IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

17169

SacFL: Self-Adaptive Federated Continual Learning
for Resource-Constrained End Devices

Zhengyi Zhong", Weidong Bao"”, Ji Wang", Jianguo Chen", Lingjuan Lyu", Senior Member, IEEE,
and Wei Yang Bryan Lim", Member, IEEE

Abstract—The proliferation of end devices has led to a
distributed computing paradigm, wherein on-device machine
learning models continuously process diverse data generated
by these devices. The dynamic nature of this data, charac-
terized by continuous changes or data drift, poses significant
challenges for on-device models. To address this issue, continual
learning (CL) is proposed, enabling machine learning models to
incrementally update their knowledge and mitigate catastrophic
forgetting. However, the traditional centralized approach to CL
is unsuitable for end devices due to privacy and data volume
concerns. In this context, federated CL (FCL) emerges as a
promising solution, preserving user data locally while enhancing
models through collaborative updates. Aiming at the challenges
of limited storage resources for CL, poor autonomy in task
shift detection, and difficulty in coping with new adversarial
tasks in the FCL scenario, we propose a novel FCL framework
named self-adaptive federated CL (SacFL). SacFL employs an
encoder—decoder architecture to separate task-robust and task-
sensitive components, significantly reducing storage demands
by retaining lightweight task-sensitive components for resource-
constrained end devices. Moreover, SacFL leverages contrastive
learning to introduce an autonomous data shift detection mech-
anism, enabling it to discern whether a new task has emerged
and whether it is a benign task. This capability ultimately allows
the device to autonomously trigger CL or attack defense strategy
without additional information, which is more practical for end
devices. Comprehensive experiments conducted on multiple text
and image datasets, such as Cifar100 and THUCNews, have
validated the effectiveness of SacFL in both class-incremental
and domain-incremental scenarios. Furthermore, a demo system
has been developed to verify its practicality.

Index Terms—Adversarial attack, data shift, federated contin-
ual learning (CL), self-adaptive ability.

I. INTRODUCTION

N RECENT years, the rapid development of end devices
has given rise to a distributed intelligent computing

Received 28 May 2024; revised 23 December 2024 and 1 March 2025;
accepted 26 April 2025. Date of publication 16 May 2025; date of cur-
rent version 4 September 2025. This work was supported in part by the
National Natural Science Foundation of China under Grant 62372486, in part
by the Pearl River Talent Plan under Grant 2023QN10X579, and in part
by the Natural Science Foundation of Guangdong Province under Grant
2023A1515011179. (Corresponding author: Ji Wang.)

Zhengyi Zhong, Weidong Bao, and Ji Wang are with the Laboratory for
Big Data and Decision, National University of Defense Technology, Changsha
410073, China (e-mail: zhongzhengyi20@nudt.edu.cn; wdbao@nudt.edu.cn;
wangji@nudt.edu.cn).

Jianguo Chen is with the School of Software Engineering, Sun Yat-sen
University, Guangzhou 510275, China (e-mail: chenjg33 @mail.sysu.edu.cn).

Lingjuan Lyu is with Sony AI, Shinagawa 141-8610, Japan (e-mail:
lingjuanlvsmile @ gmail.com).

Wei Yang Bryan Lim is with the College of Computing and Data
Science, Nanyang Technological University, Singapore 639798 (e-mail:
bryan.limwy @ntu.edu.sg).

Digital Object Identifier 10.1109/TNNLS.2025.3565827

paradigm. Within this framework, these devices generate vast
amounts of data, including images, text, and audio. Over
time, the collected data undergoes continuous changes, a
phenomenon known as data drift. Training a subsequent task
with a model previously trained on a different task results in
a significant decline in performance on the original task. This
phenomenon is known as catastrophic forgetting [1]. One of
the primary challenges in training machine learning models
is to enhance their capacity for continual learning (CL) or to
mitigate the rate of forgetting.

The predominant approach in CL primarily focuses on
centralized scenarios [2], where user data generated by end
devices is transmitted to a central node for training. How-
ever, this approach has become increasingly unsuitable for
portable devices. On the one hand, user data is often highly
privacy-sensitive, and directly transferring this data to remote
servers poses a significant threat to user privacy [3], [4].
On the other hand, the effectiveness of models relies on
extensive datasets, but the data volume available on individ-
ual end devices is inadequate to fully support the training
of robust models. Therefore, in the context of distributed
end devices, it is crucial to address how to enable multiple
end devices to collaboratively learn continually while ensur-
ing the privacy of client data. Federated learning (FL) [5]
has emerged as a promising solution to these challenges.
FL uploads model updates to remote servers while pre-
serving users’ data locally, thereby enhancing the learning
process of models in a distributed manner. Building upon
this premise, our study aims to explore CL methods based
on FL.

Unlike the centralized approach, federated CL (FCL)
requires each end device to perform CL, which introduces
three distinct challenges as follows.

1) Cl1: Using conventional CL methods requires retaining
entire or major segments of past models or preserving
a large amount of historical data, imposing considerable
storage demands on end devices. However, the inherent
hardware limitations result in scarce storage resources,
leading to a significant storage burden on resource-
constrained end devices in FL.

2) C2: Conventional CL methods typically require external
intervention to notify the model of task changes or
data drift, lacking inherent mechanisms to detect data
drift and adaptively adjust the learning process. This is
impractical in distributed end device scenarios, where
numerous autonomous devices, such as surveillance

2162-237X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1515-4876
https://orcid.org/0000-0003-1867-3660
https://orcid.org/0000-0002-4199-2793
https://orcid.org/0000-0001-5009-578X
https://orcid.org/0000-0003-3170-4994
https://orcid.org/0000-0003-2150-5561

17170

cameras, operate without external intervention, making
conventional CL methods unsuitable.

3) C3: Conventional CL methods typically assume that
new data is benign. However, in the context of FL,
a distributed environment where data on end devices
is uncontrollable, it is difficult to prevent malicious
clients from introducing adversarial data during the CL
process, which can potentially disrupt the global histor-
ical knowledge. Current methods cannot continuously
monitor adversarial data and defend against such attacks.

To address the above challenges, we design an

encoder—decoder architecture that splits the model into
a task-robust encoder and a lightweight task-sensitive decoder
based on the variation of tasks. Only the decoder is preserved
for historical tasks, while the encoder model is shared among
tasks and clients. This approach not only facilitates knowledge
transfer both in temporal and spatial dimensions but also
effectively alleviates the resource burden to end devices.
Meanwhile, inspired by contrastive learning, we compare the
distances between the encoders before and after updates to
determine if data drift occurs. If the distance exceeds a certain
threshold, it indicates data drift, triggering the CL mechanism
and allowing end devices to update knowledge in a self-
adaptive manner. These approaches avoid the need for extra
information (e.g., task ID and data label) and facilitate feder-
ated continual learning with self-adaptive ability. Furthermore,
once task changes are monitored, we further consider whether
the new tasks are benign or not. We propose adversarial
task monitoring and defense methods, enabling clients to
autonomously assess whether a new task is adversarial and
take corresponding defense measures to mitigate the impact of
the attack. This approach enhances the adaptability of clients
in FCL under adversarial environments.

In summary, the contributions are as follows.

1) Breaking the conventional assumption of centralized
CL by proposing an FCL method called self-adaptive
federated CL (SacFL). This method effectively inte-
grates knowledge from resource-constrained devices
while simultaneously reducing the resource requirements
of CL.

2) We introduce a data shift detection method that enables
end devices to autonomously trigger the CL mechanism
without relying on extra information or sharing data with
the server. This innovation significantly enhances the
self-adaptive capability of model training on end devices
while safeguarding privacy.

3) To address the potential issue of encountering new
adversarial data during the CL, an adversarial task
detection method and defense strategy are proposed,
enhancing the adaptability of SacFL in adversarial envi-
ronments.

4) We validate the effectiveness of SacFL using mul-
tiple image and text datasets, including FashionM-
NIST, Cifar10, Cifar100, and THUCNews. Evaluations
are performed in both class-incremental and domain-
incremental scenarios. In addition, we conduct exper-
iments on a demo system, further confirming its
superiority.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

II. RELATED WORK

A. Continual Learning

Current CL methods can be divided into three main cate-
gories: regularization-based approach, replay-based approach,
and architecture-based approach [1].

The regularization-based approach aims to balance the
model performance between new and old tasks by adding reg-
ularization terms during the training process of new tasks, thus
preventing catastrophic forgetting. Specifically, regularization
can be applied at both the parameter and function level. At the
parameter level, the importance of model parameters is com-
puted to identify the parameters that contribute significantly to
the computation results. Penalty regularization terms are then
added to these parameters, allowing them to retain knowledge
from old tasks [6]. In addition, freezing certain important
parameters or reducing their learning rate can be regarded as
variants of this regularization method. At the function level,
knowledge distillation [7] is commonly used to preserve old
knowledge [8]. When complete data for the old tasks are not
available, inference can be performed using incremental data,
additional unlabeled data, or generated data [9]. Furthermore,
when only partial data for previous tasks are accessible, data
replay and knowledge distillation can be combined to enhance
performance [2].

The replay-based approach has three primary subdirections:
experience replay, generative replay, and feature replay [10],
[11]. Experience replay involves constructing a replay buffer
to store a small amount of historical data, which is then
replayed during the training of subsequent tasks to enhance the
model’s learning ability [12]. In addition to experience replay,
generative replay involves generating data using generative
models. Instead of replaying old samples, generated data is
used to retain memory throughout the CL process [13], [14].
Feature replay, on the other hand, replays the features of old
data by utilizing feature extractors [15], [16].

