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Abstract

Generative flow networks are able to sample, via sequential construction, high-
reward, complex objects according to a reward function. However, such reward
functions are often approximated from noisy data leading to epistemic uncertainty
in the learnt policy. We present an approach to quantify this uncertainty by con-
structing a surrogate model composed of a polynomial chaos expansion, fit on
a small ensemble of trained flow networks. This model learns the relationship
between reward functions, parametrised in a low-dimensional space, and the prob-
ability distributions over actions at each step along a trajectory. The surrogate
model can then be used for inexpensive Monte Carlo sampling to estimate the
uncertainty in the policy given uncertain rewards. We illustrate the performance
of our approach on a Bayesian structure learning task, and compare it to a basic
multilayer perceptron.

1 Introduction

Generative artifical intelligence (AI) describes the subclass of techniques which learn a probabilistic
model of the data-generating process. This yields advantages such as the ability to sample new
data and to estimate the confidence in a model’s output. It is common to describe such models
as ‘uncertainty aware’, as they are typically able to compute the likelihood of each sample. This
aleatoric uncertainty in a model’s prediction or output is that which stems from the probabilistic
process that the model has learnt, but assumes that the generative model is exactly correct. However,
models learn a generative process from finite data or through self-play, via stochastic optimisation.
This implies an additional form of uncertainty at the level of the model itself, so-called epistemic
uncertainty, as a variety of generating processes can be learnt given alternative data or realisations of
a stochastic input [7]]. Quantifying this model uncertainty is key to understanding the capabilities and
limitations of a given generative model and its predictions [4].

A similar situation is common in a variety of computational engineering problems with stochastic input
[S], where repeated, high-fidelity simulations are computationally intractable, yet an understanding
of the output uncertainty is desired. Such problems have led to the development of the field of
uncertainty quantification (UQ) [23]]. A cornerstone approach in UQ is to construct computationally-
efficient ‘surrogate’ models using an array of techniques such as polynomial chaos expansions (PCEs)
[26, 28], machine learning (ML) models [, 25]], Gaussian processes [20]], or a combination of these
approaches [21]]. Typically, these methods approximate an input-output relationship by fitting to a
limited number of examples obtained from the high-fidelity, ‘black-box’ model. Finally, performing
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Monte-Carlo (MC) sampling from the surrogate model allows model uncertainty to be quantified
efficiently and inexpensively [23| [24]. Similarly, the training procedure of a large ML model operates
as a black-box. Repeated training of models with different input data, spanning the full distribution,
is akin to MC sampling from a high-fidelity model, and therefore computationally prohibitive. To
address this, we investigate surrogate-modelling approaches for generative models, focusing on
generative flow networks (GFN5s) in situations where the reward is uncertain, and illustrate this with
an example from Bayesian structure learning [|6]]. This paper is structured as follows. We present a
brief introduction to GFNs with uncertain rewards, as well as to PCE. We then illustrate our approach
on the problem of learning a linear Gaussian network.

2 Generative flow networks with uncertain rewards

GFNs are a novel and powerful architecture at the interface between generative and reinforcement
learning [2]], which have been used for generating molecular structures [1]], solving combinatorial
optimisation problems [29], Bayesian structure learning [6]], and biological sequence design [[13].
Variants exist for both continuous reward functions [[16] and stochastic transition graphs [19]. In
most applications, such as molecular candidate sampling or Bayesian structure learning, the reward
function is obtained from noisy experimental data, and/or expressed by a neural network (NN) [} l6].
This leads to epistemic uncertainty that fails to be expressed in the GFN. Two well-known paradigms
for quantifying such uncertainty in ML are the use of Bayesian neural networks, [3| [18], or MC
sampling - these approaches are often combined [8 [17]. Whilst there have been some attempts to
encode such uncertainty in GFNs [[13}130], Bayesian methods fail to scale to large models, whilst the
MC approach is prohibitively slow. As a result, this remains an open problem.

