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ABSTRACT

Algorithm unrolling has emerged as a learning-based optimization paradigm that
unfolds truncated iterative algorithms in trainable neural-network optimizers. We
introduce Stochastic UnRolled Federated learning (SURF), a method that expands
algorithm unrolling to a federated learning scenario. Our proposed method tackles
two challenges of this expansion, namely the need to feed whole datasets to the
unrolled optimizers to find a descent direction and the decentralized nature of
federated learning. We circumvent the former challenge by feeding stochastic
mini-batches to each unrolled layer and imposing descent constraints to mitigate
the randomness induced by using mini-batches. We address the latter challenge
by unfolding the distributed gradient descent (DGD) algorithm in a graph neural
network (GNN)-based unrolled architecture, which preserves the decentralized
nature of training in federated learning. We theoretically prove that our proposed
unrolled optimizer converges to a near-optimal region infinitely often. Through
extensive numerical experiments, we also demonstrate the effectiveness of the
proposed framework in collaborative training of image classifiers.

1 INTRODUCTION

Federated learning is a distributed learning paradigm in which a set of low-end devices aim to
collaboratively train a global statistical model. A growing body of work, e.g., (Lian et al., 2015;
McMahan et al., 2016; Li et al., 2020b), has deployed a server in the network to facilitate reaching
consensus among the agents, which creates a communication bottleneck at the server and requires
high bandwidth when the number of agents grows large. To alleviate these challenges, another line of
work that traces back to decentralized optimization (Nedic and Ozdaglar, 2009; Wei and Ozdaglar,
2012; Wu et al., 2017) has instead investigated peer-to-peer communication, eliminating the role
of central servers in the network. These server-less federated learning frameworks compromise
communication efficiency and convergence rates (Vanhaesebrouck et al., 2017; Liu et al., 2022a;b).
The slow convergence of these methods arises as a practical challenge since it greatly outweighs the
capacity of resource- and energy-constrained devices.

Algorithm unrolling has recently emerged as a learning-to-optimize paradigm that unfolds iterative
algorithms via learnable neural networks, achieving state-of-the-art performance in many applica-
tions such as computer vision (Zhang and Ghanem, 2018), policy learning (Marino et al., 2021),
and computational biology (Cao et al., 2019) to name a few. The key reported advantage of learn-
ing the parameters of standard algorithms is achieving much faster convergence without sacrificing
performance (Monga et al., 2021). The fast-convergence advantage of unrolling could potentially
surmount the challenges faced by low-end devices when collaboratively training deep models.

Nevertheless, the convergence analysis of unrolled algorithms is still in its infancy. One approach,
known as safeguarding, has been proposed in (Heaton et al., 2023; Shen et al., 2021; Moeller et al.,
2019; Liu et al., 2021b), where the estimate made by a certain layer is considered only if it is in
a descent direction; otherwise, it is replaced with an estimate of the classic iterative algorithm.
Some other studies, e.g., (Xie et al., 2019; Chen et al., 2018b), provided theoretical proofs for the
existence of unrolled networks that converge to the optimal; however, they do not provide methods
for finding these convergent networks. To resolve this issue, (Liu and Chen, 2019; Abadi et al.,
2016) learn fewer parameters of the standard algorithm, which limits the network’s expressivity.
These theoretical proofs are also tailored for specific optimization algorithms and do not generalize
to other algorithms. That leaves many existing and potential unrolled networks without convergence
guarantees. The lack of convergence guarantees precludes perceiving unrolled networks as descent
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algorithms, which, in turn, raises concerns about their generalizability and usability in safety-critical
applications.

In this paper, we introduce unrolling to server-less federated learning and tackle the issue of lack-
ing convergence guarantees. We pose unrolled architectures for decentralized federated learning
as stochastic descent algorithms under a proposed training framework called Stochastic UnRolled
Federated learning (SURF). To achieve this, SURF imposes descending constraints on the training
procedure of the unrolled architectures. We theoretically prove that the unrolled architecture trained
using SURF is a stochastic descent optimizer that converges to a near-optimal region of the loss
function of the federated problem.

In addition, SURF is agnostic to the underlying algorithm being unrolled. As a demonstration of
its effectiveness, we unroll one of the earliest decentralized optimization algorithms in the litera-
ture known as decentralized gradient descent (DGD) (Nedic and Ozdaglar, 2009). The unrolled
architecture is parameterized with the help of graph neural networks (GNNs), hence preserving the
decentralized nature of the problem.

In summary, our contributions are as follows:

• We develop stochastic unrolling for decentralized federated learning, which encourages faster
convergence compared to other standard algorithms (as depicted in Figure 1).

• We force the unrolled architectures to converge by imposing descending constraints within our
training framework, SURF. We theoretically (see Theorem 2) and empirically (see Figure 2)
prove that an unrolled optimizer trained via SURF converges to a near-optimal region and is,
therefore, guaranteed to generalize to in-distribution datasets.

• We empirically show (see Figure 3) that the imposed constraints provide the unrolled optimizers
with robustness to perturbations caused by a lack of synchrony between the agents.

One of the advantages that SURF provides is shifting where a neural network is trained using gradi-
ent descent, i.e., moving from training a neural network online in a decentralized manner to training
an unrolled network offline. This moves the demanding hardware training requirements from low-
end devices to more powerful offline servers. The downside of using unrolling in training neural
networks is that the size of the unrolled network is typically much larger than the original one.
Therefore, we envision SURF as a method that complements other federated learning frameworks
without necessarily replacing them. Particularly, SURF best suits problems of training relatively
lightweight models on resource- and energy-limited devices, where fast convergence is a priority.

2 RELATED WORK

Server-less Federated Learning. There have been many efforts in recent years to enable federated
learning without the aid of a server, e.g., (Kalra et al., 2023; Sun et al., 2023; Wang et al., 2022;
Tedeschini et al., 2022; Ye et al., 2022; Wink and Nochta, 2021) to name a few. These efforts have
benefited from the advances in decentralized algorithms, such as decentralized SGD (Koloskova
et al., 2020; Wang and Joshi, 2021), asynchronous decentralized SGD (Lian et al., 2018), and alter-
nating direction method of multipliers (ADMM) (Wei and Ozdaglar, 2012; Shi et al., 2014). Our
proposed method deviates from these studies in that we use a meta approach to learn the optimizer
instead of using state-of-the art optimizers.

Learning to Optimize/Learn (L2O/L2L). Our work is mostly related to the broad research area
of L2O (Chen et al., 2021b), which aims to automate the design of optimization methods by train-
ing optimizers on a set of training problems. L2O has achieved notable success in many opti-
mization problems including ℓ1-regularization (Gregor and LeCun, 2010), neural-network training
(Andrychowicz et al., 2016; Ravi and Larochelle, 2016), minimax optimization (Shen et al., 2021),
and black-box optimization (Chen et al., 2017) among many others.