The above methods are based on parameter sharing between
different tasks. In contrast, the architecture-based approach
takes a different approach by implementing separate model
structures for different tasks at the architectural level, achiev-
ing parameter isolation between tasks to avoid catastrophic
forgetting. Typical methods include parameter allocation,
model decomposition, and modular networks. Parameter allo-
cation involves freezing key parameters for each task using
masks, while the remaining parameters are used for training
subsequent tasks [17], [18]. Model decomposition decomposes
the model into task-sharing and task-specific components,
where the task-specific model expands as the number of tasks
increases [19]. On the other hand, modular networks establish
a subnetwork for each incremental task; however, this may
incur significant memory overhead [20].

Currently, the majority of CL methods are developed
under the assumption that new data is reliable, and research
on the robustness of CL is very limited [21]. Reference
[21] is the first to investigate the vulnerability of CL
models to adversarial attacks. It employs a replay-based
approach, enhancing the robustness of CL by training on
boundary samples selected from both old and new tasks.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

Reference [22] enhances resistance to adversarial attacks by
training the model on robust features derived from the origi-
nal data. However, these methods are considered preemptive
defenses. This article focuses on remedial measures, specifi-
cally how to identify the adversarial new samples during the
CL and how to mitigate harms.

B. Federated Learning

FL was proposed by Google in 2016 [5] as a way to transfer
model parameters instead of data, reducing the privacy leakage
risk in traditional cloud computing. FL can be categorized into
three types: horizontal FL, vertical FL [3], and transfer FL [4],
[23]. Horizontal FL is currently a research hotspot and focuses
on several areas.

1) Personalization: Under the FL framework, clients’
personalized demands can be categorized into data
heterogeneity, system heterogeneity, and task hetero-
geneity [24], [25]. Techniques used in this area include
adding user context [26], meta-learning [27], trans-
fer learning [28], knowledge distillation [29], and
base+personalization layers [30].

2) Federated Mechanism: The naive algorithm of FL is
FedAvg [5], yet it often produces biased models in
distributed computing. Therefore, researchers have pro-
posed improvements to aggregation algorithms, such as
FedBCD [31], SAFL [32], FedProx [33], and FedMA
[34], taking into account factors like client fairness
and heterogeneity. In addition to single-layer centralized
aggregation, there are also approaches targeting mul-
tilayer learning architectures, such as HierFAVG [35],
HFEL [36], FLEE [37], and ACFL [38].

3) Communication: Communication is an important con-
cern in the field of FL [39], as the transmission of
gradients or model parameters between clients and
servers is often done wirelessly and can be highly
unstable [26]. Gradient compression [40] is a commonly
used method to solve this problem.

C. Federated CL

In recent years, the issue of catastrophic forgetting in
clients within the FL framework has increasingly attracted the
attention of researchers [41]. Some scholars have proposed
combining the concepts of FL and CL to develop an FCL
framework [42]. Yang et al. [42] systematically review the
two scenarios—synchronous and asynchronous—that exist
in FCL, and analyze the causes of catastrophic forgetting
from both spatial and temporal dimensions. This work further
clarifies the differences between FCL and traditional CL. For
class-incremental problems, Dong et al. [43] proposed a novel
global-local forgetting compensation model, GLFC, which
weakens catastrophic forgetting as much as possible from
both global and local perspectives, ultimately enabling FL to
train a globally incremental model. Qi et al. [44] proposed
the FedCIL framework, which combines generative methods
to use an ACGAN generator to replay synthetic data from
previous distributions, thus alleviating catastrophic forgetting.
Zhang et al. [45] presented TARGET to remember historical

17171

experience via knowledge distillation in class-incremental
scenarios. For domain-incremental problems, Li et al. [46]
selected cached samples based on the importance of local
samples and their relevance to the global dataset, using sample
replay to overcome catastrophic forgetting. Huang et al. [47]
proposed a federated cross correlation and CL method. To
address heterogeneity issues, this method utilizes unlabeled
public data for communication and constructs cross correlation
matrices to learn generalizable representations under domain
shift. At the same time, for catastrophic forgetting, knowledge
distillation is used in local updates to provide interdomain
and intradomain knowledge effectively without leaking
participants’ privacy. In addition, some work can be applied
to both class increment and domain increment scenarios.
Yoon et al. [48] proposed a new FCL framework called Fed-
WelT. This framework decomposes the local model parameters
of each client into dense base parameters and sparse task-
adaptive parameters to enable more efficient communication.
Jiang et al. [49] focuses on mitigating catastrophic forgetting
in global models and proposes a method called federated
orthogonal training (FOT) to ensure orthogonal relationships
between tasks. Jiang et al. [50] proposed an FL architecture
called fed-speech for the federated multispeaker TTS system.
This architecture uses progressive pruning masks to separate
parameters to preserve speaker characteristics while applying
selective masks to effectively reuse knowledge within tasks.
Ma et al. [51] presented the CFeD method based on knowledge
distillation technology, which extracts old knowledge from the
surrogate dataset through the construction of pseudo-labels
and knowledge distillation. In addition, some scholars have
investigated client drift caused by the nonindependent and
identical distribution between clients during FCL [52].

Summary: Our work differs from previous research in the
following aspects.

1) SacFL can automatically monitor changes in data and
trigger CL mechanisms without requiring extra infor-
mation.

2) In addition to identifying new tasks, SacFL can also
automatically discern whether a task is adversarial and
activate defense mechanisms. This capability has not
been considered in other works yet.

3) Different from methods like knowledge distillation,
SacFL only requires storing a lightweight task-sensitive
decoder, effectively reducing storage overhead on end
devices.

III. PROPOSED METHOD: SACFL
A. Motivation

During the CL process, as data shifts, the last several
layers of deep models (e.g., fully connected layers) change
significantly, whereas the preceding layers exhibit minimal
variation. Using the FashionMNIST dataset as an example, we
construct a LeNet neural network comprising convolutional
layers, activation layers, max pooling layers, and fully con-
nected layers. Both convolutional and fully connected layers
contain two types of parameters: weights and biases. In the
context of CL, we divide the ten classes of data into five

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

17172

o o conviweight _ 07 —e— convi.bias i
conv2.weight e conv2.bias e

—— fol.weight 'Aﬂ,‘_//" —— fcl.bias vl
—— fc2.weight /f‘ 06— fcabias =1 17
—i— fo3weight { g —i— fo3.bias = -
3 / // 05 A j/
4 ‘/r/ 04 ol -
° y © !
3 3 e —
5, e & s A~
3] 5]
) 7
/ 03 A/ o
7 02
1 77
// e ptono| I
/.,,.»LM AR RS ST

50 75 100 125 150 175 200 225 250 50 75

Iteration

100 125 150 175 200 225 250
Iteration

Fig. 1. Changes of parameters in different model layers during the training
process. It is worth noting that each task is trained for 50 iterations, and there
is no need to calculate the changes in model parameters for the zeroth task.
Therefore, the abscissa in the figure starts from 50. The vertical axis represents
the difference between specific layer parameters and the corresponding layer
parameters after training the zeroth task.

tasks, each task comprising two classes: {0,1}, {2,3}, {4,5},
{6,7}, and {8,9}. Each task is trained for 100 iterations, with
the initialization model for each subsequent task derived from
the previous one. By observing the parameter changes between
consecutive tasks, we can discern the impact of task transitions
on the model. In our experiment, we project multidimensional
model parameters onto 2-D graphs and use the Euclidean
distance between these parameter graphs to represent changes
in the model layers. The resulting curve graphs (see Fig. 1)
illustrate the changes in weights (left) and biases (right). From
these graphs, we can see that the weight and bias changes of
the final fully connected layer are the most pronounced as
tasks shift.

B. Framework and Pipeline

1) Framework: The framework of SacFL is depicted in
Fig. 2. Based on the sensitivity of model parameters to task
changes, we divide the on-device model M into a task-robust
encoder E and a task-sensitive decoder D, i.e., M = E o D.
The parameters of the encoder demonstrate relative stability
across diverse tasks, while the decoder shows high variability
in response to task-specific dynamics. SacFL constructs an
encoder pool, a decoder pool, and a proxy history data pool
on the server. The encoder pool stores global encoders for
history tasks. In subsequent iterations, these history encoders
are incorporated into aggregations to release catastrophic for-
getting. The decoder pool stores decoders for clients’ history
tasks, and the proxy history data pool stores client history
data collected from public sources. These two pools facilitate
the monitoring of adversarial tasks. All three pools evolve as
the number of tasks increases. In addition, SacFL also builds
a small decoder pool for each client to store history task
decoders, enabling rapid local access for computation.

2) Pipeline: When no task changes occur, similar to tra-
ditional FL, clients train the encoder and decoder using
cross-entropy loss. A key difference in SacFL is that the client
monitors local data drift by tracking changes in the encoder’s
output after one local training epoch in each iteration. Once
data drift is detected, the local task is considered to have
changed, and the decoder from the previous task is pushed

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

to the local decoder pool to store history knowledge. Simul-
taneously, the trained encoder and decoder are sent to the
encoder pool and decoder pool on the server. The server’s
history decoder pool and proxy history data are used to
determine whether the new task is an adversarial task. If the
new task is identified as adversarial, the attack defense strategy
is implemented locally, and a robust Krum [53] aggregation
method is applied at the server to mitigate the attack’s impact
until a new task is detected. It is important to note that the
decoder for adversarial tasks is not stored in the decoder pool.
When a task changes, only the encoder is transferred between
tasks, and the corresponding decoder needs to be reinitialized
at the beginning of each new task. If the user has an inference
request, the relevant history decoder is retrieved from the
local decoder pool and combined with the current encoder
to perform computation, effectively preventing catastrophic
forgetting.

The proposed method offers several advantages as follows.