Generative flow networks A Markovian flow network is defined by a pair (G, F'), where G =
(8, ) is a directed acyclic graph (DAG) with each vertex representing a state s € S, and where each
edge e = (s — s’) € £ is a directed connection representing a possible transition between states, a
so-called action. The flow function F' : T — RT is a positively-valued function, defined on 7, the
set of all trajectories through the state-space DAG. In order for a function F' to define a valid flow
network, it must ensure the flow matching condition,

F(s) = Z F(s" —s) = Z F(s—s'), (1)
(s""—s)EE (s—s")e€

is satisfied for all s € S. The set of states for which there are no possible forward transitions is
denoted terminating states, Sy C S. A valid flow function yields a stochastic process over S with
forward and backward transition probabilities given by,

F(s— )
Zs”:(s%s”)eg F(S - 8//),

F(s' — s)
Py(s = 2
b(S |5> Zs”:(s”—)s)GS F(S// N S)’ 2

which, given the state s, are the probabilities of transitioning to state s’ forwards, Py, or backwards,
P,, respectively. Finally, we define Pr(s) to be the terminating probability of each terminating state
s € Sy, i.e. the probability of a trajectory ending in that terminating state [2].

Py(s'|s) =

A reward function, R : Sy — R, defined on the terminating states, determines the total amount
of flow in the network, Z = > s R(s). With the constraint that F'(s) = R(s) for s € Sy, then

Pr(s) = R(s)/Z x R(s) for s € Sy i.e. a valid flow will sample terminating states in proportion
to their relative reward [2]. Given a DAG and a target reward function, R(s), we use a NN to
approximate the flow function by minimising the error in some flow consistency condition. For
further details on flow networks and the loss functions derived from flow consistency conditions, see

App. [Al

Uncertain reward functions and uncertain policies We focus on the situation of an uncertain
reward function sampled from a distribution, R ~ R(]%), where R is the true (expected) reward. This
variation arises from epistemic uncertainty in the reward itself, such as rewards which are calculated
from finite data. A GFN trained on a sampled reward function learns the flow Fy(-|R) which is a
sample from the distribution over possible flow functions given a particular architecture, training



objective, and reward function. The goal of UQ is to build up a picture of the marginal distribution
over R, for a fixed architecture and objective. The space of all possible trajectories is prohibitively
large; thus, we focus on the distribution along a trajectory. Given a trajectory, 7 = sg — ... = Sp,
we estimate the distribution and expected value of the the policy along that trajectory, which defines a
collection of random variables (RV) {Py(-|s¢),t = 0,1, ...,n — 1}, where each is a distribution over
the set of actions available at s;. We say that the distribution P(+|s;) is a sample from the distribution
over policies P(sy).

3 Surrogate modelling with polynomial chaos expansions

In order to perform surrogate modelling, we assume that there is a mapping A; : supp(R) —
supp(P(s¢)), between a reward function and the policy at each step in the trajectory. We approximate
A; with a flexible model that is easy to fit using only a few realisations, and which allows for fast
sampling, eschewing the need to retrain a great number of GFNs. However, supp(R) is a space
of functions, which may be high-dimensional and challenging to parametrise. When an obvious
parameterisation is not available, we must learn a latent representation of the input space using
dimensionality reduction such as principal component analysis (PCA), or for nonlinear data, a
variational autoencoder (VAE). This defines a mapping ¢ : I' — supp(R) where ¢(p) = R and
p € T is a (low-dimensional) set of parameters that represent the reward function. The surrogate
model then learns the mapping A; o ¢(p) = P(-|st), which maps between the input space I" where
each point represents a reward function, and the set of policies at step s;.

Polynomial chaos expansions To approximate this mapping between rewards and policies, we
use a PCE. A random variable, Y € R, can be expressed as a polynomial function of a random
vector, X € R™, where the polynomial basis is orthogonal with respect to the distribution of the
random vector, Y = jenm CiPj (X)). The ¢; are coefficients and ¢; form a basis of polynomials

that satisfy the orthonormality condition (see App. [23] 28]. Given input-output data (X,Y),
where X = {x1,...,x,} withx; € R™ and Y = (y1, ..., yn) With y; € R, a surrogate model can be
constructed by estimating the coefficients ¢; which best fit this data. A simple approach to fitting
these coefficients is to perform ‘least-squares’ regression or regularise the coefficients with common
alternatives such as LASSO or ridge regression [11]. PCEs carries the advantage that the surrogate
model has an interpretable functional form, allowing for sensitivity analysis through the calculation
of Sobol indices [22]. For further details on PCE, see App.

