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Abstract

Efficient exploration in reinforcement learning is a challenging problem commonly
addressed through intrinsic rewards. Recent prominent approaches are based on
state novelty or variants of artificial curiosity. However, directly applying them
to partially observable environments can be ineffective and lead to premature
dissipation of intrinsic rewards. Here we propose random curiosity with general
value functions (RC-GVF), a novel intrinsic reward function that draws upon
connections between these distinct approaches. Instead of using only the current
observation’s novelty or a curiosity bonus for failing to predict precise environ-
ment dynamics, RC-GVF derives intrinsic rewards through predicting temporally
extended general value functions. We demonstrate that this improves exploration
in a hard-exploration diabolical lock problem. Furthermore, RC-GVF significantly
outperforms previous methods in the absence of ground-truth episodic counts in
the partially observable MiniGrid environments. Panoramic observations on Mini-
Grid further boost RC-GVF’s performance such that it is competitive to baselines
exploiting privileged information in form of episodic counts.

1 Introduction

How should an agent efficiently explore environments with high-dimensional state spaces and sparse
rewards [70, 2]? An extrinsic reward-maximising agent will make little progress until it stumbles
upon a rewarding sequence of actions. In the literature, this issue is commonly addressed by providing
additional intrinsic reward to guide the agent’s exploratory behaviour [49, 12, 43].

One class of prominent approaches rely on state novelty, where an intrinsic reward in the form
of a ‘novelty bonus’ is awarded based on how often a state has been visited [65, 6]. More recent
works have extended these approaches to high dimensional state spaces where tabular counts are
inapplicable [7, 41, 10]. Another class of approaches is based on artificial curiosity, where agents are
rewarded in proportion to the prediction errors or information gains of a predictive world model [52,
60]. Curiosity-based techniques have also been scaled up to handle larger state spaces [22, 43].

Expecting an agent to have access to the complete environment state is unrealistic. In such partially

observable settings [3, 26], observations may look alike in different states, and the benefit of
approximate state novelty bonuses as intrinsic rewards is unclear. Consider the environment in
Figure 1 where an agent is required to traverse a series of blue and white tiles, yet it is only able
to observe the current tile it is standing on. The colours of the tiles alternate in a regular fashion
until the end of the corridor, where there is a surprising sequence of consecutive blue tiles. Directly

⇤Part of this work was done while the author was a Postdoctoral researcher at IDSIA.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



applying state novelty approaches may not be particularly meaningful in this case, as can be seen
when using random network distillation (RND; [10]). In RND, the agent receives a novelty bonus
based on the error of its predictions about the output of a fixed randomly initialised neural network
applied to the current observation. As shown in the top panel of Figure 1, RND is unable to ascribe
novelty when the state pattern changes later in the sequence and the intrinsic reward has vanished.
Similarly, intrinsic rewards may also vanish prematurely for certain curiosity-based approaches when
single-step dynamics are simple [42], while longer horizon predictions (as needed in the partially
observable case) are susceptible to rapidly compounding errors during sequential rollouts [69].

Figure 1: The alternating tile corridor environment.
The agent (red triangle) observes the colour of
the tile that it currently occupies (white or blue).
The extrinsic reward is always zero. At each time-
step (frame), the agent moves one tile forward,
until it reaches the last tile. Unlike our approach
(RC-GVF), RND does not generate an intrinsic
reward when encountering the surprising last few
tiles (step 1000).

In this paper, we explore a connection between
state novelty and artificial curiosity to address
these limitations. We propose random curios-

ity with general value functions (RC-GVF) as
a novel approach to generating intrinsic re-
wards. It takes inspiration from exploration
through temporally extended experiments that
summarise long observation sequences [53].
Our approach uses random general value func-
tions (GVFs) [67] to pose questions about the cu-
mulative future value of observation-dependent
features. Specifically, we train an ensemble
of predictors to minimise the temporal differ-
ence (TD) errors of the general value functions
and derive an intrinsic reward based on the TD-
errors and disagreements in the long-term pre-
dictions. The effective horizon of the predic-
tion task can be controlled via the discount fac-
tor, where a zero discount can be related to
state novelty with random network distillation
(RND) [10]. We hypothesise that predicting in-
formation from an temporally extended horizon
improves exploration in POMDPs and guards against premature vanishing of intrinsic rewards due to
the increase in difficulty of the auxiliary task. Indeed, in our toy experiment of Figure 1 it can be seen
how RC-GVF manages to generate a spike of intrinsic reward at the end of the sequence.

