
NodeRAG:
Structuring Graph-based RAG with Heterogeneous Nodes

Anonymous ACL submission

Abstract001

Retrieval-augmented generation (RAG) em-002
powers large language models to access ex-003
ternal and private corpora, enabling factually004
consistent responses in specific domains. By005
exploiting the inherent structure of the corpus,006
graph-based RAG methods enrich this process007
by building a knowledge graph index and lever-008
aging the structural nature of graphs. How-009
ever, current graph-based RAG approaches010
seldom prioritize the design of graph struc-011
tures. Inadequately designed graphs impede012
the seamless integration of diverse graph al-013
gorithms and result in workflow inconsisten-014
cies and degraded performance. To further un-015
leash the potential of graph for RAG, we pro-016
pose NodeRAG, a heterogeneous graph-centric017
framework that enables the seamless and holis-018
tic integration of graph-based methodologies019
into the RAG workflow. By aligning closely020
with the capabilities of LLMs, this framework021
ensures a fully cohesive and efficient end-to-022
end process. Through extensive experiments,023
we demonstrate that NodeRAG exhibits per-024
formance advantages over previous methods,025
including GraphRAG and LightRAG, not only026
in indexing time, query time, and storage effi-027
ciency but also in delivering superior question-028
answering performance on multi-hop bench-029
marks and open-ended head-to-head evalua-030
tions with minimal retrieval tokens. Our anony-031
mous GitHub repository is available at this link.032

1 Introduction033

Retrieval-augmented generation (RAG) has034

emerged as a solution to the challenges posed035

by the rapid evolution of real-world knowledge036

domains (Fan et al., 2024), coupling large lan-037

guage models (LLMs) with an external retrieval038

mechanism to ensure the generation of factually039

consistent and contextually relevant information040

(Tonmoy et al., 2024; Shrestha et al., 2024; Liu041

et al., 2024). Despite recent progress, current042

RAG methods face notable shortcomings in 043

handling multi-hop reasoning (Luo et al., 2023; 044

Wang et al., 2024b) and summary-level queries 045

(Han et al., 2024a; Wen et al., 2023) due to 046

their insufficient utilization of data structures 047

and lack of high-level understanding of the text 048

corpus. Graph-based RAG methods (Tian et al., 049

2024; Park et al., 2023) have been proposed 050

to enhance retrieval and question-answering 051

performance, specifically addressing the two main 052

challenges faced by traditional RAG approaches. 053

Leveraging LLMs to decompose raw data into 054

graph structures (Jiménez Gutiérrez et al., 2024; 055

He et al., 2024) for utilizing structural information, 056

as well as employing LLMs for summary-based 057

enhancements (Edge et al., 2024; Guo et al., 2024) 058

to derive insights beyond the original text, have 059

gradually become mainstream approaches. 060

However, previous Graph-based RAG works 061

(Trajanoska et al., 2023; Jiménez Gutiérrez et al., 062

2024) have rarely considered the critical role of 063

graph structures, i.e., what forms of graph better 064

support RAG. Among existing approaches, Knowl- 065

edge graph approaches (Sanmartin, 2024; Wang 066

et al., 2024b) extract triples for structure but still 067

rely on text chunks for retrieval, often yielding in- 068

coherent or irrelevant context. Current methods 069

aim to enrich graph information and extract deeper 070

insights, but often face inefficiencies and inconsis- 071

tencies due to poor structural design. For example, 072

GraphRAG (Edge et al., 2024) uses a tightly cou- 073

pled entity-event homogeneous structure, which 074

limits the integration of original context and sum- 075

mary information. This leads to inconsistent re- 076

trieval strategies (e.g., separate local and global 077

retrieval) and coarse-grained results, where retriev- 078

ing an entity also pulls in unrelated events. 079

To address these limitations, we propose 080

NodeRAG, which is built around a well-designed 081

Heterogeneous Graph, comprehensively consider- 082

ing the entire process of graph indexing and search- 083

1

https://anonymous.4open.science/r/NodeRAG_anonymization-CC1F

Community

NaïveRAG HippoRAGGraphRAG
Homogenous Graph

NodeRAG
Knowledge Triples Graph Heterogenous Graph

Text

Light RAG

REntity Information Original Text ChunksTextN Summarization Information

Node

S Relationship

R

…

…

R

RR

R

R

Homogenous Graph

Edge

Community Summary

Text Chunk 1

R N

N
S

Node

N

N

N N

N

N

N

N

S

S

S

R

Text
Edge

Community

Text Chunk 2

Text Chunk 3

Text Chunk n
Text Chunk n

Text Chunk 1

Node

NS

Node

Node

Edge

R N

S

S SN

R N

S SN

S
S

N
S

S
S

Figure 1: Comparisons between NodeRAG and other RAG systems. NaiveRAG retrieving fragmented text chunks, leads to
redundant information. HippoRAG introduces knowledge graphs but lacks high-level summarization. GraphRAG retrieves
community summaries but may still produce coarse-grained information. LightRAG incorporates one-hop neighbors but retrieves
redundant nodes. In contrast, NodeRAG utilizes multiple node types, including high-level elements, semantic units, and
relationships, enabling more precise, hierarchical retrieval while reducing irrelevant information.

ing, enabling fine-grained retrieval. The hetero-084

graph adheres to the principle of unfolding and085

flattening, decomposing different types of infor-086

mation to construct a heterogeneous fully nodal-087

ized graph where nodes serve distinct functions and088

roles. The heterograph encapsulates information089

from the original corpus and also extends beyond090

it, incorporating enriched insights such as key node091

attributes, and high-level discoveries. As illustrated092

in Figure 1, NodeRAG enables fine-grained, node-093

level retrieval tailored to user queries through graph094

algorithms, offering both explainable results and095

high-level understanding.096

The key contributions of our work can be sum-097

marized in three main aspects.098

(1) Better Graph Structure for RAG The graph099

structure serves as the foundation for graph-based100

RAG where significance has been overlooked. Our101

work emphasizes its importance and introduces a102

graph structure that better supports RAG.103

(2) Fine-grained and Explainable Retrieval The104

heterograph enables fine-grained and functionally105

distinct nodes, allowing graph algorithms to effec-106

tively and reasonably identify key multi-hop nodes.107

This leads to more relevant retrieval with minimal108

retrieval context, enhancing both precision and in-109

teroperability.110

(3) Unified-Level Information Retrieval Decom-111

posed information from documents and extracted112

insights from LLMs are not treated as separate113

layer but are instead unified as nodes within the114

heterograph. This integration allows for a cohesive 115

framework capable of handling information needs 116

across different levels. 117

In addition, extensive experiments show that 118

NodeRAG outperforms prior graph-based RAG 119

methods in multi-hop tasks and open-ended eval- 120

uations. It achieves high retrieval precision with 121

minimal tokens and offers system-level efficiency 122

gains in indexing, querying, and storage, as detailed 123

in Appendix A. 124

2 NodeRAG 125

The NodeRAG pipeline is built on a heterograph 126

structure introduced in Section 2.1 and consists 127

of two main stages: graph indexing and graph 128

searching. The indexing stage includes graph de- 129

composition, augmentation, and enrichment (Sec- 130

tions 2.2–2.4), integrating diverse nodes and edges 131

using LLMs and graph algorithms. The search- 132

ing stage (Section 2.5) leverages the heterograph’s 133

structure and algorithms to retrieve relevant infor- 134

mation efficiently. Details on the graph algorithms 135

and prompting strategies are provided in Appen- 136

dices C and E, respectively. 137

2.1 Heterograph 138

The concept of the heterograph embodies the prin- 139

ciple of comprehensive unfolding and flattening of 140

information into a fully nodalized structure. This 141

structure achieves its granularity through the in- 142

tegration of seven hetero node types: entity (N), 143

relationship (R), semantic unit (S), attribute (A), 144

2

Text Text Text

S S S S S S

N
N

N

N
N N N

R
R

R
R

A

A

2.1 Node Importance Based Augmentation

K-core U Betweenness Centrality

RR R S

Important entityN

RR R S

Important entityN

Step 2: Graph Augmentation

H
H

H H

H

A S S

AS

S

2.2 Community Detection Based Aggregation

R

Community 1

R R A S

S

Community 2 A

SR R

Community 3

SR R R

Step 1: Graph Decomposition R

N

S

A
H

O

Text Text insert

Embedding nodes Non-Embedding nodes

HNSW Semantic edges

H
Text

S

S
S H

A H

H

H Text

AS
R

N

Text SS

S

Step 3: Graph Enrichment

Leiden Algorithm

Heterograph

O

O O

O

O

Semantic matching

O

Semantic Unit

Entity

Relationship

Attributes
High Level Elements

High Level
Overview

Text chunk

Embed

Semantic edge

Figure 2: Main indexing workflow of NodeRAG. It illustrates the step-by-step construction of the heterograph,
including the process of graph decomposition, graph augmentation, and graph enrichment

