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Abstract
Differentiable physics-based simulators have wit-
nessed remarkable success in robot learning in-
volving contact dynamics, benefiting from their
improved accuracy and efficiency in solving the
underlying complementarity problem. However,
when utilizing the First-Order Policy Gradient
(FOPG) method, our theory indicates that the
complementarity-based systems suffer from stiff-
ness, leading to an explosion in the gradient vari-
ance of FOPG. As a result, optimization becomes
challenging due to chaotic and non-smooth loss
landscapes. To tackle this issue, we propose a
novel approach called Adaptive Barrier Smooth-
ing (ABS), which introduces a class of soft-
ened complementarity systems that correspond to
barrier-smoothed objectives. With a contact-aware
adaptive central-path parameter, ABS reduces the
FOPG gradient variance while controlling the gra-
dient bias. We justify the adaptive design by ana-
lyzing the roots of the system’s stiffness. Addition-
ally, we establish the convergence of FOPG and
show that ABS achieves a reasonable trade-off
between the gradient variance and bias by provid-
ing their upper bounds. Moreover, we present a
variant of FOPG based on complementarity mod-
eling that efficiently fits the contact dynamics by
learning the physical parameters. Experimental
results on various robotic tasks are provided to
support our theory and method.

1. Introduction
The recent advancements in learning to control and plan
for robotic systems can be largely attributed to the excep-
tional accuracy of physics-based simulators (Todorov et al.,
2012; Degrave et al., 2019; de Avila Belbute-Peres et al.,
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2018; Howell et al., 2022). When it comes to optimizing con-
trol policies in differentiable simulators, the most straight-
forward approach is First-Order Policy Gradient (FOPG),
which involves backpropagating through the computational
path of cumulative rewards (Xu et al., 2022; Freeman et al.,
2021) and has demonstrated great potential even for general
non-differentiable tasks in model-based settings where the
dynamics are unknown (Clavera et al., 2020; Li et al., 2021;
Amos et al., 2021).

The fundamental behaviors underlying common robotic
tasks, such as locomotion and manipulation, rely heavily on
the intricate interactions between the robot and its environ-
ment (Aydinoglu et al., 2020; Lidec et al., 2023). To model
the robotic contact dynamics, complementarity systems have
emerged as the de-facto approaches. These systems are
rooted in the complementarity problem, which forms the
basis for simulating hard-contact scenarios (Geilinger et al.,
2020; Howell et al., 2022; Werling et al., 2021). By em-
ploying the Interior-Point Method (IPM) (Mehrotra, 1992),
the complementarity problem efficiently solves for impact
and frictional contact forces, ensuring non-penetration and
maximum dissipation.

Unfortunately, even though complementarity-based contact
systems can provide accurate physical behaviors, they of-
ten exhibit stiff dynamics with extreme curvatures (Parmar
et al., 2021; Anitescu & Potra, 2002) due to geometrical
constraints and contact events. In this work, we demonstrate
that such stiffness can lead to optimization challenges when
performing FOPG. Specifically, we first establish the con-
vergence of FOPG that depends on the gradient variance
and bias. Then we prove that the upper bound of the gradi-
ent variance has polynomial dependencies on the Lipschitz
continuity of the model, where the degrees are linear in the
task horizon. When dealing with a stiff model, the pres-
ence of long chains of nonlinear mappings results in slow
convergence due to the large gradient variance and chaotic
(Bollt, 2000) optimization procedures, a phenomenon also
observed in previous experimental studies (Parmas et al.,
2018; Metz et al., 2021).

To combat the aforementioned problem, we introduce a class
of µ-softened Linear Complementarity Systems (LCS) with
the central-path parameter µ. We prove that the Lipschitz
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upper bound of the µ-softened LCS is inversely proportional
to µ. Therefore, a natural method to avoid the large gradient
variance is to differentiate through the softened complemen-
tarity system by setting a universal stopping criteria in the
IPM solver. As the softened LCS can be shown to be the
optimality condition of a barrier-smoothed objective, we
refer to this vanilla approach as Barrier Smoothing (BS).
However, indiscriminately applying barrier smoothing can
lead to unrealistic simulation and a significant gradient bias.

To balance the variance and bias, we propose Adaptive Bar-
rier Smoothing (ABS) by utilizing a contact-aware central-
path parameter that decreases with the minimum distance-to-
obstacle of the inactive impact contact points. This design
is justified by our result, which shows that the stiffness and
variance are governed by inactive near-obstacle contacts. By
drawing on the equivalence between BS and randomized
smoothing (Suh et al., 2022b;a) in single-contact settings,
we show that ABS minimizes the linearization residual and
provide the upper bound of its gradient bias. We also present
experimental results to support our theory and method.

2. Background
2.1. Reinforcement Learning

Consider learning to optimize a finite H-horizon Markov
Decision Process (MDP). Denote the state space and action
space asX ⊆ Rnx and U ⊆ Rnu , respectively. When taking
action u ∈ U at state x ∈ X , the agent receives reward
r(x, u) and the MDP transitions to a new state according to
probability x′ ∼ f∗(· |x, u).

We are interested in controlling the system by finding a
policy πθ that maximizes the expected cumulative reward.
Denote by ζ the initial state distribution. The objective is

J (πθ) = Ex0∼ζ
[
V πθ
0 (x0)

]
= Epπθ

(α)

[H−1∑
t=0

r(xt, ut)

]
,

where V πθ
0 is the state value at the initial timestep,

and pπθ
(α) is the distribution over rollouts α =

((x0, u0), · · · , (xH−1, uH−1)) when executing πθ, for-
mally, x0 ∼ ζ(·), ui ∼ πθ(· | si), and xi+1 ∼ f∗(· |xi, ui).

2.2. Stochastic Gradient Estimation

The underlying problem of policy gradient is determining
the gradient of a probabilistic objective with respect to the
parameters of the sampling distribution. This is represented
by the equation∇θEp(z;θ)[y(z)]. In RL, we view p(z; θ) as
the trajectory distribution conditioned on the policy parame-
ter θ, and y(z) as the cumulative reward. In the sequel, we
introduce two commonly used gradient estimators in RL.