We evaluate our approach on sparse-reward and partially observable RL problems. Our results on
a hard exploration diabolical lock problem [36] and the Minigrid suite of environments [13] reveal
the benefits of considering extended horizon predictions in comparison to approaches that rely on
immediate partial observations to generate exploration bonuses. Furthermore, existing baselines in
Minigrid are heavily reliant on privileged information about episodic state-visitation counts from the
simulator, which is commonly used to scale the exploration bonus. We demonstrate that RC-GVF
succeeds in many environments without the use of such episodic counts.

2 Preliminaries

Reinforcement learning in POMDPs We consider the scenario where an agent interacts with a
Partially Observable Markov Decision Process (POMDP) with time steps t 2 N, with environment
states St 2 S, observations Ot 2 O, actions At 2 A, extrinsic rewards Re : S ! [0, 1], and
policies that map histories of different lengths to distributions over actions ⇡ : H ! � (A) where
Ht = O1:t 2 H [26]. The agent only observes Ot at time step t, which may not fully describe the
MDP state, and thus it becomes necessary to condition the agent on the history Ht.

The learning objective is to find the optimal policy ⇡⇤ that maximizes the expected discounted return

J(⇡) = E⇡

" 1X

k=0

�kRe(Sk)

#
, (1)

where � 2 [0, 1) is the discount factor and the expectation is over stochastic components in the
environment and the policy.
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Random Network Distillation In random network distillation (RND) [10] the agent receives a
state novelty reward proportional to the error of making predictions ẑ(ot) where the targets are
generated by a randomly initialized neural network Z� : O ! Rd. The RND intrinsic reward for an
observation is given by

Ri(ot) = kZ� (ot)� ẑ (ot) k2. (2)

RND-like error signals can be a simple way to obtain effective uncertainty estimates about targets at
a given input, which could subsequently be used for exploration in RL or detecting out of distribution
samples [14]. Beyond its simplicity, an appealing aspect of using RND is that it allows us to implicitly
incorporate prior beliefs about useful rewards through the neural network architecture [38].

General Value Functions A general value function (GVF) [67] is defined by a policy ⇡, a cumulant
or pseudo-reward function Z : O ! R, and a discount factor �z 2 [0, 1). It can be expressed as

v⇡,z(o) = E⇡

" 1X

k=0

�k

z
Z(Ot+k)|Ot = o

#
. (3)

General value functions extend the concept of predicting expected cumulative values to arbitrary
signals beyond the reward. They can be viewed as ‘answering’ questions about cumulative quantities
of interest under a particular policy ⇡ and discount factor �z . Predictions from GVFs have previously
been used as features for state representation [47] or to specify auxiliary tasks that assist in shaping
representations for the main task [24, 73].

3 Random Curiosity with General Value Functions

In the spirit of artificial curiosity [53], we are interested in predicting long-term outcomes in the
environment under a particular policy as a means for exploration. Our approach, RC-GVF, rewards
an agent for taking actions that lead to higher uncertainty about the future. However, instead of
predicting the entire sequence of future states, we consider a set of random numeric questions about
the environment and capture uncertainty about their outcome using general value functions (GVFs).

3.1 General value functions to predict the future

The central piece of RC-GVF is the prediction of temporally extended outcomes in the environment.
This is different from only predicting a feature of the current state (as in state novelty exploration
[65]) or dynamics models that predict the entire (sequence of) next observation(s) (as in early versions
of artificial curiosity [52]). At time step t, the current observation ot is mapped to a collection of
pseudo-rewards zt+1 2 Rd which together with the policy and discount factor define a question that
can be asked about the future: “what is the expected discounted cumulative sum of these pseudo-
rewards under a given policy?”. The answer to this question (i.e. the prediction target) is based on
outcomes in the environment, as in Equation 3. In this paper, we investigate whether a set of random
pseudo rewards are sufficient to drive exploration in this way.