Prior work in L2O can be divided into two categories; model-free and model-based optimizers.
Model-free L2O aims to train an iterative update rule that does not take any analytical form and relies
mainly on general-purpose recurrent neural network (RNNs) and long short-term memory networks
(LSTMs) (Andrychowicz et al., 2016; Chen et al., 2017; Lyu et al., 2017; Wichrowska et al., 2017;
Xiong and Hsieh, 2020; Jiang et al., 2021). Model-based L2O, on the other hand, provides compact,
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interpretable learning networks by taking advantage of both model-based algorithms and data-driven
learning paradigms (Gregor and LeCun, 2010; Greenfeld et al., 2019). As part of this category,
algorithm unrolling aims to unroll the hyperparameters of a standard iterative algorithm in a neural
network to learn them. The seminal work (Gregor and LeCun, 2010) unrolled iterative shrinkage
thresholding algorithm (ISTA) for sparse coding problems. Following (Gregor and LeCun, 2010),
many other algorithms have been unrolled, including, but not limited to, projected gradient descent
(Giryes et al., 2018), the primal-dual hybrid gradient algorithm (Jiu and Pustelnik, 2020; Cheng
et al., 2019), and Frank-Wolfe (Liu et al., 2019).

Learning to learn (L2L) refers to frameworks that extend L2O to training neural networks in small
data regimes, e.g., few-shot learning (Triantafillou et al., 2020). Learning to learn has strong ties
to meta-learning, but they differ in their ultimate goal; meta-learning, e.g., model-agnostic meta-
learning (MAML) (Finn et al., 2017), aims to learn an initial model that can be fine-tuned in a few
gradient updates, whereas L2L aims to learn the gradient update and the step size. General purpose
LSTM-based models, e.g., (Ravi and Larochelle, 2016; Andrychowicz et al., 2016; Li et al., 2017)
are the most popular among L2L models.

Algorithm Unrolling in Distributed Problems. Algorithm unrolling has also been introduced to
distributed optimization problems with the help of graph neural networks (GNNs). One of the first
distributed algorithms to be unrolled was weighted minimum mean-square error (WMMSE) (Shi
et al., 2011), which benefited many applications including wireless resource allocation (Chowdhury
et al., 2021; Li et al., 2022) and multi-user multiple-input multiple-output (MU-MIMO) communi-
cations (Hu et al., 2021; Zhou et al., 2022; Ma et al., 2022; Pellaco and Jaldén, 2022; Schynol and
Pesavento, 2022; 2023). Several other distributed unrolled networks have been developed for graph
signal denoising (Chen et al., 2021a; Nagahama et al., 2021), graph topology inference (Pu et al.,
2021) and computer vision (Lin et al., 2022), among many others. In our work, we follow the lead of
these studies and rely on GNNs to unroll DGD for federated learning. To the best of our knowledge,
our work is the first to use algorithm unrolling in a federated learning setting.

3 PROBLEM FORMULATION

Consider a network of n agents that periodically coordinate to train a statistical model Ψ : X → Y ,
parameterized by w ∈ Rd, to fit a pair of random variables x ∈ X and y ∈ Y jointly distributed
according to data distribution D. To achieve this goal, the agents communicate over a server-less
network, represented by an undirected connected graph G = (V, E), where V = {1, . . . , n} denotes
the set of nodes and E ⊆ V × V denotes the set of edges. The graph is associated with a real
symmetric matrix S ∈ Rn×n, which has a non-zero entry iff either (i, j) ∈ E or i = j. We denote
the neighborhood of node i by Ni = {j ∈ V|(i, j) ∈ E} ∪ {i}, within which the agent transmits its
current estimate of w. Under these assumptions and notation, we next formally define the federated
learning problem and the algorithm-unrolling approach we adopt to solve it.

3.1 FEDERATED LEARNING

The decentralized federated learning problem can be cast as the separable, constrained problem

min
w1,...,wn∈Rd

f(W) :=
1

n

n∑
i=1

E[ℓ(Ψ(xi;wi),yi)],

s.t. wi =
1

|Ni|
∑
j∈Ni

wj , ∀i ∈ V,
(FL)

where wi is a local version of the global variable w stored at agent i, and all wi’s are arranged in
the rows of the matrix W ∈ Rn×d. The (FL) problem aims to minimize a global objective function
f : Rn×d → R that is the average of some local loss functions ℓ : X×Y → R. The local objective is
to train a statistical model Ψ in a supervised mode, in which each agent i ∈ V has access to local data
distributed according to an unknown probability distribution D over the space of data pairs xi ∈ X
and yi ∈ Y . Moreover, the (FL) problem deploys constraints that require each local variable to stay
equal to the average of the direct neighbors’ local variables. When satisfied, the average constraints
boil down to constraints of the form wi = wj for all i and j due to the connectivity and symmetry
of the graph, hence leading to consensus among agents.
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3.2 ALGORITHM UNROLLING

To solve (FL), we opt for an L2O approach, where we unfold an arbitrary standard decentralized
optimizer in the layers of an unrolled model Φ ∈ H, which we refer to as the optimizer. The
optimizer Φ is parameterized by a sequence of learnable parameters θ = {θl}Ll=1, each of which
mimics the parameters of one iteration in the standard algorithm. Learning these parameters can
then be cast as the bi-level optimization problem

argmin
θ

E
[
f(Φ(ϑ;θ))

]
s.t. Wl = ϕ(Wl−1,ϑ;θl), l = 1, . . . , L,

WL = Φ(ϑ;θ),

(Optimizer)

where Wl is the output of the l-th layer, L is the number of layers, and ϑ is a dataset of data pairs
(x,y) ∼ D divided among n agents. The initial estimate W0 is drawn from a Gaussian distribu-
tion N (µ0, σ

2
0I). The lower-level problem iterates the update rule ϕ of the standard decentralized

algorithm to find the optimal of (FL). On the other hand, the upper-level problem finds the optimal
parameters of ϕ at each layer l that ensure the network’s output WL is a stationary point of f .

The statistical nature of the objective function of the upper-level problem indicates that it is a meta-
training problem, where the learnable parameters are trained to fit a distribution of similar tasks.
For example, the unrolled network Φ can be trained over a meta-training dataset that contains image
datasets with different label distributions. When the trained unrolled optimizer is executed on a
query dataset sampled from the same task distribution, each layer is supposed to take a descent
direction over the manifold constructed by this query dataset. Two challenges, however, become
evident: i) lack of convergence guarantees of the unrolled optimizer hinders its generalizability to
query datasets, and ii) a whole dataset needs to be fed to each layer of the unrolled network in order
to define the manifold we optimize over. In the following section, we tackle these two issues in our
proposed training method, SURF.