Zeroth-Order (Likelihood Ratio) Gradient. By leveraging
the score function, zeroth-order gradient estimators only

require samples of the function values. In particular, as the
score function satisfies∇θ log p(z; θ) = ∇θp(z; θ)/p(z; θ),
the zeroth-order gradient has the following form,

∇θEp(z;θ)
[
y(x)

]
= Ep(z;θ)

[
y(z)∇θ log p(z; θ)

]
. (2.1)

First-Order (Reparameterization) Gradient. First-order
gradient benefits from the structural characteristics of the
objective, i.e., how the overall objective is affected by the
operations applied to the sources of randomness as they pass
through the measure and into the cost function (Mohamed
et al., 2020). From the simulation property of continuous
distribution, we have the following equivalence between
direct and indirect ways of drawing samples,

ẑ ∼ p(z; θ) ≡ ẑ = g(ϵ; θ), ϵ ∼ p.

Derived from the law of the unconscious statistician (LO-
TUS) (Grimmett & Stirzaker, 2020), i.e., Ep(x;θ)[y(z)] =
Ep(ϵ)[y(g(ϵ; θ))], the first-order gradient takes the form

∇θEp(z;θ)
[
y(z)

]
= Ep(ϵ)

[
∇θy

(
g(ϵ; θ)

)]
.

2.3. Bundled Gradient via Randomized Smoothing

When dealing with non-smooth functions with extreme cur-
vatures, such as objectives of contact dynamics, the gradient
can be prone to large jumps. The first-order bundled gradi-
ent is proposed by (Suh et al., 2022b;a; Pang et al., 2022)
to solve this issue. Consider a deterministic objective y(x).
Differentiating through the randomized smoothed objective
y(x) = Ew∼ρ(w)[y(x+ w)] gives the bundled gradient

∇y(x) = Ew∼ρ(w)[∇y(x+ w)].

2.4. Rigid-Body Dynamics

The standard approach for modeling robotic systems in-
volves utilizing the framework of rigid-body systems with
contacts. Adhering to Newton’s laws, the continuous-time
equation of motion is formulated as follows,

M(q)dv =
(
n(q, v) + u

)
dt+ J(q)⊤λ,

where we let q denote the generalized coordinates, v the
generalized velocities, u the applied control force (action),
M(q) the generalized inertia matrix, n(q, v) the passive
forces (e.g., Coriolis, centrifugal, and gravity), and J(q)
the Jacobian of the active contacts. Here, we define λ =
(γ(1), β(1), · · · , γ(c), β(c)) ∈ Rnλ as the (unknown) contact
space force, where γ and β are the normal impact forces
and frictional forces, respectively, and c denotes the number
of contact points. The state x usually contains q and v.

Using Euler approximation and multiplying byM−1
t , the

discrete-time dynamics can be modeled in contact space by

vt+1 = vt +M−1
t (nt + ut)h+M−1

t J⊤
t λt,

qt+1 = qt + hvt+1 (2.2)
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where h is the discretization step size and t is the timestep.

The contact forces are constrained by the system’s configu-
ration. Specifically, the impact contact problem is encoded
with the following constraints,

γt ◦ ϕ(xt, ut) =
#»
0 , γt, ϕ(xt, ut) ≥

#»
0 , (2.3)

where ◦ is the element-wise (Hadamard) product, the Signed
Distance Function (SDF) ϕ(xt, ut) : Rnx×nu → Rc mea-
sures the distance from each contact point to the obstacles,
#»
0 is the zero vector, and the equality, inequality are element-
wise. Eq. (2.3) states that the impact forces must be non-
negative and can only be non-zero to maintain non-negative
gaps (non-penetration) when contact is active.

The friction can be modeled using the maximum-dissipation
principle (Howell et al., 2022) to obtain a very similar com-
plementarity problem as in (2.3). For analysis simplicity,
the systems we consider in this work are frictionless.

3. Complementarity-Based Contact Models
3.1. Softened Linear Complementarity Systems

The dynamic (2.2) describes a hybrid system where differ-
ent modes are controlled by the contact force λ under the
nonlinear complementarity problem (2.3). To simplify our
analysis, in the following sections, we study the Linear Com-
plementarity Systems (LCS), which effectively capture the
local behaviors of the state transitions and are widespread in
robotics research (Aydinoglu et al., 2021; Tassa & Todorov,
2010; Drumwright & Shell, 2012).

We first define a class of softened linear complementarity
systems fµ as the approximations of the exact LCS fµ=0.

Definition 3.1 (Softened LCS and its Solution). A model
xt+1 = fµ(xt, ut) is a softened LCS if the evolution of
state x ∈ Rdx is governed by a linear dynamics and a µ-
complementarity problem (the last two lines of (3.1)),

xt+1 = Axt +But + Cλt + c,

λt ◦ (Dxt + Eut + Fλt + d) = µ
#»
1 ,

λt ≥
#»
0 , Dxt + Eut + Fλt + d ≥ #»

0 , (3.1)

where A ∈ Rdx×dx , B ∈ Rdx×du , C ∈ Rdx×dλ , D ∈
Rdλ×dx , E ∈ Rdλ×du , F ∈ Rdλ×dλ , and µ ≥ 0. Denote
the solver of the µ-complementarity problem as Sµ, which
gives the solution λt = Sµ(Dxt + Eut + d) ∈ Rdλ .

Here, µ = 0 corresponds to the exact Linear Complemen-
tarity Problem (LCP) and fµ=0 resembles the reality when
simulating. Obviously, solving the contact space force λt
is our primary goal, since xt+1 is readily obtained from
the dynamics once λt is available. To accomplish this, we
introduce the assumption and method for solving the LCP.

Assumption 3.2 (P-Matrix). We assume that in (3.1), F is a
P-matrix, defined as a matrix whose principal minors are all
positive, i.e., the determinants of its principal sub-matrices
det(Fαα) > 0, ∀α ⊆ {1, · · · , dλ}.

Assumption 3.2 guarantees that the solution λt exists and is
unique, which is commonly upheld in the study of contact
dynamics problems (Aydinoglu et al., 2020; Jin et al., 2022).

