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Abstract

Modern object detection approaches cast detecting ob-

jects as optimizing two subtasks of classification and lo-

calization simultaneously. Existing methods often learn

the classification task by optimizing each proposal sepa-

rately and neglect the relationship among different propos-

als. Such detection paradigm also encounters the mismatch

between classification and localization due to the inherent

discrepancy of their optimization targets. In this work, we

propose a ranking-based optimization algorithm for harmo-

niously learning to rank and localize proposals in lieu of the

classification task. To this end, we comprehensively inves-

tigate three types of ranking constraints, i.e., global rank-

ing, class-specific ranking and IoU-guided ranking losses.

The global ranking loss encourages foreground samples to

rank higher than background. The class-specific ranking

loss ensures that positive samples rank higher than negative

ones for each specific class. The IoU-guided ranking loss

aims to align each pair of confidence scores with the asso-

ciated pair of IoU overlap between two positive samples of

a specific class. Our ranking constraints can sufficiently ex-

plore the relationships between samples from three different

perspectives. They are easy-to-implement, compatible with

mainstream detection frameworks and computation-free for

inference. Experiments demonstrate that our RankDetNet

consistently surpasses prior anchor-based and anchor-free

baselines, e.g., improving RetinaNet baseline by 2.5% AP

on the COCO test-dev set without bells and whistles. We

also apply the proposed ranking constraints for 3D object

detection and achieve improved performance, which further

validates the superiority and generality of our method.

1. Introduction

Object detection is a fundamental task in computer vi-

sion with extensive subsequent research fields (e.g., in-

stance segmentation [32] and pose estimation [40]) and

wide practical applications including intelligent surveil-

lance, autonomous driving, etc. Owing to the great ad-

vancement of convolutional neural networks (CNNs), deep

(a) Classification (b) Global ranking

(c) Class-specific ranking (d) IoU-guided ranking

Figure 1. Illustration of the conventional classification loss and

the proposed three types of pair-wise ranking losses. Gray color

means background and other colors mean different object classes.

Circles and Triangles indicate the object confidence and IoU over-

lap, respectively. Darker colors mean higher values.

learning based object detectors have achieved outstand-

ing performance compared to the conventional hand-crafted

features and classifiers. Typical methods include two-stage

and one-stage anchor-based detectors. The two-stage meth-

ods [13, 36, 9, 16] first generate a set of limited candidate

region proposals to distinguish foreground and background,

and then classify and regress them for final detection. Two-

stage methods have shown superior performance for object

detection but often require large computation overhead and

thus limit the applications on the resource-constrained de-

vices. One-stage detectors [30, 34, 29] aim to identify ob-

jects from dense pre-defined anchors without the extra pro-

posal generation step. Despite the efficiency, these one-

stage detectors often suffer from the issue of foreground-

background class imbalance. Recent anchor-free methods
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[48, 24, 39, 23] attempt to detect objects by predicting

points instead of enumerating possible locations, scales and

aspect ratios with pre-defined anchor boxes. Most of them

also follow the de facto paradigm by formulating object de-

tection as multi-task learning of classification and localiza-

tion [39, 23].

The popular focal loss [29] has been exploited to tackle

the class imbalance issue by re-weighting the foreground

and background samples. Although focal loss has shown

improved performance for one-stage anchor-based and

anchor-free detectors, it remains two limitations as follows.

(1) Focal loss is designed for a single candidate sample and

neglects the relationship among different samples. Treat-

ing each sample independently for optimization may lead to

hard positives (i.e., positive samples with low object confi-

dence) and hard negatives (i.e., negative samples with high

object confidence), which hinders the final detection per-

formance. (2) There exists the mismatch problem between

classification and localization as the two tasks are optimized

differently, which leads to accurately localized object pro-

posals being suppressed by less accurate ones in the post-

processing procedure. In fact, classification aims at distin-

guishing the foreground proposals from background regard-

less of the location information, while bounding box regres-

sion aims at localizing objects by maximizing intersection-

over-union (IoU) metrics between foreground proposals and

ground-truth bounding boxes. The probability learned by

classification serves as classification confidence but local-

ization requires localization confidence to learn optimal ob-

ject location. Existing methods [22, 38] often adopt ex-

tra dedicated network structures to better learn localization

confidence. However, they require careful designs of subnet

structure or score fusion strategy and introduce additional

computation cost during inference.