1) The decoder typically consists of the final few layers
or even a single layer. Compared to methods that store
most of the history models on end devices, this approach
occupies significantly less storage space, leading to
substantial improvements in storage efficiency.

2) By dividing the model into task-robust and task-sensitive
layers, the task-robust layers are transferred across dif-
ferent tasks, ensuring the sharing of common knowledge.
Meanwhile, maintaining a separate decoder for each task
preserves task independence, thereby reducing interfer-
ence between tasks.

3) The design of data drift and adversarial task detection
methods enables the timely detection of task changes
and self-adaptive defense against adversarial attacks.
These methods enhance the client’s self-adaptive CL.

C. Training Process

Assuming there are K clients, i.e., end devices, in the
FL framework. Each client faces T CL tasks, which can be
represented as {0,...,t,..., T} with I; federated iterations for
task 7. The total number of iterations is I = Y, I,. The client
models are denoted by M, and the set of all client models is
{M\,M>, ..., Mg}.

Generally speaking, the FL process can be divided into
four stages: server distribution, client local training, client
upload, and server aggregation. Here, we will mainly focus on
local training and server aggregation. During the client local
training stage, the number of local epochs is N in each round.
When client k faces task ¢, the trained model M,’c is obtained.
Assuming the learning rate of the client is 7, the client’s local
training process can be represented as follows:

Mi(i,n) = Mi(i,n = 1) = qVF} (M} (i,n — 1))
n=1,...,N (1)

where M,’{(i, n) represents the model obtained from the nth
local epoch of client k in the ith iteration of task ¢. Fi.(M;(i,n—
1)) denotes the loss function of the model M (i,n — 1) when
client k faces task . Before the client starts local training, the

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

17173

@ Model Fusion

(@ Attack Detection

Task-robust 3] o]

Encoder Pool D eeed |
Server w @l o]
| g ||we

.‘:, dhose 'r:.

a Q

Proxy History Data

PR~
TO T1

Task-sensitive
Decoder Pool

>
o
o
=

|

Egim

E-T1-C1
prock . ®8® ooy

S Acc2

Adversarial Task1 -
g L
B save @) save
En/Decoder En/Decoder En/Decoder |
Task shif - (® Attack Defense .
- . ask shift g1, Task shift o -
@ 2 & @ Q S CE
. o = KL L T CE ~ o~
Client 1 = = 055 > = =7 Loss
W A Loss A Loss w [a)

E-T1-C1

-

(@ DatalShift Detection

@ Data ;'IShift Detection
1
L __(®save Decoder

[—’ Triger CL] [—) Time line] [——-> Decoder] Clientl

Task-sensitive Decoder Pool

(3 save decoder

D-T2-C1

a

D-T0-C1

[—> Parameter][_’ Layer output]

Fig. 2. Framework of SacFL. When no task change occurs, the client trains the encoder and decoder using the classical FL approach, with the exception of
performing data drift detection during each iteration. If data drift is detected, the decoder from the previous task is pushed to the local decoder pool. At the
same time, the updated encoder and decoder are uploaded to the server to determine whether the new task is adversarial. If an adversarial task is detected,
local attack defense mechanisms and Krum aggregation are activated to mitigate the impact of the attack, continuing until the next task is identified.

model parameters obtained from the server side are M,t((i, 0),
and they can be represented as

M (i,0) = Ei(i,0) o Di(i,0))
where
S UEI, N) + E'i,0)
Ej(i,0) = =& 3
(0, 0) 1 3)
. Dps
E'(,0)=) ——~—Ei-1,N) ©))
2T o5,
XK: DS,
Di(i,0) = D'(i,0) = Y ——*—Di(i-1,N). (5)
k=1 Zl[c(:l DS;(

E/(i,0) undergoes a two-stage fusion. The first stage is
spatial fusion [refer to (4)]. In (4), E'(i,0) is the globally
aggregated encoder obtained after i—1 iterations at current task
t, which is the weighted sum of E,i(i—l, N). DS}, is the data size
of client k during task 7. The second stage is temporal fusion
[refer to (3)]. In (3), E"'(I,_;,N) is the globally aggregated
encoder after /,_; iterations of task —1 which is stored in Task-
robust Pool. Note that when clients are facing the first task and
there are no previous tasks, the training process of encoder
is similar to traditional FL steps. Equation (5) illustrates the
training process of decoders. When clients encounter a new
task, they reinitialize the decoders and then update them
in a regular FL. manner. After one specific task training is
completed, its corresponding lightweight decoder is stored
in task-sensitive pools. In the above CL process, the shared
knowledge contained in different tasks is inherited between
generations of encoders. Only one encoder needs to be stored
in the clients to inherit the common knowledge of historical
tasks, while a memory-efficient branch is dedicated to storing
task-sensitive knowledge. This approach significantly reduces
end devices’ storage requirements and promotes long-term CL.

Task0 Taskl Task2

Class0

o DEDDE [e ae [O
? 1

ez HEEOR cienz [ENIEN

Class3 Taskl

Classa HIbN 2[5])

s EEIEIE- » s [4]2]

T e N

Class7 > 2[5 | = Clients a

Class8

[+ [al2] < [s il s B s |

Client1 Task Client5

Distribution

Class9

Fig. 3. Class-incremental data setting. Taking five clients as an example, the
data of each class is divided into five parts. Through random selection, Client
1 extracts the first, fourth, and fifth parts from the data labeled 0, 3, and 8 as
the data for Task 0. Subsequent tasks are generated in the same manner.

It is worth noting that in the process of CL, the structure
of E'(-,-) and E"'(-,-) remains the same, but the structure
of D'(-,-) and D'"!(-,-) does not always remain consistent.
For example, in class-incremental tasks, when the model
encounters more classes, the branch structure of the model
will automatically expand to adapt to the new task, resulting
in a significant change in D'(-,-) structure.

D. Data Drift Detection

The traditional method for data drift detection relies on
data comparison or performance observation. However, these
methods require a considerable amount of memory to store
historical data or labeled data, which is not friendly for
resource-constrained end devices. Meanwhile, in the context
of SacFL, the method proposed in Section III-C is a model-
based CL technique that does not store historical data; the
client only retains data for the current task. Therefore, inspired
by contrastive learning [54], we propose a memory-efficient
and label-free data drift detection method. Data drift can

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

17174

—+— Eudlid 800
—&— Manhattan
—8— Cosine

30000
25000

20000

¢— Task0 —> [} e— Task! —» [} e— Taske —» +— Tasko —»

£
© 15000 & 400

10000
5000

4— Taskl —b

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

—#— Euclid
—&— Manhattan
—@— Cosine

—#— Euclid
—A— Manhattan
—@— Cosine

4— Taskl —»| |e— Task2 —p

200
0 A g . 0

0 5 10 15 20 25 30 0 5 10
Iteration

(a)

15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration

(b) (c)

Fig. 4. Change of the feature values extracted by the encoder. (a) Fa-MNIST, task number = 3. (b) Cifar10, task number = 3. (c¢) THUCNews, task number

=3.

be detected by comparing the encoders’ outputs before and
after local learning on clients. The specific approach is as
follows: after the server distributes the aggregated encoder
to clients, each client performs one round of local training
using its local data. To measure the difference between the
encoders before and after local training, a certain number of
current task data are picked and input into the above two
models. If the change value exceeds a certain threshold, it
indicates significant differences in the features extracted by
the two models from the same data. We can then conclude
that substantial model changes and data drift have occurred
on the client.

In this process, it is important to note that we use the
difference between the output features of encoders to detect
data shifts. Since the encoder is less sensitive to data alter-
ations compared to the decoder, data drift is only identified
when the encoder’s output undergoes substantial changes,
preventing misjudgments and improving the accuracy of data
shift detection. Furthermore, experiments reveal that compared
to commonly used Euclidean distance and Cosine distance,
the Manhattan distance is more sensitive to variations in the
encoder’s output (as shown in Section V-B). From Fig. (4), we
can see that the variations of Euclidean distance and Cosine
distance are less than the Manhattan distance when the task
shifts. However, when the task does not change, the value of
the Manhattan distance remains nearly unchanged. Therefore,
we employ the Manhattan distance to detect data drift. The
calculation formula is as follows:

(6)

where E}(i, 1) represents the encoder parameters of the kth
client after locally training one epoch during ith federated
iteration when facing task r. DA} refers to the data for task
t of client k, and E (i, 1)(DA}) represents the data features
extracted by inputting DA] into the encoder Ej(i, 1). E.(i,0)
is the received encoder of client k at the beginning of iteration
i when facing task ¢ Similarly, E}(, 0)(DA}) denotes the
extracted feature of Ej(i,0) by inputting DA}. This method
is effective not only when the new data is benign, but also
demonstrates its efficacy in adversarial tasks, as validated in
Section V-B. It can accurately identify adversarial data as a
new task. Through the data detection mechanism, end devices
can automatically detect data changes and trigger CL, greatly
enhancing the clients’ self-adaptive capabilities.

Diff = Manhattan (E}(i, 1) (DA}) , E{(i, 0) (DA}))

E. Adversarial Attack Defense

In the process of CL, new tasks may involve adversarial
examples aimed at attacking the model. Therefore, when a
new task arises, it should be assessed first. Only when the
new task’s samples are benign should the CL mechanism be
activated. If the new task consists of adversarial data, appro-
priate defense measures are needed to mitigate the impact on
historical knowledge. Accordingly, we propose methods for
adversarial task detection and adversarial attack defense.