3.2. Smoothed Objective with Barrier Function

To effectively and accurately solve the convex constrained
optimization problem (3.1), we adopt the Interior-Point
Method (IPM) (Wright et al., 1999) that solves a sequence
of relaxed problems with decreasing µ > 0 to reliably con-
verge to a solution of the exact LCS fµ=0.

We show in the following lemma that the softened LCS is
the optimality condition of a barrier-smoothed objective. We
defer all the proofs in this paper to Appendix A.

Lemma 3.3 (Primal Problem with Log-Barrier Function).
The softened LCS (3.1) with µ ≥ 0 is the first-order opti-
mality condition of the following program,

min
λt≥

#»
0 ,ϵt≥

#»
0

λ⊤t ϵt − µ
dλ∑
i=1

(
log λ

(i)
t + log ϵ

(i)
t

)
s.t. Dxt + Eut + Fλt + d = ϵt,

Axt +But + Cλt + c = xt+1, (3.2)

where λ(i)t , ϵ
(i)
t are the i-th elements of vector λt, ϵt ∈ Rdλ .

Lemma 3.3 reveals that the softened LCS is in fact the
perturbed Karush–Kuhn–Tucker (KKT) conditions, where
the perturbation corresponds to smoothing the objective
with barrier functions. The utilization of logarithmic bar-
rier functions in (3.2) serves to discourage solutions from
approaching the boundaries of the polytope formed by the
hard constraints. As such, µ acts as a restraint, confining
the solution within the analytical center of the constraint
polytope and is considered a central-path parameter.

The barrier terms can be viewed as the potential of a force
field whose strength is inversely proportional to the distance
to the constraint boundary (Boyd et al., 2004). When apply-
ing IPM with a sequence of path-centering µ, the intermedi-
ate problems with µ > 0 achieve a smoothing effect akin to
the “force-at-a-distance” relaxation of the complementarity
constraints (Pang et al., 2022; Howell et al., 2022). In other
words, µ controls both the stiffness and the accuracy of the
softened LCS model fµ. In what follows, we will show that
both properties are determining factors for the quality of
first-order gradient estimation and the convergence of the
resulting policy gradient algorithm.
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4. First-Order Policy Gradient
In this section, we first present an overview of the First-
Order Policy Gradient (FOPG) framework. Then we delve
into the convergence properties of FOPG and study the cor-
relation between its convergence rate and the gradient bias,
variance. Additionally, we investigate the connection be-
tween the gradient variance and the model stiffness, as well
as the stiffness of complementarity-based models. Through
our analysis, we find that the non-smooth behaviors of con-
tact events can impede optimization, motivating us to de-
velop smoothing techniques.

4.1. Framework

The First-Order Policy Gradient (FOPG) method updates
the policy πθn by (4.2) in each iteration n ∈ [N ] and returns
πθN at the end of training in a total of N iterations.

Specifically, consider optimizing a stochastic policy u ∼
πθ(·|x) in continuous action spaces, or equivalently u =
πθ(x, ς) with noise ς ∼ p(ς). With batch size M , the policy
gradient at iteration n is given by the chain rule as

∇̂θJ (πθn) =
1

M

M∑
m=1

(H−1∑
t=0

∂rt,m
∂ut,m

∂ut,m
∂θ

+
∂rt,m
∂xt,m

dxt,m
dθ

)
,

where
dxt+1,m

dθ
=
∂xt+1,m

∂xt,m

dxt,m
dθ

+
∂xt+1,m

∂ut,m

∂ut,m
∂θ

.

(4.1)

Here, x0,m ∼ ζ, ut,m = πθn(xt,m, ςm), ςm ∼ p(ς),
xt+1,m = f(xt,m, ut,m), and rt,m = r(xt,m, ut,m).

The update rule for the policy parameter θ with learning rate
η is given as follows:

θn+1 ← θn + η · ∇̂θJ (πθn). (4.2)

4.2. Convergence of FOPG

To begin, we assume that the objective is smooth, which is
required by most studies on policy gradient methods (Agar-
wal et al., 2021; Pirotta et al., 2015; Wang et al., 2019).

Assumption 4.1 (Lipschitz Continuous Policy Gradient).
We assume that ∇θJ (πθ) is L-Lipschitz continuous in θ,
such that ∥∇θJ (πθ1)−∇θJ (πθ2)∥2 ≤ L∥θ1 − θ2∥2.

We characterize the convergence of FOPG by first providing
the following theorem.

Theorem 4.2 (Convergence to Stationary Points). We de-
fine the gradient bias bn and variance vn at iteration n as

bn =
∥∥∇θJ (πθn)− E

[
∇̂θJ (πθn)

]∥∥
2
,

vn = E
[∥∥∇̂θJ (πθn)− E

[
∇̂θJ (πθn)

]∥∥2
2

]
.

Let δ = sup ∥θ∥2 and c = (η−Lη2)−1. Under Assumption
4.1, it holds for N ≥ 4L2 that

min
n∈[N ]

E
[∥∥∇θJ (πθn)∥∥22] ≤ 4c

N
· E
[
J (πθN )− J (πθ1)

]
+

4

N

(N−1∑
n=0

c(2δ · bn +
η

2
· vn) + b2n + vn

)
.

Theorem 4.2 illustrates the reliance between the conver-
gence and the variance, bias of the gradient estimators. In
general, to guarantee the convergence of FOPG, we have
to control both the variance and the bias to the sublinear
growth rate. Before studying the upper bound of bn and
vn, we make the following Lipschitz assumption, which
is adopted in various previous works (Pirotta et al., 2015;
Clavera et al., 2020; Li et al., 2021).

Assumption 4.3 (Lipschitz Continuity). We assume that
the policy, model, and reward functions are Lπ , Lf , and Lr
Lipschitz continuous, respectively (see App. A.3 for details).

4.3. Gradient Variance and LCS Stiffness

Let L̃g = max{Lg, 1}, where Lg is the Lipschitz constant
of function g. We have the following result for the variance.