high-level elements (H), high-level overview (O),145

and text (T). Mathematically, the heterograph is146

defined as:147

G = (V, E ,Ψ),148

where G is the heterograph, V represents the set of149

nodes, E is the set of edges, and Ψ : V → Types is150

a mapping function that assigns each node v ∈ V151

to a specific type, where152

Types = {N,R, S,A,H,O, T}.153

For any node v, Ψ(v) defines its type, with each154

node type performing a distinct and well-defined155

function, as detailed in subsequent sections and156

appendix C. For each e ∈ E , the default weight157

of e is set to 1, representing a basic connection158

between two nodes. Furthermore, we define Vtypes159

as the subset of nodes corresponding to a subset set160

types ⊆ Types, formally expressed as:161

Vtypes = {v ∈ V | Ψ(v) ∈ types}.162

For instance, V{N,R,S} represents the subset con-163

taining only entity, relationship, and semantic unit164

nodes.165

2.2 Graph Decomposition166

First, we define a null heterograph G0. The initial167

step involves employing a LLM to decompose text168

chunks from the source corpus into three primary169

node types: semantic units (S), entities (N), and170

relationships (R). These nodes are then intercon-171

nected to construct the initial heterograph. This 172

process can be formalized as: 173

G1 = G0 ∪ {v ∈ V, e ∈ E | Ψ(v) ∈ {S,N,R}}, 174

Where e represents the connecting edges between 175

semantic units and entity nodes, as well as between 176

relationship nodes and their corresponding source 177

and target entities. An example of the different 178

node types can be found in Appendix C.1. 179

Semantic unit (S) Semantic units serve as local 180

summaries that encapsulate independent events in 181

paraphrased form. They function as core nodes 182

in graph augmentation and enhance search quality. 183

In contrast, text chunks divided without semantic 184

awareness may mix unrelated content, introducing 185

noise and increasing entropy, which reduces the 186

effectiveness of augmentation and retrieval. 187

Entity (N) and Relationship (R) Entities N are 188

nodes representing entity names, while relation- 189

ships R are also converted into nodes that link 190

source and target entities. This design decouples 191

N and R from specific events, allowing them to 192

function independently while remaining anchored 193

to relevant contexts. 194

2.3 Graph Augmentation 195

The heterograph G1 provides a foundational low- 196

level structure. To further augment the graph, 197

we implement node importance-based augmenta- 198

tion and community detection-based aggregation, 199

3

which respectively capture the perspectives of in-200

dividual node significance and structural cohesion201

within the graph.202

Node Importance Based Augmentation We fo-203

cus on structurally and functionally pivotal entities,204

processing them with LLMs to generate attribute205

summaries. By targeting only key entities and their206

semantic contexts, this approach ensures both pre-207

cision and efficiency. The selection of important208

entities, N∗, is guided by two complementary met-209

rics: K-core decomposition (Seidman, 1983; Kong210

et al., 2019) and betweenness centrality (Brandes,211

2001). K-core identifies nodes in densely con-212

nected subgraphs that are critical to graph cohesion,213

while betweenness centrality highlights nodes that214

act as bridges for information flow. These metrics215

are denoted as K(G1) and B(G1), where K(·) and216

B(·) represent the selected entity nodes from the217

graph. The final set of important entities is defined218

as:219

N∗ = K(G1) ∪B(G1).220

Entity attributes are constructed directly from221

relationships and semantic units, bypassing raw222

texts to avoid redundancy. Each generated attribute223

node is added to the graph and connected to its224

corresponding entity node via the edge ea.225

G2 = G1 ∪ {v ∈ V, ea ∈ E | Ψ(v) ∈ {A}}.226

Community Detection Based Aggregation We227

first apply the Leiden algorithm (Traag et al., 2019)228

to G2 for community detection, assigning each229

node v ∈ G2 to a community Cn. Within each230

Cn, LLMs analyze the aggregated content to ex-231

tract high-level elements (H) that capture the core232

information of the community, such as summaries233

and sentiment. To preserve structural coherence,234

each high-level node v ∈ VH need to be seman-235

tically connected to relevant nodes v ∈ V{S,A,H}236

in the same community. This is achieved via K-237

means clustering (MacQueen et al., 1967) on node238

embeddings, with the number of clusters set to239

K =
√
|V{S,A,H}|. An edge eh is created if v and240

v′ ∈ VH belong to the same cluster Sk and com-241

munity Cn. Additionally, LLMs generate a key-242

word title for each high-level node, denoted as the243

overview node (O), used for dual search (see Sec-244

tion 2.5). Each v ∈ VH and v ∈ VO is connected245

via edge eo. The resulting graph G3 integrates high-246

level elements and their connections. Formally, the247

resulting graph at this stage is defined as:248

G3 = G2∪{v ∈ V, eh, eo ∈ E | ψ(v) = {H,O}}.249

2.4 Graph Enrichment 250

In the previous process of generating the hetero- 251

graph, G3 already contains a wealth of information. 252

However, certain unique and additional details can 253

still further enrich the heterograph, enabling it to 254

not only preserve the entirety of the original text’s 255

information but also gain enhanced features and 256

insights that go far beyond the source material. 257

Text Insertion Text chunks are not directly incor- 258

porated into G during graph augmentation due to 259

their semantically incoherent structure. Neverthe- 260

less, these original chunks retain substantial value, 261

as they contain detailed information that helps pre- 262

vent both information loss and error propagation 263

in LLM processing. Hence, it is crucial to ensure 264

that the original content remains accessible and 265

searchable within the graph. 266

G4 = G3 ∪ {v, es | Ψ(v) = T}, 267

where es denotes the edges connecting text chunks 268

to their relevant semantic units. 269

Embedding Vector similarity is effective for 270

nodes v ∈ V{T,A,S,H}, which encode rich contex- 271

tual information. In contrast, nodes v ∈ V{N,O}, 272

representing names or titles, are less suitable due 273

to their limited semantic depth. To address this 274

limitation, we developed a dual search mechanism. 275

During the embedding process, we selectively em- 276

bed only a subset of the graph’s data, specifically 277

v ∈ V{T,A,S,H}. This targeted embedding step is 278

crucial for reducing storage overhead while pre- 279

serving efficient search capabilities. 280

HNSW Semantic Edges The Hierarchical Navi- 281

gable Small World (HNSW) algorithm (Malkov 282

and Yashunin, 2018) is an approximate nearest 283

neighbor search method that organizes data into 284

a multi-layer graph structure to efficiently retrieve 285

semantically similar nodes. It represents the data 286

as a layered graph H = {L0,L1, . . . ,Lm}, where 287

L0 is the base layer containing the densest se- 288

mantic similarity connections, and higher layers 289

(Li, i > 0) are sparsely connected to facilitate 290

coarse-grained navigation. H is built iteratively. 291

When a new node is added, it is inserted into a ran- 292

dom level and all layers below it, connecting to sim- 293

ilar neighbors based on cosine similarity. Higher 294

layers remain sparse with long-range connections, 295

while L0 focuses on dense local relationships. The 296

search starts at the sparsely connected top layer, 297

and progressively descends to L0. In our work, 298

the base layer L0 of the HNSW graph, which en- 299

4

Query: How did
Harry Potter
first learn about
Hogwarts and
who delivered
the letter to him?

embedding

Accurate search

Letter

A
H

S S

N

N

Text

Weight flowing Cross nodes

R

Entry points + Cross nodes

Retrievals

Harry
Potter

S
H

Text

A
N

Entry points

NDecompose

S

H

Text A

N

SH TextA

R

R

HNSW

Dual Search Shallow PPR Filtering retrieval nodes
O

O

O

O

Hogwarts

Figure 3: This figure focuses on the querying process, where entry points are extracted from the original query,
followed by searching for related nodes that need to be retrieved in the heterograph.

codes semantic relations between nodes, is inte-300

grated with the heterograph G. The updated graph,301

denoted as G5, is expressed as:302

G5 = G4 ∪ L0.303

The inclusion of L0 enhances the heterograph’s304

search capabilities by incorporating semantic dense305

proximity edges, augmenting its structural informa-306

tion in the graph.307

2.5 Graph Searching308

We first apply a dual search mechanism to identify309

entry points within the heterograph. Subsequently,310

a shallow Personalized PageRank (PPR) algorithm311

is employed to extract cross nodes. The combina-312

tion of entry point nodes and cross nodes is then313

filtered to produce the final retrieval.314

Dual Search Dual search combines exact match-315

ing on title nodes and vector similarity search on316

rich information nodes to identify entry points in317

the heterograph G. Given a query, the LLM extracts318

entities N q and embeds the query into vector (q).319

The entry points are defined as:320

Ventry = {v ∈ V | Φ(v,N q,q)},321

where the condition function Φ(v,N q,q) is de-322

fined as:323

Φ(v,N q,q) =

{
v ∈ V{N,O} ∧M(N q, v),

v ∈ V{S,A,H} ∧R(q, v, k).
324

Here, the exact matching function M(v∗, v) re-325

turns true if a node matches one of the extracted en-326

tities by word level string matching. Additionally,327

the similarity-ranking function R(q, v, k) returns328

true if a node ranks among the top-k most simi-329

lar to q based on the HNSW algorithm. Nodes330

v ∈ V{N,O} are non-retrievable, as they serve331

solely as entry points to the graph and do not di-332

rectly contribute to the retrievable content. Only333

nodes identified through the shallow PPR as closely334

related to all entry points are included in the re-335

trieval results as cross nodes. By decoupling re- 336

trieval from direct exact matching, this approach re- 337

duces the influence of noisy or ambiguous queries, 338

thereby improving the overall robustness of the 339

retrieval process. 340

Shallow PPR Personalized PageRank (PPR) 341

identifies relevant nodes in the heterograph G by 342

simulating a biased random walk starting from a 343

set of entry points. In our approach, we use shallow 344

PPR, limiting the number of iterations t to ensure 345

that relevance remains localized to the neighbor- 346

hoods of the entry points. This early stop strategy 347

prevents excessive diffusion to distant or irrelevant 348

parts of the graph, focusing instead on multi-hop 349

nodes near the entry points. Let P be the normal- 350

ized adjacency matrix of G, where Pij represents 351

the transition probability from node i to node j. 352

The PPR process starts with a personalization vec- 353

tor p ∈ R|V|, where pi = 1/|Ventry| if vi ∈ Ventry, 354

and pi = 0 otherwise. The PPR score vector π(t) 355

after t iterations is computed iteratively as: 356

π(t) = αp+ (1− α)P⊤π(t−1), π(0) = p, 357

where α ∈ (0, 1) is the teleport probability that 358

balances restarting at entry points and propagat- 359

ing through the graph. After t iterations, the top-k 360

nodes with the highest PPR scores for each type are 361

selected as cross nodes, denoted as Vcross. In our de- 362

fault setting, we use α = 0.5 and t = 2 to achieve 363

a balance between exploration and convergence. 364

Filter Retrieval Nodes Finally, the retrieval 365

nodes are filtered from the union of entry nodes 366

and cross nodes to include only retrievable nodes 367

of v ∈ V{T,A,S,H,R}. v ∈ V{N,O}, which contain 368

only keywords without informational content, are 369

excluded from the retrieval context. The final set 370

of retrieval nodes is therefore defined as: 371

Vretrieval = { v ∈ Ventry ∪ Vcross |
ψ(v) ∈ {T, S,A,H,R}}

372

5

Part I: General comparisons

Methods
HotpotQA MuSiQue MultiHop Arena-Writing Arena-Tech Arena-Science Arena-Recreation Arena-Lifestyle Arena-FiQA