1) Adversarial Task Detection: In SacFL, we construct a
decoder pool for history tasks and a proxy history data pool
on the server for adversarial task monitoring. Suppose client
z detects a switch from task j — 1 to task j using a data
drift detection mechanism. The updated encoder EZ(0,1) is
uploaded to the server. Then, the updated encoder is combined
with the decoders from the decoder pool Pp = {Dj(I;, N)lk €
[0, K],t € [0, j)}, respectively. After that, the corresponding
proxy history data is fed into the model, generating the
following outputs:

Opt, = (E/(0,1)° Dy (I, N)) (. ¥) Yk €[0,K]

Vte[0,j—-1]. @)

Based on the above outputs, the accuracy on all clients k €
[0, K] and the corresponding historical tasks ¢ € [0, j— 1] is
obtained, from which the performance degradation rate of the
historical task caused by E(0, 1) is calculated

K j-1 ' —t

. 1 1 Acc, — Acc
Degrade’! = — - il Sl 3 § 8
egrade; = — 3:1 (j ;:0 Accl) (8)

Accj, represents the original accuracy of client k on task .
When Degradeg exceeds a certain threshold, we consider the
task to be adversarial. This is because, the encoder’s parameter
changes a little, and the historical decoder is used for testing,
which, in principle, should not cause a significant degradation
in performance on historical tasks. If a significant performance
drop in the historical task still occurs, it indicates that the new
task is adversarial, directly leading to a substantial change in
the encoder’s parameters.

2) Adversarial Attack Defense: To effectively defend
against the above-mentioned attacks, we constrain the changes
in the encoder during the training of adversarial tasks. Suppose
client z detects task j as an adversarial task, while task j—1is a
benign task. In this case, the KL divergence between the output

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

of E,f"l(Ij_l,E) and Eg(i, e) is computed. By minimizing this
value, the degree of performance degradation can be reduced.
The formula for this calculation is as follows:

Feva = KL (E7 (11, E) (,32) EL o) (x2:30)) - (9)

At the same time, the cross-entropy loss should also be
considered

Fee = CE (v, ML (i, e) (L, 1)) . (10)
Finally, we get the local training loss
Fi = aFea + (1 — @) Fee. (11)

In addition, we also employ a more robust aggregation
method, Krum [53], on the server to defend against adversarial
attacks.

F. Algorithm

To elucidate the method described above, we provide an
algorithmic explanation in Algorithm 1. The algorithm’s inputs
include the number of clients K, the total number of FL
iterations I, the number of local training rounds N, the data for
each client (x},y;), the learning rate 7, the encoder pool Pg
and decoder pool Pp, on the server, and proxy history data pool
Ppq. The final output is the global encoder and task-sensitive
decoders.

Initially, the server initializes the task ID and M’ (see
Algorithm 1, Lines 1 and 2), and then separates the model
into encoder and decoder based on the layer changes with
task shifts (see Algorithm 1, Line 3). The encoder shows
low sensitivity to task variations, while the decoder is highly
sensitive. Subsequently, the initialized encoder and decoder
are distributed to the clients (see Algorithm 1, Line 5). Upon
receiving the model, each client performs N rounds of local
training. When the federated iteration count is greater than 1,
each client checks for data shift (see Algorithm 1, Line 12)
after one epoch of local training. If a task change is detected,
the E} (i, 1) remains unchanged, but the D/ (i, 1) is reinitialized,
and the task-sensitive decoder pool is updated (Lines 15 and
16). After that, clients will upload Ej(i,1) to the server for
further detection to determine whether it is an adversarial
task (Lines 17-19). If it is identified as an adversarial task,
local defensive training will be conducted using (11) (Lines
20 and 21). After N rounds of local training, the clients upload
their encoder E (I, N) and decoder Dj (i, N) to the server (Line
22). At this stage, if data drift occurs on the client side, it is
necessary to update both the iteration i of the current task and
the task ID ¢ (Lines 23-25). Then, the server selects different
strategies to aggregate all encoders and decoders based on
whether the clients are under attack. Finally, E‘(i + 1,0) and
D'(i + 1,0) are obtained (Lines 27-30) and the encoder pool
is updated (Line 31).

IV. THEORETICAL ANALYSIS

In SacFL, when there are no changes in the client, the
convergence analysis is similar to that of FedAvg. However,
differences arise when clients autonomously switch to different
tasks. First, during the aggregation process, it is necessary

17175

Algorithm 1 SacFL
Input: Clients’ number K, learning rate n, federated
round I, clients’ model M° (composed by Encoder
EY and Decoder DY), local epoch N, client k’s
data (x;, y;), Decoder pool on the server Pp,
Encoder pool Pg, Proxy history data pool P,
Output: Task-robust Encoder, Task-sensitive Decoder
Pool
1 Initialize task ID r = 0;
2 Initialize global model M’ on the server;
3 Decompose model M! into Encoder E’ and Decoder D';
4 for federated round i = 1,...,1 do

5 Server distribute E’(i), D' (i) to clients;

6 /I Local Training

7 for client k=1,...,K do

8 for local epochn =1,..., N do

9 M(i,n) < Mi(i,n —1) —nF/((x}. y),

10 M (i, n—1));

1 if i > 1 and n = 1 then

12 SHIFT < DataDetection((x;, y;),

13 E (i,0), E (i, 1));

14 if SHIFT = True then

15 Initialize Di(i, 1) as D™ (0, 0);

16 Push Dj(i — 1, N) to Decoder Pools

on the client k and the server;
17 Push E(i, 1) to the server for attack
detection;

18 ATTACK <« AttackDetection(E;

19 (i, 1), Py, Pp);

20 if ATTACK = True then

21 L Local updating using Eq. (11)

22 Upload E[(i, N) and D, (i, N) to the server;

23 i<i+1;

24 if SHIFT = True then

25 L t<t+1,i<1

26 /I Server Aggregation

27 if ATTACK = True then

28 L E'(i +1,0), D'(i + 1,0) <Aggregation using
Pr based on Krum;

29 else

30 L E'(i +1,0), D'(i + 1,0) < Aggregation using
Pr based on Eq. (3) and Eq. (5);

31 Update Pr with E'(i + 1).

not only to aggregate the current client models but also to
integrate historical task models. Second, the autonomy of
task switching among different clients leads to noticeable
differences in distributions between clients. To demonstrate
the convergence of SacFL in the context of CL, it is essential
to establish the convergence of each subtask in this scenario.
Therefore, we begin with an analysis of subtask 7.

Aiming at the first difference, we regard all historical
models as client models that do not participate in training
but are solely involved in the aggregation process. It can be

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

17176

derived by following formulas:

Y EN(L,N) + El(,0)

Ei(i,0) =

t+1
t—1
= ZLEJ'(], N)
‘ t+1 4,
Jj=0
a DS,

+ ELi-1,N) (12)

o -+ 1) >, DS,

where the aggregated weight of historical models is (1/t + 1).

Aiming at the second difference, we have following
assumptions and definition.

Assumption 1: For task ¢, 1) all clients participate in training;
2) Fi is Z'-smooth and 7'-convex; 3) the expected variance of
client k’s stochastic gradients is bounded by (ﬁjc)z; and 4) the
expected value of the square of client k’s stochastic gradients’
norm is bounded by (p")%.

Definition 1: Define ¢' as the heterogeneity degree of data
shift, which is calculated as follows:

K
oy DS, .
¢t = Ft - ZK DS[F/l;
k=1 k

j=1

(13)

where F' and F{ are the minimum of F' and F}, respectively.
If we want to prove the global model on task ¢ is convergent,
then the following equation should be satisfied:

[F'(M'(i))] = F' < an upper bound B (14)

where [is the iteration number of task ¢ and F” is the optimal
loss value. When B decreases as the number of iterations i
increases, it indicates that the global model is progressively
approaching the optimal model for task z.

According to Assumption (2), Z'-smooth function F} pos-
sesses the following properties:

Fi (M!(0) < Fy (0) + (M! () - 81') 'V (417)

zZ' _
e LR (15)
where M’ is the parameter that minimizes the loss value, and
its gradient is VF!(M") = 0. Therefore, the above equation can
be further transformed into
-7 _
E[FL (M'())] - F} (M) < FE M@y - m' . (16)
In the above formula, (Z'/2)E|IM'G)- M| is B in
(14). Since Z' is a constant, we only need to prove that
E||M'(i) — M'||*> decreases with the number of iterations i
increases, in order to achieve global convergence. Based on
Assumptions (3)—(5) and definitions, combined with Lemma
1-3 from [55], it can be derived that

L a
E | M) - M| < i

a7

where A" = max{(u*G'/(uy"»-1), ({+DEIM'(1) - M.t||2}a M is
some value larger than (%/y’), 7" = max{(8Z'/y"), N}, and G' =

S (DS/EE, DSL) (B2 + 629! + 8V - 1202,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

When u = (2/y"), then,

MzGt
uy =1
MZGt
Sy -1
4G' .
= (7% +(+ DE|MQ) - M|

Combining (16)—(18), we can get

A = max (¢ +1)E | M () - 5|

+ () E| M) - M|

(18)

E[Fi (M ()] - Fi (o))
1 ' t 1 o)
. Z .|:2G2 (& +1)E|m) - b] (19)
g+il oM 2

From the above equation, it can be observed that for a single
task 7, as the number of iterations 7 increases, the loss values of
the aggregated global model across various clients gradually
decrease and approach the minimum value. Therefore, it can
be concluded that SacFL converges for each task ¢ within the
framework of CL, leading to overall convergence in the CL
process.

2
Furthermore, G’ = 3¢, (DS v/ e, DS 2) (B> +6Z'¢" +
8(N — 1)*(p)?, we obtain

E[Fi (M)] - Fi. (M)
12z
“@roor!
22 (25, (5£25) 607 + 50 - 179
)&+
(¢ + 1) 28 |mrc) - vt
2(0'+0 '
From the above equation, it can be seen that as the CL pro-
gresses, the tasks autonomously vary among different clients,
leading to increased ¢'. This enhancement in heterogeneity

results in a greater number of iterations required for conver-
gence, thereby slowing down the convergence rate.

t

|

(20)

V. EXPERIMENTAL VERIFICATION

In the experimental section, we mainly focus on answering
the following questions.