Theorem 4.4 (Gradient Variance of FOPG). Under Assump-
tion 4.3, at any iteration n ∈ [N ], the gradient variance vn
of FOPG satisfies

vn = O
(
H4L̃4H

f L̃4H
π /M

)
. (4.3)

We observe that the variance upper bound is dependent on
the Lipschitz of the model and policy in a polynomial man-
ner, with degrees that are linear in relation to the effective
horizon. This makes intuitive sense — when the system is
chaotic (Bollt, 2000), as measured by the Jacobian of the dy-
namical system, the stochasticity during training can lead to
diverging trajectories and gradient directions, causing large
gradient variance. The optimization difficulties imposed by
non-smooth models, such as hard contact models, result in
slow convergence or training failure even in simple tasks
(Parmas et al., 2018; Suh et al., 2022a).

The above analysis applies to the FOPG method in general.
When adopting the complementarity-based contact model
fµ, studying its stiffness, i.e., the LipschitzLfµ , is especially
important since they are inherently highly non-smooth at
local mode-switching points. We characterize the stiffness
of the softened LCS using the following theorem.

Theorem 4.5 (Stiffness of the Softened LCS). Let ∥ · ∥F de-
note the matrix Frobenius norm and define ε = sup ∥Dxt +
Eut+d∥22/(2∥F∥2F ). Under Assumption 3.2 and for µ > 0,
the Lipschitz Lfµ of the model fµ defined in (3.1) satisfies

Lfµ ≤ (∥A∥F + ∥B∥F ) + d2λ∥C∥F (∥D∥F + ∥E∥F ) · l(µ),
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where l(µ) is characterized by µ and is lower bounded by

l(µ) ≥ ε

µ
+

1

∥F∥F
+ ε

√
1

µ2
+

2

εµ∥F∥F
.

Theorem 4.5 highlights the crucial role of the central-path
parameter µ in determining the model stiffness, as l(µ) is
at least inversely proportional to µ. To obtain a reasonable
upper bound of Lfµ , and thus of the gradient variance vn in
(4.3), it is necessary to prevent µ from reaching zero because
µ→ 0 implies l(µ)→∞.

Differentiating through the stiff models, such as the exact
LCS fµ=0 or the softened LCS fµ>0 when µ is small, can
lead to the explosion of gradient variance and optimiza-
tion obstacles, e.g., chaotic optimization procedures and
highly non-smooth loss landscapes, which remain present
even when contact events are occasional in a full model un-
roll. This motivates us to develop smoothing techniques for
FOPG algorithms in order to achieve a quick convergence.

5. Adaptive Barrier Smoothing
5.1. Method

According to Theorem 4.4 and 4.5, a natural idea to alleviate
the exploding FOPG variance issue is to leverage the gra-
dients from the µ-softened complementarity-based system
with a large µ. This can be accomplished by implementing
a stopping criterion for the IPM iterations that terminates
when the decreasing sequence of µ′ reaches µ. This re-
sults in smoothed gradients ∂xt+1/∂xt and ∂xt+1/∂ut for
calculating ∇̂θJ (πθn) in (4.1). As Lemma 3.3 indicates,
µ-softened systems are equivalent to smoothed objectives
with log-barrier functions. Therefore, we refer to this vanilla
approach as Barrier Smoothing (BS).

However, universally applying BS with a fixed µ can lead
to significant bias since the trajectories will not adhere to
physics laws. Fortunately, our findings suggest that it is
viable to adaptively apply BS. Specifically, we prove that the
primary cause of stiffness and high variance is the presence
of contact points that are in close proximity to obstacles.
Theorem 5.1 (Stiffness from Contact). For contact point i,
let z(i)t = D(i)⊤xt + E(i)⊤ut + d(i). When z(i)t > 0, the
stiffness of the µ-softened LCS is governed by contact points
whose z(i)t is small, with the norm of Jacobian satisfying∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

≤ ∥A∥F + ∥C∥F ∥D∥F dλµ
dλ∑
i=1

1/(z
(i)
t )2,

∥∥∥∥∂xt+1

∂ut

∥∥∥∥
2

≤ ∥B∥F + ∥C∥F ∥E∥F dλµ
dλ∑
i=1

1/(z
(i)
t )2.

In Thm. 5.1, z(i)t is identified as the distance ϕ(xt, ut)(i) in

LCS, as evidenced by comparing (2.3) and (3.1). A positive
distance indicates an inactive contact since the contact force
will be zero in the exact LCS. Thus, the theorem provides an
answer to the question of when it is necessary to apply BS
— if the distances to obstacles are small for some inactive
contact points, as they are the roots of the system’s stiffness.

Based on this result, we propose utilizing an adaptive
central-path parameter µ(xt, ut). Specifically, instead of
a fixed µ, we set µ(xt, ut) = g(d(xt, ut)), where g :
R → R is a non-increasing function. Thus, µ(xt, ut) is
contact-aware as it scales inversely with d(xt, ut), the min-
imum distance-to-obstacle of the inactive contact, defined
as d(xt, ut) = mini∈I |ϕ(xt, ut)(i)|, where I = {1 ≤ i ≤
c | γ(i)t = 0} represents the set of inactive contact points.

Intuitively, the stiffness or extreme curvature of contact dy-
namics is a result of the sudden change in impact force when
penetration first arises. For example, in 1D systems depicted
in Figure 1, the velocity is continuous everywhere except at
z = 0. Therefore, when the velocity information is included
in states, the transitions become stiff around z = 0 (see
Section 8.1 for an illustration). As a result, we only need to
apply BS when the inactive impact contact points are near
the obstacles to avoid large variance, while still obtaining
accurate gradients with minimal bias.

Algorithm 1 Adaptive Barrier Smoothing (ABS)
Input: State xt, action ut, contact-aware adaptive µ(·, ·)
1: for a sequence of decreasing µ′ > 0 do
2: Solve the µ′-softened complementarity problem
3: if µ′ < µ(xt, ut) then
4: Compute the gradients ∂xt+1/∂xt, ∂xt+1/∂ut
5: end if and break
6: end for
7: Output: ∂xt+1/∂xt, ∂xt+1/∂ut (for computing (4.1))

We provide the pseudocode of Adaptive Barrier Smoothing
in Algorithm 1. By adopting ABS to compute the policy
gradient in (4.1) and following Algorithm 2 as the main
training loop, we obtain the FOPG-ABS method. Specific
implementation details can be found in Appendix B.