Previously it was found that random features extracted by a neural network are often sufficient to
capture useful properties of the input [45]. Similarly, neural network architectures can be used to
express prior knowledge about useful features [71, 14]. To this end, we generate pseudo-rewards
from a fixed and randomly initialised neural network Z� : O ! Rd with parameters � that maps
observations to pseudo-rewards. This choice also bypasses the difficult problem of discovering
meaningful general value functions [73].

Training the GVF predictors Our exploration mechanism is to reward the agent for taking actions
that generate previously unknown outcomes. To facilitate this, we train a separate (recurrent) neural
network–which we call the predictor–to predict these values. Concretely, a predictor v̂⇡,z : H ! Rd

maps histories (of observations, actions, and pseudo rewards) to pseudo-values.

The predictor is trained on-policy, implying that the GVFs are evaluated under the current policy.
One motivating factor for this choice is that it couples the prediction task to the current policy, thus
creating an incentive to vary behaviour for additional exploration [18].
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We use the (truncated) �-return as the target for the predictor, which can be recursively expressed as

Gz

t
(�z) = Zt+1 + �z(1� �z)v̂⇡,z (Ht+1) + �z�zG

z

t+1 (�z) . (4)

Here, �z 2 [0, 1] is the usual parameter that allows balancing the bias-variance trade off by interpo-
lating between TD(0) and Monte Carlo estimates of the pseudo-return [64]. The predictor is trained
to minimise the mean squared TD-error with the �-return target. For convenience in notation, we will
denote Gz

t
(�z) as Gz

t
, despite its dependence on �z .

3.2 Disagreement and prediction error as intrinsic reward

To generate an intrinsic reward, a straightforward choice could be to consider the error between the
temporal difference target (from Equation 4) and the predictor’s output at the current observation:

LTD(ht) = [Gz

t
� v̂⇡,z (ht)]

2 . (5)

However, the presence of aleatoric uncertainty is a problem that arises as a consequence of extending
the horizon of the predictive task. From an exploration perspective, the agent should focus on
the reducible epistemic uncertainty, and not the irreducible aleatoric uncertainty [15, 23]. Directly
minimising Equation 5 with the predictor would ignore the inherent variance in the TD-target (due to
stochasticity in the policy and environment), and thus using the prediction error of the GVF target as
an intrinsic reward does not distinguish between aleatoric and epistemic uncertainty.

Another way to recognize this is by decomposing the expected prediction error as described by
Jain et al. [25]. The expected loss of a predictor f̂(·) at an input o, E[L(t, f̂(o))], can be split into
epistemic (E) and aleatoric (A) components:

R
L(t, f̂(o))dP (t|o) = E(f̂ , o) +A(o), where P (t|o)

is the conditional distribution over targets for input o and L(t, ·) is a chosen loss function. The
aleatoric uncertainty at input o, A (o), is defined as the expected prediction error of a Bayes optimal
predictor function. E(f̂ , o) denotes the epistemic uncertainty of a predictor at o.

To overcome this issue with aleatoric uncertainty in RC-GVF, we propose to train an ensemble of
predictors and utilise the variance across their predictions as a multiplicative factor on the prediction
error. Concretely, we train K predictors v̂k

⇡,z
, k 2 {1, 2 . . .K}. The prediction target for each

member of the ensemble is the same �-pseudo-return (Equation 4) by using bootstrapped values from
that member’s predictions. Using the ensemble of predictors, the intrinsic reward is given by

Ri(ot) =
dX

j=1

⇣
E[Lk

TD(ht)]� V[v̂k
⇡,zj

(ht)]
⌘

j

(6)

=
dX

j=1

"
1

K

KX

k=1

⇣
G

zj

t
� v̂k

⇡,zj
(ht)

⌘2
#
·
"

1

K � 1

KX

k=1

⇣
v̄⇡,zj (ht)� v̂k

⇡,zj
(ht)

⌘2
#
, (7)

where � corresponds to element-wise multiplication. In this formulation, even when prediction error
remains, the exploration bonus will vanish as the predictors converge to the same expectation.

