p-value, provides a quantitative
evaluation of whether a significant monotonic relationship exists between uncertainty estimation and
task success rate, offering further statistical support for the validity of uncertainty evaluation methods.

B Additional Results
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Figure 6: The Help Rate-Success Rate Curve for Mobile Manipulator in a Kitchen
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B.1 Dataset scale result

We conducted experiments on dataset scale, and the results are as follows: The experimental results

Training Set Size 100 300 1000 3000 10000 30000 100000

SR-HR-AUC 0.125 0.146 0.174 0.234 0362 0430 0.547
Table 4: Experimental results on dataset scale.

demonstrate that increasing the dataset scale significantly improves the performance of the CURE
model. When the dataset reaches about 10,000 samples, the performance improvement becomes
noticeable, and further scaling up to 100,000 samples still yields continuous gains.

B.2 Calibrate result

Our approach involved splitting the test set into two parts: one for calibration and the other for
testing. Given a target success rate, we first determined a threshold on the calibration set. Tasks with
confidence below the threshold were completed with human assistance, while tasks with confidence
above the threshold were executed autonomously. By adjusting the threshold, we could make the
success rate approach the target success rate, thereby achieving calibration.

We tested this method for a target success rate of 85%. The results showed that the success rate on the
test set reached 84.33%, differing from the target by only 0.67%. This demonstrates that the CURE
method achieves good calibration accuracy.

C Prompt Template

In the following prompt, "SCENE" refers to the objects present in the current environment, for
example, [Coca-Cola, Sprite, apple]. "TASK" refers to the current instruction, such as [give me
something to drink].

C.1 Ambiguity method prompt

You are a robot in kitchen. You are given a scenario and a task. You need to place an item in a new
location.

Scenario: "SCENE"

Task: "TASK"

Optional items are: "SCENE"

Optional target locations are: "SCENE", user‘s hand, top drawer, bottom drawer, garbage can.
Please tell me what items you choose from and where is the target locations. You can choose one or
more. You need to choose every item and target location fit the task.

(Based on common-sense reasoning, extreme special cases should be disregarded.)

C.2 Vanilla prompt

You are a robot operating in an office kitchen.

You are in front of a counter with two closed drawers, a top one and a bottom one.

There is also a landfill bin, a recycling bin, and a compost bin.

On the counter, there is "SCENE"

"TASK"

provide what will you do and your confidence in this answer.

Note: The confidence indicates how likely you think what will you do is true.

Note: The action you take should be one of [pick-up, bring, move, open, close] and something you
seen(should be a single full name) [to where(should be a single full name) you seen if needed].
Use the following format to answer:

"Action:[What will you do]
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Confidence: [Your confidence level, please only include the numerical number in the range of 0-
100]%"

Only the answer and confidence, don’t give me the explanation.

Now, please answer this question and provide your confidence level.

C.3 COT prompt

You are a robot operating in an office kitchen.

You are in front of a counter with two closed drawers, a top one and a bottom one.

There is also a landfill bin, a recycling bin, and a compost bin.

On the counter, there is "SCENE"

"TASK"

analyze step by step, provide what will you do and your confidence in this answer.

Note: The confidence indicates how likely you think your action is true. Use the following format to
answer:

"Explanation: [insert step-by-step analysis here]

Action:[What will you do Here]

Confidence:[ Your confidence level, please only include the numerical number in the range of 0-
100]%"

Note: The action you take should be one of [pick-up, bring, move, open, close] and something you
seen(should be a single full name) [to where(should be a single full name) you seen if needed].
Only give me the reply according to this format, don’t give me any other words.

Now, please answer this question and provide your confidence level. Let’s think it step by step.

C.4 Self probing prompt

You are a robot operating in an office kitchen.

You are in front of a counter with two closed drawers, a top one and a bottom one.

There is also a landfill bin, a recycling bin, and a compost bin.

On the counter, there is "SCENE"

"TASK"

What will you do?

Note: The action you take should be one of [pick-up, bring, move, open, close] and something you
seen(should be a single full name) [to where(should be a single full name) you seen if needed].

"LLM response"

According to your response, what is your confidence in this action? reply with the confidence only.
the confidence should be a percentage.

C.5 Multi step prompt

You are a robot operating in an office kitchen.

You are in front of a counter with two closed drawers, a top one and a bottom one.

There is also a landfill bin, a recycling bin, and a compost bin.

On the counter, there is "SCENE"

"TASK"

What will you do? only interact with the objects in the scene.

Read the question, break down the problem into K steps, think step by step,

give your confidence in each step, and then derive your final answer and your confidence in this
answer.

Note: The confidence indicates how likely you think your answer is true.

Use the following format to answer:

"Step 1: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]...

Step K: [Your reasoning], Confidence: [ONLY the confidence value that this step is correct]Final
Answer and Overall Confidence (0-100): [ONLY the answer type; not a complete sentence], [ Your
confidence value]%"
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C.6 Top-k prompt

You are a robot operating in an office kitchen.

You are in front of a counter with two closed drawers, a top one and a bottom one.

There is also a landfill bin, a recycling bin, and a compost bin.

On the counter, there is "SCENE"

"TASK"

What will you do? only interact with the objects in the scene.