4 PROPOSED METHOD

To tackle the aforementioned challenges, we introduce Stochastic UnRolled Federated learning, or
SURF, a training method that provides unrolled decentralized architectures with convergence guar-
antees. SURF guarantees convergence by imposing supermartingale-like descending constraints at
each unrolling layer. Moreover, it resolves the latter challenge of massive and variable-size query
datasets using stochastic unrolling, where we feed each layer l ∈ {1, . . . , L} of the unrolled network
with a fixed-size batch Bl sampled independently and uniformly at random from the dataset ϑ.

The stochastic unrolled federated learning problem can then be formulated as

min
θ

E
[
f(Φ(ϑ;θ))

]
s.t. E

[
∥∇f(Wl)∥ − (1− ϵ) ∥∇f(Wl−1)∥

]
≤ 0, ∀l = 1, . . . , L,

Wl = ϕ(Wl−1,Bl;θl), ∀l = 1, . . . , L,

(SURF)

where ∇ denotes stochastic gradients, ∥ · ∥ is the Frobenius norm, and ϵ ∈ (0, 1). The expectation
in the constraints accounts for the randomness in the initial estimate W0, the mini-batch Bl, and
the task distribution. The descending constraints, therefore, force the gradients to decrease over
the layers despite the randomness introduced by relying on a few data points to estimate a descent
direction. Intuitively, this would stimulate the unrolled optimizer to converge to a local optimal, i.e.,
Wl →W∗, on average. Observe that the loss function f is probably non-convex with respect to wi

(see (FL)), and therefore, we consider convergence to local minima.

It is worth noting that the stochastic unrolling we propose in this paper is crucially different from the
stochastic approximations used in (Ravi and Larochelle, 2016; Andrychowicz et al., 2016; Liu et al.,
2021a). In these studies, the gradients of the objective function f are approximated over a mini-batch
before they are fed to the unrolled layers, thereby reducing the computational complexity of these
algorithms. However, these studies have overlooked the effects of the stochastic (noisy) approxima-
tions of the gradients on the performance of their algorithms. In (SURF), we feed the mini-batches
directly to the unrolled network in order to learn a descent direction instead of computing it and
tackle the uncertainty in these estimated directions using the descending constraints.
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4.1 PROBABLY, APPROXIMATELY CORRECT SOLUTION TO (SURF)

To find the minimizer of (SURF), we leverage the constrained learning theory (CLT) (Chamon et al.,
2022) by appealing to its dual problem. We formulate the latter by finding the saddle point of the
Lagrangian function

L(θ,λ) = E
[
f(Φ(ϑ;θ))

]
+

L∑
l=1

λlE
[
∥∇f(Wl)∥ − (1− ϵ) ∥∇f(Wl−1)∥

]
, (1)

where λ ∈ RL
+ is a vector collecting the dual variables λl. Since a closed-form of the expectation

over an unknown distribution is unattainable, we resort to the empirical Lagrangian function

L̂(θ,λ) = Ê
[
f(Φ(ϑ;θ))

]
+

L∑
l=1

λlÊ
[
∥∇f(Wl)∥ − (1− ϵ) ∥∇f(Wl−1)∥

]
, (2)

where Ê denotes the sample mean evaluated over Q realizations. The empirical dual problem can
then be cast as

D̂∗ = max
λ∈RL

+

min
θ
L̂(θ,λ). (3)

Equation (3) is an unconstrained optimization problem that can be solved by alternating between
minimizing the Lagrangian with respect to θ for a fixed λ and then maximizing over the latter, as
described in Algorithm 1.

Nevertheless, (3) is not equivalent to (SURF) due to the non-convexity of the problem and the empir-
ical gap induced by replacing the statistical expectations with empirical ones. A precise characteri-
zation of the gap between the two problems is provided by CLT under the following assumptions:
Assumption 1. The loss function f(·) in (SURF) and the gradient norm ∥∇f(·)∥ are both bounded
and M -Lipschitz continuous functions.

Assumption 2. Let Ê be the sample mean evaluated over Q realizations. Then there exists ζ(Q, δ) ≥
0 that is monotonically decreasing with Q, for which it holds with probability 1− δ that

1. |E[f(Φ(ϑ;θ))]− Ê[f(Φ(ϑ;θ))]| ≤ ζ(Q, δ), and

2. |E[∥∇f(Wl(ϑ;θ))∥]− Ê[∥∇f(Wl(ϑ;θ))∥]| ≤ ζ(Q, δ) for all l and all θ ∈ Rp.

Assumption 3. Let ϕl◦ . . . ◦ϕ1 ∈ Pl be a composition of l unrolled layers parameterized by θ1:l

and P l = conv(Pl) be the convex hull of Pl. Then, for each ϕl◦ . . . ◦ϕ1 ∈ P and ν > 0, there exists
θ1:l such that E

[
|ϕl◦ . . . ◦ϕ1(W0,ϑ;θ1:l)− ϕl◦ . . . ◦ϕ1(W0,ϑ)|

]
≤ ν for all l.

Assumption 4. There exists Φ ∈ H that is strictly feasible, i.e., E
[
∥∇f(Wl)∥ − (1 −

ϵ) ∥∇f(Wl−1)∥
]
< −Mν, ∀l, with M and ν as in Assumptions 1 and 3.

Assumption 5. The conditional distribution p(ϑ|W) is non-atomic for all W.

CLT asserts that the gap between the two problems is affected by a smoothness constant M , the
richness of the parameterization θ, and the sample complexity.
Theorem 1 (CLT (Chamon et al., 2022)). Let P ∗ be the optimal value of (SURF) and (θ∗,λ∗) be
a stationary point of (3). Under Assumptions 1- 5, it holds, for some constant ρ, that

|P ∗ − D̂∗| ≤Mν + ρ ζ(Q, δ), and (4)

E
[
∥∇f(Wl)∥ − (1− ϵ) ∥∇f(Wl−1)∥

]
≤ ζ(Q, δ), ∀l, (5)

with probability 1− δ each and with ρ ≥ max{∥λ∗∥, ∥λ∗∥}, where λ
∗
= argmaxλ minθ L(θ,λ).