Acc.↑ #Token↓ Acc.↑ #Token↓ Sco.↑ #Token↓ W+T↑ #Token↓ W+T↑ #Token↓ W+T↑ #Token↓ W+T↑ #Token↓ W+T↑ #Token↓ W+T↑ #Token↓

NaiveRAG 87.50% 9.8k 39.43% 9.6k 0.56 8.9k 0.663 9.4k 0.689 9.1k 0.526 9.0k 0.720 9.3k 0.817 9.1k 0.926 9.1k

HyDE 73.00% 10.0k 33.14% 9.8k 0.53 9.4k 0.789 9.6k 0.863 9.3k 0.823 9.3k 0.777 9.5k 0.829 9.3k 0.949 9.3k

LightRAG 79.00% 7.1k 36.00% 7.4k 0.50 7.9k 0.754 6.3k 0.937 6.9k 0.840 7.1k 0.800 6.2k 0.817 6.8k 0.937 7.7k

GraphRAG 89.00% 6.6k 41.71% 6.6k 0.53 7.4k 0.749 6.4k 0.943 6.7k 0.863 6.7k 0.806 6.6k 0.863 6.8k 0.960 6.8k

NodeRAG 89.50% 5.0k 46.29% 5.9k 0.57 6.1k 0.794 3.3k 0.949 3.8k 0.903 4.2k 0.886 3.4k 0.949 3.3k 0.977 3.4k

Part II: Pairwise Comparisons

Domain M1 vs M2 Win (M1) Tie Win (M2) Domain M1 vs M2 Win (M1) Tie Win (M2) Domain M1 vs M2 Win (M1) Tie Win (M2)

FiQA

NodeRAG vs GraphRAG 0.520 0.126 0.354

Recreation

NodeRAG vs GraphRAG 0.531 0.126 0.343

Writing

NodeRAG vs GraphRAG 0.691 0.120 0.189

NodeRAG vs LightRAG 0.486 0.103 0.411 NodeRAG vs LightRAG 0.526 0.143 0.331 NodeRAG vs LightRAG 0.651 0.115 0.234

NodeRAG vs NaiveRAG 0.749 0.034 0.217 NodeRAG vs NaiveRAG 0.800 0.017 0.183 NodeRAG vs NaiveRAG 0.851 0.018 0.131

NodeRAG vs HyDE 0.531 0.155 0.314 NodeRAG vs HyDE 0.440 0.189 0.371 NodeRAG vs HyDE 0.349 0.228 0.423
GraphRAG vs LightRAG 0.320 0.303 0.377 GraphRAG vs LightRAG 0.406 0.154 0.440 GraphRAG vs LightRAG 0.297 0.303 0.400
GraphRAG vs NaiveRAG 0.754 0.092 0.154 GraphRAG vs NaiveRAG 0.714 0.080 0.206 GraphRAG vs NaiveRAG 0.691 0.092 0.217

GraphRAG vs HyDE 0.491 0.132 0.377 GraphRAG vs HyDE 0.377 0.137 0.486 GraphRAG vs HyDE 0.177 0.126 0.697
LightRAG vs NaiveRAG 0.711 0.106 0.183 LightRAG vs NaiveRAG 0.691 0.063 0.246 LightRAG vs NaiveRAG 0.731 0.080 0.189

LightRAG vs HyDE 0.514 0.143 0.343 LightRAG vs HyDE 0.349 0.171 0.480 LightRAG vs HyDE 0.211 0.178 0.611
NaiveRAG vs HyDE 0.611 0.063 0.326 NaiveRAG vs HyDE 0.674 0.069 0.257 HyDE vs NaiveRAG 0.857 0.040 0.103

Lifestyle

NodeRAG vs GraphRAG 0.640 0.114 0.246

Science

NodeRAG vs GraphRAG 0.497 0.200 0.303

Tech

NodeRAG vs GraphRAG 0.543 0.154 0.303

NodeRAG vs LightRAG 0.623 0.131 0.246 NodeRAG vs LightRAG 0.538 0.208 0.254 NodeRAG vs LightRAG 0.497 0.137 0.366

NodeRAG vs NaiveRAG 0.800 0.040 0.160 NodeRAG vs NaiveRAG 0.829 0.085 0.086 NodeRAG vs NaiveRAG 0.777 0.046 0.177

NodeRAG vs HyDE 0.526 0.205 0.269 NodeRAG vs HyDE 0.423 0.280 0.297 NodeRAG vs HyDE 0.543 0.160 0.297

GraphRAG vs LightRAG 0.429 0.120 0.451 GraphRAG vs LightRAG 0.361 0.343 0.296 GraphRAG vs LightRAG 0.400 0.234 0.366

GraphRAG vs NaiveRAG 0.680 0.074 0.246 GraphRAG vs NaiveRAG 0.829 0.108 0.063 GraphRAG vs NaiveRAG 0.657 0.097 0.246

GraphRAG vs HyDE 0.354 0.097 0.549 GraphRAG vs HyDE 0.354 0.172 0.474 GraphRAG vs HyDE 0.463 0.143 0.394

LightRAG vs NaiveRAG 0.663 0.046 0.291 LightRAG vs NaiveRAG 0.828 0.119 0.053 LightRAG vs NaiveRAG 0.691 0.075 0.234

LightRAG vs HyDE 0.349 0.120 0.531 LightRAG vs HyDE 0.308 0.189 0.503 LightRAG vs HyDE 0.463 0.097 0.440

HyDE vs NaiveRAG 0.709 0.028 0.263 HyDE vs NaiveRAG 0.840 0.074 0.086 HyDE vs NaiveRAG 0.606 0.051 0.343

Table 1: Part I: General Comparisons evaluates NaiveRAG, HyDE, LightRAG, GraphRAG, and NodeRAG on
HotpotQA and MuSiQue (accuracy and average tokens) and in the Arena using Win+Tie ratios and average tokens.
Part II: Pairwise Comparisons shows the fraction of “wins" (Win(M1)), “ties" (Tie), and “losses" (Win(M2))
when comparing one RAG method against another (e.g., NodeRAG vs. GraphRAG). Bold values highlight the best
performance.

3 Evaluation373

We evaluate NodeRAG’s performance across three374

different multihop benchmarks, HotpotQA (Yang375

et al., 2018), MuSiQue (Trivedi et al., 2022b),376

MultiHop-RAG (Tang and Yang, 2024), and an377

open-ended head to head evaluation RAG-QA378

Arena (Han et al., 2024b) across six domains. And379

we compare our method against several strong and380

widely used RAG methods as baseline models, in-381

cluding NaiveRAG (Lewis et al., 2020), HyDE382

(Gao et al., 2022a), GraphRAG (Edge et al., 2024),383

LightRAG (Guo et al., 2024). The details of these384

datasets and baseline models are introduced in Ap-385

pendix B.386

3.1 Metrics387

General Comparison In the first part, we eval-388

uated NaiveRAG, HyDE, LightRAG, GraphRAG,389

and NodeRAG in four benchmark data sets. For390

HotpotQA and MuSiQue benchmarks, we assess391

accuracy (Acc) to measure effectiveness and the392

average number of retrieved tokens (#Token) to393

evaluate efficiency. For the MultiHop-RAG bench-394

mark, we adopt its original evaluation metric, Score 395

(Sco), while still using #Token to gauge retrieval 396

efficiency. Lastly, for the RAG-QA Arena bench- 397

mark, we continue to track #Token for efficiency 398

and employ a win and tie ratio (W+T) against gold 399

responses as a measure of performance across dif- 400

ferent methods. 401

Pairwise Comparison In this part, the evalua- 402

tion focuses exclusively on the RAG-QA Arena 403

benchmark, covering six domains: FiQA, Recre- 404

ation, Writing, Lifestyle, Science, and Technology. 405

We conduct comprehensive pairwise comparisons 406

among all method combinations and calculate the 407

corresponding win and tie rates for each matchup, 408

thereby identifying the better RAG system. 409

3.2 Implementation details 410

By default, all these RAG methods are imple- 411

mented with GPT 4o-mini, and the temperature is 412

set to 0 throughout the evaluation. Meanwhile, we 413

identify a potential unfairness in the current evalu- 414

ation setup, evident in several key areas. Notably, 415

the baselines vary in their choice of prompts used 416

6

to synthesis the final response based on retrieved417

information. Therefore, we standardized the re-418

sponse prompts for every method. Our initiative to419

standardize these settings also benefits other meth-420

ods like GraphRAG, improving their performance421

compared to their default setting, underscoring the422

broader value of establishing fair and consistent423

evaluation standards.424

3.3 Results425

General Comparison As shown in Part I of Ta-426

ble 1, NodeRAG consistently outperforms compet-427

ing methods on HotpotQA, MuSiQue, and Mul-428

tiHopRAG, demonstrating the highest accuracy429

while retrieving noticeably fewer tokens. For ex-430

ample, for MuSiQue, NodeRAG attains an accu-431

racy of 46.29%, surpassing GraphRAG (41.71%)432

and LightRAG (36.00%). In HotpotQA, while433

NodeRAG achieves a slightly higher accuracy434

(89.50% vs. 89.00% for GraphRAG), it does so435

with only 5k retrieved tokens, which is 1.6k fewer436

than GraphRAG. In the RAG-QA Arena bench-437

mark, graph-enhanced RAG systems exhibit a clear438

advantage over traditional approaches. Notably,439

NodeRAG achieves the highest win and tie ra-440

tio in each of the five domains while keeping re-441

trieval costs minimal. For example, it attains a ratio442

of 94.9%, notably surpassing GraphRAG’s 86.3%443

and LightRAG’s 81.7% in the Lifestyle domain,444

and does so with less than half the retrieved tokens445

compared to the other models. It can also be no-446

ticed that graph-enhanced RAG systems generally447

retrieve fewer tokens than traditional RAG across448

all benchmarks. These results confirm NodeRAG’s449

remarkable effectiveness and efficiency, demon-450

strating that our heterograph can significantly boost451

RAG performance across diverse tasks.452

Pairwise Comparison Across all the six do-453

mains, NodeRAG consistently achieves higher win454

ratios against GraphRAG, LightRAG, NaiveRAG,455

and HyDE, demonstrating notable dominance,456

for instance, in the Lifestyle domain, NodeRAG457

achieves 0.640 win rate against GraphRAG, 0.623458

against LightRAG, 0.800 against NaiveRAG and459

0.526 against HyDE. GraphRAG, LightRAG,460

NaiveRAG, and HyDE show scattered successes,461

such as LightRAG edging out NaiveRAG (0.649 vs.462

0.246) in Recreation, GraphRAG beats LightRAG463

(0.361 vs. 0.296) in Science, yet their overall win464

rates remain lower when compared to NodeRAG.465

Notably, these trends persist across other domains466

like Writing, Recreation, Science, and Tech, fur- 467

ther underscoring NodeRAG’s leading position, fol- 468

lowed by LightRAG and GraphRAG, showing the 469

superiority of our method. 470

In general, NodeRAG not only achieves the 471

highest accuracy rate and the lowest retrieval to- 472

ken count in general benchmarks but also outper- 473

forms all other baselines in preference evaluation 474

comparisons. This unparalleled performance in 475

both accuracy and computational efficiency makes 476

NodeRAG the optimal choice for a wide range of 477

RAG tasks, from research applications to deploy- 478

ments in resource-constrained environments. 479

4 Ablation experiments 480

1 2 3 10 15 100 200 500 1000
PPR Max Iterations

38%

40%

42%

44%

46%

48% Accuracy
Avg Tokens
Avg Time (s)