1) QI: Under the FL framework, is the SacFL effective
compared to mainstream CL methods when the client’s
task changes occur infrequently?

2) Q2: In scenarios where the client’s task undergoes con-
tinuous changes, does SacFL maintain its advantages?

3) Q3. Apart from class-incremental learning, does SacFL
retain its effectiveness when the clients’ data experiences
domain-incremental changes?

4) Q4: When a new task involves adversarial data, how can
clients defend against them?

5) Q5: Can SacFL reduce resource consumption on end
devices compared to other CL methods?

6) Q6: What is the impact of the data drift detection
mechanism on model performance?

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

7) Q7: Does SacFL still perform well in the demo system
from the real world?

The answers to the above questions correspond to Sections
V-C-V-1, respectively. Our code is available at: https://
github.com/Zhong-Zhengyi/SacFL-Code

A. Experimental Settings

1) Framework: To answer the above-mentioned questions,
we design an FL framework consisting of 50 clients and
one server. This framework is tailored for the cross-device
scenario in FL, wherein a subset of clients participates in each
iteration round. To minimize the consumption of client storage
resources during CL, we utilize the last layer of the model as
the decoder, while all preceding layers serve as the encoder
in our experiments.

2) Datasets: The experimental image datasets encompass
FashionMNIST, Cifar10 [56], and Cifar100 [56], featuring 10,
10, and 100 classes, respectively. In addition, the text dataset
employed is THUCNews [57], comprising 14 categories of
Chinese news data collected from Sina News RSS between
2005 and 2011. To cover cases where the number of classes
between tasks is equal (task number =5) and unequal (task
number =3), we select ten classes and randomly sample 5000
news from each class. These classes include lottery, stock,
education, furnishment, technology, fashion, sports, game,
social, and entertainment. Among these, 4000 are designated
for training, while the remaining 1000 are reserved for testing.

3) CL Settings: To address the class-incremental problem,
referring to the experimental setup of Qi et al. [58], we split
the data classes into T parts, corresponding to the total number
of tasks. For example, if there are three tasks and ten classes
in total, each task comprises 3, 3, and 4 classes, respectively.
More specifically, if the label set for the first task of client 1 is
{0, 3, 8}, and for the second task, it is 7, 6, 2, thus, the third task
comprises classes 9, 1, 5, and 4; in contrast, if there are five
tasks, each task comprises two classes. It should be noted that
in real-life scenarios, data classes across different clients may
intersect. Therefore, to better simulate real-world situations,
we randomly sample a specific number of data classes for
each client in one task. Meanwhile, an equal amount of data
from the same class is randomly distributed among the clients
to prevent duplication. The detailed process is illustrated in
Fig. 3. This approach ensures coverage of two data distribution
scenarios between clients: iid and non-iid. In addition, to
address the domain-incremental problem, we opt to introduce
Gaussian noise and multiplicative noise to simulate domain-
incremental scenarios. Similar to [51] and [48], we evaluate the
effectiveness of CL by measuring the model’s average testing
accuracy on the current task and historical tasks. A lower
accuracy indicates more severe catastrophic forgetting.

4) Baselines: The benchmarks consist of two cate-
gories: continual-based methods and traditional methods. The
continual-based methods include CFeD [51], LwF-Fed [8],
EWC-Fed [6], MultiHead-Fed [51], FCIL [43], and Fed-
WelT [48]. The traditional federated methods mainly include
two classic algorithms in the FL field: FedAvg [5] and
FedProx [33].

17177

—+— LF-FashionMNIST

—e— LF-Cifar10

—a— BK-FashionMNIST
BK-Cifar10

Degradation Rate

<4——Adversarial Task =———————g» = Benign Task ———

0.0

100 125 150 175 200 225 250 275 300
Iteration

Fig. 5. Average degradation rate of historical tasks under adversarial attacks.

5) Hyper-Parameters: We selected Adam as the optimizer
with a batch size of 32, a learning rate of 0.05 for FashionM-
NIST and THUNews, a learning rate of 0.01 for Cifar10/100,
and a local training epoch number of 5. For the number of
iterations of a single task, FahionMNIST and Cifarl10 are 100,
THUNews is 50, and Cifar100 is 50 or 100.

B. Data Drift and Adversarial Task Detection

1) Data Drift Detection: In real-world scenarios, data
changes frequently happen without clear indicators. Hence,
it’s necessary to design an appropriate data drift detection
mechanism to identify these changes and trigger the CL
process. This section focuses on investigating threshold config-
urations for activating the CL mechanism. The goal is to equip
SacFL with the capability to accurately detect dataset shifts,
thus facilitating subsequent CL tasks. Fig. 4 illustrates the
changes in encoder features for the FashionMNIST, Cifarl0,
and THUCNews datasets under the three-task scenario. In
our experiment, we conducted ten federated rounds for each
task. From the figures, it can be observed that the encoder’s
extracted features exhibit sharp fluctuations during task transi-
tions, indicating significant changes. Specifically, with a total
of three tasks, the Mahattan values of the encoder features
for FashionMNIST increase from nearly O to over 20000, for
Cifar10 from almost O to over 600, and for THUCNews from
approximately 5000 to over 15000. Consequently, we set the
threshold at 20000 for FashionMNIST, 600 for Cifarl0, and
15000 for THUCNews. Following the first local training epoch
at clients, if the change values of encoders’ extracted features
surpass the specified thresholds, we identify data shifts.

2) Adversarial Task Detection: During the CL process,
when new samples are adversarial, they significantly degrade
the performance on history tasks compared to general catas-
trophic forgetting. Therefore, after detecting data drift, it
is necessary to further confirm whether the data is adver-
sarial. This section validates the adversarial task detection
mechanism using the FashionMNIST and Cifarl0 datasets,
under nontargeted attacks (label flipping) and targeted attacks
(backdoor attacks). The number of tasks is 5, with task 1 being
the adversarial data. By observing the decline of historical

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

17178

20

(@) (b)

a0 60
Heration

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

4 60
Heration

() (d (e)

Fig. 6. FashionMNIST, task number =5. (a) Fa-MNIST, task 0. (b) Fa-MNIST, task 1. (c) Fa-MNIST, task 2. (d) Fa-MNIST, task 3. (e) Fa-MNIST, task 4.

P

iy

40 60
teration

40 60
teration

(a) (b)

(© () (e

Fig. 7. Cifarl0, task number =5. (a) Cifar10, task 0. (b) Cifar10, task 1. (c) Cifarl0, task 2. (d) Cifar10, task 3. (e) Cifarl0, task 4.

20 30
teration

(a) (b)

20 30
teration

Accuracy

()

Fig. 8. THUCNews, task number =5. (a) THUCNews, task 0. (b) THUCNews, task 1. (c) THUCNews, task 2. (d) THUCNews, task 3. (e) THUCNews,

task 4.

TABLE I

EXPERIMENTAL RESULTS. THE BOLDED ACCURACIES ARE THE OPTIMAL RESULTS, WHILE THE UNDERLINED ONES ARE SUBOPTIMAL RESULTS IN
THE SAME SCENARIO. DUE TO SPACE LIMITATIONS, WE ONLY LISTED THE AVERAGE ACCURACY OF THE MODEL ON ALL HISTORICAL DATA
AFTER THE TRAINING OF ALL TASKS, WITHOUT LISTING THE RESULTS OF INTERMEDIATE TASKS

| Continual-based Methods |

Traditional Methods

‘ SacFL CFeD LwF-Fed EWC-Fed MH-Fed FedWelT FCIL ‘ FedAvg FedProx
FM-3 0.64+291e00 O.1+2s8e04 0.32+181e02 0.37+227e03 0.48+107e02 0.38+£223¢03 0.77 12502 | 0.36£240003 0.1x2.16e-04
FM-5 0.43+500e02 0.1+353e04 0.22+167c03 0.15+s518c04 0.28+178c03 0.18+119e02 0364191003 | 0.25+177¢03 0.1+624e-18
C10-3 034245002 0.324378003 0.33+286e-03 0.27+83%04 033415903 0.25:+673¢-03 0.38+379¢03 | 0.33+120e03 0.31+399-04
C10-5 0.47 499203 0.14+178e05 0.22+293¢03 0.1x210e05 0.19+30503 0.17+628¢.03 0.18+445e03 | 0.21+127¢03 0.18+408e03
Class News-3 0.68+1.63c:02 0.57+122003 0.67+3.06e-03 0.614240004 0.65+241e03 0.37+236e-03 0.51+181e-03 0.65+8.13¢-04 0.65+1.28¢-03
News-5 0.58+673c02 0.57+107c02 0.32+£282003 0.46+127¢03 0.51+306e02 0.1947.640-04 0.524178¢03 | 0.53+642003 0.57+372004
C100-10 0.32+274e03 0.04+406e04 0.11+657e04 0.01x225005 0.06+499e04 0.05+252-03 0.09+168e05 | 0.08+28304 0.07+249e04
C100-15 0.38+294c03 0.05£123¢03 0.09+s891c04 0.01+780c19 0.08+as1e04 0.05+346e-03 0.10+7.16e04 | 0.08+157¢03 0.08+35504
C100-20 0.43+411e-03 0.04+30904 0.05+334c-04 0.01+780e-19 0.05+£537e-04 0.03 224003 0.06-+1.54e-03 0.05+538:-04 0.05+3.77¢-04
Domain | C10 0.8+122e05 0.76+162e03 0.77+118e05 0.76+907e04 0.79+620e04 0.783.10e-03 - | 0794520004 0.6629.06e-04

knowledge, we can identify the adversarial task. As shown in
Fig. 5, the vertical axis represents the average degradation
rate of the model’s performance on the proxy historical
data. At the beginning of label flipping (iteration =100), the
degradation rates for Cifarl0 and FashionMNIST are 65%
and 45%, respectively, which are higher than the benign tasks
(iteration =200) with initial degradation rates of 39% and 11%.
When the attack method is a backdoor attack (iteration =100),
the initial degradation rates for Cifar10 and FashionMNIST are
61% and 70%, respectively, again exceeding that for benign
tasks (iteration =200), which are 22% and 33%. Overall,
regardless of the type of attack, the degradation rates at the
beginning of attacks (iteration =100) are above 40%, while

these initial degradation rates of benign new tasks (itera-
tion =200) are below 40%. Thus, we set 40% as the threshold
for detecting adversarial tasks. If the average degradation rate
on historical tasks exceeds this threshold, it indicates that the
task is adversarial.