To alleviate these problems, we propose a ranking-based

optimization algorithm to explicitly model the relationships

between different pairs of proposals. In fact, classification

can be viewed as a point-wise ranking problem where all

the foreground samples are encouraged to rank higher than

background, as shown in Figure 1 (a). However, we ob-

serve that it is difficult to optimize hard proposals by such

point-wise ranking constraint. Therefore, we propose to re-

place the point-wise ranking task (i.e., classification) with

optimizing two pair-wise ranking losses, i.e., global rank-

ing loss and class-specific ranking loss. The global rank-

ing loss encourages foreground samples to rank higher than

background. The efficacy of our global ranking loss is simi-

lar with binary cross-entropy loss for classifying foreground

and background samples but we realize it in a pair-wise

manner (Figure 1 (b)). The global ranking loss treats posi-

tive samples from all the classes as foreground and does not

incorporate the class information. We further propose the

class-specific ranking loss to encourage that positive pro-

posals of a specific class rank higher than negative ones

(Figure 1 (c)). These negative proposals include those from

other object classes as well as background. To emphasize

hard foreground-background and positive-negative pairs,

we design a dynamic re-weighting factor for both global

and class-specific ranking losses. Moreover, to mitigate the

mismatch problem between classification and localization,

we propose an IoU-guided ranking loss to align each pair of

object confidence scores with the corresponding pair of IoU

overlap between two positive proposals of a certain class

(Figure 1 (d)). It helps reduce the gap between these two

subtasks and learn more localization-sensitive confidence

for accurate object detection.

We evaluate our ranking-based object detection algo-

rithm and compare with the state-of-the-art methods on the

standard COCO benchmark. Our RankDetNet consistently

improves the existing anchor-based and anchor-free object

detectors. Especially, our RankDetNet improves RetinaNet

(ResNet-50) [29] and FCOS-ATSS (ResNet-50-DCN) [46]

by 2.5% and 2.4% AP on the COCO test-dev set, respec-

tively. Without bells and whistles, our single best model ob-

tains 48.5% AP on the COCO test-dev set under the single-

scale inference setting. We also apply the proposed ranking

constraints for 3D object detection and achieve performance

gains of 2.02% AP over the SA-SSD baseline [15]. The re-

sults further validate the superiority and generality of our

method.

The main contributions of this paper are summarized as

follows. (1) We propose a ranking-based object detection

algorithm by replacing the conventional classification loss

with three types of pair-wise ranking losses. The proposed

ranking constraints can be seamlessly integrated into exist-

ing mainstream detection framework without changing the

network structure or requiring dedicated post-processing

procedures. These constraints are only used for training and

thus do not introduce extra computation cost for inference.

(2) We view classification as a point-wise ranking problem.

The global and class-specific ranking losses can serve as

an effective alternative of classification in a pair-wise man-

ner. Both constraints can reduce the number of reverse pairs

during optimization. (3) We propose an IoU-guided ranking

loss to address the mismatch problem between classification

and localization. It helps modulate these two subtasks by

aligning the object confidence score and its associated IoU

overlap in a pair-wise manner, resulting in more accurate

bounding box predictions. (4) Our RankDetNet achieves

consistent performance improvements over 2D and 3D ob-

ject detection baselines, which validates the superiority and

generality of our method.

2. Related Work

Generic Object Detection. Generic object detection has

achieved outstanding performance due to the advancement
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of deep convolutional neural networks. Most of modern

deep learning based object detectors follow the paradigm of

casting object detection as classifying and regressing can-

didate bounding boxes in images. R-CNN [14] proposes

to first generate candidate region proposals and then re-

fine them to obtain final predictions. This two-stage de-

tection method has been improved by a broad range of con-

secutive work including reducing redundant calculation of

RoI features with spatial pyramid pooling [17], RoIPool-

ing [17] or RoIAlign [16], generating region proposals by

RPN [36], improving efficiency by position-sensitive score

map [9] and light-head detection head [27]. While the two-

stage methods have shown promising results, heavy compu-

tation loads are often entailed and applications on resource-

constrained devices are limited. One-stage methods [30, 34]