0

2

4

6

8

10

12

14

16

18

6.2
5.4 5.8 5.4 5.7 5.5

7.5

9.7

11.3

5.8K

6.0K

6.2K

6.4K

6.6K

6.8K

7.0K

7.2K

Figure 4: Ablation analysis on PPR iterations.

We conducted ablation experiments on the 481

MuSiQue dataset, adhering to the same settings 482

and evaluation metrics described earlier. We specif- 483

ically examined the impact of four key submodules: 484

shallow PPR, cross-node interactions, HNSW se- 485

mantic edges, and dual search. 486

We first investigated the variation in PPR itera- 487

tions and examined whether shallow PPR offers ad- 488

vantages. PPR, with a few iterations, performs bet- 489

ter than deep PPR because it highlights important 490

nodes that are closer to the entry points. Moreover, 491

early stopping reduces unnecessary computational 492

overhead, leading to improved retrieval efficiency. 493

Moreover, we evaluate the performance of ap- 494

plying the top-k vector similarity method to all 495

node data in the graph. Although increasing the 496

retrieval context, its performance remains lower 497

than the basic version. This confirms the necessity 498

of cross-nodes in our method, as they help identify 499

important multi-hop nodes. Second, performing 500

vector similarity solely on node data consistently 501

outperforms the naive RAG approach of similar- 502

ity on text chunks, demonstrating the advantages 503

brought by graph-based data augmentation. 504

7

In addition, without integration of accurate505

search in dual search, accuracy drops to 44.57%,506

and the token count increases to 9.7k. This is be-507

cause losing entity and high-level overview nodes508

as entry points causes nodes with long texts, such509

as text nodes, to have higher weights after shallow510

PPR. Since vector similarity entry nodes are more511

frequently connected to T nodes, while accurate512

entry nodes are more connected to S, A, and H513

nodes, the absence of accurate search disrupts this514

balance.515

Finally, we investigate the effect of HNSW.516

HNSW introduces semantic edges to the hetero-517

graph, and removing this integration results in per-518

formance degradation. This is because HNSW en-519

hances connectivity between semantically related520

nodes, enabling more efficient and meaningful re-521

trieval.522

Method Accuracy Time (s) Tokens (k)
NodeRAG (Ours) 46.29% 4.05 5.96

w/o HNSW 41.71% 4.92 6.78
w/o Dual Search 44.57% 4.72 9.70
w/o Cross Node

Top-k = 10 41.71% 4.15 4.27
Top-k = 20 43.43% 4.70 7.89
Top-k = 30 42.29% 4.80 11.62

Table 2: Ablation study of NodeRAG components.

5 Related Works523

Retrieval-augmented generation Retrieval-524

Augmented Generation (RAG) systems (Gupta525

et al., 2024) boost LLM performance by retrieving526

domain-specific information from external sources.527

Traditional methods (Zhao et al., 2024; Fan528

et al., 2024; Lewis et al., 2020) embed queries529

and knowledge base entries into a shared vector530

space, retrieving top-K matches via similarity531

metrics. Though effective, these naive approaches532

have limitations, leading to improvements such533

as refined passage selection in JPR (Min et al.,534

2021), multi-hop reasoning in IR-CoT (Trivedi535

et al., 2022a), disambiguation trees in Tree of536

Clarifications (Kim et al., 2023), and hypothetical537

document generation in HyDE (Gao et al., 2022b).538

Other studies explore how document types affect539

RAG performance (Hsia et al., 2024). Challenges540

remain, including LLMs’ context window limits541

(Cheng et al., 2024; Su et al., 2024) and difficulty542

with holistic corpus understanding (Jiang et al.,543

2024b). Domain-specific variants like BioRAG544

and MedicalRAG (Wang et al., 2024a; Wu et al., 545

2024; Jiang et al., 2024a) have emerged, yet RAG 546

still struggles with tasks requiring broad synthesis, 547

such as query-focused summarization. 548

RAG over Hierarchical Index To address the 549

limitations of traditional RAG, advanced systems 550

adopt hierarchical indexing to improve retrieval. 551

Dense Hierarchical Retrieval (DHR) (Liu et al., 552

2021) combines document-level semantics with 553

passage-level detail, while Hybrid Hierarchical Re- 554

trieval (HHR) (Arivazhagan et al., 2023) integrates 555

sparse and dense methods for more precise retrieval. 556

Models like RAPTOR (Sarthi et al., 2024) use tree 557

structures for multilevel summarization. Graph- 558

based RAGs (Trajanoska et al., 2023; Zhang et al., 559

2024) further enhance indexing by building knowl- 560

edge graphs (Chen et al., 2020) and applying graph 561

algorithms (Haveliwala et al., 2003). Examples in- 562

clude HippoRAG (Jiménez Gutiérrez et al., 2024) 563

and KAPING (Baek et al., 2023), which improve 564

organization and efficiency. GraphRAG (Edge 565

et al., 2024) uses LLMs for graph construction and 566

summary generation (Blondel et al., 2008; Traag 567

et al., 2019), influencing works such as LightRAG 568

(Guo et al., 2024), which balances high/low-level 569

information with indexing efficiency. Despite these 570

advances, existing methods underutilize the syn- 571

ergy between LLMs and graph structures. Our 572

framework fills this gap through refined graph de- 573

sign and enhanced graph algorithms, achieving bet- 574

ter retrieval accuracy and efficiency. 575

6 Conclusion 576

In this paper, we introduce NodeRAG, a novel 577

framework designed to enhance RAG performance 578

by optimizing graph structures in indexing for more 579

effective and fine-grained retrieval. NodeRAG con- 580

structs a well-defined heterograph with function- 581

ally distinct nodes, balancing fine-grained under- 582

standing with a global perspective of the knowl- 583

edge corpus. Experimental results demonstrate that 584

NodeRAG outperforms existing methods across 585

multi-hop reasoning benchmarks and open-ended 586

retrieval tasks. 587

7 Limitations 588

While NodeRAG offers practical improvements in 589

indexing and querying, its graph size and structural 590

complexity still scale with the size of the corpus, 591

similar to previous graph-based methods. This can 592

limit scalability and reduce efficiency when applied 593

to extremely large-scale corpora. 594

8

References595

Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi596
Chen, William Yang Wang, and Zhiheng Huang.597
2023. Hybrid hierarchical retrieval for open-domain598
question answering. In Findings of the Association599
for Computational Linguistics: ACL 2023, pages600
10680–10689.601

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.602
Knowledge-augmented language model prompting603
for zero-shot knowledge graph question answering.604
arXiv preprint arXiv:2306.04136.605

Vincent D Blondel, Jean-Loup Guillaume, Renaud606
Lambiotte, and Etienne Lefebvre. 2008. Fast un-607
folding of communities in large networks. Jour-608
nal of statistical mechanics: theory and experiment,609
2008(10):P10008.610

Ulrik Brandes. 2001. A faster algorithm for between-611
ness centrality. Journal of mathematical sociology,612
25(2):163–177.613

Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin614
Zhao, and Zongtao Duan. 2020. Knowledge graph615
completion: A review. Ieee Access, 8:192435–616
192456.617

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,618
Dongyan Zhao, and Rui Yan. 2024. Lift yourself619
up: Retrieval-augmented text generation with self-620
memory. Advances in Neural Information Processing621
Systems, 36.622

Darren Edge, Ha Trinh, Newman Cheng, Joshua623
Bradley, Alex Chao, Apurva Mody, Steven Truitt,624
and Jonathan Larson. 2024. From local to global: A625
graph rag approach to query-focused summarization.626
arXiv preprint 2404.16130.627

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,628
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing629
Li. 2024. A survey on rag meeting llms: Towards630
retrieval-augmented large language models. In Inter-631
national Conference on Knowledge Discovery and632
Data Mining (KDD), pages 6491–6501.633

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.634
2022a. Precise zero-shot dense retrieval without rele-635
vance labels. arXiv preprint arXiv:2212.10496.636

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.637
2022b. Precise zero-shot dense retrieval without rele-638
vance labels. arXiv preprint arXiv:2212.10496.639

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao640
Huang. 2024. Lightrag: Simple and fast retrieval-641
augmented generation. arXiv preprint 2410.05779.642

Shailja Gupta, Rajesh Ranjan, and Surya Narayan643
Singh. 2024. A comprehensive survey of retrieval-644
augmented generation (rag): Evolution, current645
landscape and future directions. arXiv preprint646
2410.12837.647

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan 648
Ding, Yongjia Lei, Mahantesh Halappanavar, Ryan A 649
Rossi, Subhabrata Mukherjee, Xianfeng Tang, and 1 650
others. 2024a. Retrieval-augmented generation with 651
graphs (graphrag). arXiv preprint arXiv:2501.00309. 652

Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan 653
Wang, Lan Liu, William Yang Wang, Bonan Min, 654
and Vittorio Castelli. 2024b. Rag-qa arena: Eval- 655
uating domain robustness for long-form retrieval 656
augmented question answering. arXiv preprint 657
arXiv:2407.13998. 658