The choice of g can be problem-specific, as long as it is
non-increasing (e.g., we use (C.2) in our Dojo experiments).
In what follows, we show that BS is closely related to ran-
domized smoothing and, when certain contact-aware forms
of the adaptive µ(xt, ut) are taken, has a small gradient bias.

5.2. Analysis of Gradient Bias

In this section, we focus on systems with a single point of
contact. This streamlines our analysis by reducing dλ to
1. While the findings may be applicable to more extensive
scenarios, their forms are beyond the scope of this paper.
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We first build connections between BS and Randomized
Smoothing (RS) (Suh et al., 2022a;b; Pang et al., 2022),
which averages the stochastic gradient (see Sec. 2.3).

Proposition 5.2 (Equivalence between BS and RS). Let
zt = Dxt+Eut+d ∈ R. Recall that the solutions of the ex-
act LCP and the softened LCP are Sµ=0(zt) and Sµ(zt)(zt),
respectively (see Definition 3.1). For any central-path param-
eter µ(zt), barrier smoothing is equivalent to randomized
smoothing Sµ(zt)(zt) = Ew∼ρ(w)[Sµ=0(zt + w)], where
ρ(w) = ∇2

wSµ(zt)(w).

The above proposition shows that barrier smoothing inher-
ently smoothens the contact force λt (w.r.t. zt), and as a
result, also smoothens the dynamics xt+1 = fµ(xt, ut)
because xt, ut are prefixed. More importantly, by choos-
ing a proper adaptive central-path parameter µ(zt), the pro-
posed method can accommodate any randomized smoothing
method, while avoiding its drawbacks when calculating first-
order gradients, which we will discuss in more detail.

As a consequence of Proposition 5.2, we are able to work di-
rectly on the randomization-smoothed gradient when study-
ing the bias of barrier smoothing. This gives the following
results adapted from the analysis on randomized smoothing
presented in (Pang et al., 2022).

Proposition 5.3 (ABS Minimizes the Linearization Resid-
ual). Let the error function be the σ-Gaussian tail integral
erf(y;σ2) =

∫∞
y

1/(
√
2πσ)e−y

2/σ2

. We set the adaptive
central-path parameter as µ(zt) = κ · (zt + Fκ), where

κ = zt · erf(zt, σ) + e−z
2
t /(2σ)/

√
π + c1zt + c2, (5.1)

and c1, c2 ∈ R are tunable constants. Consider regressing
the exact LCP solution Sµ=0 with parameters (K,W ) such
that the residual around zt distributed according to Gaussian
is minimized, with the minimal residual error δ, i.e.,

δ = min
K,W

Ew∼N (0,σ)

[∣∣Sµ=0(zt + w)−Ww −K
∣∣].

Then K∗,W ∗ that achieve the minimum are the barrier-
smoothed solution and its gradient, respectively. Formally,

K∗ = Sµ(zt)(zt), W ∗ = ∇zSµ(zt)(zt).

The above proposition shows that the solution of barrier-
smoothed LCP is the best linear approximation of the exact
LCP solution around zt. Thus, with a small linearization
residual, we can conclude a small gradient bias.

Figure 1(c) demonstrates that the µ(zt) defined in (5.1) is
contact-aware as it is large only when in the vicinity of
contact zt = 0. This design supports our intuition — when
the body is away from contact, we can safely solve the LCP
and get accurate simulations; when experiencing contact,
the proposed method smoothens the LCP to obtain non-stiff

(a) Ball bouncing. (b) Hopper.
2 0 2 zt

0.05

0.10

0.15
(zt)

(c) µ(zt) in (5.1).

contact-free
regions

(d) Contact impulses λt of the exact and the softened LCP,
including constant µ and contact-aware adaptive µ(zt).

Figure 1. 1(a), 1(b): Example systems. The dashed circle in 1(a)
arises penetration zt < 0, where the contact force λt > 0 pushes
the ball to be above the ground. 1(c): Plot of the proposed adap-
tive µ(zt). 1(d): Contact force comparison. The adaptive µ(zt) is
contact-aware and has a better trade-off between controlling the
stiffness and reducing the bias: µ(zt) not only gives smoother dy-
namics (compared to µ ≤ 0.1) around the contact z = 0, but also
best approximates the exact LCP solution at contact-free regions.

local dynamics. This is also evident from Figure 1(d) — λt
is more accurate at contact-free regions while achieving the
“force-at-a-distance” relaxation around zt = 0.

Theorem 5.4 (Bias of Adaptive Barrier Smoothing). With
the same definition of µ(zt) in Proposition 5.3, the gradient
of the softened LCS model fµ(zt) approximately matches
the gradient of LCS fµ=0, with the bias upper bounded by∥∥∇fµ=0 −∇fµ(zt)

∥∥
2

≤ ∥C∥F (∥D∥F + ∥E∥F ) ·
( 1

F
+

12δ + ς

σQ(2/3)

)
,

where ς = 1/
√
π + c2 and Q : [0, 1]→ R is the inverse of

the cumulative distribution function (or quantile function)
of the standard normal distribution, with Q(2/3) ≈ 0.43.

Theorem 5.4 establishes a bound on the gradient bias of
barrier smoothing when the contact-aware µ(zt) conforms
to certain forms. It indicates that the softened LCS fµ(zt)
and its gradient achieves the best linearization error and has
small gradient bias bn.

Discussion on BS and RS. Although equivalence can be
proven between Barrier Smoothing (BS) and Randomized
Smoothing (RS) in the event of an infinite number of sam-
ples, RS is plagued by both empirical bias (Suh et al.,
2022b;a) and the presence of noisy gradients. The empiri-
cal bias phenomenon of RS happens under discontinuities
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or stiffness (see Fig. 6(a)). Besides, RS gradient is noisy
and expensive to compute due to its sampling procedure. In
contrast, BS avoids these issues by differentiating directly
through the softened system fµ>0. However, it should be
noted that unlike RS, vanilla BS does not automatically ad-
just the degree of smoothing based on the dynamics, causing
significant bias when applied universally (Pang et al., 2022).