thus have been developed for efficient detection by directly

classifying and regressing the dense pre-defined anchors

without region proposal generation. In contrast to anchor

mechanism, an emerging line of recent work attempts to de-

tect objects by eliminating the requirements of pre-defined

anchor boxes with different locations, scales and shapes

[39, 23, 48, 49, 24]. There are different designs in these

anchor-free methods for object detection such as finding ob-

ject centers and regressing to their sizes [21, 48], detecting

and grouping bounding box corners [24, 49], modeling all

points [39] or shrunk points [23] in boxes as positive. Re-

cently, various attempts have been made to further improve

the detection performance, e.g., by addressing scale varia-

tions [28, 26], incorporating additional context information

[11], refining anchor boxes [47, 41], re-weighting or min-

ing hard samples [29, 37, 30, 5]. In this work, we propose a

unified ranking-based optimization framework as a substi-

tute for the classification task to facilitate learning accurate

object detection.

Mismatch between Classification and Localization. It

is observed that the mismatch problem between classifi-

cation and localization hinders the detection performance.

The essence of mismatch lies in their different optimization

targets. Existing methods mainly address the mismatch is-

sue in two aspects. First, task-specific detection heads are

constructed to mitigate the potential conflicts between the

two subtasks. Double-Head RCNN [43] splits the branches

of classification and regression right after RoIAlign and

constructs them with FC layers and Conv layers respec-

tively. Decoupling Head [31] is designed to disentangle

classification and regression via the self-learned optimal

feature extraction. Second, localization-sensitive scores are

predicted to avoid accurately localized bounding boxes be-

ing suppressed by less accurate ones in the post-processing

procedure. IoU-Net [22] introduces a branch for IoU pre-

diction which replaces the classification score for NMS. Un-

certain estimation [8, 19] is explored to learn the variance

of bounding box predictions and improve the localization-

sensitivity of confidence scores. Learning-to-Rank [38] uti-

lizes an extra light-weight network to learn a ranking score

of a proposal for NMS. In this work, we adopt a different

way to tackle the mismatch problem by the pair-wise IoU-

guided ranking loss.

Ranking Algorithms. Learning to rank has been widely

used in information retrieval, search engine and recommen-

dation system, which aims to optimize the rank of can-

didate pairs or sort of lists. Ranking algorithms are not

only explored in classical machine learning methods (e.g.,

RankSVM [20]), but also developed in CNN-based methods

for deep metric learning [4, 42], deep visual-semantic em-

bedding [10], etc. Ranking algorithms can be categorized

into three types, i.e, point-wise [25], pair-wise [2] and list-

wise [6, 44, 3] ranking losses. Classification can be viewed

as a point-wise ranking problem by shrinking samples of

the same class into one point in the feature space.

In this work, we attempt to optimize object detection by

replacing the classification task with the proposed pair-wise

ranking constraints. Recent related methods [7, 33] also

convert the classification task to a ranking problem. The

main differences between prior ranking-based methods and

ours are three-fold. First, the optimization targets are differ-

ent. AP loss [7] targets to directly optimize the average pre-

cision metric of object detection and can be viewed as a list-

wise ranking loss, while our ranking losses are optimized in

a pair-wise manner. DR loss [33] optimizes the rank of the

expectations of derived foreground and background distri-

butions, while we optimize the rank of original pairs of pro-

posals. DR loss can be viewed as a kind of global ranking

loss but the algorithms on how to collect and optimize these

pairs are different. Second, the implementation difficulties

are different. AP loss is non-differentiable and non-convex

and hence needs a tailored approximate algorithm for opti-

mization. DR loss also needs complicated regularization

and smooth approximation algorithms to obtain the con-

strained distribution. Differently, our ranking constraints

are easier to implement and can be directly trained by the

standard gradient descent methods without extra compli-

cated optimization strategies. Third, [7, 33] only optimize

the ranking problem for classification while we also con-

strain the relationship between classification and localiza-

tion with the explicit IoU-guided ranking loss.

3. Proposed Approach

In the object detection baseline method (Figure 2 (a)),

two subtasks of classification and localization are optimized

in a multi-task manner. Given a set of candidate proposals

from an image, the classification task aims to identify the

foreground proposals from background ones. The classifi-

cation task can be optimized by:
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(a) Baseline detection network (b) Our RankDetNet

Figure 2. (a) The baseline detection network consists of two subtasks of classification and localization. (b) The proposed RankDetNet

replaces the classification loss with the three types of pair-wise ranking losses.