The assumptions under which this result holds can be satisfied easily in practice. Assumption 1
requires the loss function and its gradient to be smooth and bounded. Assumption 2 identifies the
sample complexity, which is a common assumption when handling statistical models. Moreover,
Assumption 3 forces the parameterization θl to be sufficiently rich at each layer l, which is guaran-
teed by modern deep learning models. Assumption 4 ensures that the problem is feasible and well
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noend 1 Primal-Dual Training Algorithm for (SURF)

1: Input: Meta-training dataset D = {ϑm}Mm=1.
2: Initialize θ = {θl}Ll=1 and λ = {λl}Ll=1.
3: for each epoch do
4: for each batch do
5: Sample a dataset from D and compute L̂(θ,λ) as in (2).
6: for l = 1, . . . , L do
7: Update variables at layer l:

θl ← [θl − µθ∇θl
L̂(θ,λ)], (6)

λl ← [λl + µλ∇λl
L̂(θ,λ)]+. (7)

8: Return: θ∗
l ← θl,∀l ∈ {1, . . . , L}.

posed, which is guaranteed since (SURF) mimics the parameters of a standard iterative solution.
Finally, Assumption 5 can be satisfied using data augmentation.

Theorem 1 indicates that an unrolled optimizer trained via Algorithm 1 is a probably near-optimal,
near-feasible solution to (SURF). Each unrolled layer takes a step in a descent direction with prob-
ability 1 − δ, where δ depends on the size of the training dataset. As a consequence, the trained
unrolled optimizer can be considered as a stochastic descent algorithm.

4.2 CONVERGENCE GUARANTEES

Finding a probably approximately correct solution θ∗ does not directly guarantee its capability to
generate a sequence of layers’ outputs Wl that converges to the optimal solution of (FL). This is
because this convergence requires (almost) all the descending constraints to be satisfied, which has
a decreasing probability (1− δ)L with the number of layers L despite the fact that these constraints
are statistically independent. In Theorem 2, we prove that the trained unrolled optimizer indeed
converges to a near-optimal region infinitely often if Assumption 1 holds.

Theorem 2. Given are a probably approximately correct unrolled optimizer θ∗ that satisfies (5)
with a probability 1− δ and generates a sequence of random variables W1,W2, . . . at the outputs
of its layers. Then, under Assumption 1, it holds that

lim
l→∞

E
[
min
k≤l
∥∇f(Wk)∥

]
≤ 1

ϵ

(
ζ(Q, δ) +

δM

1− δ

)
a.s. (8)

with ζ(Q, δ) as described in Assumption 2.

The proof constructs a stochastic process αl that keeps track of the gradient norm until it drops
below 1

ϵ

(
ζ(Q, δ)+ δM

1−δ

)
and shows that αl converges almost-surely using the supermartingale con-

vergence theorem (Robbins and Siegmund, 1971). The detailed proof of Theorem 2 is relegated to
Appendix A.1. The above result implies that the estimates Wl infinitely often visit a region around
the optimal where the norm of the gradient drops below 1

ϵ

(
ζ(Q, δ) + δM

1−δ

)
, on average. The size of

this near-optimal region depends on the sample complexity of the model Φ, the Lipschitz constant
of the loss function and its gradient, and lastly a design parameter ϵ of the imposed constraints.
The larger ϵ, which is equivalent to imposing an aggressive reduction on the gradients (see (5)), the
closer we are guaranteed to get to a local optimal W∗.

Corollary 1. Under the same assumptions of Theorem 2, it holds that

lim
l→∞

P (E[min
k≤l
∥∇f(Wk)∥] ≥ γ) ≤ 1

ϵγ

(
ζ(Q, δ) +

δM

1− δ

)
. (9)

Since Theorem 2 holds on average, we use Markov’s inequality to show convergence in probability
result in Corollary 1. The size of the near-optimal region γ is then controllable by the number of
samples Q and the constant ϵ.

6



Under review as a conference paper at ICLR 2024

In addition to the asymptotic analysis, we aspire to characterize an upper bound of the number of
unrolled layers that achieves certain precision. To achieve this, we derive an upper bound to the
gradient norm after a finite number of layers L in Theorem 3.
Theorem 3. For a trained unrolled optimizer θ∗ according to Theorem 1, the gradient norm
achieved after L layers satisfies

E
[
∥∇f(WL)∥

]
≤ (1− δ)L(1− ϵ)L E∥∇f(W0)∥+

1

ϵ

(
ζ(Q, δ) +

δM

1− δ

)
.

The proof is relegated to Appendix A.3.

5 GNN-BASED UNROLLED DGD

SURF is agnostic to the iterative update step ϕ that we choose to unroll. However, the standard
update rule and the unrolled architecture should accommodate the requirements of the (FL) problem,
which are i) to permit distributed execution and ii) to satisfy the consensus constraints of (FL). In this
section, we pick DGD as an example of a decentralized algorithm that satisfies the two requirements
and unroll it using GNNs, which also can be executed distributedly.

DGD is a distributed iterative algorithm that relies on limited communication between agents. At
each iteration l, the updating rule of DGD has the form

wi(l) =
∑
j∈Ni

αijwj(l − 1)− β∇fi(wi(l − 1)), i = 1, . . . , n, (10)

where fi is the local objective function, β is a fixed step size and αij = αji (Nedic and Ozdaglar,
2009, Eq. (3)). The weights αij are chosen such that

∑n
j=1 αij = 1 for all i to ensure that (10)

converges (Nedic and Ozdaglar, 2009). The update rule in (10) can be interpreted as letting the
agents descend in the opposite direction of the local gradient ∇fi(wi(l − 1)) as they move away
from the (weighted) average of their neighbors’ estimates wj(l − 1). Each iteration can then be
divided into two steps; first the agents aggregate information from their direct neighbors and then
they calculate the gradient of their local objective functions.

We unfold these two steps in a learnable neural layer of the form
wi,l = [Hl(Wl−1)]i − σ (Ml [wi,l−1;bi,l] + dl) , (U-DGD)

where [.]i refers to the i-th row of a matrix, bi,l = [Bl]i is the mini-batch used by agent i at layer
l, and σ is a non-linear activation function. In (U-DGD), we replace the first term in (10) with a
learnable graph filter (Gama et al., 2020b) and the second term with a single fully-connected layer
that is parameterized by Ml and dl. The graph filter, the building block of GNNs, aggregates
information from up to (K–1)-hop neighbors,

H(Wl−1) =

K−1∑
k=0

hk,lS
kWl−1, (11)

which, in turn, requires K − 1 communication rounds. Here, the filter coefficients hl = {hk,l}K−1
k=0

that weigh the information aggregated from different hop neighbors are the learnable parameters.
Equation (11) and the first term of (10) are essentially the same when K is set to 2 and hk to 1 for
all k and S is chosen to be the (normalized) graph adjacency matrix. In U-DGD, however, the goal
is to learn the weights hk,l to accelerate the unrolled network’s convergence.