C. Simple Class CL

This section focuses on the class-incremental scenario and
applies the findings from Section V-B to simple class CL using
the FashionMNIST, Cifar10, and THUCNews datasets. In this
scenario, the data is relatively stable and undergoes shifts only
a few times. Therefore, we consider scenarios with 3 and 5

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

- SacFL - SacFL
LwF-Fed LwF-Fed

04 CFeD CFeD
EWC-FeD EWC-FeD
MultiHead-Fed
FedWelT

03 FCIL Sttt 45 FOi

FedAvg FedAvg

[N~ s FedPron

MultiHead-Fed
FedWelT

Accuracy

100 0 20 80 100 0 20

2 40 60 &0 w0) o
Task num=10, task id=1 ytgration Task num=10, task id=3 [teration
= SacrL
LuF-Fed
04 CreD
7~ T T T ewcre

MultiHead-Fed

- SacFL
LwF-Fed
P —————— - CF¢D
EWC-FeD
MultiHead-Fed
FedWelT FedWelT
03 FOIL FCIL
FedAvg FedAvg
FedProx FedProx

Accuracy

0 10

0 20 30 50 0
Task num=15, task id=2

50 0

w 10 2 %0 P
Iteration Task num=15, task id=5 ieration

== SacFL -—
LwF-Fed —————es .

04— —— o CFeD

03 FCIL
FedAvg
FedProx

Accuracy

0 10 50 0 50 0 1

20 30 0 10 20 30 40
Task num=20, task id=3 Iteration Task num=20, task id=7 Iteration

Fig. 9. Comparison of performance under Cifar100.

data shifts, corresponding to 3 and 5 tasks, respectively. In
the experimental setup, we endeavored to ensure an equal
distribution of the class number included in each task. Since
each of the aforementioned datasets comprises 10 classes, with
3 tasks, the distribution is as follows: 3, 3, and 4 classes per
task, respectively. When there are five tasks, as 10 is divisible
by 5, each task contains 2 classes. The experimental results
are listed in Table I and visualized in Figs. 6-8.

In the results figure, the horizontal axis represents the
number of iterations for the current task, while the vertical axis
indicates the average accuracy of the model on the testing data
from both all historical tasks and the current task. The model
for the subsequent task is initialized using the parameters from
the previous task. From Table I, it can be observed that when
the total number of tasks is 3, SacFL holds an optimal or
near-optimal position across various datasets, being on par
with most methods, yet it does not demonstrate a distinct
advantage. However, when the total number of tasks increases
to 5, the accuracy of SacFL in tasks 1-4 is significantly
higher than that of other methods (see Figs. 6-8), both on
the FashionMNIST and Cifarl0 datasets. While most methods
achieve only 20%-30% accuracy in Cifarl0, SacFL attains
50%—-60% accuracy. Notably, compared to the scenario with
three tasks, the advantages of SacFL become more pronounced
as the number of tasks increases to 5. We speculate that as the
number of tasks increases, the superiority of SacFL gradually
strengthens (verified in Section V-D). The reason behind this
is that through monitoring the model layers’ changes with
tasks, we identify task-sensitive lightweight decoders and

0 40 60
Task num=10, task id=5

P e e

20 20 40
Task num=15, task id=8 Iteration

e ————————— W Fod

0 20 30 40 50
Task num=20, task id=11 Iteration

17179

- SacFL - SacFL
LwF-Fed LwF-Fed LwF-Fed
CFeD CFeD CFeD
EWC-FeD EWC-FeD EWC-FeD

- SacFL

MultiHead-Fed MultiHead-Fed
FedWelT FedWelT FedWell
e P e SRR R s — ————— s
FedAvg FedAvg FedAvg
FedProx FedProx FedProx

MultiHead-Fed

EY 00 0 20
Iteration

80 100 0 20
Iteration

40 60 40 60 80 100
Task num=10, task id=7 Task num=10, task id=9 Iteration
- SackL - SacFL - SacFL
LwF-Fed LwF-Fed LwF-Fed
CFeD P pas Gy
EWC-FeD EWC-FeD o e EWC-FeD
MultiHead-Fed MultiHead-Fed MultiHead-Fed
FedWelT FedWelT FedWelT
FCIL FCIL FCIL
FedAvg FedAvg FedAvg
FedProx FedProx FedProx

50 0 50 0

10 20 30 40 50
Task num=15, task id=14 |teration

o 20 30 40 5
Task num=15, task id=11 Iteration

- SacFL

- SacFL

- SacFL

— LwF-Fed
CFeD

EWC.

Mut

FedWe

FCIL

FedAvg

FedProx

0 1 50 0

0 20 30 0 10 20 30 40 50
Task num=20, task id=15 Iteration Task num=20, task id=19 Iteration

directly leverage the historical information they encapsulate.
This ensures the integrity of historical task-related knowledge.
Moreover, these lightweight task-sensitive decoders notably
alleviate storage resource demands compared to storing the
entire historical model. However, we also observe that in sub-
sequent tasks, while SacFL maintains a significant advantage,
there may be a slight decline. This is because, on individual
datasets, when the average forgetting rate for historical tasks
exceeds the learning rate for new tasks, the overall accuracy
shows a decreasing trend. The reason behind this is that
training in subsequent tasks can introduce minor alterations to
the encoder, diminishing the coupling between the encoder and
decoders from previous tasks. It is not guaranteed to occur. For
example, there is a slight decrease in the FashionMNIST and
THUCNews datasets, but a weak upward trend in the Cifar10
and Cifar100 datasets.

D. Sequential Class CL

In Section V-C, we focus on the scenario where the data
remains relatively stable, namely, simple CL. However, in real-
world scenarios, CL is a long-term endeavor, and the variations
across merely 3 or 5 tasks are insufficient. It is necessary
to validate SacFL in situations with more task variations.
Therefore, in this section, we introduce the Cifar100 dataset
to construct a larger number of tasks incorporating a wider
range of data classes. Our aim is to assess the efficacy of
SacFL in handling extensive task variations. Specifically, we
test the performance under scenarios involving 10, 15, and 20

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

17180

FFFFFF

eeeeeee

LLLLLL

(a)

CPeOdPRLINBBRRYLLLILBB8BNLREIERE8Y CPOONRRIINBBBBYLILAL
lteration lter

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

|||||| % o |||||||| | |

- 0.750
-0.725
- 0.700
o

sssss

\\\\\\\\\

Fig. 10. Cifarl0, task number =3, domain-incremental scenario. Each line represents the change in accuracy of a specific algorithm as the number of iterations
increases. The lighter the color, the higher the accuracy. (a) Cifarl0, task 0. (b) Cifarl0, task 1. (c) Cifarl0, task 2.

tasks. Due to space limitations, we only present a subset of
the experimental results, as shown in Fig. 9.

In Fig. 9, the results are depicted for different numbers of
tasks: when there are ten tasks, the outcomes for task 1, task
3, task 5, task 7, and task 9 are displayed; with 15 tasks,
the results for task 2, task 5, task 8, task 11, and task 14 are
shown; and when there are 20 tasks, the results for task 3, task
7, task 11, task 15, and task 19 are illustrated. It is evident
that irrespective of whether the total number of tasks is 10,
15, or 20, traditional methods exhibit minimal effectiveness in
sequential tasks, whereas the SacFL approach demonstrates
a clear advantage and maintains stable convergence. This
reaffirms the superior performance of SacFL in handling
sequential tasks.

E. Domain CL

In the experiments in Sections V-C and V-D, validations are
carried out under the class-incremental scenario. In addition to
class increment, domain increment is also an important setting
in CL. In the domain-incremental scenario, the labels of the
data remain unchanged, but the data itself undergoes shifts.
To simulate this scenario, we introduce Gaussian noise and
multiplicative noise to the Cifar10 dataset, thus constructing
domain-incremental datasets. Consequently, we obtain three
tasks: task O for the original dataset, task 1 for Gaussian noise,
and task 2 for multiplicative noise. The experimental results
are illustrated in Fig. 10.

In Fig. 10, under the original data (task 0), the convergence
results and speeds of SacFL are consistent with other methods,
achieving an accuracy of 80%. However, upon introducing
Gaussian noise to the Cifarl0 dataset, all methods exhibit
noticeable fluctuations. Except for SacFL, the performance
of other methods significantly decreases. Notably, FedProx,
which does not employ CL mechanisms, experiences the most
significant decline. Furthermore, when the model is further
exposed to the multiplicative noise dataset, SacFL’s accuracy
remains high. Therefore, based on the experimental results in
Sections V-C—V-E, we conclude that SacFL performs well in
both class-incremental and domain-incremental scenarios in
CL.