4 Example: Bayesian structure learning a linear Gaussian network

A Bayesian network (BN) is a DAG which shows the direct dependence relationships between
random variables [15]]. This is a general representation of a system that can be applied to a wide array
of data-sets in various scientific fields, helping to unravel the causal mechanisms within a system.
However, reconstructing the dependence graph from finite observed data is a challenging and open
problem. Deleu et al. [6] present an approach for using GFNs to sample candidate BN in proportion
with their likelihood. They illustrate this on a linear Gaussian model using an Erdos-Rényi graph, as
well as on flow cytometry data. The reward function is given by the Bayesian Gaussian equivalent
(BGe) score, which computes the likelihood of the data given a candidate graph [6, [15]. As a
result, each finite data-set yields an uncertain reward function that is sampled from the distribution

R~ R(R).

Due to both the generality and importance of Bayesian structure learning, and the nature of uncertainty
in the rewards, we choose to illustrate our surrogate modelling approach on this example. First, we
train two ensembles of 250 GFNs each, namely a ‘training’ and ‘testing’ set. Each model is trained
with respect to a reward function calculated using the BGe score associated with a (different) dataset
of 100 random samples from the (same) linear Gaussian network with 5 variables (see Fig. [T). To
parametrise these reward functions in a low-dimensional space, we start by calculating the »—matri

for each data-set. This is flattened to give a 25-d vector that represents each reward function. We

The r—matrix is a Bayesian form of the covariance matrix associated with the BGe score [9]. In our case,
this is a 5 X 5 matrix that is flattened before performing PCA.
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Figure 1: UQ for a GFN learning a linear Gaussian network. Top left. The ground-truth Gaussian
network. Panels 2-8. We show the policy, a distribution over 26 actions, for each of 7 steps along a
trajectory. The policy distribution of the 250 empirical testing samples is shown in orange, whilst
the 10,000 surrogate samples are in teal. The dotted line shows the action taken at each step. Outlier
values beyond fences are not shown, but full scatters are presented in Fig. [3]

then perform PCA, to extract the first two components, thus each reward function is mapped to a
point in 2-d. This distribution in R? is well approximated by a mean-zero Gaussian with independent
components, where we estimate the variance in each direction. Next, we consider a sequence of
actions that constructs the ground-truth graplﬂ Each action adds an edge to the graph, with cycles
being prohibited. We map between a (source, target) edge and an action using,

action = 5 x source + target, 3)

where source, target € {0,1,2,3,4} and action € {0, ...,25} with action = 25 corresponding
to a transition to the terminal state. We extract the policy at each step along the action sequence to
yield a tensor P € R259%7x26 where 7 is the number of actions needed to build the ground-truth
graph shown in the first panel of Fig. [T} For each of the 7 x 26 variables, we fit a degree 7 PCE
with Hermite polynomials using ridge regression using the 250 training samples as the input-output
data. We then sample 10,000 additional datasets from the linear Gaussian network, project them into
the latent space, and use the PCE to predict the policy at these additional inputs. As the probability
values are in [0, 1], but the PCE is unbounded, we instead fit to the logit transform of the P values
and then transform the predictions back to [0, 1] using the soft-max (see App. @ Fig. |l|shows the
distribution of the policy for the 250 empirical testing samples and 10,000 surrogate samples for each
of the 7 steps along the trajectory. Our surrogate model allows us to get a more complete estimate of
the distribution of the policy stemming from uncertainty in the reward calculated from finite data. In
App. [El we compare this approach to a multi-layer perceptron (MLP).