The other component of (U-DGD) is a single fully-connected perceptron, which is implemented
locally and whose weights Ml and dl are shared among all the agents. The input to this perceptron
at each agent is the previous estimate wi,l−1 concatenated with a batch of B examples bi,l, sampled
randomly from the dataset ϑ. Each batch is a concatenation of the sampled data points, where the
input data and label of one example follow each other. Consequently, the size of this fully-connected
layer grows fast with the size of the original model Ψ(.;w) that is being collaboratively trained and
the size of the mini-batch bi,l. The goal of deploying this fully-connected perceptron is to learn a
descending direction over the domain of fi, on average. In our case, fi is a statistical average of a
loss function ℓ over the data distribution D.
Remark 1. Since the parameters of the fully-connected perceptron are shared between all the agents,
U-DGD learners inherit the permutation equivariance of graph filters and graph neural networks, as
well as transferability to graphs with different sizes (Ruiz et al., 2020) and stability to small graph
perturbations (Gama et al., 2019; 2020a; Hadou et al., 2022; 2023).
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6 NUMERICAL EXPERIMENTS

In this section, we run experiments relying on U-DGD to showcase the three merits of our method,
SURF, in terms of convergence speed, convergence guarantees achieved by the constraints, and ro-
bustness against asynchronous communications. More experiments over different graph topologies
are relegated to Appendix B including an extension to standard FL scenarios.

Set-up. We consider a network of n = 100 agents that form a connected 3-degree regular graph. The
agents collaborate to train a softmax layer of a classifier via a trained U-DGD optimizer. The softmax
layer is fed by the outputs of the convolutional layers of a ResNet18 backbone, whose weights are
pre-trained and kept frozen during the training process. To train a U-DGD optimizer via SURF, we
consider a meta-training dataset, which consists of 600 class-imbalanced datasets. Each dataset has
a different label distribution and contains 6, 000 images (that is, 45 training examples/agent and 15
for testing) that are evenly divided between the agents.

Meta-training. At each epoch, we randomly choose one image dataset from the meta-training
dataset and feed its 45 training examples/agent to the U-DGD network in mini-batches of 10 ex-
amples/agent at each layer (see (U-DGD)). The training loss is computed over the 10 testing ex-
amples/agent and optimized using ADAM with a learning rate µθ = 10−2 and a dual learning rate
µλ = 10−2. The constraint parameter ϵ is set to 0.01. The performance of the trained U-DGD is
examined over a meta-testing dataset that consists of 30 class imbalanced datasets, each of which
also has 45 training examples and 15 for testing per agent. Similar to training, the training examples
are fed to the U-DGD in mini-batches while the testing examples are used to compute the testing
accuracy. The results are reported for both MNIST (MNISTWebPage) and CIFAR10 (Krizhevsky
et al., 2009) datasets. All experiments were run on an NVIDIA® GeForce RTX™ 3090 GPU. Our
code is available at: https://anonymous.4open.science/r/fed-SURF-84DC/README.md.

Convergence speed. We train a U-DGD that consists of 10 unrolled layers, each of which employs
a graph filter that aggregates information from up to two neighbors (i.e., K = 3). That creates a
total of 20 communication rounds between the agents. Figure 1 shows the convergence of the trained
U-DGD compared to the standard DGD and DFedAvgM (Sun et al., 2023). The former takes only
20 communication rounds to achieve performance higher than that achieved by the others in 200
communication rounds. This result is confirmed for both MNIST (left) and CIFAR10 (Middle).
In addition, we compute the relative accuracy with respect to centralized training and report the
result in Figure 1 (Right). The figure confirms that U-DGD achieves a relative accuracy of almost
1, which indicates that SURF matches the performance of centralized training. The figure also
shows a comparison with other federated learning benchmarks: FedAvg (McMahan et al., 2016),
SCAFFOLD (Karimireddy et al., 2020), MOON (Li et al., 2021), FedProx (Li et al., 2020a), and
FedDyn (Acar et al., 2021). U-DGD has a notably faster convergence than all the benchmarks.

Convergence guarantees. To assess the effects of the descending constraints on the training perfor-
mance, we compare the test loss and accuracy with and without these constraints in Figure 2. The
figure shows that the unrolled optimizer trained using SURF, depicted in blue, converges gradually
to the optimal loss/accuracy over the layers. However, the standard unrolled optimizer trained with-
out the descending constraints failed to maintain a similar behavior even though it achieves the same
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Figure 1: Convergence speed. Comparisons between the accuracy of U-DGD and DGD evalu-
ated over 30 in-distribution class-imbalanced datasets sampled from (Left) MNIST and (Middle)
CIFAR10. (Right) Comparison of the relative accuracy (i.e., the accuracy normalized by that of
centralized training) over CIFAR10 between SURF and FL benchmarks that deploy a central server.
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Figure 2: Convergence Guarantees. Comparison of the loss and accuracy (evaluated over 30 test
datasets sampled from MNIST) with and without the constraints in (SURF) across the unrolled
layers of U-DGD. Observe that SURF converges gradually to the optimal.

performance at the final layer. In fact, the accuracy jumps from 0% to 96% at the last layer, which
would make the optimizer more vulnerable to additive noise and perturbations in the layers’ inputs,
as we show in the following experiment.
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Figure 3: Asynchronous Communications.
Comparison of the test loss and accuracy
in different communication environments
where nasyn agents are asynchronous with
the rest of the network.

Asynchronous communications. We consider an
asynchronous setting during inference, where at
each layer nasyn randomly-chosen agents are asyn-
chronous with the rest of the agents. The asyn-
chronous agents fail to update their estimates simul-
taneously with the other agents. Relying on outdated
estimates introduces perturbations to the inputs of
each layer, which would result in a discrepancy in
the learned descent direction. Figure 3 shows that
our constrained method SURF is more resilient to
these perturbations, as the deterioration in the per-
formance is notably slower than that of the case with
no constraints.

7 CONCLUSIONS

In this paper, we proposed a new framework, called
SURF, that introduces stochastic algorithm unrolling
to federated learning scenarios. To overcome the brittleness of algorithm unrolling, SURF imposes
descending constraints on the outputs of the unrolled layers. These constraints provided our method
with resilience to the perturbations induced by both feeding the unrolled layers with stochastic mini-
batches and asynchronous communications. SURF, however, is independent of the standard algo-
rithm to be unrolled. For the federated-learning scenario we considered, in this paper, we unrolled
DGD using GNNs, which allowed distributed execution of the optimizer along with transferabil-
ity to different regimes. Our analysis showed that the unrolled DGD almost-surely converges to
a near-optimal region whose size depends on the sample complexity of the unrolled network, the
smoothness of the loss function, and a design parameter of the descending constraints.