Taher Haveliwala, Sepandar Kamvar, and Glen Jeh. 659
2003. An analytical comparison of approaches to 660
personalizing pagerank. Technical report, Stanford. 661

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, 662
Thomas Laurent, Yann LeCun, Xavier Bresson, and 663
Bryan Hooi. 2024. G-retriever: Retrieval-augmented 664
generation for textual graph understanding and ques- 665
tion answering. arXiv preprint arXiv:2402.07630. 666

Jennifer Hsia, Afreen Shaikh, Zhiruo Wang, and Gra- 667
ham Neubig. 2024. Ragged: Towards informed 668
design of retrieval augmented generation systems. 669
arXiv preprint 2403.09040. 670

Xinke Jiang, Yue Fang, Rihong Qiu, Haoyu Zhang, 671
Yongxin Xu, Hao Chen, Wentao Zhang, Ruizhe 672
Zhang, Yuchen Fang, Xu Chu, and 1 others. 2024a. 673
Tc-rag: Turing-complete rag’s case study on medical 674
llm systems. arXiv preprint arXiv:2408.09199. 675

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. 2024b. 676
Longrag: Enhancing retrieval-augmented gener- 677
ation with long-context llms. arXiv preprint 678
arXiv:2406.15319. 679

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michi- 680
hiro Yasunaga, and Yu Su. 2024. Hipporag: Neu- 681
robiologically inspired long-term memory for large 682
language models. arXiv preprint arXiv:2405.14831. 683

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joon- 684
suk Park, and Jaewoo Kang. 2023. Tree of clarifica- 685
tions: Answering ambiguous questions with retrieval- 686
augmented large language models. arXiv preprint 687
arXiv:2310.14696. 688

Yi-Xiu Kong, Gui-Yuan Shi, Rui-Jie Wu, and Yi-Cheng 689
Zhang. 2019. k-core: Theories and applications. 690
Physics Reports, 832:1–32. 691

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio 692
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 693
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock- 694
täschel, and 1 others. 2020. Retrieval-augmented 695
generation for knowledge-intensive nlp tasks. Ad- 696
vances in Neural Information Processing Systems, 697
33:9459–9474. 698

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 699
jape, Michele Bevilacqua, Fabio Petroni, and Percy 700
Liang. 2024. Lost in the middle: How language mod- 701
els use long contexts. Transactions of the Association 702
for Computational Linguistics, 12:157–173. 703

9

http://arxiv.org/pdf/2404.16130v1
http://arxiv.org/pdf/2404.16130v1
http://arxiv.org/pdf/2404.16130v1
http://arxiv.org/pdf/2410.05779v2
http://arxiv.org/pdf/2410.05779v2
http://arxiv.org/pdf/2410.05779v2
http://arxiv.org/pdf/2410.12837v1
http://arxiv.org/pdf/2410.12837v1
http://arxiv.org/pdf/2410.12837v1
http://arxiv.org/pdf/2410.12837v1
http://arxiv.org/pdf/2410.12837v1
http://arxiv.org/pdf/2403.09040v2
http://arxiv.org/pdf/2403.09040v2
http://arxiv.org/pdf/2403.09040v2
http://arxiv.org/pdf/2405.14831v1
http://arxiv.org/pdf/2405.14831v1
http://arxiv.org/pdf/2405.14831v1
http://arxiv.org/pdf/2405.14831v1
http://arxiv.org/pdf/2405.14831v1

Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih704
Yavuz, Caiming Xiong, and Philip S Yu. 2021. Dense705
hierarchical retrieval for open-domain question an-706
swering. arXiv preprint arXiv:2110.15439.707

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and708
Shirui Pan. 2023. Reasoning on graphs: Faithful and709
interpretable large language model reasoning. arXiv710
preprint arXiv:2310.01061.711

James MacQueen and 1 others. 1967. Some methods712
for classification and analysis of multivariate observa-713
tions. In Proceedings of the fifth Berkeley symposium714
on mathematical statistics and probability, volume 1,715
pages 281–297. Oakland, CA, USA.716

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient717
and robust approximate nearest neighbor search us-718
ing hierarchical navigable small world graphs. IEEE719
transactions on pattern analysis and machine intelli-720
gence, 42(4):824–836.721

Sewon Min, Kenton Lee, Ming-Wei Chang, Kristina722
Toutanova, and Hannaneh Hajishirzi. 2021. Joint723
passage ranking for diverse multi-answer retrieval.724
arXiv preprint arXiv:2104.08445.725

Jinyoung Park, Ameen Patel, Omar Zia Khan, Hyun-726
woo J Kim, and Joo-Kyung Kim. 2023. Graph-727
guided reasoning for multi-hop question answer-728
ing in large language models. arXiv preprint729
arXiv:2311.09762.730

Diego Sanmartin. 2024. Kg-rag: Bridging the gap731
between knowledge and creativity. arXiv preprint732
arXiv:2405.12035.733

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh734
Khanna, Anna Goldie, and Christopher D Man-735
ning. 2024. Raptor: Recursive abstractive pro-736
cessing for tree-organized retrieval. arXiv preprint737
arXiv:2401.18059.738

Stephen B Seidman. 1983. Network structure and mini-739
mum degree. Social networks, 5(3):269–287.740

Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li,741
Yusheng Xie, and Siqi Deng. 2024. Fairrag: Fair742
human generation via fair retrieval augmentation. In743
Proceedings of the IEEE/CVF Conference on Com-744
puter Vision and Pattern Recognition, pages 11996–745
12005.746

Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu,747
and Yiqun Liu. 2024. Dragin: Dynamic retrieval aug-748
mented generation based on the real-time informa-749
tion needs of large language models. arXiv preprint750
arXiv:2403.10081.751

Yixuan Tang and Yi Yang. 2024. Multihop-rag: Bench-752
marking retrieval-augmented generation for multi-753
hop queries. arXiv preprint arXiv:2401.15391.754

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang,755
Ziqing Hu, Fang Wang, Nitesh V Chawla, and Pan-756
pan Xu. 2024. Graph neural prompting with large757

language models. In Proceedings of the AAAI Con- 758
ference on Artificial Intelligence, volume 38, pages 759
19080–19088. 760

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vip- 761
ula Rawte, Aman Chadha, and Amitava Das. 2024. 762
A comprehensive survey of hallucination mitigation 763
techniques in large language models. arXiv preprint 764
arXiv:2401.01313. 765

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. 766
2019. From louvain to leiden: guaranteeing well- 767
connected communities. Scientific reports, 9(1):1– 768
12. 769

Milena Trajanoska, Riste Stojanov, and Dimitar Tra- 770
janov. 2023. Enhancing knowledge graph construc- 771
tion using large language models. arXiv preprint 772
arXiv:2305.04676. 773

Harsh Trivedi, Niranjan Balasubramanian, Tushar 774
Khot, and Ashish Sabharwal. 2022a. Interleav- 775
ing retrieval with chain-of-thought reasoning for 776
knowledge-intensive multi-step questions. arXiv 777
preprint arXiv:2212.10509. 778

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 779
and Ashish Sabharwal. 2022b. Musique: Multi- 780
hop questions via single-hop question composition. 781
Transactions of the Association for Computational 782
Linguistics, 10:539–554. 783

Chengrui Wang, Qingqing Long, Meng Xiao, Xunxin 784
Cai, Chengjun Wu, Zhen Meng, Xuezhi Wang, 785
and Yuanchun Zhou. 2024a. Biorag: A rag-llm 786
framework for biological question reasoning. arXiv 787
preprint arXiv:2408.01107. 788

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi 789
Zhang, and Tyler Derr. 2024b. Knowledge graph 790
prompting for multi-document question answering. 791
In Proceedings of the AAAI Conference on Artificial 792
Intelligence, volume 38, pages 19206–19214. 793

Yilin Wen, Zifeng Wang, and Jimeng Sun. 2023. 794
Mindmap: Knowledge graph prompting sparks graph 795
of thoughts in large language models. arXiv preprint 796
arXiv:2308.09729. 797

Junde Wu, Jiayuan Zhu, Yunli Qi, Jingkun Chen, Min 798
Xu, Filippo Menolascina, and Vicente Grau. 2024. 799
Medical graph rag: Towards safe medical large lan- 800
guage model via graph retrieval-augmented genera- 801
tion. arXiv preprint arXiv:2408.04187. 802

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 803
gio, William W Cohen, Ruslan Salakhutdinov, and 804
Christopher D Manning. 2018. Hotpotqa: A dataset 805
for diverse, explainable multi-hop question answer- 806
ing. arXiv preprint arXiv:1809.09600. 807

Yuzhe Zhang, Yipeng Zhang, Yidong Gan, Lina Yao, 808
and Chen Wang. 2024. Causal graph discovery with 809
retrieval-augmented generation based large language 810
models. arXiv preprint arXiv:2402.15301. 811

10

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren812
Wang, Yunteng Geng, Fangcheng Fu, Ling Yang,813
Wentao Zhang, and Bin Cui. 2024. Retrieval-814
augmented generation for ai-generated content: A815
survey. arXiv preprint arXiv:2402.19473.816

11

A Comparison of RAG System Performance817

Datasets Corpus Size Index Time Storage Usage Query Time Average Retrieval Tokens

Graph Light Node Graph Light Node Graph-L Graph-G Light Node Graph-L Graph-G Light Node

HotpotQA 1.93M 66min 39min 21min 227MB 461MB 214MB 2.66s 26.69s 5.58s 3.98s 6680.65 810529 7176.73 5079.40
Musique 1.84M 76min 90min 25min 255MB 492MB 250MB 2.94s 22.65s 6.53s 4.05s 6616.84 1111073 7458.34 5960.25
MultiHop 1.41M 50min 58min 24min 141MB 276MB 137MB 4.15s 34.45s 7.10s 4.89s 7367.54 920780 8920.00 5259.99
Arena-Fiqa 1.65M 45min 49min 19min 112MB 240MB 117MB 8.95s 28.94s 13.35s 8.86s 6819.45 713560 7721.73 3381.72
Arena-Lifestyle 1.64M 52min 59min 18min 138MB 278MB 125MB 7.54s 33.09s 10.43s 6.79s 6860.26 895964 6822.32 3350.35
Arena-Recreation 0.93M 34min 33min 10min 89MB 172MB 80MB 5.10s 23.10s 8.01s 6.90s 6669.95 564636 6249.31 3448.38
Arena-Science 1.43M 43min 46min 17min 116MB 236MB 111MB 8.05s 35.79s 14.28s 8.85s 6759.15 778051 7111.80 4284.13
Arena-Tech 1.72M 54min 54min 14min 133MB 276MB 139MB 7.35s 28.64s 8.89s 6.74s 6755.46 741690 6922.55 3821.78
Arena-Writing 1.82M 50min 71min 13min 151MB 309MB 157MB 5.65s 40.12s 10.70s 5.40s 6477.72 877354 6364.59 3373.34

Table 3: Performance metrics for RAG methods, including Index Time, Storage Usage, Query Time, and Retrieval
Tokens across various datasets. Graph denotes GraphRAG, with Graph-l representing its local mode and Graph-G
its global mode. Light refers to LightRAG in hybrid mode, while Node represents our proposed method.