6. Complementarity-Model-Based FOPG
As the vanilla FOPG framework described in Section 4
assumes access to a differentiable simulator, in this section,
we suggest a more general complementarity-model-based
FOPG approach that works when the dynamics is unknown
and needs to be learned.

In Alg. 2, we provide the pseudocode of complementarity-
model-based FOPG methods, where two update procedures
are performed iteratively. Namely, the model and the pol-
icy are updated in each iteration n ∈ [N ], which gives us
sequences of {ψn}n∈[N ] and {θn}n∈[N ], respectively.

Algorithm 2 Complementarity-Model-Based FOPG
Input: Number of iterations N , transition data set D = ∅
1: for iteration n ∈ [N ] do
2: Update the model parameter ψn by minimizing (6.1)
3: Update the policy parameter θn by (4.2)
4: Execute πθn+1 and update D
5: end for
6: Output: {πθn}n∈[N ]

Model Update. A forward state-predictive complementar-
ity model xt+1 = fψ(xt, ut) is learned from the training
dataset D = {(x∗t , u∗t , x∗t+1)}t, where the state x∗t ∈ Rdx is
the system’s configuration (including the velocity vt, coordi-
nate qt, etc.). Instead of being parameterized by a black-box
neural network, fψ returns the solution of (2.2) constrained
by (2.3), where the ground-truth physics data is replaced by
the estimated one contained in ψ, such as the parameters of
each body. The model training loss is as follows, minimized
by random search,

L(ψ;D) =
|D|∑
t=1

1

2

∥∥fψ(x∗t , u∗t )− x∗t+1

∥∥2
2
. (6.1)

Policy Update. The policy update procedure is the same
as the vanilla FOPG except that xt+1,m = fψ(xt,m, ut,m)
in (4.1), as opposed to f . Applying ABS on the
complementarity-model-based FOPG also follows a sim-
ilar recipe to replace the ∂xt+1/∂xt, ∂xt+1/∂ut terms in
(4.1) by the outputs of Algorithm 1.

Discussion on the Model Representations. Most mod-
ern model-based RL algorithms that fit the dynamics with

universal function approximators, such as neural networks
(Nagabandi et al., 2018; Chua et al., 2018), tend to select
the smoothest interpolators as the simplest explanation of
the environment transitions (Belkin et al., 2019; Pfrommer
et al., 2021). As a result, these black-box models typically
require a large amount of data to learn the stiff contact
behaviors while still struggling with inaccurate first-order
gradient estimation in long-horizon problems (Hochlehnert
et al., 2021). On the contrary, the complementarity models
have the potential to efficiently fit the contact dynamics as
they are physics-informed and only the necessary physical
parameters are needed to be learned.

7. Related Work
Differentiable Simulation. Physics-informed (Jiang et al.,
2018; Pizzuto & Mistry, 2021) complementarity-based mod-
els are adopted in various differentiable hard-contact en-
gines, such as Dojo (Howell et al., 2022), DART (Werling
et al., 2021), and Bullet (Heiden et al., 2021). These sim-
ulators provide readily available gradients of simulation
outcomes w.r.t. control actions. However, the extreme cur-
vatures of contact events prevent the (sub-)gradients from
being effective when performing FOPG. On the other hand,
simulators like MuJoCo (Todorov et al., 2012) and PhysX
implement soft contacts and can generate physics-violated
behaviors. Their non-differentiable nature also necessitates
expensive finite-difference to obtain the first-order gradients.

Smoothing Techniques. In our analysis, we extend the re-
sults in (Pang et al., 2022) that connect vanilla BS and ran-
domized smoothing to obtain a general equivalence that
also holds for Adaptive BS, with the ultimate goal to bound
the ABS gradient bias. Besides, (Pang et al., 2022) stud-
ied smoothing that adds fixed log-barrier terms to dynamics,
while our implementation and analysis are based on the com-
plementarity problems and we justify the bias issue of the
universal application of BS, which motivates the adaptive
utilization of BS. Moreover, (Suh et al., 2022a;b) aimed to
address the empirical bias issue of randomized smoothing,
while we focus primarily on the trade-off between gradient
variance and bias when applying barrier smoothing. Previ-
ous works (Parmas et al., 2018; Metz et al., 2019) proposed
to reduce the variance by combining the first- and zeroth-
order gradients, but still experiencing similar issues of RS.

Policy Gradient Methods. The zeroth-order policy gradient
methods include REINFORCE (Williams, 1992) and actor-
critic (Sutton et al., 1999; Kakade, 2001; Kakade & Lang-
ford, 2002; Degris et al., 2012; Zhang et al., 2021), where the
convergence results are established in recent works (Agar-
wal et al., 2021; Wang et al., 2019; Bhandari & Russo, 2019;
Liu et al., 2019). However, first-order policy gradient meth-
ods have received less attention. Difficulties in optimization,
such as discontinuous contact behaviors and the curse of
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chaos (Parmas et al., 2018; Metz et al., 2021; Xu et al., 2022),
have hindered the widespread use of FOPG even in differ-
entiable simulation. To alleviate this issue, (Xu et al., 2022)
proposed to shorten the optimization horizon and (Clavera
et al., 2020) proposed to leverage model-critic expanded val-
ues. In this work, we focus on the naive implementation of
FOPG. Modifications from previous works can be naturally
integrated, e.g., using an additional critic as the tail estima-
tion (Clavera et al., 2020), minimizing the model gradient
error (Li et al., 2021), or adding actor entropy loss (Amos
et al., 2021). Our work is also related to the model-based
RL literature, where a predictive model is learned from data
for policy optimization (Janner et al., 2019; Feinberg et al.,
2018; Zhang, 2022; Amos et al., 2021) or planning (Wang &
Ba, 2019; Schrittwieser et al., 2020; Curi et al., 2020). The
vast amount of data required to fit the stiff robotic contact be-
haviors using universal dynamics approximators highlights
the significance of studying complementarity models and
FOPG (Pfrommer et al., 2021).