There are several directions for future work. One possible direction is to expand our method to
more challenging federated learning scenarios. Although our work assumed homogeneity among
the agents, there is ample opportunity to extend our method to heterogeneous settings through loss
reweighting techniques such as (Zhao and Joshi, 2022). Moreover, privacy is a critical concern in
federated learning, since even though the agents do not share their data, they communicate their
evaluated gradients, which can be exploited in inferring the data. Unrolled optimizers are prone
to the same privacy issues since the input of the fully-connected perceptron can be inferred from
its outputs (Fredrikson et al., 2015). Methods inspired by differential privacy (Abadi et al., 2016;
Arachchige et al., 2019) and secure aggregation (So et al., 2021; Elkordy et al., 2022) can be further
explored in the context of stochastic unrolling. Another direction of interest is to explore the use
of our method in other learning paradigms, namely reinforcement learning and neural ODEs (Chen
et al., 2018a).
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A PROOFS

In this section, we provide the proofs for our theoretical results after introducing the following
notation. Consider a probability space (Ω,F , P ), where Ω is a sample space, F is a sigma algebra,
and P : F → [0, 1] is a probability measure. With a slight abuse of this measure-theoretic notation,
we write P (X = 0) instead of P ({ω : X(ω) = 0}), where X : Ω → R is a random variable,
to keep equations concise. We define a filtration of F as {Fl}l>0, which can be thought of as an
increasing sequence of σ-algebras with Fl−1 ⊂ Fl. We assume that the outputs of the unrolled
layers Wl are adapted to Fl, i.e., Wl ∈ Fl. Intuitively, the filtration Fl describes the information
at our disposal at step l, which includes the outputs of each layer up to layer l, along with the initial
estimate W0.

In our proofs, we use a supermartingale argument, which is commonly used to prove the convergence
of stochastic descent algorithms. A stochastic process Xk is said to form a supermartingale if
E[Xk|Xk−1, . . . , X0] ≤ Xk−1. This inequality implies that given the past history of the process,
the future value Xk is not, on average, larger than the latest one. With this definition in mind, we
provide the proof of Theorem 2.

A.1 PROOF OF THEOREM 2

Let Al ∈ Fl be the event that the constraint (5) at layer l is satisfied. By the law of total expectation,
we have

E
[
∥∇f(Wl)∥

]
= P (Al)E

[
∥∇f(Wl)∥ |Al

]
+ P (Ac

l )E
[
∥∇f(Wl)∥ |Ac

l

]
, (12)

with P (Al) = 1 − δ. On the right-hand side, the first term represents the conditional expectation
when the constraint is satisfied and, in turn, is bounded above according to (5). The second term is
concerned with the complementary event Ac

l ∈ Fl, when the constraint is violated. The conditional
expectation in this case can also be bounded since i) the gradient norm ∥∇f(Wl)∥ ≤ M for all
Wl since f is M -Lipschitz according to Assumption 1, and ii) the expectation of a random variable
cannot exceed its maximum value, i.e, E∥∇f(Wl)∥ ≤ maxWl

∥∇f(Wl)∥ ≤ M by Cauchy-
Schwarz inequality. Substituting in (12) results in an upper bound of

E
[
∥∇f(Wl)∥

]
≤ (1− δ)(1− ϵ) E∥∇f(Wl−1)∥+ (1− δ)ζ(Q, δ) + δM, (13)

almost surely.

In the rest of the proof, we leverage the supermartingale convergence theorem to show that (13)
indeed implies the required convergence. We start by defining a sequence of random variables {Zl}l
each of which has a degenerative distribution such that

Zl = E∥∇f(Wl)∥ a.s. ∀l. (14)

Then, we form a supermartingale-like inequality using the law of total expectation. That is, we have

E[Zl| Fl−1] ≤ (1− δ)(1− ϵ) Zl−1 + (1− δ)ζ(Q, δ) + δM

= (1− δ) Zl−1 − (1− δ)
(
ϵZl−1 − ζ(Q, δ)− δM

1− δ

)
.

(15)

The structure of the proof is then divided into two steps. First, we prove that when l grows, Zl

almost surely and infinitely often achieves values below 1
ϵ

(
ζ(Q, δ)+ δM/1− δ

)
. Second, we show

that this is also true for the gradient norm ∥∇f(Wl)∥ itself. This implies that the outputs of the
unrolled layers enter a near-optimal region infinitely often.

To tackle the first objective, we define the lowest gradient norm achieved, on average, up to layer l
as Zbest

l = mink≤l{Zk}. To ensure that Zl enters this region infinitely often, it suffices to show that

lim
l→∞

Zbest
l ≤ 1

ϵ

(
ζ(Q, δ) + δM/1− δ

)
a.s. (16)

To show that the above inequality is true, we start by defining the sequences

αl := Zl · 1
{
Zbest
l >

1

ϵ

(
ζ(Q, δ) + δM/1− δ

)}
,

βl :=
(
ϵZl − ζ(Q, δ)− δM

1− δ

)
1
{
Zbest
l >

1

ϵ

(
ζ(Q, δ) + δM/1− δ

)}
,

(17)
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where 1{.} is an indicator function. The first sequence αl tracks the values of Zl until the best value
Zbest
l drops below the threshold 1

ϵ

(
ζ(Q, δ) + δM/1− δ

)
for the first time. After this point, the best

value stays below the threshold since Zbest
l+1 ≤ Zbest

l by definition, which implies that the indicator
function stays zero and αl = 0. In other words, we have

αl =

{
Zl l < T
0 otherwise, (18)

with T := min{l | Zbest
l ≤ 1

ϵ

(
ζ(Q, δ) + δM/1− δ

)
}. Similarly, the sequence βl follows the values

of ϵZl − ζ(Q, δ) − δ
1−δM until it falls below zero for the first time, which implies that βk ≥ 0 by

construction. Moreover, it also holds that αl ≥ 0 for all l since Zl is always non-negative.

We now aim to show that αl forms a supermartingale, so we can use the supermartingale conver-
gence theorem to prove (16). This requires finding an upper bound of the conditional expectation
E[αl|Fl−1]. We separate this expectation into two cases, αl−1 = 0 and αl−1 ̸= 0, and use the law
of total expectation to write

E[αl|Fl−1] = E[αl|Fl−1, αl−1 = 0]P (αl−1 = 0) + E[αl|Fl−1, αl−1 ̸= 0]P (αl−1 ̸= 0). (19)

First, we focus on the case when αl−1 = 0, and for conciseness, let η := 1
ϵ

(
ζ(Q, δ) + δM/(1− δ

)
)

be the radius of the near-optimal region centered around the optimal. Equation (17) then implies
that the indicator function is zero, i.e., Zbest

l ≤ η, since the non-negative random variable Zl cannot
be zero without Zbest

l ≤ η. It also follows that βl−1 is zero since it employs the same indicator
function as αl. As we discussed earlier, once αl−1 = 0, all the values that follow are also zero, i.e.,
αk = 0, ∀k ≥ l − 1 (c.f. (18)). Hence, the conditional expectation of αl can be written as

E[αl|Fl−1, αl−1 = 0] = 0 =: (1− δ)(αl−1 − βl−1). (20)

On the other hand, when αl−1 ̸= 0, the conditional expectation follows from the definition in (17),

E[αl|Fl−1, αl−1 ̸= 0] = E[Zl · 1{Zbest
l > η}|Fl−1, αl−1 ̸= 0]

≤ E[Zl|Fl−1, αl−1 ̸= 0]

≤ (1− δ) Zl−1 − (1− δ)
(
ϵZl−1 − ζ(Q, δ)− δM

1− δ

)
= (1− δ)(αl−1 − βl−1).