Provide your k best guesses and the probability that each is correct (0% to 100%) for the following
question.

Give ONLY the task output description of your guesses and probabilities, no other words or
explanation.

Note: The action you take should be one of [pick-up, bring, move, open, close] and something you
seen(should be a single full name) [to where(should be a single full name) you seen if needed].

For example:

G1: <ONLY the action description of first most likely guess; not a complete sentence, just the
guess!>

P1: <ONLY the probability that G1 is correct, without any extra commentary whatsoever; just the
probability !>

Gk: <ONLY the action description of k-th most likely guess>

Pk: <ONLY the probability that Gk is correct, without any extra commentary whatsoever; just the
probability!>

D Additional implementation details

CURE-Ambiguity

U=1-a1-(1—az-0.5  (Aambl + Aamp2)) - P + @3 - Agim (12)

Where Aympi and A,y are derived from Ambiguity and UAN, respectively.
Ambiguity

U:]-_al'(1_a2'Aamb1)'p+a3'Asim (13)

Where Aump; is derived from Ambiguity.
KnowNo-Ambiguity

U=1- aq - (1 —05- Aambl) p- OKI’I()WNO (14)

Where Ckpowno 18 the confidence from KnowNo and A, is derived from Ambiguity.
Complete Procedure for Kitchen Operation Experiment

First, we grasp the initial information including the scene and task, for example:

* Scene: a bottled unsweetened tea, an orange, and a bag of jalapeno chips
 Task: Put jalapeno chips in the drawer.

Next, we supplement the complete scene information to form a complete scene description:

We: You are a robot operating in an office kitchen. You are in front of a counter with two close
We: On the counter, there is an orange soda, a Pepsi, and an apple.

Based on this, we generate operation instructions according to the complete scene and task. This

generation process is consistent with KnowNo[? ]. It is emphasized that this generation method is
independent of the method proposed in this paper and can adopt any method to generate operation
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instructions. The generated operation instruction is (if the instruction is not in this format, it will be
reformatted by LLM):

action: pick-up jalapeno chips to bottom drawer
Next, we combine the aforementioned content into a prompt with specific content:

You are a human and there is a robot operating in an office kitchen. The robot is in front of a «
On the counter, there is {scene}.

You say: "{task}".

Then the robot {action}.

We input this prompt into the Llama3-8B model and extract the last layer’s hidden state
(last_hidden_state) as the feature vector 7.

Subsequently, the feature vector is input into the UAN network and RND network to obtain the final
expected success rate p, ambiguity Ay, and familiarity Agm:

p = 0.962
Aamp = 0.928
Agim = 0.048

Finally, the uncertainty (Uncertainty) is calculated using Eq.4; Confidence is calculated as: 1 — U.
The confidence value in the example is 0.378.

E Hyperparameter Search Experiments

In this section, we detail the hyperparameter search experiments conducted to fine-tune the parameters
a1 = 1, ap = 0.6, and a3 = 30 in the uncertainty estimation formula, as shown in Equation @
These experiments were performed within the context of the Mobile Manipulator in a Kitchen
environment.

U:].7041‘(170&2~Aamb)'p+043'14sima 15)
ay was set to 1 and remained unchanged throughout the experiments. This decision was made to
simplify the equation’s structure, ensuring that the primary scaling of the output confidence is directly
influenced by the product of the other components. By maintaining «; at a constant value, we
ensure that the adjustments in confidence primarily reflect changes in ambiguity (A,y) and similarity
(Agim), thereby focusing the exploration on the interactions of these factors. The hyperparameter
search aimed to optimize c; and a3 to balance the contributions of ambiguity and similarity to the
overall uncertainty score. Several values were tested for each parameter to assess their impact on the
performance metrics, particularly the Spearman correlation coefficient and SR-HR-AUC.

ag Search: The parameter aro modulates the influence of ambiguity on the uncertainty score. We
explored values ranging from 0.1 to 0.9 while keeping ag = 30, with the corresponding SR-HR-AUC
values depicted in Figure[8] The experiments indicated that lower values resulted in diminished
sensitivity to the ambiguity component, while higher values led to excessive influence, sometimes
overshadowing the task success probability (p). The optimal value of vy = 0.6 was chosen as it
provided a balanced contribution to the uncertainty score, resulting in improved correlation and
SR-HR-AUC metrics.

a3 Search: The parameter a3 adjusts the weight of the similarity component. Values from 0 to
3000 were tested while maintaining o = 0.6, as shown in Figure [§] Findings showed that lower
values inadequately captured similarity nuances, whereas higher values introduced excessive noise
into the estimation process. as = 30 emerged as the optimal setting, aligning similarity’s contribution
with the overall uncertainty, thereby maximizing the predictive performance as measured by the
evaluation metrics. Overall, these hyperparameter settings were determined through exhaustive
trials aimed at enhancing the model’s ability to accurately estimate uncertainty and predict task
success. The chosen values of ay = 0.6 and a3 = 30 reflect the optimal balance between the
distinct components of ambiguity and similarity, leveraging their individual strengths to achieve
robust uncertainty estimation.
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Figure 8: SR-HR-AUC values for different settings of oy and as.
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