8. Experiments
8.1. Contact Behaviors and System Stiffness

To begin, we examine how the contact events lead to the sys-
tem’s stiffness. In Figure 2, we plot the dynamics and deriva-
tives of the velocity w.r.t. coordinate in the ball-bouncing
example depicted in Figure 1(a), where the ball is thrown
with an initial velocity and subsequently experiences impact
contact upon hitting the ground. These contact events, which
serve as the foundation for complex behaviors, are prevalent
in nearly all robotic tasks.

qx

v y

Exact LCS = 0
= 0.01
= 0.1

(a) Dynamics.
qx

v y
/

q x

Exact LCS = 0
= 0.01
= 0.1

(b) Derivative.

Figure 2. Contact behaviors in the Fig. 1(a) ball-bouncing example.
2(a): The vertical velocity vy w.r.t. the x-coordinate qx in the
exact LCS and in the µ-smoothed system. 2(b): Derivative of vy
w.r.t. qx. The black arrow represents the impulse function, i.e.,
∂vy/∂qx = ∞ at the contact point and = −g (gravity) elsewhere.

In Figure 2(a), the velocity is discontinuous at contact due
to the sudden shift in impact force γ from 0 to a positive
value. This results in a stiff system fµ=0(x), where the state
x = (qx, vy). By applying barrier smoothing with a larger
value of µ, the dynamics of the system become less stiff.

8.2. First-Order Gradient Variance

We now investigate the ball-bouncing dynamics with the
inclusion of Gaussian noise. In the right figure, we plot the

maximum variance of first-order reparameterization gradi-
ents and zeroth-order likelihood ratio (LR) gradients. We

10 110 210 310 4

10 3

10 2

10 1

100

101

102

103

104

M
ax

 G
ra

d 
Va

r

First-order gradient
Zeroth-order gradient

observe that stiff systems
with small µ lead to
large first-order gradient
variance. This is a result of
the curse of chaos, where
non-smooth dynamics
can cause gradients and
trajectories to diverge due to the presence of stochasticity.
Here, LR gradients are parameterized with Gaussian,
following evolutionary strategies (Salimans et al., 2017;
Mania et al., 2018). Despite exhibiting low variance in the
presence of stiffness due to its sole reliance on function
evaluations, the LR gradient is notorious for its poor scaling
capabilities when the dimensionality increases, which we
will discuss in more detail.

We then conduct experiments in the Dojo (Howell et al.,
2022) physics engine, which enables differentiable simula-
tion with hard contact. For now, we use the ground-truth
physics parameters. The mean gradient variance during the
FOPG training in locomotion tasks is illustrated in Figure 3.
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Figure 3. The mean gradient variance with different model unroll
lengths when changing the value of µ.

We observe that the gradient variance of FOPG can explode
in exponential order with respect to the horizon or the model
unroll length. As the value of µ increases, which indicates
a larger Lipschitz constant in the complementarity-based
model, the variance decreases. This further supports our
theoretical findings in Section 4.3.

8.3. Performance of Adaptive Barrier Smoothing
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FOPG w/ BS, adaptive 
FOPG w/ BS, constant = 0.1
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In this section, we evaluate
the proposed Adaptive
Barrier Smoothing (ABS)
mechanism applied to the
complementarity-model-
based FOPG algorithm.

We begin by examining its
effectiveness in optimizing the angle of throwing a ball to
reach the goal. The initial speed and height are set to specific
values in order to guarantee that contact takes place before
the goal is reached, see Appendix C.2 for an illustration.

We observe that the application of Barrier Smoothing (BS)
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to FOPG results in a higher asymptotic return and faster
convergence than both ZOPG and vanilla FOPG methods.
Besides, Adaptive BS achieves superior performance com-
pared to all the other variants.

In Figure 4, we compare FOPG-ABS (ours) and several
(model-based) zeroth- and first-order policy gradient meth-
ods in Dojo locomotion tasks. For MBPO (Janner et al.,
2019), we use neural network (NN) models that are trained
by minimizing the mean squared error. For all other algo-
rithms, we use complementarity-based models.
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Figure 4. Comparison between FOPG-ABS (Ours) and ARS (Ma-
nia et al., 2018), PIPPS (Parmas et al., 2018), AoBG (Suh et al.,
2022a), MBPO.

8.4. Ablation Studies

Gradient Bias. In Figure 5, we compare the performance
of FOPG in the half-cheetah task when choosing different µ
for barrier smoothing. As we are using ground-truth physics
parameters, the only source of bias in this comparison is the
central-path parameter. Our results show that µ = 10−10

results in a small gradient bias but slow convergence due
to high variance. On the other hand, µ = 10−2 leads to
a larger bias and lower asymptotic return. Our proposed
contact-aware adaptive design offers a more favorable bal-
ance between gradient bias and variance.
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(b) Gradient bias.
Figure 5. Barrier Smoothing applied to FOPG when equipped with
different designs of the central-path parameter µ.
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Model Learning. In order
to showcase the effec-
tiveness and efficiency of
complementarity-based
models in approximat-
ing contact behaviors
compared to universal
black-box neural network (NN) models, we plot the mean
state prediction error in the hopper task tested on an

evaluation transition dataset collected by random policies.

Different Smoothing Mechanisms. Figure 6(a) illustrates
the derivatives of the impact contact dynamics in the ball-
bouncing system, from which we observe the empirical bias
phenomenon of Randomized Smoothing (RS). Specifically,
the Barrier Smoothed (BS) gradient successfully approxi-
mates the unit impulse at contact, i.e., the ground-truth (GT),
while the RS gradient is constant and exhibits a large bias.
For frictional contact behaviors, such as pushing a box on a
frictional ground, the RS gradients in Figure 6(b) are both
noisy and computationally costly.

qx
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/
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GT
BS
RS

(a) Impact contact.
fx

q x
/

f x

GT
BS, = 0.01
BS, = 0.1
RS, = 0.2
RS, = 0.65

(b) Frictional contact.

Figure 6. Comparison between Barrier Smoothing (BS) and Ran-
domized Smoothing (RS) in the two types of contact dynamics,
namely impact contact and frictional contact.