3.3 Effective horizon and relation to random network distillation

The effective horizon over which predictions are considered depends on the choice of the discount
factor �z . It can be shown that for a horizon H�z," 2 R satisfying

H�z," �
log

⇣
1

"(1��z)

⌘

log
⇣

1
�z

⌘ , (8)

the discounted sum of (pseudo) rewards beyond this horizon is bounded by " [28, 30].

From Equation 4 we can see that for the special case of �z = 0 and any choice of �z , we have
Gz

t
= Zt+1 = Z� (ot). Note that in this case the TD-error between prediction and target is equivalent

to the intrinsic reward provided by random network distillation (RND; Equation 2). Since the
prediction targets are now deterministic, there is no problem with aleatoric uncertainty, and a single
predictor suffices (as opposed to an ensemble).
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4 Related work

Exploration In tabular RL, explicit counts for states or state-action pairs can be maintained to
enable exploration and achieve efficient learning [61, 4]. Count-based bonuses have been scaled to
larger state spaces through the use of density models, which provide pseudo-counts [7, 41]. State
novelty bonuses are similarly inspired heuristics that provide a bonus based on estimated novelty of
the visited state [10].

Perhaps the simplest way of implementing exploration through ‘curiosity’ is to reward the policy
for encountering transitions to states that surprise a learning predictor [52]. This is suitable for
deterministic environments but it suffers from the ‘noisy TV problem’ in stochastic environments [56,
9]. To overcome this limitation, intrinsic rewards have been defined by learning progress (the first
derivative of the prediction error) [51], information gain [60, 22], or compression progress [55].
Also compare such bonuses to pseudo-counts [7]. Alternatively, it is possible to mitigate sensitivity
to noise by measuring prediction errors in a latent space [53, 43].

Our method is different from state count and novelty approaches in that it models temporally extended
values beyond the current observation. It includes a state-novelty measure, RND [10], as a special
case when the GVF discount factors are zero. Unlike most artificial curiosity approaches, RC-GVF
does not model the entire environment dynamics, in line with the idea of conducting temporally
extended experiments whose outcomes are abstract summaries (represented in latent variables) of
long observation sequences [54]. We mitigate sensitivity to aleatoric uncertainty by measuring
the disagreement of an ensemble of predictors, inspired by prior work (for single-step prediction
models) [59, 44]. Ensembles for exploration have also been explored in the context of posterior
sampling [62]. Bootstrapped-DQN [38] uses an ensemble of Q-value functions for a model-free
interpretation of posterior sampling [39]. Unlike in our approach, these value functions are restricted
to the original task rewards, and can not capture arbitrary pseudo-rewards. Recent works suggest
incorporating model-based planning to directly optimise for long-term novelty [63, 58, 31]. Our
intrinsic reward–which is generated by considering multiple future steps–could motivate approaches
for optimising long-term novelty without explicit rollout-based planning.

General Value Functions Sutton et al. [67] proposed general value functions (GVFs) as an
approach to represent predictive knowledge about the world. Closely related is the vector-valued
adaptive critic [50] which predicts and controls cumulative values of special input vectors. Several
works have studied the impact of using auxiliary value functions to improve representation learning
in RL [24, 8, 35]. Further, it was previously found that GVFs of randomly generated pseudo-rewards
can also be useful for shaping and learning representations [34, 78] (see also related work on
forecasts [47], TD-networks [66], and predictive state representations [32]). This can be viewed
as ‘answering’ questions about cumulative quantities of interest under a particular policy ⇡ and
discount factor �z . In our implementation, the predictor is an entirely separate network and thus
GVF prediction can not be used to improve the agent’s internal representation. Instead, we use the
GVF prediction to derive a useful signal to guide exploration.

The discovery/selection of useful GVF ‘questions’ is an open problem [48]. Existing approaches learn
questions related to optimizing performance on the main task [73, 27]. However, such an approach
might not be suitable for sparse-reward environments. In our approach, we side-step the GVF
discovery problem through the use of randomly generated pseudo-rewards and on-policy predictions.