min
θ

N∑

i

(
∑

pi∈Pi

Lcls(fθ(pi)) +
∑

ni∈Ni

Lcls(fθ(ni))) (1)

where θ denotes the network parameter to be learned, N is

the number of total training images, Lcls is the loss func-

tion for classification, fθ(·) predicts the object confidence

for each candidate. pi and ni indicate the positive and neg-

ative samples from the candidate sets of Pi and Ni in the i-

th image, respectively. The conventional cross-entropy loss

encounters the class imbalance problem as |N | ≫ |P| dur-

ing optimization. The focal loss alleviates such issue with

a re-weigting scheme but does not consider the relationship

among samples as it computes the loss for each sample sep-

arately. In this work, we propose a different way for ob-

ject detection with a ranking-based learning framework. For

brevity, we will omit the index of image in the subsequent

sections.

3.1. Global Ranking Loss

In order to model the relationships between foreground

and background samples, we propose a global ranking loss

to encourage foreground samples to rank higher than back-

ground ones. Our global ranking loss can be formulated as:

min
θ

∑

n∈N

∑

p∈P

z · Lrank(fθ(n)− fθ(p)) (2)

where z is a dynamic re-weighting factor:

z(n, p) =
Lrank(fθ(n)− fθ(p))∑

n′∈N

∑
p′∈P Lrank(fθ(n′)− fθ(p′))

(3)

Lrank is a non-negative monotonically-increasing func-

tion and we use the exponential form exp(·) in our method.

To construct the foreground-background pairs, we collect

all the positive proposals from all the object classes as fore-

ground. We design two schemes to construct negative pro-

posals: (1) We apply OHEM [30] to mine hard negatives

as background. The ratio between foreground and back-

ground samples is enforced to 1:3. (2) We sort all the

background samples based on the object confidence scores

and divide them into multiple groups at equal intervals of

scores. We then use the average scores of each group to

compute the loss. The dynamic re-weighting factor z is de-

signed to emphasize the learning of foreground-background

reverse pairs (i.e., object confidence of a background sam-

ple is higher than a foreground one) with the large score

gap. We constrain no gradient back-propagating along the

variable during training.

Compared to binary classification which can be viewed

as a point-wise ranking problem, our global ranking loss

is optimized in a pair-wise manner differently. Since each

pair consists of a foreground sample and a background one,

it is well balanced with respect to the foreground and back-

ground classes during optimization. We observe that the

foreground-background reverse pairs (i.e. hard pairs) can

be reduced by training the proposed global ranking loss.

3.2. ClassSpecific Ranking Loss

The global ranking loss aims to rank all the foreground

samples from all the object classes higher than background.

It does not incorporate the class information to distinguish

different object classes. Thus, we propose a class-specific

ranking loss to encourage positive samples from a specific

class to rank higher than negative ones. In this case, the neg-

ative samples can be collected from the other object classes

as well as background. Our class-specific ranking loss can

be formulated as:

min
θ

C∑

c=0

∑

n∈Nc

∑

p∈Pc

zc · Lrank(fθ(n)− fθ(p)) (4)

where zc is a dynamic re-weighting factor:

zc(n, p) =
Lrank(fθ(n)− fθ(p))∑

n′∈Nc

∑
p′∈Pc

Lrank(fθ(n′)− fθ(p′))
(5)

Here, C is the total number of object classes, Nc and Pc

indicate the sets of candidate negative and positive propos-

als for the c-th class, zc is a dynamic re-weighting factor
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for the c-th class. For each class, we collect all the positive

samples to compute the loss. To mine negative samples, we

apply “OHEM 1:3” or “group” strategies which are simi-

lar with our global ranking loss. Training with the class-

specific ranking loss can reduce the positive-negative re-

verse pairs and mitigate the positive-negative sample imbal-

ance problem for each class. Our global and class-specific

ranking losses are complementary to each other and serve

as an alternative of the classification problem in a pair-wise

manner.