The table 3 presents the system performance of mainstream graph-based RAG methods and our proposed818

approach. Compared to previous work, our method demonstrates superior performance across multiple819

datasets and in open-ended head-to-head evaluations, while also achieving better system-level efficiency.820

All evaluations in the table were conducted using the default indexing settings of each RAG method, with821

the query settings and the prompt details provided in Appendix B.2. Notably, our method demonstrates822

a significant advantage in indexing time, which is crucial for practical deployment. This advantage is823

attributed to the construction process of our Hetero Graph, which not only creates a more fine-grained and824

semantically meaningful graph structure but also carefully considers the algorithmic complexity of the825

retrieval process.826

NodeRAG also exhibits relatively better storage efficiency. Although the total number of nodes in our827

expanded graph is significantly larger than in previous graph structures, the combination of selective828

embedding and dual search effectively reduces the number of embedded nodes, leading to a more efficient829

storage strategy. Moreover, our unified information retrieval approach results in reduced query time.830

While the GraphRAG local search (Graph-l) relies purely on vector similarity—similar to our "without831

cross-node" setting mentioned in Section 4—and achieves faster search speeds, its global mode (Graph-G)832

experiences significantly higher query times, exceeding 20 seconds with a concurrency of 16. This is due833

to its reliance on LLM-based traversal of all community information, leading to a substantial number834

of retrieval tokens. Given the considerable time and computational overhead associated with Graph-G835

queries, we conducted a full evaluation only on the MuSiQue dataset. For other datasets, query time and836

retrieval token statistics were estimated based on a sample of 20 selected queries. Further details on the837

ablation study of GraphRAG can be found in the Appendix B.4.838

In contrast, our method leverages the heterograph and graph algorithms to achieve unified information839

retrieval, effectively capturing meaningful information needs across multiple levels within a single840

framework while maintaining efficient query speed. Finally, the nodes within the heterograph are841

connected in a fine-grained structure, ensuring that more relevant text is retrieved with relatively fewer842

retrieval tokens.843

B Experiment details844

B.1 Datasets845

We evaluate Node RAG’s performance across four different benchmarks: HotpotQA, MuSiQue, MultiHop-846

RAG and RAG-QA Arena. However, the original question formats of HotpotQA and MuSiQue required847

selecting the most relevant passages from multiple documents, incorporating multi-hop reasoning details.848

This setup no longer aligns with mainstream RAG methods, as modern approaches perform indexing over849

an entire corpus and subsequently retrieve information from the indexed data. To adapt to this paradigm,850

we concatenate all passages into a unified corpus, transforming the task into retrieving multi-hop relevant851

information from the entire corpus. This modification makes the task more challenging compared to the852

12

original setting. The evaluation metrics for HotpotQA and MuSiQue are divided into two aspects: the 853

quality of the retrieved documents and the accuracy of the final answer, measured by metrics such as 854

F1 score. However, current RAG methods retrieve not only text chunks but also more flexible forms of 855

information, making it difficult to assess retrieval quality using traditional top-k document evaluation. 856

Moreover, metrics like F1 score have become less effective in evaluating answers generated by modern 857

generative models. Therefore, we adopt the LLM-as-a-Judge approach, leveraging LLMs to assess the 858

final accuracy of the generated answers.The MultiHop and RAG-QA Arena dataset settings provide a 859

strong evaluation framework for current RAG methods. Therefore, we follow the original benchmark’s 860

proposed testing methodology and evaluation metrics. Further details regarding the benchmark settings 861

are described below. 862

HotpotQA is a multi-hop question-answering dataset where each question requires combining information 863

from multiple documents to find the correct answer. It encourages deeper reasoning by providing 864

supporting facts—specific sentences from the texts that lead to the solution. Questions range widely 865

across domains and often involve bridging or comparison to ensure more complex, multi-step reasoning. 866

This makes HotpotQA a critical benchmark for evaluating advanced reading comprehension models. We 867

sampled 200 questions from the final dataset for evaluation. 868

MuSiQue is also a multi-hop question-answering dataset that challenges models to combine information 869

across multiple documents in a structured, step-by-step manner. Each question is designed to require 870

several reasoning steps, ensuring that simple “shortcut” approaches do not suffice. As a result, MuSiQue 871

serves as a rigorous test of advanced reading comprehension, demanding that systems accurately connect 872

disparate pieces of evidence to arrive at correct answers. We also sample 175 questions for the evaluation 873

MultiHop-RAG is a multi-hop question-answering dataset that includes four distinct question types: 874

comparison query, null query, inference query, and temporal query. From this dataset, we curated 375 875

questions to evaluate our approach. Each query in MultiHop requires synthesizing information from 876

multiple sources, testing a model’s ability to perform bridging inferences, handle temporal relationships, 877

and make higher-order logical connections. This diversity in question types provides a rigorous benchmark 878

for assessing whether RAG methods can integrate scattered pieces of evidence. 879

RAG-QA Arena is a new evaluation framework designed to assess the quality of retrieval-augmented 880

generation (RAG) systems on long-form question answering. It builds on Long-form RobustQA (LFRQA), 881

a dataset of 26K queries across seven domains including writing, tech, science, recreation and lifestyle. 882

Each LFRQA entry features a coherent, human-written answer grounded in multiple documents. RAG- 883

QA Arena leverages LLMs as evaluators, directly comparing a system’s generated answer with the 884

’gold’ long-form answer from LFRQA. Experimental results show that these model-based comparisons 885

correlate highly with human judgments, making it a challenging yet reliable benchmark for testing both 886

cross-domain robustness and the ability to produce integrated, long-form responses. 887

B.2 Baselines 888

We compare NodeRAG against several strong and widely used RAG methods. By default, all these 889

RAG methods implement their indexing process using GPT-4o-mini. However, we identify a potential 890

unfairness in the current evaluation setup, particularly in several key areas. To ensure the correctness 891

and validity of the evaluation data, it is crucial to standardize both the final answer response prompt 892

and the model temperature settings. Using different response prompts or varying temperature settings 893

for answer generation introduces inconsistencies, as a higher temperature setting may yield responses 894

that receive a better LLM preference score compared to those generated with a lower temperature. A 895

critical point to consider is that, as RAG methods, the primary focus of evaluation should be the quality 896

of the retrieved context rather than the final generated answer. Therefore, to ensure that final accuracy 897

metrics accurately reflect the quality of the retrieved context, the final answer generation process and 898

model settings should remain consistent across all methods. Hence, we set the temperature to 0 across the 899

entire evaluation and standardized response prompts for every method. The unified prompt is illustrated 900

13

in appendix E. Our initiative to standardize these settings also benefits other methods, such as GraphRAG,901

improving their performance compared to their default settings. This underscores the broader value902

of establishing fair and consistent evaluation standards. Additionally, traditional evaluation methods903

such as top-k retrieval comparison have become increasingly difficult to apply uniformly, as retrieval904

is no longer restricted to isolated text chunks. To address this challenge, we propose a new evaluation905

standard that leverages retrieval tokens as an efficiency metric. This approach ensures that retrieval906

methods achieve better effectiveness while utilizing fewer retrieval tokens, promoting a more efficient and907

fair comparison framework. Current methods can only control the number of retrieval tokens through908

hyperparameter tuning. Although precise control over the exact number of tokens is not possible, we909

consider maintaining the average number of retrieval tokens within the range of 5K to 10K to be a910

reasonable and fair comparison criterion. Below, we provide a detailed introduction to each method along911

with its specific settings for reference.912

Naive RAG This method serves as a standard baseline among all existing RAG systems. It first divided913

input document into several text chunks and encoded them into a vector space utilizing text embeddings.914

Then retrieve related text chunks based on similarity of query representations. The number of retrieval915

tokens can be adjusted through the top-k parameter.916

HyDE HyDE serves as an improved method over traditional RAG systems. It first generates "hypotheti-917

cal" texts that capture the essence of a query. It then uses this generated text to retrieve relevant documents918

from a large corpus, employing vector similarity in an embedding space. This method modifies the input919

query at the frontend without altering the text chunks or their embeddings. Therefore, we can still use the920

top-k parameter to control the number of retrieval tokens.921

GraphRAG This approach starts by segmenting the input text into chunks and extracting the entities922

and relationships within them, forming a graph structure. This graph is then divided into multiple com-923

munities at different levels. At query time, GraphRAG identifies the relevant entities from the question924

and synthesizes answers by referencing these corresponding community summaries. Compared to tradi-925

tional RAG methods, GraphRAG provides a more structured and high-level understanding of the entire926

document. Through our experiments, we observed that under the default settings, the number of queries927

in GraphRAG’s local mode resulted in a higher retrieval token count than the naive retrieval approach.928

To ensure a fair comparison, we proportionally reduced its parameters and standardized its prompt to929

match our unified prompt. The ablation study in Appendix B.4 demonstrates that after these adjustments,930

GraphRAG’s accuracy improved, further validating the fairness of our evaluation methodology. Addition-931

ally, we analyzed both the local and global modes of GraphRAG. Our findings indicate that the global932

mode introduces significant additional overhead in terms of time and computational cost while providing933

only marginal improvements compared to the local mode. This result is further supported by our ablation934

study, which shows that the local mode achieves better efficiency and effectiveness.935