5 Experiments

In this section we present an empirical evaluation of RC-GVF.2 First, we consider a hard exploration
diabolical lock problem from the literature [36] and demonstrate the benefits of predicting beyond
the immediate observation. We then proceed to experiments with the standard Minigrid suite of
partially observable and procedurally generated environments, demonstrating how RC-GVF is able
to outperform several strong baselines [18, 77].

2Code is available at https://github.com/Aditya-Ramesh-10/exploring-through-rcgvf.
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5.1 Diabolical locks

The diabolical lock problem [36] is considered a difficult environment for exploration due to noisy
high-dimensional observations, stochastic dynamics and misleading rewards that deter the agent
from finding the sparse optimal reward at the end of the lock. In the literature, RND is often shown
to fail on these types of environments due to only considering the immediate future [36]. Due to
RC-GVF’s policy-conditioned predictions of future quantities, this task is instructive to demonstrate
the qualitative advantages of our method and how this results in markedly different performance.

Table 1: Mean over 10 seeds and (min, max) of the
farthest column reached (of H = 100) at different
points on the diabolical lock problem.

Frames 5M 10M 20M

RC-GVF 61 (47, 81) 94 (83, 100) 100 (100, 100)
RND 28 (21, 41) 37 (27, 47) 46 (33, 58)

Environment details The environment con-
sists of states organised in 3 rows {a, b, c} and
H columns from {1, 2, . . . H} (see Figure 6 in
Appendix A.1). In each episode, the agent is
initialised in one of two possible starting states,
either at a1 or b1. At each state the agent has
L available actions, only one of which is ‘good’
and transitions to a ‘good’ state in the next col-
umn with equal probability. Taking the good
action gives a negative (anti-shaped) reward of
�1/H , except at the end of the lock (states aH or bH ), where the sparse optimal reward of 10 is
received. The remaining L� 1 actions at any state are ‘bad’, causing a deterministic transition to the
‘dead’ row c at the next column (zero reward). All actions from a dead state lead to the dead state in the
next row, and hence the optimal policy is to take the respective good actions in each state. The good ac-
tion at each state is assigned randomly as part of the MDP specification. The agent never observes the
state directly and only has access to a high-dimensional noisy observation (details in Appendix A.1).

In our experiment, we consider a problem with horizon H = 100, L = 10, and observation noise
�o = 0.1. As discussed by Misra et al. [36], this exploration problem is hard because the probability
of reaching the optimal reward through a uniformly random policy is L�H (10�100 in our instance).
Further, the stochastic transitions from good states prevent a solution that relies on memorising a
state-independent successful sequence of H actions independent of the state.

Implementation We use Proximal Policy Optimization (PPO) [57] in an actor-critic framework as
the base agent and use 128 pseudo-rewards for RND and RC-GVF. For RC-GVF we set �z = 0.6
and use two prediction heads in the ensemble. The agent is trained to maximize the expected sum of
a weighted combination of intrinsic and extrinsic rewards. Further details are in Appendix A.1.

Results Table 1 compares RND to RC-GVF in this environment. It can be seen how RC-GVF
succeeds in completing the lock on all runs, while the best run of RND only reaches 60% of the lock
(and does not complete it). Indeed, once the agent takes an incorrect action and ‘falls’ into the bottom
row, the future consequences (and thus, the GVFs) become highly predictable. By staying alive,
the agent will encounter new observations and unpredictable transitions which appear interesting.
Further experiments with additional baselines are presented in Appendix D. This result is illustrative
of RC-GVFs exploration capabilities as we will see next.

5.2 MiniGrid

We evaluate RC-GVF on procedurally generated environments from MiniGrid [13], which is a stan-
dard benchmark in the deep reinforcement learning literature for exploration [46, 11, 18, 77, 76, 42].
Exploration in these environments is challenging due to partial observability, extremely sparse
rewards, and the procedural generation of mazes and objects.