(21)

The first inequality is true since the indicator function is at most one, and the second inequality is a
direct application of (15). The last equality results from the fact that the indicator function 1{Zbest

l >

η} is 1 since αl−1 ̸= 0, which implies that αl−1 = Zl−1 and βl−1 = ϵZl−1 − ζ(Q, δ) − δ
1−δM .

Combining the results in (20) and (21) and substituting in (19), it finally follows that

E[αl|Fl−1] ≤ (1− δ)(αl−1 − βl−1)[P (αl−1 = 0) + P (αl−1 ̸= 0)]

= (1− δ)(αl−1 − βl−1),
(22)

and we emphasize that both αl−1 and βl−1 are non-negative by definition.

Given (22), it follows from supermartingale convergence theorem (Robbins and Siegmund, 1971,
Theorem 1) that (i) αl converges almost surely, and (ii)

∑∞
i=1 βl is almost surely summable (i.e.,

finite). When the latter is written explicitly, we get
∞∑
l=1

(
ϵZl − ζ(Q, δ)− δM

1− δ

)
1{Zbest

l > η} <∞, a.s., (23)

The almost sure convergence of the above sequence implies that the limit inferior and limit superior
coincide and

lim inf
l→∞

(
ϵZl − ζ(Q, δ)− δM

1− δ

)
1{Zbest

l > η} = 0, a.s. (24)

The latter is true if either there exist a sufficiently large l such that Zbest
l ≤ η = 1

ϵ

(
ζ(Q, δ)+δM/1−

δ
)

or it holds that

lim inf
l→∞

(
ϵZl − ζ(Q, δ)− δM

1− δ

)
= 0, a.s. (25)
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The above equation can be re-written as supl infm≥l Zm = 1
ϵ

(
ζ(Q, δ) + δM

1−δ

)
. Hence, there exists

some large l where Zbest
l ≤ supl infm≥l Zm, which again reaches the same conclusion. This proves

the correctness of (16).

To this end, we have shown the convergence of Zbest
l , which was defined as the best expected value

of ∥∇f(Wl)∥. It is still left to show the convergence of the random variable ∥∇f(Wl)∥ itself. Start
with writing Zl =

∫
∥∇f(Wl)∥dP , which turns (25) into

lim inf
l→∞

∫
ϵ∥∇f(Wl)∥dP = ζ(Q, δ) +

δM

1− δ
, a.s. (26)

By Fatou’s lemma (Durrett, 2019, Theorem 1.5.5), it follows that∫
lim inf
l→∞

ϵ∥∇f(Wl)∥dP ≤ lim inf
l→∞

∫
ϵ∥∇f(Wl)∥dP = ζ(Q, δ) +

δM

1− δ
. (27)

We can bound the left hand side from below by defining f best
l := mink≤l ∥∇f(Wk)∥ as the lowest

gradient norm achieved up to layer l. By definition, f best
l ≤ lim inf l→∞ ∥∇f(Wl)∥ for sufficiently

large l. Therefore, we get

ϵ

∫
f best
l dP ≤ ϵ

∫
lim inf
l→∞

ϵ∥∇f(Wl)∥dP ≤ ζ(Q, δ) +
δM

1− δ
, a.s. (28)

for some large l. Equivalently, we can write that

lim
l→∞

∫
f best
l dP ≤ 1

ϵ

(
ζ(Q, δ) +

δM

1− δ

)
, a.s. (29)

which completes the proof.

A.2 PROOF OF COROLLARY 1

Using Markov’s inequality, it follows from (9) that

lim
l→∞

P (|f best
l | ≥ γ) ≤ lim

l→∞

Ef best
l

γ
≤ 1

ϵγ

(
ζ(Q, δ) +

δM

1− δ

)
, (30)

where we drop the absolute value in the middle term since f best
l is almost surely non-negative.

A.3 PROOF OF THEOREM 3

Proof. First, we recursively unroll the right-hand side of (13) to evaluate the reduction in the gradient
norm E∥∇f(Wl)∥ after l layers. This leads to the inequality

E
[
∥∇f(Wl)∥

]
≤ (1− δ)l(1− ϵ)l E∥∇f(W0)∥

+

l−1∑
i=0

(1− δ)i−1(1− ϵ)i−1
[
(1− δ)ζ(Q, δ) + δM

]
.

(31)

The right-hand side can be further simplified by evaluating the geometric sum resulting in

E
[
∥∇f(Wl)∥

]
≤ (1− δ)l(1− ϵ)l E∥∇f(W0)∥

+
1− (1− δ)l(1− ϵ)l

1− (1− δ)(1− ϵ)

[
(1− δ)ζ(Q, δ) + δM

]
.

(32)

Second, we evaluate the distance between E∥∇f(WL)∥ at the L-th layer and its optimal value∣∣∣E[∥∇f(WL)∥
]
− E

[
∥∇f(W∗)∥

]∣∣∣
= lim

l→∞

∣∣∣E[∥∇f(WL)∥
]
− E[min

k≤l
∥∇f(Wk)∥] + E[min

k≤l
∥∇f(Wk)∥]− E

[
∥∇f(W∗)∥

]∣∣∣.
(33)
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We add and subtract E[mink≤l ∥∇f(Wk)∥] in the right-hand side while imposing the limit when l
goes to infinity so we can use triangle inequality. We, hence, get∣∣∣E[∥∇f(WL)∥

]
− E

[
∥∇f(W∗)∥

]∣∣∣
≤ lim

l→∞

∣∣∣E[∥∇f(WL)∥
]
− E[min

k≤l
∥∇f(Wk)∥]

∣∣∣
+ lim

l→∞

∣∣∣E[min
k≤l
∥∇f(Wk)∥]− E

[
∥∇f(W∗)∥

]∣∣∣.
(34)

Note that the gradient of f at the stationary point W∗ is zero. Therefore, the second term on the
right-hand side is upper bounded according to Theorem 2.

The final step required to prove Theorem 3 is to evaluate the first term in (37). To do so, we observe
that

lim
l→∞

∣∣∣E[∥∇f(WL)∥
]
− E[min

k≤l
∥∇f(Wk)∥]

∣∣∣ = E
[
∥∇f(WL)∥

]
− lim

l→∞
E[min

k≤l
∥∇f(Wk)∥].