F. CL Under Adversarial Attack

All the experiments above are under the assumption that
new tasks are benign. However, it is inevitable that some

TABLE I
PERFORMANCE OF DIFFERENT STRATEGIES AGAINST ATTACKS

| Label Flipping | Backdoor Attack

‘ Cifar10 F-MNIST ‘ Cifar10 F-MNIST

SacFL 0.48 +335e-020 0.15 +471e02 | 0.41 £332e020 0.38 £381e-02

Krum 0.42 +is6e02 0.11 £343e02 | 0.33 +396e-020 0.30 +5.88¢-02

Median 0.43 274020 0.02 £973¢03 | 0.39 ta02e-020 0.14 +£352-02

Trim_m | 047 +i91c02 0.08 +assc02 | 0.37 +32102 0.15 +333¢02
TABLE III

COMPUTATION (DENOTED BY C) AND STORAGE (DENOTED BY S)
OVERHEAD OF DIFFERENT CL METHODS

SacFL ~ CFeD LwF-Fed EWC-Fed FCIL FedWelT

S 4K 177K 177K 177K 177K 171K

LeNet C 5.02 522 4.92 7.18 9.91 19.44
S 21K 4373M 43.73M 4373M 43.73M 681K

Resnetl8 ¢ 21.79 23.08 18.75 27.7 23.46 62.5
S 5K 10.51IM 10.51M 10.51M 10.51M 301K
TextCNN 342 4.08 434 443 6.57 6.23

clients are maliciously attacked in the real world. Based on the
threshold obtained in Section V-B, we can accurately detect
adversarial tasks and trigger the adversarial CL mechanism.
In this section, we validate our approach using the Fashion-
MNIST and Cifarl0 datasets in the contexts of untargeted
attacks (label flipping) and targeted attacks (backdoor attacks).
The experimental setup assumes a class-incremental learning
scenario with three tasks, where adversarial data appears in
task 1, while tasks O and 3 contain benign samples. The
final results are summarized in Table II. In Table II, we
compare the proposed adversarial CL defense method, SacFL,
against commonly used adversarial defense methods in FL
(Krum [53], Median [59], and Trimmed mean [59]) under
the adversarial task (ID =1) scenario. The reported values
represent the test accuracy of the model across all historical
tasks. As shown in the table, SacFL outperforms other methods
overall in terms of defense effectiveness. This demonstrates
that SacFL is more effective in countering adversarial samples
encountered during CL.

G. Resource Analysis

When considering the adaptation to limited resources on end
devices, SacFL demonstrates significant advantages in both

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

o
o

17181

—e— Detection 0.30
o —&— No-Detection 0.95
0.5 v : 0.3
o) 3 0.20 . o) :
© 0.4 0k 0 © —e— Detection © —e— Detection
3 3 0.15 —&— No-Detection 302 —&— No-Detection
Q Q Q
< 0.3 < <<
0.10
0 0.1
02 0.05
0.1 0.00 0.0
0 100 200 300 400 500 0 200 400 600 800 1000 0 200 400 600
Iteration Iteration Iteration
(a) (b) ()
Fig. 11. Ablation study of data shift detection component. (a) Cifar100, task number =5. (b) Cifar100, task number =10. (c) Cifar100, task number =15.

computational and storage efficiency compared to other meth-
ods, as illustrated in Table III. Especially in the storage aspect,
traditional model-based FCL methods typically necessitate
storing the entire model to preserve historical knowledge. In
contrast, SacFL only maintains a lightweight decoder, thus
reducing storage overhead. Taking the ResNet-18 model for
Cifar10 as an example, other methods consume 43.73 MB/681
KB, while the lightweight decoder only occupies 0.19 MB,
reducing by 99.9%; similarly, reductions of 97.7% for LeNet
and 99.9% for TextCNN. Regarding computation resources,
Table III displays the average time consumed per federated
iteration when the total number of tasks is 3. We can con-
clude that compared to the average of other methods, SacFL
reduces the computing time by 46.22%, 29.92%, and 33.33%
for LeNet, ResNetl18, and TextCNN, respectively. Therefore,
SacFL consumes fewer resources overall and is more suitable
for end devices with limited resources. It should be noted that
the resource consumption of the Multihead method is not listed
in the table since it undergoes significant structural changes in
each task, making it incomparable to other methods.

H. Ablation Studies

In this section, we perform ablation validation on the
data drift detection component. Due to space constraints, we
specifically focus on validation within the class-incremental
scenario involving a large number of classes, yielding results
as depicted in Fig. 11. It can be observed that in the absence
of data drift detection, the model’s performance deteriorates
with task transitions. However, upon integrating the data drift
detection component, the model’s performance just experi-
ences only a brief decline after task changes, yet it recovers
during subsequent training.

1. Demo System

In addition to validating SacFL in a simulation system, we
also develop a distributed demo system, consisting of 5 mini
computers NUC with CPU and a central server. The NUCs are
equipped with Intel' Core? i7-10710U processors, 24 GB of
RAM, and run on Ubuntu 18.04. The central server contains
four NVIDIA GeForce RTX 3090 GPUs, and 128 GB of

IRegistered trademark.
>Trademarked.

0.7 = SacFL
mmm EWC-Fed
06 = FedAvg
0.5
>
5 0.4
3
Q
Q
<03
0.2
) I I I I
0.0
NUC1 NUC2 NUC3 NUC4 NUC5
Devices

Fig. 12. Performance of SacFL on the demo system.

RAM, and operates on Ubuntu 22.04. All the NUCs are con-
nected through the IEEE 802.11 wireless network. Leveraging
the FashionMNIST dataset, we compare the performance of
SacFL with that of typical CL methods such as EWC-Fed
and the non-CL method FedAvg, as depicted in Fig. 12. In
Fig. 12, the test results on all historical tasks for the five
NUCs are presented after training. It can be observed that the
SacFL model exhibits overwhelming superiority over the other
two methods across all clients. Therefore, SacFL maintains its
advantage in realistic distributed computing scenarios.

VI. CONCLUSION

This article addresses the problem of CL for resource-
constrained end devices, proposing an FCL method called
SacFL. SacFL identifies that the last few layers are highly
sensitive to task variations. Based on this observation, the
model is divided into a task-robust encoder and a task-sensitive
lightweight decoder. By only storing the lightweight decoders
instead of the whole model or historical data on end devices,
the overhead of storage and computation resources can be
effectively reduced. Moreover, a data shift detection mecha-
nism based on contrastive learning is introduced to detect task
changes. It can autonomously identify new tasks and determine
whether they are adversarial. For benign tasks, it triggers the
CL mechanism, while for adversarial tasks, it activates the

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from IEEE Xplore. Restrictions apply.

17182

attack-defense strategy. Experimental validations conducted
on both image and text datasets yield five key conclusions:
1) SacFL demonstrates advantages over mainstream CL and
conventional methods, particularly evident when encountering
more frequent changes; 2) SacFL greatly reduces the storage
and computing overhead on end devices, achieving a reduction
ratio of up to 99.9%, especially in terms of storage resources;
3) beyond class-incremental scenarios, SacFL remains effec-
tive in domain-incremental scenarios; 4) in scenarios where
the new task is malicious, its effectiveness in mitigating attacks
exceeds that of common federated robust aggregation methods;
and 5) except for the simulation system, SacFL is also effective
in a real demo system, demonstrating its practicality.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Y. Ge, Y. Li, S. Ni, J. Zhao, M. Yang, and L. Itti, “CLR: Channel-wise
lightweight reprogramming for continual learning,” in Proc. ICCV, Oct.
2023, pp. 18752-18762.

A. Douillard, M. Cord, C. Ollion, T. Robert, and E. Valle, “PODNet:
Pooled outputs distillation for small-tasks incremental learning,” in Proc.
Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 86—102.
W. Y. B. Lim et al., “Federated learning in mobile edge networks: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031-2063, 3rd Quart., 2020.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1-19, 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, A. Singh
and J. Zhu., Eds., Fort Lauderdale, FL, USA, 2017, pp. 1273-1282.
K. James et al, “Overcoming catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521-3526,
Mar. 2017.

J. P. Gou, B. S. Yu, S. J. Maybank, and D. C. Tao, “Knowledge distil-
lation: A survey,” Int. J. Comput. Vis., vol. 129, no. 31, pp. 1789-1819,
Jul. 2021.

Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935-2947, Dec. 2017.

P. Dhar, R. V. Singh, K. Peng, Z. Wu, and R. Chellappa, “Learning
without memorizing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 5138-5146.

L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive sur-
vey of continual learning: Theory, method and application,” 2023,
arXiv:2302.00487.

Y. Li, Q. Li, H. Wang, R. Li, W. Zhong, and G. Zhang, “Towards efficient
replay in federated incremental learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., vol. 17, Jun. 2024, pp. 12820-12829.
A. Chaudhry et al., “On tiny episodic memories in continual learning,”
2019, arXiv:1902.10486.

M. Boschini, P. Buzzega, L. Bonicelli, A. Porrello, and S. Calderara,
“Continual semi-supervised learning through contrastive interpolation
consistency,” Pattern Recognit. Lett., vol. 162, pp. 9-14, Aug. 2022.
Y. Xiang, Y. Fu, P. Ji, and H. Huang, “Incremental learning using
conditional adversarial networks,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 6619-6628.

X. Liu et al., “Generative feature replay for class-incremental learning,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops,
Jun. 2020, pp. 226-227.

Z. Gong, K. Zhou, X. Zhao, J. Sha, S. Wang, and J.-R. Wen,
“Continual pre-training of language models for math problem under-
standing with syntax-aware memory network,” in Proc. ACL, Jan. 2022,
pp. 5923-5933.