Environment Details Broadly speaking, we will consider three classes of environments organised
according to several difficulty levels. First, we study MultiRoom-N7-S8 and MultiRoom-N12-S10,
which are navigation tasks in a maze with seven and twelve rooms respectively. Next, we consider
two levels of difficulty in KeyCorridor-S4R3 and KeyCorridor-S5R3. Here, the agent needs to pick
up a ball behind a locked door. Finally, we examine the ObstructedMaze set of environments where
the agent has a similar task of picking up a ball behind a locked door, but keys are hidden in boxes
(ObstructedMaze-2Dlh), and doors can be obstructed (ObstructedMaze-2Dlhb). The observations
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(a) KeyCorridor-S4R3 (b) MultiRoom-N7S8 (c) ObstructedMaze-2Dlh

(d) KeyCorridor-S5R3 (e) MultiRoom-N12S10 (f) ObstructedMaze-2Dlhb

Figure 2: Average return of RC-GVF , RND and other baselines on the selected Minigrid environments
(without ground-truth episodic counts for baselines). RC-GVF outperforms baselines in the absence
of episodic counts. Some environments prove challenging for all approaches in this setting.

corresponds to an egocentric view of the cells in the front of the agent. Further details of the MiniGrid
environments are available in Appendix A.2.

Implementation We compare RC-GVF to RND [10], AGAC [18], and NovelD [77]. We use
Proximal Policy Optimization (PPO) [57] as our base agent for all approaches. The agent is trained
to maximize the expected sum of a weighted combination of intrinsic and extrinsic rewards. At
each time step t, the agent receives a reward Rt = Re(st) + �Ri(ot), where � 2 R+ balances the
contribution of the extrinsic Re(st) and intrinsic Ri(ot) rewards. For RC-GVF we set �z = 0.6,
use two prediction heads in the ensemble of predictors and use 128 pseudo-rewards (same as for
RND). Other important hyper-parameters, such as the intrinsic reward coefficient (�), entropy
coefficient, and learning rate of the predictor are obtained via an extensive hyper-parameter search for
all baselines (see Appendices C.2 and C.3 for details, including on our implementation of baselines.).

We present results averaged over 10 independent runs for each approach in every figure (solid line).
Unless mentioned otherwise, the shading indicates 95% bootstrapped confidence intervals.

5.2.1 Egocentric observations

We will first consider the usual setting where the agent receives access to the egocentric observations
from the environment. Importantly, we do not provide agents with access to privileged information
about the environment in the form of so-called ‘episodic counts’. This is different from several
recent approaches that have been applied to MiniGrid, which incorporate these values as part of their
intrinsic reward [46, 18, 77].

The use of episodic counts obtained through the simulator is problematic for solving exploration
problems in a partially observable setting, since it tells the agent precisely how frequently it has been
in each state. Indeed, the use of episodic counts alone can be sufficient for exploration in MiniGrid
(Figure 7 in Appendix E.1). Meanwhile, there exists no good method for obtaining episodic counts
in the absence of a simulator, as it is difficult to accurately estimate pseudo-counts from partial
observations (eg. as in Figure 1). Details about the exact usage of episodic counts by baselines in
their intrinsic reward formulation are provided in Appendix C.2.

In Figure 2 we compare RC-GVF, RND, AGAC, and NovelD in the absence of episodic counts,
while using egocentric observations. It can be seen that RC-GVF explores faster and succeeds more
often than RND and the other baselines in the KeyCorridor-S4R3 environment and MultiRoom-
N7-S8 environment. In comparison to RND and NovelD that utilise prediction errors in immediate
random embeddings, it appears that RC-GVF benefits from extended horizon predictions of random
pseudo-rewards. Meanwhile, AGAC only succeeds in ObstructedMaze-2Dlh, where all baselines
perform similarly well. Finally, we observe that all approaches struggle with the most difficult level
of considered environments (KeyCorridor-S5R3, MultiRoom-N12-S10 and ObstructedMaze-2Dlhb).
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(a) KeyCorridor-S4R3 (b) MultiRoom-N7-S8 (c) ObstructedMaze-2Dlh

(d) KeyCorridor-S5R3 (e) MultiRoom-N12-S10 (f) ObstructedMaze-2Dlhb

Figure 3: Average return of RC-GVF and RND with panoramic observations. The performance
of baselines (AGAC and NovelD) improves significantly with the inclusion of the episodic count
component while RC-GVF (using panoramic observations) achieves similar performance without.