Our approach shows that surrogate modelling can be used to effectively compute policy uncertainty
in a GFN with uncertain rewards. In future work, it would be interesting to focus on more complex
examples, such as learning molecular structures, where reward functions are represented by NNs, and
cannot be embedded with linear methods, but through unsupervised learning with VAEs. Additionally,
focusing on the disentanglement capabilities of VAEs [30], we will investigate the use of adaptive
polynomial degrees along latent dimensions, as well as sensitivity analysis using Sobol indices [22].
These methods could be incorporated into sampling algorithms that are ‘epistemic-uncertainty-aware’.
Finally, whilst we have focused on GFNs, such methods could be adapted for other generative models
in the presence of uncertain inputs.

>We could use any trajectory from the state-space DAG, but it is informative to see the policy along the
desired solution. This is one trajectory that leads to the ground truth graph, but there are many equivalent ones
i.e. we can add the same edges in a different order.
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Technical Appendices and Supplementary Material

Code availability

The code supporting these results is available at https://github.com/rnartallo/ugé4gfn.

A Flow networks and loss functions

In Sec. [2] we briefly introduce the definition of a GEN. Here, we expand on this formulation, including
specifying possible loss functions [2]. Previously, we defined the flow function, F', and introduced
the flow matching condition, which we now derive more explicitly. In order for a function F' to define
a valid flow network, it must satisfy,

F(A) =Y F(r), @
TEA
for all A C 7 [2]. From this definition, we can define the flow through a state s € S,
F(s):= Y F(7), ©)
TET :SET

and the flow through an edge (s — s') € &,
F(s—s'):= Z F(7). (6)
TET :s—s'€T

In other words, this enforces that flows are ‘consistent’, i.e. that the flow into a state is equal to the
flow out of the state. As a consequence, the flow matching condition,

F(s) = Z F(s" —s) = Z F(s—s'), @)
(s""—s)eE (s—s")eE
is satisfied for all s € S.


https://github.com/rnartallo/uq4gfn

A.1 Learning a flow approximation

Given a DAG and a target reward function, constructing a valid flow is a non-trivial problem. We
define a flow parametrisation of the pair (G, R), which acts as a function approximator and seeks to
minimise the error in some flow consistency condition. The simplest loss is derived directly from the
flow matching condition in Eq. (I). The parameters are trained to minimise the loss,

2
Z(s”%s)eA FG(S” - S)
Z(s—)s’)eA FQ(S - S/) ’

with a similar objective pushing the in-flow into terminal states to equal their reward [1]].
A second choice is the detailed balance loss [2]]. A valid flow satisfies the well-known detailed
balance construct for Markov chains given by,

F(s)Py(s'|s) = F(s")Py(s]s"), ©)
which can be used to define the loss function,
Fy(s)Ps(s']s;0) )2

A
EDB(S?S ) - (log Fg(s')Pb(8|S';9)

again with a similar condition on the terminal nodes [2].

LFM (8) = <log (8)

(10)

B Polynomial chaos expansions

In Sec. E], we briefly introduce PCE, which we elaborate on here. First, we take the PCE defined
previously, Y = > . ¢jp5(X), where the ¢ satisfy the orthonormality condition,

/ 1(3) 03 (%) px () = . (11
X

Here px is the density of the random vector X over support X. In practical settings, it is necessary
to truncate the infinite polynomial basis at a particular degree, d. We denote by © ,,, the subset of
N™ which corresponds to the numeration of terms in a truncation of the polynomial basis with m
inputs and maximum-degree d. Given input-output data, we fit a PCE using regression by solving the
optimisation problem,

n
{5} = argming > " flys — Y o500 (12)
k=1

J€EO4,m

Regression does not impose constraints on the collocation points, {X; }_,, unlike pseudo-spectral
projection methods [27]. The coefficients can be regularised with techniques such as LASSO and
ridge regression, which we opt for here [11]].

C Bayesian structure learning example

In Sec. [4] we use the GFN model presented in Deleu et al. [6], to demonstrate our approach. Here
we describe the example problem in greater detail. We focus on the problem of sampling candidate
graphs using data sampled from a linear Gaussian network.