3.3. IoUGuided Ranking Loss

To tackle the mismatch between classification confi-

dence and localization confidence, we propose an IoU-

guided ranking loss to encourage one positive sample with

a larger IoU overlap to rank higher than another one with

smaller IoU. To this end, we align each pair of confidence

scores with the associated pair of IoU overlap between two

positive samples of a specific class. The optimization ob-

jective can be formulated in a pair-wise manner:

minθ
∑C

c=0

∑K
k=0

∑
pi∈Pk

c

∑
pj∈Pk

c
L(θ),

L(θ) = Lrank(−α · (fθ(pi)− fθ(pj))(sθ(pi)− sθ(pj)))
(6)

where K is the number of levels of detection head (e.g., 5

levels for RetinaNet with ResNet-50-FPN) and α > 0 is a

hyper-parameter to control the loss value. Pk
c indicates the

set of candidate positive proposals from the c-th class and

the k-th pyramid level. sθ(·) denotes the IoU overlap be-

tween the candidate proposal and the nearby ground-truth

bounding box. In contrast to the global and class-specific

ranking losses where samples can be collected across differ-

ent pyramid levels, we collect samples from each separate

level to compute the IoU-guided ranking loss. This is be-

cause distributions of IoU overlap are different in different

pyramid levels. Specifically, the deeper level contains larger

proposals which tend to generate higher overlap value with

GT according to the IoU metric and vice versa.

During the SGD optimization process, we constrain no

gradient back-propagating along the IoU score term with

the lower object confidence score. The other IoU score

term as well as two confidence score terms are normally

optimized. Without loss of generality, suppose fθ(pi) >

fθ(pj), if sθ(pi) < sθ(pj), we freeze sθ(pj) and optimize

sθ(pi) to he higher than sθ(pj); if sθ(pi) > sθ(pj), we still

freeze sθ(pj) and continue to optimize sθ(pi). If sθ(pj)
is not frozen, the loss still can drop by decreasing sθ(pj),
i.e., decreasing the IoU overlap between positive samples

and GT, which causes an unexpected optimization direction.

Our IoU-guided ranking loss is different with IoU loss [45].

The IoU loss handles each sample separately and only op-

timizes the IoU score term, while we handle samples in a

pair-wise manner and optimize object confidence and loca-

tion simultaneously.

The proposed IoU-guided ranking loss can help learn

localization-sensitive object confidence and help reduce the

misalignment between proposal classification and location

regression, leading to more accurate bounding box predic-

tions.

3.4. RankDetNet Detector

The proposed ranking constraints can be easily inte-

grated into the existing baseline detection network by re-

placing the classification task with the proposed ranking

losses, as shown in Figure 2 (b). We simply combine the

three types of ranking losses with the regression loss by

weights of 1:1:1:1 for training and follow the baseline de-

tectors for testing. Our RankDetNet does not need to tweak

the original network and do not introduce extra computation

cost for inference.

4. Experiments

4.1. Experimental Settings

Datasets. All the experiments are conducted on the MS

COCO 2017 dataset with 80 object classes for object de-

tection. We train the detector on the training set contain-

ing 118K images and evaluate the performance on the val-

idation set with 5K images. We also report results on the

COCO test-dev set. The standard COCO AP is used as the

evaluation metrics.

Training Details. We use pre-trained networks on Im-

ageNet as backbone (e.g., ResNet-50 [18]) and construct

a feature pyramid network [28] on top for detection. Im-

ages are resized to a maximum scale of 800×1333 without

changing the aspect ratio. The network is optimized with

Stochastic Gradient Descent (SGD) with momentum of 0.9,

weight decay of 0.0001 and batch size of 16. We first use fo-

cal loss to train the network for providing initialized weights

and then train our ranking losses by 12 epochs. Such warm-

up scheme can help improve the stability of training. The

initial learning rate is set as 0.01 and decayed by 10× at 8-th

and 11-th epochs. For the OHEM [30] strategy, we use all

the positives and collect 3× hard negatives. For the group

strategy, we set numbers of groups as 15 in the global rank-

ing loss and 3 for each class in the class-specific ranking

loss. In the IoU-guided ranking loss, we set α = 1.0 for

all the experiments. Our experiments are conducted on Py-

torch and MMdetection-1.0 platforms with 4 V100 GPUs.

Our RankDetNet cost 8.95G memory per GPU and 4h per

epoch with the RetinaNet (ResNet-50) baseline for training.

Inference Details. For inference, we pre-process the in-

put image using the same procedure as the training phase.