5.2.2 Panoramic observations

We now demonstrate how using episodic counts from the simulator is crucial to the success of the base-
lines. In Figure 3 it can be seen how AGAC and NovelD improve with episodic counts, and also solve
the more difficult problems (KeyCorridor-S5R3, MultiRoom-N12-S10 and ObstructedMaze-2Dlhb).

Panoramic observations In order to increase performance of RC-GVF further, without introducing
episodic counts, we investigate the use of augmented panoramic views as previously explored by
Parisi et al. [42]3. In the MiniGrid environments, the observation changes almost in its entirety when
the agent changes the direction it faces. In contrast, moving to the next cell leads to fewer sudden
changes in the observation.

The lack of gradual changes of egocentric observations through rotations is a consequence of having
four discrete angles for orientation (0�, 90�, 180�, 270�), which may be an unrealistic depiction of
how rotations affect observations for agents situated in the real world. As a consequence, prediction
errors are dominated by predictions of the outcomes of turning (rather than other actions). To address
this, prior work proposed to make the agent’s observations invariant to rotation by augmenting the
observation with all directional observations [42]. In effect, this assumes that the agent rotates 360�
after moving to a cell, or alternatively that it is equipped with additional sensors on its sides and
back. Similar to Parisi et al. [42], we will consider panoramic views only for generating intrinsic
rewards, and egocentric observations for the base PPO agent.

In Figure 3, we demonstrate how RC-GVF with panoramic views and without privileged information
about the underlying state of the MDP can solve harder problems and is competitive with the
baselines that use episodic counts in five out of the six settings. We see that RC-GVF with panoramic
observations comfortably succeeds in the KeyCorridor-S5R3 and MultiRoom-N12-S10 environments
where it was previously unsuccessful. RC-GVF did not succeed in solving the harder ObstructedMaze-
2Dlhb within the given frames despite the inclusion of panoramic views. Figure 3 shows that the use of
panoramic views does not make the exploration problem trivial; RND also uses panoramic views (but
no episodic counts). It improves with panoramic views on KeyCorridor-S4R3 and MultiRoom-N7S8
but struggles with the harder instances.

5.3 Analysis

Changing the temporal prediction horizon We study the effect of changing the temporal
prediction horizon by evaluating RC-GVF with different discount factors. Recall from Equation 8

3We verified in a preliminary experiment that incorporating episodic counts for RC-GVF similarly improves
performance (see Figure 8 in Appendix E.2). However, since we believe that this constitutes privileged
information that is not readily accessible outside of a simulator, we will not explore this direction further.
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(a) KeyCorridor-S5R3 (b) MultiRoom-N12-S10

Figure 4: Analysis reveals that: (a) larger discount factors (except 0.99) are useful in KeyCorridor-
S5R3 (b) low and intermediate discount factors perform well in MultiRoom-N12-S10.

how the discount factor can me mapped to the prediction horizon, which lets us estimate a lower
bound on the horizon of about 11 time steps for �z = 0.6 with ✏ = 0.01. In Figure 4 it can be seen
how a larger prediction horizon is desirable for KeyCorridorS5R3. Among the higher discount factors,
0.95 is a good choice for this environment, but not 0.99. Compared to our default value of �z = 0.6,
a short horizon using 0.3 reduces performance further, while discount factors closest to 0 yield worse
performance. In contrast, for MultiRoom-N12-S10, we find that low and intermediate values of �z
perform well. The high GVF discount factors of 0.99 and 0.95 perform worse. Comparing �z = 0
to RND shows how the use of recurrent networks and the variance term derived from the ensemble
of predictors contributes most to the performance of RC-GVF in this domain.

Ablation To better understand which of these components are contributing most to the success
of RC-GVF, we consider the following additional ablations: (1) RC-GVF (�z = 0) without the
variance term in Equation 6, and (2) RC-GVF (�z = 0) without the recurrent predictor. Figure 5a
compares these variations to RC-GVF (�z = 0), RC-GVF (�z = 0.6), and RND. It can be seen
that the inclusion of the history-conditioned recurrent predictor and the variance term individually
contribute to the improved performance of RC-GVF.