LightRAG LightRAG is an improved approach based on GraphRAG, designed to minimize compu-936

tational overhead while enhancing the comprehensiveness of retrieved information through dual-level937

retrieval. This leads to more efficient retrieval and a better balance between effectiveness and speed938

compared to GraphRAG. Similar to GraphRAG, the default settings of LightRAG result in a higher939

retrieval token count than the Naïve approach. To ensure a fair comparison, we proportionally adjusted its940

hyperparameters to maintain the number of retrieval tokens within the range of 5K to 10K.941

B.3 NodeRAG Graph Statistics942

The table 4 presents the number of each type of node in the indexed graph for each dataset, including943

entity (N), relationship (R), semantic unit (S), attribute (A), high-level elements (H), high-level overview944

(O), and text (T). These counts are detailed in the type statistics section. Additionally, the graph statistics945

provide information on the total number of nodes, the number of non-HNSW edges, HNSW edges, and946

14

Datasets Corpus Tokens Type Statistics Graph Statistics

T S N R A O H Nodes Non-HNSW Edge HNSW Edge Edge

HotpotQA 1.93M 1985 15905 88863 56578 684 4479 4479 172603 283543 487731 759812
MuSiQue 1.84M 1907 18714 99840 61964 795 5700 5700 193922 316029 583126 888966
MultiHop-RAG 1.41M 1532 10986 43184 29286 685 2289 2289 90144 171410 203199 367486
Arena-Fiqa 1.65M 1821 9027 32470 27422 508 1714 1714 74605 143916 154109 295165
Arena-Lifestyle 1.64M 1794 9400 39464 27895 518 2221 2221 83461 149225 174461 318073
Arena-Recreation 0.93M 1003 5542 26382 16938 413 1969 1969 54180 93228 117915 207449
Arena-Science 1.43M 1583 8010 32232 23092 551 2515 2515 70425 127719 149424 276963
Arena-Tech 1.72M 1910 10837 37724 29691 534 2633 2633 85888 167950 193159 354033
Arena-Writing 1.82M 1937 11008 42723 29338 705 4435 4435 94259 149552 298565 442397

Table 4: Comprehensive dataset statistics, detailing corpus size, type statistics (T, S, N, R, A, O, H), and graph
statistics. The graph statistics include the number of document compilation nodes, HNSW semantic edges, and total
edges. Each value represents a key metric relevant to graph-based document processing and retrieval.

the total number of edges. The data indicate that the number of HNSW edges is comparable to that of non- 947

HNSW edges, highlighting the integration of semantic connections within the graph. Notably, overlapping 948

edges are removed when merging non-HNSW and HNSW edges. For instance, in the MultiHop-RAG 949

benchmark, there are 171,410 non-HNSW edges and 203,199 HNSW edges. However, the total number of 950

edges after merging is 367,486, which is only 7,123 fewer than the sum of both edge types. This indicates 951

the uniqueness of these two types of edges and highlights the effectiveness of the HNSW algorithm. 952

B.4 Graph RAG Ablation 953

Method Accuracy Avg. Processing Time Avg. Tokens

GraphRAG (default) 37.14% 4.82s 10.4k
Graph-L 41.71% 2.94s 6.6k
Graph-G 33.14% 22.65s 1.11M

Table 5: Performance Comparison of GraphRAG Variants. Default is the default setting. Local and global represent
the local and global modes under unified prompt and hyperparameter settings.

The default setting of GraphRAG, along with its own prompting mechanism, is not standardized for 954

evaluation, as both the number of retrieval tokens and the choice of prompts significantly impact perfor- 955

mance. Hence, we introduce a unified prompt and adjust the hyperparameters of GraphRAG to ensure a 956

fair comparison within a specific range. As shown in the table B.4, GraphRAG with our unified prompt 957

achieves higher performance, demonstrating that the original prompting strategy is not optimal for this 958

task. This further ensures fairness in comparison, as performance is influenced solely by the quality of the 959

retrieved context. Moreover, the global mode of GraphRAG requires significantly longer processing time 960

and incurs higher computational costs due to the LLM analyzing all community summaries, leading to 961

increased complexity and resource consumption. Additionally, for multi-hop question answering, this 962

approach results in degraded performance. Therefore, we conducted an exploratory ablation study only 963

on the MuSiQue dataset, while for other datasets, we estimated query time and retrieval token statistics 964

based on sampled queries. 965

15

C Algorithm details966

C.1 Terminology967

Abbr. Full Name Description Function Example

T Text

Full-text chunks from the
original source. They con-
tain rich detailed information,
although it integrates a large
amount of unrelated semantic
information.

Retrievable;
Entry points from vec-
tor similarity

"Hinton was awarded the No-
bel Prize in 2023 for his ground-
breaking contributions to artifi-
cial intelligence, particularly in
deep learning. His pioneering
work on backpropagation laid
the foundation for modern neu-
ral networks, influencing both
academia and industry. The
recognition came amid increas-
ing discussions on the ethical
implications of AI, with Hinton
himself advocating for responsi-
ble AI development and regula-
tion."

S Semantic Unit

Local summaries that are in-
dependent and meaningful
events summarized from text
chunks. They serve as a mid-
dle layer between text chunks
and entities, acting as the ba-
sic units for graph augmenta-
tion and semantic analysis.

Retrievable;
Entry points from vec-
tor similarity.

"Hinton was awarded the Nobel
Prize for inventing backpropa-
gation."

A Attribute

Attributes of key entities, de-
rived from relationships and
semantic units around impor-
tant entities.

Retrievable;
Entry points from vec-
tor similarity.

"Geoffrey Hinton, often referred
to as the "Godfather of Deep
Learning," is a pioneer in the
field of artificial intelligence. In
2024, he was awarded the No-
bel Prize for his contributions
to AI and deep learning. "

H High-Level Element

Insights summarizing graph
communities. Encapsulates
core information or any high
level ideas from a community.

Retrievable;
Entry points from vec-
tor similarity.

"Due to the increasing impor-
tance of AI, the Nobel Prize is
awarded to scholars who have
made tremendous contributions
to the field of AI."

O High-Level Overview
Titles or keywords summariz-
ing
high-level elements.

Non-Retrievable;
Entry points from accu-
rate search.

"AI significance"

R Relationship

Connections between entities
represented as nodes. Acts
as connector nodes and sec-
ondary retrievable node.

Retrievable;
Non-Entry points

"Hinton received the Nobel
Prize."

N Entity
Named entities such as peo-
ple, places, or concepts.

Non-Retrievable;
Entry points from accu-
rate search..

"Hinton," "Nobel Prize"

Table 6: Node Types in the heterograph

C.2 K-core & Betweenness centrality968

In this subsection, we present the methodology for identifying important entities and generating their969

attribute summaries, ensuring alignment with the mathematical framework established in the main text.970

The selection of important entities, denoted as N∗, is based on two fundamental structural graph metrics:971

K-core decomposition and betweenness centrality. These metrics collectively ensure that the selected972

16

nodes are not only structurally integral but also play a pivotal role in facilitating information flow. 973

The K-core decomposition, denoted as K(G1), identifies nodes within densely connected subgraphs, 974

ensuring that selected entities contribute significantly to the structural cohesion of the graph. Meanwhile, 975

betweenness centrality, denoted as B(G1), highlights nodes that serve as critical intermediaries between 976

different regions of the graph, capturing entities essential for information dissemination. 977

The process of identifying important entities follows the steps outlined in Algorithm 1. 978

Algorithm 1 Identification of Important Entities

Input: Graph G1 = (V, E)
Output: Important entity set N∗

Step 1: Compute K-core decomposition
Compute the core threshold:

kdefault = ⌊log(|V|)×
(∑

v∈V deg(v)

|V|

)1/2

⌋

Extract the K-core subgraph:

K(G1) = {v ∈ V | degG1(v) ≥ kdefault}

Step 2: Compute betweenness centrality
for each v ∈ V do

Approximate betweenness centrality using shortest-path sampling:

b(v) = betweenness_centrality(G1, k = 10)

end for
Compute the average betweenness centrality:

b̄ =

∑
v∈V b(v)

|V|

Compute the scale factor:
scale = ⌊log10(|V|)⌋

Step 3: Select important nodes
for each v ∈ V do

if b(v) > b̄× scale then
Add v to B(G1)

end if
end for
Compute the final set of important entities:

N∗ = K(G1) ∪B(G1)

Return N∗

C.3 Semantic Matching within Community 979

To establish meaningful semantic relationships among high-level element nodes, we propose the Seman- 980

tic Matching within Community algorithm. This algorithm ensures that entities with strong semantic 981

similarities are connected within their respective communities. The motivation behind this approach is 982

17

Algorithm 2 Semantic Matching within Community

Input: Graph G = (V, E), node embeddings Φ(V), community partition {Cn}
Output: Semantic edges Eh
Step 1: Select high-level element nodes
Extract nodes with labels S, A, or H:

V{S,A,H} = {v ∈ V | ψ(v) ∈ {S,A,H}}

Step 2: Apply K-means clustering to node embeddings
Set number of clusters:

K =
√

|V{S,A,H}|

Perform K-means clustering on V{S,A,H}), obtaining clusters {Sk}
Step 3: Establish semantic edges within communities
for each community Cn do

for each cluster Sk do
Identify nodes within the community and cluster:

VCn,Sk
= V{S,A,H} ∩ Cn ∩ Sk

for each pair (v, v′) where v ∈ {S,A}, v′ ∈ H do
Add semantic edge:

eh(v, v
′) ∈ Eh

end for
end for

end for
Return Eh

to organically integrate H nodes into the graph structure by establishing connections with semantically983

related nodes within the same community. Formally, the process is summarized in Algorithm 2.984

The algorithm begins by identifying nodes that belong to three specific categories: structure nodes (S),985

attribute nodes (A), and high-level nodes (H). These nodes are collectively defined as:986