The network outputs the predicted bounding boxes and their

associated class probabilities. Following [29], we first filter

out a large number of background bounding boxes by set-

ting an IoU threshold as 0.05 and then generate top 1,000
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Methods Backbone AP AP50 AP75 APS APM APL

RetinaNet ResNet-50 35.4 55.3 37.7 20.1 39.1 46.0

RetinaNet + RankDetNet ResNet-50 37.8 57.1 40.7 20.8 41.0 50.1

RetinaNet ResNet-101 37.5 57.6 40.3 21.2 42.0 49.2

RetinaNet + RankDetNet ResNet-101 39.4 59.1 42.3 21.6 43.2 52.3

RetinaNet ResNeXt-64×4d-101 39.7 60.5 42.8 23.4 44.1 51.8

RetinaNet + RankDetNet ResNeXt-64×4d-101 41.6 61.4 44.9 23.0 45.6 55.1

FCOS-ATSS ResNet-50 39.2 57.2 42.5 23.2 43.2 50.9

FCOS-ATSS + RankDetNet ResNet-50 40.7 58.4 44.0 23.8 44.8 52.8

FCOS-ATSS ResNet-50-DCN 43.9 62.1 47.6 26.1 48.0 57.9

FCOS-ATSS + RankDetNet ResNet-50-DCN 45.2 63.4 49.1 26.7 49.1 60.5

FCOS-ATSS ResNeXt-64×4d-101-DCN 47.1 66.1 51.0 29.5 51.2 61.7

FCOS-ATSS + RankDetNet ResNeXt-64×4d-101-DCN 48.1 66.7 52.5 29.8 52.3 63.4

Table 1. Detection performance comparisons (%) on the COCO 2017 validation set. For RetinaNet and FCOS-ATSS baselines, we report

the performance with our re-implementation. For fair comparisons, all the results are obtained in the same single-scale training and

inference settings.

Methods Backbone AP AP50 AP75 APS APM APL

Anchor-Based Detectors:

SSD513 [30] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

YOLOv3 (608×608) [35] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

Faster R-CNN w/ FPN [28] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

PISA [5] ResNet-50 37.3 56.5 40.3 20.3 40.4 47.2

AP-Loss [7] ResNet-101 37.4 58.6 40.5 17.3 40.8 51.9

DR-Loss [33] ResNet-50 37.6 - - - - -

Mask R-CNN [16] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

RetinaNet [29] ResNet-50 35.7 55.0 38.5 18.9 38.9 46.3

RetinaNet [29] ResNet-101 37.8 57.5 40.8 20.2 41.1 49.2

Anchor-Free Detectors:

FoveaBox [23] ResNet-50 37.1 57.2 39.5 21.6 41.4 49.1

FCOS [39] ResNet-50 37.1 55.9 39.8 21.3 41.0 47.8

FSAF [50] ResNet-50 37.2 57.2 39.4 21.0 41.2 49.7

ExtremeNet [49] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1

CornerNet [24] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

CenterNet-HG [48] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8

FCOS-ATSS [46] ResNet-50 39.3 - - - - -

FCOS-ATSS [46] ResNet-50-DCN 43.0 - - - - -

Ours:

RetinaNet + RankDetNet ResNet-50 38.2 57.8 41.2 20.9 40.8 48.4

RetinaNet + RankDetNet ResNet-101 40.0 59.7 43.2 21.9 43.0 50.6

RetinaNet + RankDetNet ResNeXt-64×4d-101 42.1 62.1 45.4 23.8 45.2 53.2

FCOS-ATSS + RankDetNet ResNet-50 41.1 58.9 44.9 24.3 43.9 51.2

FCOS-ATSS + RankDetNet ResNet-50-DCN 45.4 63.6 49.5 26.7 48.5 58.1

FCOS-ATSS + RankDetNet ResNeXt-64×4d-101-DCN 48.5 67.1 52.8 29.4 51.8 61.6

Table 2. Detection performance comparisons (%) on the COCO 2017 test-dev set. For fair comparisons, all the results are obtained in the

same single-scale inference settings.

detection candidates per feature pyramid level. Then, we

apply soft Non-Maximum Suppression (soft-NMS) [1] with

IoU threshold of 0.6 to yield the final detection results.

4.2. RankDetNet for 2D Object Detection

Comparisons to the Anchor-Based and Anchor-Free

Baselines. Table 1 compares our RankDetNet with the

popular anchor-based and anchor-free object detectors on

the validation set. First, taking RetinaNet [29] as the

anchor-based detection baseline, we achieve consistent per-

formance improvements with different backbones, e.g., sur-

passing RetinaNet (ResNet-50) by 2.4% AP. Second, taking

FCOS-ATSS [46] as the anchor-free detection baseline, our

RankDetNet also brings further improvements, leading to

48.1% AP using a single ResNeXt-64×4d-101-DCN model

(without multi-scale training/testing and without model en-

semble). Third, for both anchor-based and anchor-free

baselines, our method achieves larger gains for larger ob-

jects and remarkably enhance the performance according

to a more strict IoU overlap criterion. For example, using

the same ResNet-50 backbone, we improve APL by +4.1%

and AP75 by +3.0% over the RetinaNet baseline. Similarly,
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we improve APL by +1.9% and AP75 by +1.5% over the

FCOS-ATSS (ResNet-50) method.