C.1 Linear Gaussian networks

A linear Gaussian network is a stochastic model defined by a causal DAG with adjacency matrix
(A;;). The model is defined by the relationship,

zi= > Bumite (13)
x;EPa(x;)

where z; is a random variable and Pa(x;) are the set of its parent nodes i.e. the set of nodes k
such that k — j is in the DAG; j3;; ~ N(0,1) if A;; = 1 and 0 otherwise; and € ~ A/(0,0.01) is
Gaussian noise [6]. Given a dataset D and a candidate DAG, G, the reward is given by,

R(G) = P(G)P(DG), (14)
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Figure 2: Distribution comparison with a MLP. We generate 10,000 samples using a MLP as a
surrogate model and compare the empirical testing samples and the PCE surrogate. We find that both
models are able to generate a realistic distribution of surrogate values.

where P(G) is the prior over DAGs, and P(D|G) is the marginal likelihood of the observed data
given G. Calculating the marginal likelihood is challenging, thus we use the BGe score, under the
assumption that the prior over both the parameters and structure of the DAG is modular. For further
details, we direct the interested reader to Refs. [6, OL[12]]. In Sec. [4] we use a single underlying DAG
with 5 nodes, shown in Fig. [T} and sample datasets with 100 points.

C.2 GFN model structure and architecture

We use the model from Deleu et al. [6]. Starting from the initial state sg, a graph with no edges,
graphs are constructed one edge at a time, masking actions that violate the DAG condition (see
Appendix C of Ref. [6]). Each input graph is encoded as a set of edges, and each directed edge is
embedded using an embedding for the source and target node, with an additional vector indicating the
presence of edges in a graph G. The embeddings are passed through a linear transformer [[14] with
two output heads, the first of which gives the forward transition probabilities over possible actions,
and the second gives the probability to terminate the trajectory [6]. For further details see Ref. [6].

D Logit transform and soft-max

In the BN example, the policy at each step is a distribution over 26 possible actions, which is

represented by the vector P € [0, 1]%¢ where 2?21 P; = 1. As polynomial functions are not
constrained to this range, we first transform P using the logit transform,

. p
logit(p) =1 — 15
ogit(p) og(l_p), (15)
which takes values in R, with logit(0) = —oo. We then fit the PCE to the transformed values. When
taking samples for the PCE model, we undo the transform using the soft-max function [10] to obtain
a probability distribution over the 26 actions.

E Multilayer perceptron comparison

We compare our PCE approach to an alternative surrogate model using a MLP. We use a network with
2 input units, corresponding to our low-dimensional representation of the reward function, two hidden
layers, each with 64 units, and a soft-max readout layer with 26 outputs. The network is trained to
minimise the Kullback-Leibler divergence between the empirical and surrogate distributions. Fig. 2]
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Figure 3: Scatter comparison with a MLP. We plot the same data as Fig. 2] but show the underlying
points. We can see that the MLP suffers from over-shrinkage to the mean, a consequence of over-
fitting, whereas the PCE captures a wider range of possible output values whilst still preserving the

mean.

shows the box-plots of an empirical sample of 250 GFNs (test data) compared with 10,000 samples
from the PCE and MLP models. We see that both surrogate models produce comparable distributions
that are aligned with the testing data. Fig. [3]plots the scatter of these 10,000 points, showing that the
MLP suffers from over-shrinkage to the mean, as it typically produces surrogate samples that are
narrower or comparable to the empirical data. On the other hand, the PCE produces samples with a
wider range (Fig. ), yet still preserves the mean and standard deviation (Figs. [T] [2).



	Introduction
	Generative flow networks with uncertain rewards
	Surrogate modelling with polynomial chaos expansions
	Example: Bayesian structure learning a linear Gaussian network
	Flow networks and loss functions
	Learning a flow approximation

	Polynomial chaos expansions
	Bayesian structure learning example
	Linear Gaussian networks
	GFN model structure and architecture

	Logit transform and soft-max
	Multilayer perceptron comparison