V{S,A,H} = {v ∈ V | ψ(v) ∈ {S,A,H}}987

Since these nodes exhibit inherent semantic relationships, we cluster them based on their embeddings,988

which capture their contextual meaning. To partition the nodes into semantically similar groups, we apply989

the K-means clustering algorithm (MacQueen et al., 1967) to the embedding representations of V{S,A,H}.990

which balances computational efficiency and granularity. This clustering process results in a partitioning991

of nodes into K semantic clusters, denoted as Sk, where each cluster contains nodes with closely related992

semantic representations.993

After clustering, the algorithm establishes edges between semantically related nodes within the same994

community. Communities are predefined structural subgroups in the graph, denoted as Cn, ensuring995

that local relationships are preserved. For each community-cluster pair, semantic edges are introduced996

between nodes in V{S,A} and nodes in VH . Specifically, for any node pair (v, v′), where v ∈ V{S,A} and997

v′ ∈ VH , an edge eh(v, v′) is established if both nodes belong to the same community and the same998

semantic cluster.999

18

By integrating semantic matching within community constraints, this algorithm enhances the structural 1000

integrity of the graph while maintaining computational feasibility. The choice of K-means clustering 1001

efficiently groups nodes with similar semantic properties, while the enforcement of community constraints 1002

ensures that edges are only formed between nodes that naturally belong to the same substructure. Conse- 1003

quently, the proposed method balances semantic consistency and graph locality, making it well-suited for 1004

applications requiring structured knowledge representation and retrieval. 1005

C.4 Dual Search 1006

To efficiently locate relevant entry points within the Hetero Graph G, we propose the Dual Search algorithm, 1007

which integrates exact matching on structured nodes and vector similarity search on rich information 1008

nodes. This hybrid approach ensures a balance between precision and recall by leveraging both symbolic 1009

and dense representations. The core idea is to utilize exact string matching for well-structured nodes while 1010

employing approximate nearest neighbor search for nodes containing rich contextual information. By 1011

doing so, the algorithm improves both retrieval accuracy and robustness to query variations. 1012

Given a query, a LLM extracts a set of relevant entities, denoted as N q, and embeds the query into a 1013

vector representation q. Entry points in the graph are then determined by: 1014

Ventry = {v ∈ V | Φ(v,N q,q)}, 1015

where the condition function Φ(v,N q,q) determines whether a node qualifies as an entry point: 1016

Φ(v,N q,q) =

{
v ∈ V{N,O} ∧M(N q, v),

v ∈ V{S,A,H} ∧R(q, v, k).
1017

Here, the exact matching function M(N q, v) returns true if node v matches one of the extracted entities 1018

in N q. This ensures that titles or named nodes such VN,O are retrieved deterministically. Meanwhile, 1019

the similarity-ranking function R(q, v, k) applies HNSW, selecting the top-k most similar nodes to q in 1020

vector space. This is particularly beneficial for context-rich nodes for v ∈ VS,A,H , which may not contain 1021

exact query terms but remain semantically relevant. 1022

One of the major strengths of Dual Search is its ability to mitigate errors from noisy or ambiguous queries. 1023

Since N and O nodes serve exclusively as entry points and are not directly retrieved, any errors in exact 1024

matching do not propagate into the retrieval results. Furthermore, Personalized PageRank (PPR) is applied 1025

to refine retrieval by selecting highly weighted cross nodes—nodes that are both structurally significant 1026

and semantically aligned with multiple entry points. This graph-based expansion helps compensate for 1027

potential errors in entity extraction and ensures robustness against query variations. Another advantage of 1028

this approach is its scalability. By employing HNSW, the algorithm avoids the computational overhead of 1029

exhaustive similarity searches, making it efficient even on large-scale graphs. 1030

C.5 Increment update 1031

NodeRAG supports incremental updates. For any newly added data, the system applies the procedures G1 1032

to G5 only to the new portion, and then concatenates the resulting graph with the existing graph. Nodes 1033

with identical names are merged automatically, including their associated high-level elements. During 1034

the retrieval process, graph algorithms can be applied to identify nearby or semantically related nodes, 1035

ensuring the new nodes are integrated into the retrieval results. 1036

Although graph construction and algorithmic processing are carried out in batches, the use of heteroge- 1037

neous graph structures and graph algorithm properties effectively mitigates inconsistencies introduced by 1038

batching. This design enables the integration of new data without the need to re-index the entire database, 1039

thereby avoiding significant computational overhead. 1040

19

D Case Study1041

Question1 Why isn’t there public transport on Christmas day in the UK?

NodeRAG

The absence of public transport on Christmas Day in the UK can be attributed to a combi-
nation of historical, cultural, and economic factors. Historically, public transport services
were more prevalent on Christmas Day before World War II, as many people worked on
that day and required transportation. However, over the years, societal norms have shifted,
leading to a significant reduction in demand for public transport services on Christmas Day.
In contemporary society, Christmas is widely recognized as a time for family gatherings
and celebrations, which diminishes the need for public transport. Many people choose to
spend the day at home or with relatives, resulting in a lower demand for transit services.
Consequently, transport companies have adapted to this change by suspending services on
Christmas Day, allowing transit workers to enjoy the holiday with their families as well.
Additionally, the operational costs associated with running public transport services on
Christmas Day can be significant. With minimal passenger demand, the financial viability
of providing such services becomes questionable. Railways and other transport providers
often use this time for maintenance and engineering work, taking advantage of the reduced
disruption to carry out necessary improvements.

GraphRAG

Public transport in the UK is significantly limited on Christmas Day due to a combination
of historical, cultural, and operational factors. Traditionally, Christmas Day is a public
holiday in the UK, and many businesses, including public transport services, close to allow
employees to spend time with their families and celebrate the holiday. This practice is
rooted in the cultural significance of Christmas, which emphasizes family gatherings and
community celebrations.
The limited operation of public transport on Christmas Day is also influenced by the low
demand for services. Historically, fewer people travel on this day compared to other holidays
or weekends, as many individuals prefer to stay home or visit family. As a result, transport
providers often find it economically unfeasible to run full services when the number of
passengers is expected to be minimal.
In recent years, some transport services have begun to offer limited services on Christmas
Day, particularly in major cities like London, where there may be a demand for travel to
events or gatherings. However, these services are typically not as extensive as those available
on other public holidays or regular days. Overall, the combination of cultural practices,
low demand, and operational considerations contributes to the lack of public transport on
Christmas Day in the UK.

LightRAG

In most parts of the world, official or religious holidays are taken very seriously. On such
days, employers typically have to pay higher rates to staff who are willing to work, but that
effort often doesn’t pay off due to low customer turnout. Families tend to arrange their travel
plans by Christmas Eve to avoid the need for transportation on Christmas Day. Christmas
avoids unnecessary travel because it’s typically a day filled with home activities, and it
allows workers in various roles to have a day off. The lack of public demand and the staff’s
resistance contributed to the lack of services on Christmas Day. Christmas Day is also an
opportune time to perform engineering work on railways with minimal disruption. The
railroad industry is capable of completing extensive projects during this period, thanks to
thorough planning and pre-staging.

LLM
Decision

ORDER: {“1": “GraphRAG", “2": “NodeRAG"}
Both answers provide a comprehensive explanation, but answer 2 adds historical context
about public transport before World War II and mentions the use of the holiday for mainte-
nance work, offering slightly more depth.
ORDER: {“1": “LightRAG", “2": “NodeRAG"}
Both answers provide a comprehensive explanation, but answer 2 adds historical context
about the change in public transport services since World War II, which enriches the
explanation. Therefore, answer 2 is slightly better.

Table 7: Sample Table with Multi-line Text

20

Question2 What are rabbit hides used for in Minecraft?

NodeRAG

In Minecraft, rabbit hides serve a couple of useful purposes, particularly in crafting and
resource management. One of the primary uses of rabbit hides is to craft leather. Players
can combine four rabbit hides in a 2x2 crafting grid to create one piece of leather. This is
especially beneficial in Survival Multiplayer (SMP) scenarios where finding other animals
for leather can be challenging.

Additionally, rabbits can drop a unique item known as the “rabbit’s foot", which is an
important ingredient for brewing potions. The rabbit’s foot is specifically used in the crafting
of the Potion of Leaping, which grants players the ability to jump higher for a limited
time. Thus, rabbit hides and their associated drops contribute significantly to crafting and
potion-making in the game, enhancing the overall gameplay experience.

GraphRAG

In Minecraft, rabbit hides are primarily used to craft leather. Players can combine four rabbit
hides in a 2x2 crafting grid to create one piece of leather. This crafting option is particularly
useful for players who may not have access to cows, which are the traditional source of
leather in the game.

Additionally, rabbit hides can be beneficial in multiplayer servers that utilize entity clears, as
finding animals can be challenging. By using rabbit hides to craft leather, players have an
alternative method to obtain this valuable resource, which is essential for crafting various
items, including armor and books.

LightRAG

In Minecraft, Rabbit Hides are primarily used as a crafting resource. They can be combined
with other materials to create leather, which is an essential item in the game. Leather is used
for crafting various items, including armor (like leather armor), books, item frames, and
more.

The process of obtaining Rabbit Hides involves hunting rabbits, which can be found in
various biomes. Once collected, players can use the hides in their crafting recipes to enhance
their gameplay experience through resource management and item creation. This highlights
the importance of Rabbit Hides within the broader crafting mechanics of Minecraft.

LLM
Decision

ORDER: {“1": “TGRAG", “2": “GraphRAG"}
Both answers are truthful, but answer 1 provides more detailed information about the uses
of rabbit hides, including the additional use of rabbit’s foot for potion-making Therefore,
answer 1 is better.

ORDER: {“1": “TGRAG", “2": “LightRAG"}
Both answers are truthful, but answer 1 provides more detailed information about the uses
of rabbit hides, including the crafting of leather and the rabbit’s foot for potions. Therefore,
answer 1 is better.

Table 8: Sample Table with Multi-line Text

21

E Overview Prompting in NodeRAG1042

22

23

24

25

	Introduction
	NodeRAG
	Heterograph
	Graph Decomposition
	Graph Augmentation
	Graph Enrichment
	Graph Searching

	Evaluation
	Metrics
	Implementation details
	Results

	Ablation experiments
	Related Works
	Conclusion
	Limitations
	Comparison of RAG System Performance
	Experiment details
	Datasets
	Baselines
	NodeRAG Graph Statistics
	Graph RAG Ablation

	Algorithm details
	Terminology
	K-core & Betweenness centrality
	Semantic Matching within Community
	Dual Search
	Increment update

	Case Study
	Overview Prompting in NodeRAG