Comparisons to the State-of-the-Arts. Table 2 com-

pares our RankDetNet with the state-of-the-art object de-

tectors on the test-dev set. Specifically, our method outper-

forms the one-stage RetinaNet baseline with ResNet-50 by

2.5% AP. We also perform favorably against prior two-stage

methods, e.g., surpassing Faster R-CNN and Mask R-CNN

by 3.8% and 1.8% AP, respectively, with the same ResNet-

101 backbone. Our RankDetNet also achieves competitive

performance compared to the anchor-free methods, e.g., im-

proving FCOS-ATSS with ResNet-50-DCN by 2.4% AP.

Equipped with better network backbones, we can further

enhance the detection performance. With the same multi-

scale training strategy and the same ResNeXt-64×4d-101-

DCN backbone, our method outperforms FCOS-ATSS by

2.3% (47.7% vs. 50.0%). Compared to the other ranking

based detection methods, our RankDetNet outperforms AP

loss [7] by 2.6% AP with ResNet-101 and performs slightly

better than DR loss [33] with ResNet-50. It is worth noting

that our ranking losses are easier to implement and do not

require extra complicated optimization strategies.

Analysis of Reserve Pairs. To better understand the ef-

fect of our ranking constraints, we define three types of re-

verse pairs and compare the ratios of reverse pairs to all

pairs after training in Table 3. We observe that training

with the global ranking loss or class-specific ranking loss

only is not sufficient, which may incur higher reverse pairs

than focal loss. Combining these two losses can notably

reduce the foreground-background / positive-negative re-

verse pairs. By imposing the additional IoU-guided rank-

ing loss, the amount of reverse pairs can be further reduced.

It encourages that positive samples with larger IoU overlap

with GT have higher object confidence scores. These re-

sults demonstrate the efficacy of our ranking constraints for

better optimization.

Analysis of Sample Distribution. Figure 3 shows sam-

ple distributions for the focal loss baseline and our method.

For the foreground or positive samples, higher object confi-

dence scores can be learned by our method. The reduced

distribution overlap between foreground and background

by our method implies that our ranking losses can better

distinguish samples to help detection optimization. Simi-

lar conclusions can be made for the overlap between posi-

tive and negative distribution. Compared with IoU overlap

and object confidence scores for positive samples, Figure 3

shows our method obtains more consistent distributions and

stronger correlation.

4.3. Ablation Study

We conduct ablation studies to examine each con-

tribution of algorithmic components with the RetinaNet

(ResNet-50) baseline in Table 4. Combining the global and

Loss F-B P-N P-P

Focal 0.33 0.28 0.44

Global 0.33 0.29 0.43

Class-specific 0.39 0.21 0.44

Global + class-specific 0.27 0.23 0.43

Global + class-specific + IoU-guided 0.26 0.22 0.41

Table 3. Ratios of reverse pairs for different losses. F-B:

foreground-background reverse pair where foreground has lower

score. P-N: positive-negative reverse pair where the positive sam-

ple of a specific class has lower score. P-P: positive-positive re-

verse pair where the one positive sample with larger IoU overlap

with GT has lower object confidence than the other.

(a) Focal loss (b) Our method

Figure 3. Comparisons of sample distribution. We plot foreground

and background distribution (first row), positive and negative dis-

tribution for the person class (second row) and distribution of IoU

overlap and object confidence score for the person class (third

row). We select background / negative samples with score > 0.2
for better visualization.

class-specific ranking losses can largely improve the per-

formance over the method of using either one only. We hy-

pothesize that optimization with only the individual global

or class-specific ranking loss is insufficient for distinguish-

ing objects and background. The proposed dynamic re-

weighting factors aim to emphasize hard pairs during train-

ing, which are beneficial for performance boost in the global

and class-specific losses (36.6% vs. 37.3%). For the IoU-

guided ranking loss, we find that constructing pairs from

270



Exp. Global Class-specific IoU-guided Dynamic re-weighting Pyramid level IoU BP Negative mining AP