(35)

This is the case since E
[
∥∇f(WL)∥

]
cannot go below the minimum of the gradient norm when l

goes to infinity. Therefore, we can using (32)

lim
l→∞

∣∣∣E[∥∇f(WL)∥
]
− E[min

k≤l
∥∇f(Wk)∥]

∣∣∣
= (1− δ)L(1− ϵ)L E∥∇f(W0)∥+

1− (1− δ)L(1− ϵ)L

1− (1− δ)(1− ϵ)

[
(1− δ)ζ(Q, δ) + δM

]
− lim

l→∞
(1− δ)l(1− ϵ)l E∥∇f(W0)∥ − lim

l→∞

1− (1− δ)l(1− ϵ)l

1− (1− δ)(1− ϵ)

[
(1− δ)ζ(Q, δ) + δM

]
= (1− δ)L(1− ϵ)L E∥∇f(W0)∥ −

(1− δ)L(1− ϵ)L

1− (1− δ)(1− ϵ)

[
(1− δ)ζ(Q, δ) + δM

]
≤ (1− δ)L(1− ϵ)L E∥∇f(W0)∥.

(36)

Note that the first limit in (36) goes to zero and the second limit is evaluated as the constant (1 −
δ)ζ(Q, δ) + δM divided by 1− (1− δ)(1− ϵ). The final inequality

Combining the two results, we can bound the quantity in (37) as follows;∣∣∣E[∥∇f(WL)∥
]
− E

[
∥∇f(W∗)∥

]∣∣∣
≤ (1− δ)L(1− ϵ)L E∥∇f(W0)∥+

1

ϵ

(
ζ(Q, δ) +

δM

1− δ

)
,

(37)

which completes the proof.

Theorem 3 can easily give an upper bound of the number of unrolled layers L needed to achieve
certain precision γ. That is,

L ≤
log

(
γ − 1

ϵ ζ(Q, δ) + δM
ϵ(1−δ)

)
− log(E∥∇f(W0)∥)

log(1− δ) + log(1− ϵ)
, (38)

which depends on the sample complexity ζ(Q, δ), the Lipschitz constant M , and the constraint
parameter ϵ.

B EXTENDED EXPERIMENTS

In this section, we provide extended experiments with different graph topologies and heterogeneous
setups.
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Figure 4: Standard FL with star graphs. (Left) Comparisons between convergence rates of U-
DGD and DGD evaluated over CIFAR10. (Right) Comparison of the relative accuracy (i.e., the
accuracy normalized by that of centralized training) over CIFAR10 between SURF and FL bench-
marks that deploy a central server.
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Figure 5: Serverless FL with random graphs. (Left) Comparisons between convergence rates of
U-DGD and DGD evaluated over CIFAR10. (Right) Comparison of the relative accuracy (i.e., the
accuracy normalized by that of centralized training) over CIFAR10 between SURF and FL bench-
marks that deploy a central server.

B.1 STANDARD FL VIA STAR GRAPHS

Our method, SURF, is not restricted to serverless FL. In fact, SURF considers a more general case
that can be altered to fit standard FL scenarios with central servers by choosing the underlying graph
of the network to be a star graph. Star graphs have n − 1 nodes with node degree of 1 and one
central node with node degree of n − 1. That is, each node in the graph is only connected to one
central node, which serves as a central server. We repeat our experiments under this new scenario.
We set µθ = 10−3, ϵ = 0.1, and K = 2 while the rest of the parameters are kept the same as
they were in the main experiment in Section 6. In this case, setting the filter taps K to 2 implies
that each node communicate only with their 1-hop neighbors and therefore only one communication
round is required at each layer. Figure 4 shows the convergence rates of U-DGD trained with SURF
compared to DGD and other standard FL benchmarks. The figure suggests that SURF achieves
the same performance attained by central training in 10 communication rounds while the other
benchmarks need 25 rounds to reach almost 80% of the centralized performance. This is aligned
with the results in Figure 1, which indicates that the fast convergence does not rely on the graph
topology.

B.2 RANDOM GRAPHS

We also repeat our experiments for random graphs, where an edge is drawn between two nodes on
the graph with probability p. The experiment parameters are kept the same as the original experi-
ments except that we use a U-DGD model with 5 layers. In our experiments, we set p to 0.1 and ϵ
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Figure 6: Heterogeneous settings. Comparisons between the accuracy of U-DGD and other decen-
tralized benchmarks evaluated over 30 class-imbalanced CIFAR10 datasets sampled according to a
Dirichlet distribution with a concentration parameter (Left) α = 0.3, (Middle) α = 0.7, and (Right)
α = 1, The higher α, the less heterogeneous the agents are. U-DGD is more robust than the other
benchmarks.

to 0.1. The convergence rate is reported in Figure 5, which shows a similar behavior to the previous
experiments. Thus, we conclude that the graph togology does not contribute to the fast convergence
of SURF. The fast convergence is a result of learning from training data a sequence of descending
steps that converges fast.

B.3 HETEROGENEOUS SETTINGS

We test our unrolled model, U-DGD, on heterogeneous agents who sample their data according to
a Dirichlet distribution with a concentration parameter α. The lower α, the more heterogeneous the
agents are. In Figure 6, we compare the accuracy of U-DGD to other decentralized FL benchmarks:
DGD (c.f. (10)), distributed stochastic gradient descent (DSGD), and decentralized federated aver-
aging (DFedAvgM) (Sun et al., 2023). In both DGD and DSGD, the agents update their estimate
based on their local data through one gradient step at each communication round. The gradients
in DGD are computed over a mini-batch of 10 data points/agent compared to one data point in
DSGD. In DFedAvgM, each agent takes 6 gradient steps with momentum at each communication
round. U-DGD therefore has the lowest update rate as it occurs once at each two communication
rounds. Figure 6 then shows that U-DGD is more robust to the agent heterogeneity while the other
benchmarks are more prone to client drift. It is clear that the performance deteriorates when α de-
creases over all the methods. However, the deterioration in U-DGD’s performance is much slower
compared to the other methods. This is the case since U-DGD, during its meta training, learns
to converge faster while balancing between the the aggregated models received from the agents’
neighbors and the local updates.

20


	Introduction
	Related Work
	Problem Formulation
	Federated Learning
	Algorithm Unrolling

	Proposed Method
	Probably, Approximately Correct Solution to (SURF)
	Convergence Guarantees

	GNN-based Unrolled DGD
	Numerical Experiments
	Conclusions
	Proofs
	Proof of Theorem 2
	Proof of Corollary 1
	Proof of Theorem 3

	Extended Experiments
	Standard FL via Star Graphs
	Random Graphs
	Heterogeneous Settings