Using the history conditioned recurrent predictor sharply improves the performance of RC-GVF with
�z = 0. We hypothesise that this effect arises from the previous pseudo-rewards available to the
predictor, which might enable better predictions on input observations it was not explicitly trained on
(which is often the case in procedurally generated environments). In support of this hypothesis, we
observed that using a recurrent predictor with solely observations as inputs does not produce such an
improvement (Figure 9 in Appendix E.3).

In Figure 5b, we present ablations for �z = 0.6. We consider RC-GVF without the variance term
in Equation 6, and without the recurrent predictor. Removing either the disagreement term or
the recurrent predictor worsens the performance of RC-GVF with �z = 0.6. Interestingly, unlike
as was observed for �z = 0, here we find that RC-GVF with only disagreement (no recurrent
predictor) performs better than RC-GVF with only recurrent predictor (no disagreement). This further
emphasises the importance of handling the aleatoric uncertainty for non-zero GVF discounts.

Increasing the ensemble size We conduct experiments with larger ensemble sizes in two MiniGrid
environments. We obtain comparable results for ensemble sizes of 2, 4, 6 and 8 predictors in Figure 10
in Appendix E.4, indicating that two member ensembles usually suffice for these problems.

6 Limitations and Societal Impact

Limitations The incorporation of the current policy into the prediction task of GVF prediction
can have benefits with regards to behavioural exploration. However, it may also encourage
over-exploration due to the same state appearing ‘interesting’ under different policies. Possible
mitigation strategies include off-policy variants or explicitly policy-conditioned (general) value
functions [17, 20].

In some situations it may be difficult to ascertain what is a good choice of the GVF discount factor
�z , which effectively determines the prediction horizon length, and can be influenced by optimisation
effects under function approximation [72]. The best choice may be problem-dependent and could
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(a) Ablation with �z = 0.0 (b) Ablation with �z = 0.6

Figure 5: Ablation of RC-GVF components in the KeyCorridor-S5R3 environment (a) the variance
term, recurrent predictor and discount factor contribute most to the performance of RC-GVF (b) the
variance term appears to be more important in the case of �z = 0.6.

further benefit from dynamic adjustment during learning [5, 37]. Nonetheless, our results in Figures
2 and 3 indicate that a default of �z = 0.6 works well in many of the considered settings.

Several other intrinsic reward formulations using RC-GVF are possible (eg. based on informa-
tion/prediction gain, learning progress, or only the disagreement term), which we did not investigate.
Our specific formulation in Equation 6 was motivated by the prediction error in RND, which does not
separate the aleatoric uncertainty when �z > 0. Starting with the prediction error term also allowed
us to closely study the connection between RND and RC-GVF.

A general limitation of curiosity-based exploration for task-specific RL is that more information is
gathered than is necessary to solve the given task [40, 33]. Indeed, the space of potential GVFs is enor-
mous. In the case of RC-GVF one could aim at focusing it by integrating task-specific information [68]
or by considering predictions using a smaller set of policies that adequately cover the state space [1].

Societal impact This paper does not focus on real-world applications of exploration in RL and thus
does not have a direct societal impact. In applications, advanced exploration methods may lead to
unexpected policy behaviour, which could be mitigated by incorporating safety constraints [19].

7 Conclusion

We introduced random curiosity with general value functions (RC-GVF), an exploration method that
intrinsically rewards a reinforcement learning agent based on errors and uncertainty in predicting
random transformations of observation sequences generated through the agent’s actions. Unlike state-
novelty approaches, ours takes into account multi-step future behaviours of policy and environment.
Unlike commonly used artificial curiosity approaches, RC-GVF does not rely on model rollouts and
does not need to predict all details of future observations.

On the diabolical lock problem [36] and the MiniGrid environments [13] we demonstrate that predict-
ing abstract quantities of extended time intervals can improve exploration in POMDPs. Compared to
recent methods such as AGAC [18] and NovelD [77] that rely on privileged episodic state-visitation
counts in MiniGrid, our RC-GVF achieves competitive results even when using only panoramic
observations. Importantly, in the natural setting where episodic counts are not available, RC-GVF
significantly outperforms all baseline methods.

Our approach can be generalized by moving beyond random pseudo-rewards, considering general
value functions under a set of different policies [1], and introducing time or state-dependent
discounting. This offers exciting avenues for future research.
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