(1) ✓ ✗ ✗ ✓ ✗ ✗ OHEM 34.2

(2) ✗ ✓ ✗ ✓ ✗ ✗ OHEM 32.7

(3) ✓ ✓ ✗ ✓ ✗ ✗ OHEM 36.6

(4) ✗ ✗ ✓ ✗ Separate sθ(pi) OHEM 36.2

(5) ✓ ✓ ✓ ✓ Merge ✗ OHEM 36.7

(6) ✓ ✓ ✓ ✓ Separate ✗ OHEM 37.0

(7) ✓ ✓ ✓ ✗ Separate sθ(pi) OHEM 36.6

(8) ✓ ✓ ✓ ✓ Separate sθ(pi) & sθ(pj) OHEM 35.4

(9) ✓ ✓ ✓ ✓ Separate sθ(pi) OHEM 37.3

(10) ✓ ✓ ✓ ✓ Separate sθ(pi) Group 37.8

Table 4. Ablation studies of the proposed RankDetNet with the RetinaNet (ResNet-50) baseline on the COCO 2017 validation set. “Merge”

and “Separate” mean computing IoU-guided ranking loss from merged or separate pyramid levels, respectively. For IoU BP, we suppose

fθ(pi) > fθ(pj), then we freeze sθ(pj) and only optimize sθ(pi). Exp. (4) is trained with focal loss + IoU-guided ranking loss.

Figure 4. Sample 2D and 3D detection results by our RankDetNet.

Loss AP

Exponential 37.3

Sigmoid 37.2

Logistic 37.3

α AP

0.2 37.0

0.5 37.0

1.0 37.3

5.0 36.0

(a) (b)

Table 5. Ablation studies of (a) different ranking loss functions

in our RankDetNet and (b) hyper-parameter α in the IoU-guided

ranking loss on the COCO 2017 validation set. We use RetinaNet

(ResNet-50) as baseline and adopt OHEM for negative mining in

these experiments.

each separate pyramid level works better than merging them

across different levels. The results validate our observations

that distributions of IoU overlap scores are different in dif-

ferent pyramid levels. Table 4 also shows that constraining

no gradient back-propagating along the IoU score term with

the lower object confidence score is crucial for the IoU-

guided ranking loss. This is because decreasing the IoU

overlap between positive samples and GT will lead to an

unexpected optimization direction. For negative mining, the

group strategy can bring further improvements compared to

OHEM (37.3% vs. 37.8%). We also test different rank-

ing functions Lrank(·) and obtain similar results, as shown

in Table 5 (a). Table 5 (b) presents the effect of α in the

IoU-guided ranking loss. We find that α = 1.0 works best

and choose this value for all the experiments.

4.4. RankDetNet for 3D Object Detection

Our RankDetNet framework can be readily extended to

the 3D object detection task. We use the standard KITTI

[12] benchmark which contains 7,481 annotated scans of

point cloud (3,712 for training and 3,769 for validation) in

our experiments. We adopt one of the state-of-the-art 3D

detection methods of SA-SSD [15] as our baseline. SA-

SSD designs a backbone network with 3D Conv layers

to extract multi-scale features from point cloud and also

employs a focal loss in the detection head to predict 3D

bounding box. By substituting the focal loss for proposal

classification with our ranking losses, we achieve 86.32%

AP@(IoU=0.7) for car on the moderate set with a gain of

2.02% compared to the SA-SSD baseline. The results val-

idate the effectiveness of the proposed ranking constraints

for 3D object detection and further exhibit the generality of

our method.

5. Conclusion

In this work, we proposed a unified ranking-based op-

timization algorithm for object detection with three types

of ranking constraints, i.e., global ranking, class-specific

ranking and IoU-guided ranking losses. Our ranking con-

straints can sufficiently explore the relationships between

samples from three different perspectives. They are easy-

to-implement and can be seamlessly integrated into main-

stream detection frameworks, without introducing extra

computation cost for inference. Experiments show that

our RankDetNet consistently improves the state-of-the-art

anchor-based and anchor-free 2D detection baselines and

3D detection methods, validating the superiority and gen-

erality of our method. We expect that the proposed ranking

constraints will inspire new insights for object detection and

other similar tasks.
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