A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 67-82.

M. Xue, H. Zhang, J. Song, and M. Song, “Meta-attention for
ViT-backed continual learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 2022,
pp. 150-159.

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]
(32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

N. Mehta, K. J. Liang, V. K. Verma, and L. Carin, “Continual learning
using a Bayesian nonparametric dictionary of weight factors,” in Proc.
Int. Conf. Artif. Intell. Statist., Jan. 2020, pp. 100-108.

R. Jathushan, H. Munawar, H. Salman, K. F. Shahbaz, and
S. Ling, “Random path selection for incremental learning,” 2019,
arXiv:1906.01120.

T. Bai, C. Chen, L. Lyu, J. Zhao, and B. Wen, “Towards adversarially
robust continual learning,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Jun. 2023, pp. 1-5.

H. Khan, N. C. Bouaynaya, and G. Rasool, “Adversarially robust
continual learning,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2022, pp. 1-8.

W. Huang et al., “A federated learning for generalization, robustness,
fairness: A survey and benchmark,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 46, no. 12, pp. 9387-9406, Dec. 2024.

Z. Zhong, J. Wang, W. Bao, J. Zhou, X. Zhu, and X. Zhang, “Semi-
HFL: Semi-supervised federated learning for heterogeneous devices,”
Complex Intell. Syst., vol. 9, no. 2, pp. 1995-2017, Apr. 2023.

W. Huang, M. Ye, Z. Shi, and B. Du, “Generalizable heterogeneous fed-
erated cross-correlation and instance similarity learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 46, no. 2, pp. 712-728, Oct. 2023.

P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1-2, pp. 1-210, Jun. 2021.
A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” 2020, arXiv:2002.07948.

K. Wang, R. Mathews, C. Kiddon, H. Eichner, F. Beaufays, and
D. Ramage, “Federated evaluation of on-device personalization,” 2019,
arXiv:1910.10252.

D. Li and J. Wang, “FedMD: Heterogenous federated learning via model
distillation,” 2019, arXiv:1910.03581.

M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary,
“Federated learning with personalization layers,” 2019,
arXiv:1912.00818.

Y. Liu et al., “A communication efficient collaborative learning frame-
work for distributed features,” 2019, arXiv:1912.11187.

M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in Proc. Int. Conf. Mach. Learn., 2019, pp. 4615-4625.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429-450.

H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” 2020, arXiv:2002.06440.
L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1-6.

S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical fed-
erated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10,
pp. 6535-6548, Oct. 2020.

Z. Zhong, W. Bao, J. Wang, X. Zhu, and X. Zhang, “FLEE: A
hierarchical federated learning framework for distributed deep neural
network over cloud, edge, and end device,” ACM Trans. Intell. Syst.
Technol., vol. 13, no. 5, pp. 1-24, Oct. 2022.

H. Huang et al., “Active client selection for clustered federated
learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 11,
pp. 1642416438, Jul. 2023.

S. M. Shah and V. K. N. Lau, “Model compression for communication
efficient federated learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 9, pp. 5937-5951, Sep. 2021.

J. Kone¢ny and P. Richtdrik, “Randomized distributed mean estimation:
Accuracy vs. communication,” Frontiers Appl. Math. Statist., vol. 4,
p. 62, Dec. 2018.

H. Yu et al., “Overcoming spatial-temporal catastrophic forgetting for
federated class-incremental learning,” in Proc. 32nd ACM Int. Conf.
Multimedia, Oct. 2024, pp. 5280-5288.

X. Yang, H. Yu, X. Gao, H. Wang, J. Zhang, and T. Li, “Federated
continual learning via knowledge fusion: A survey,” IEEE Trans. Knowl.
Data Eng., vol. 36, no. 8, pp. 3832-3850, Feb. 2024.

J. Dong et al., “Federated class-incremental learning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 10164-10173.

D. Qi, H. Zhao, and S. Li, “Better generative replay for continual
federated learning,” 2023, arXiv:2302.13001.

J. Zhang, C. Chen, W. Zhuang, and L. Lyu, “TARGET: Federated class-
continual learning via exemplar-free distillation,” in Proc. ICCV, Oct.
2023, pp. 4759-4770.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

ZHONG et al.: SacFL: SELF-ADAPTIVE FEDERATED CONTINUAL LEARNING

[46]

[47]

(48]

[49]

[50]

(511

[52]

(53]

(541

[55]

[56]

[571

[58]

[591

Y. Li, W. Xu, Y. Qi, H. Wang, R. Li, and S. Guo, “SR-FDIL: Synergistic
replay for federated domain-incremental learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 35, no. 11, pp. 1879-1890, Aug. 2024.

W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 10143-10153.

J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang, “Federated
continual learning with weighted inter-client transfer,” in Proc. 38th Int.
Conf. Mach. Learn., vol. 139, Jul. 2021, pp. 12073-12086.

Y. F. Bakman, D. N. Yaldiz, Y. H. Ezzeldin, and S. Avestimehr,
“Federated orthogonal training: Mitigating global catastrophic forgetting
in continual federated learning,” 2023, arXiv:2309.01289.

Z. Jiang, Y. Ren, M. Lei, and Z. Zhao, “FedSpeech: Federated text-to-
speech with continual learning,” 2021, arXiv:2110.07216.

Y. Ma, Z. Xie, J. Wang, K. Chen, and L. Shou, “Continual federated
learning based on knowledge distillation,” in Proc. IJCAI, Jul. 2022,
pp. 2182-2188.

Y. Venkatesha, Y. Kim, H. Park, Y. Li, and P. Panda, “Addressing client
drift in federated continual learning with adaptive optimization,” 2022,
arXiv:2203.13321.

P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, Dec. 2017, pp. 118-128.

Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Sep.
2021, pp. 10708-10717.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-1ID data,” 2019, arXiv:1907.02189.

A. Krizhevsky and H. Geoffrey, “Learning multiple layers of
features from tiny images,” Dept. Comput. Sci., Univ. Toronto,
Toronto, ON, Canada, Tech. Rep., 2009. [Online]. Available: https://
www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

J. Li, M. Sun, and Z. Xian, “A comparison and semi-quantitative
analysis of words and character-bigrams as features in Chinese text
categorization,” in Proc. ACL, Jan. 2006, pp. 545-552.

D. Qi, H. Zhao, and S. Li, “Better generative replay for continual
federated learning,” 2023, arXiv:2302.13001.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn., Jul. 2018, pp. 5650-5659.

Zhengyi Zhong received the B.S. degree from the
College of Systems Engineering, National University

e | of Defense Technology, Changsha, China, in 2020,

! v j where she is currently pursuing the Ph.D. degree.
.; i Her research interests include federated learning,
- continual learning, machine unlearning, and domain

adaptation.

Weidong Bao received the Ph.D. degree in infor-
mation systems from the National University of
Defense Technology, Changsha, China, in 1999.
He is currently a Professor with the College
of Systems Engineering, National University of
Defense Technology. He has authored more than
100 research articles in refereed journals and
conference proceedings, such as IEEE TRANS-
ACTIONS ON COMPUTERS, IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, and
IEEE INTERNET OF THINGS JOURNAL. His recent

research interests include cloud computing, information systems, and complex
networks.

17183

Ji Wang received the Ph.D. degree in information
systems from the National University of Defense
Technology, Changsha, China, in 2019.

He was a Visiting Ph.D. Student with the Uni-
versity of Illinois at Chicago, Chicago, IL, USA,
from March 2017 to September 2018, under the
supervision of Prof. Philip S. Yu. He is currently
an Associate Professor with the College of Sys-
tems Engineering, National University of Defense
Technology. He has authored more than 30 research
articles in refereed journals and conference proceed-

ings, such as IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, SIGKDD, and AAAI. His
research interests include deep learning and edge intelligence.

Jianguo Chen received the Ph.D. degree in
computer science and technology from Hunan
University, Changsha, China, in 2018.

He is currently an Associate Professor and one
of the Hundred Academic Talents with the School
of Software Engineering, Sun Yat-sen University
(SYSU), Guangzhou, China. He has published
more than 70 research papers in international
conferences and journals such as IEEE TRANS-
ACTIONS ON INDUSTRIAL INFORMATICS, IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTA-

TION SYSTEMS, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEER-
ING, and IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND
BIOINFORMATICS. His major research interests include high-performance
artificial intelligence, federated learning, distributed computing, and the
application in intelligent transportation and intelligent medicine.

Lingjuan Lyu (Senior Member, IEEE) received the
Ph.D. degree from The University of Melbourne,
Melbourne, VIC, Australia, in 2018.

She was a Research Fellow (Level B3) with
Australian National University, Canberra, ACT,
Australia. She is currently a Researcher with Sony
Al Her current research interests include federated
learning, trustworthy Al, edge intelligence, and fair-
ness.

Wei Yang Bryan Lim (Member, IEEE) received the
Ph.D. degree from Nanyang Technological Univer-
sity (NTU), Singapore, in 2022, under the Alibaba
Ph.D. Talent Program and was affiliated with the
CityBrain Team, DAMO Academy.

He is currently an Assistant Professor with the
College of Computing and Data Science (CCDS),
NTU. His research interests include edge intelli-
gence, federated learning, and applied Al

Dr. Bryan Lim’s doctoral efforts earned him
accolades such as the “Most Promising Industrial

Postgraduate Program Student” Award. He also serves on the Technical
Program Committee for FL workshops at flagship conferences (AAAI-FL
and IJCAI-FL) and is a Review Board Member for reputable jour-
nals such as TEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 28,2026 at 01:18:07 UTC from |IEEE Xplore. Restrictions apply.