9. Conclusion
In this work, we investigate the use of First-Order Pol-
icy Gradient (FOPG) methods for robotic hard-contact dy-
namics with extreme curvatures, specifically focusing on
complementarity-based models. Our findings indicate that
the convergence of FOPG is dependent on gradient variance
and bias, and that stiff models can result in large gradient
variance and optimization challenges. Although smoothing
techniques can be applied to control the stiffness, the uni-
versal utilization can lead to significant bias. To achieve
a balance between the gradient variance and bias, we pro-
pose Adaptive Barrier Smoothing that reduces the FOPG
gradient variance while controlling the gradient bias using
a contact-aware adaptive central-path parameter. Further-
more, we present a complementarity-model-based FOPG
algorithm and conduct experiments to support our theory
and method. In the future, it would be intriguing to explore
the influence of soft contact dynamics on FOPG algorithms.
Additionally, further research on the first-order policy gradi-
ent could be conducted in more general nonlinear frictional
contact dynamics robotic systems.
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A. Proofs
A.1. Proof of Lemma 3.3

Proof. For the constrained optimization problem in (3.2), we can introduce the multipliers ι and form the Lagrangian
function by

L(λt, ϵt, ι) = λ⊤t ϵt − µ
nλ∑
i=1

(
log λ

(i)
t + log ϵ

(i)
t

)
+ ι⊤(Dxt + Eut + Fλt + d− ϵt).

Here, we omit the last equality constraint in (3.2) since xt+1 can be directly calculated when λt is obtained.

We have from the Karush–Kuhn–Tucker (KKT) conditions that the optimal solution must satisfy

∂

∂λ
(i)
t

L(λt, ϵt, ι) = ϵ
(i)
t − µ ·

1

λ
(i)
t

+ (ι⊤F )(i) − ι(i)2 = 0, (A.1)

∂

∂ϵ
(i)
t

L(λt, ϵt, ι) = λ
(i)
t − µ ·

1

ϵ
(i)
t

− ι(i)1 − ι
(i)
3 = 0, (A.2)

Dxt + Eut + Fλt + d = ϵt, (A.3)

where (A.1), (A.2) follow from the stationarity of the optimal solution, and (A.3) follows from the primal feasibility.

Combining the above equations, we have ϵ(i)t λ
(i)
t = µ and λt ◦ (Dxt + Eut + Fλt + d) = µ

#»
1 .

A.2. Proof of Theorem 4.2

Proof. From the policy update rule in (4.1), we know that ∇̂θJ (πθn) = (θn+1 − θn)/η. By Assumption 4.1, we have

J (πθn+1)− J (πθn) ≥ ∇θJ (πθn)⊤(θn+1 − θn)−
L

2

∥∥θn+1 − θn
∥∥2
2

= η∇θJ (πθn)⊤∇̂θJ (πθn)−
Lη2

2

∥∥∇̂θJ (πθn)∥∥22. (A.4)

By basic algebra, we have for∇θJ(πθn)⊤∇̂θJ(πθn) that

∇θJ(πθn)⊤∇̂θJ(πθn)

=
(
∇θJ(πθn)− E

[
∇̂θJ(πθn)

])⊤
∇̂θJ(πθn)−

(
∇̂θJ(πθn)− E

[
∇̂θJ(πθn)

])⊤
∇̂θJ(πθn) + ∇̂θJ(πθn)⊤∇̂θJ(πθn)

≥ −
∣∣∣(∇θJ(πθn)− E

[
∇̂θJ(πθn)

])⊤
∇̂θJ(πθn)

∣∣∣︸ ︷︷ ︸
(I)

−
(
∇̂θJ(πθn)− E

[
∇̂θJ(πθn)

])⊤
∇̂θJ(πθn)︸ ︷︷ ︸

(II)

+ ∇̂θJ(πθn)⊤∇̂θJ(πθn)︸ ︷︷ ︸
(III)

.

The resulting three terms can be bounded as follows,

Term (I): (I) ≤
∥∥∥∇̂θJ(πθn)∥∥∥

2
·
∥∥∥∇θJ(πθn)− E

[
∇̂θJ(πθn)

]∥∥∥
2
=
∥∥∥∇̂θJ(πθn)∥∥∥

2
· bn,

Term (II): (II) ≤

∥∥∥∇̂θJ(πθn)− E
[
∇̂θJ(πθn)

]∥∥∥2
2

2
+

∥∥∥∇̂θJ(πθn)∥∥∥2
2

2
,

Term (III): (III) ≥
∥∥∥∇̂θJ(πθn)∥∥∥2

2
.

Thus, by plugging the above three inequalities into (A.4), we have

J(πθn+1)− J(πθn) ≥
η

2
·
(
−
∥∥∥∇̂θJ(πθn)∥∥∥

2
· 2bn −

∥∥∥∇̂θJ(πθn)− E[∇̂θJ(πθn)]
∥∥∥2
2
+
∥∥∥∇̂θJ(πθn)∥∥∥2

2

)
− Lη2

2
·
∥∥∥∇̂θJ(πθn)∥∥∥2

2
. (A.5)
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By taking expectation on both sides of (A.5), we obtain

E[J (πθn+1
)− J (πθn)] ≥ −η · E

[∥∥∇̂θJ (πθn)∥∥2] · bn − η

2
· vn +

η − Lη2

2
· E
[∥∥∇̂θJ (πθn)∥∥22].

Rearranging terms gives

η − Lη2

2
· E
[∥∥∇̂θJ (πθn)∥∥22] ≤ E[J (πθn+1

)− J (πθn)] + ηE[∥∇̂θJ (πθn)∥2]bn +
η

2
vn. (A.6)

By establishing the connection between the minimum expected gradient norm and the average norm over T iterations, we
are able to obtain the following bound,

min
t∈[T ]

E
[∥∥∇θJ (πθn)∥∥22] ≤ 1

N
·
N−1∑
n=0

E
[∥∥∇θJ (πθn)∥∥22]

≤ 2

N
·
N−1∑
n=0

(
E
[
∥∇̂θJ (πθn)∥22

]
+ E

[∥∥∇θJ (πθn)− ∇̂θJ (πθn)∥∥22]), (A.7)

where the second inequality holds since for any vector y, z ∈ Rd,

∥y + z∥22 ≤ ∥y∥22 + ∥z∥22 + 2∥y∥2 · ∥z∥2 ≤ 2∥y∥22 + 2∥z∥22. (A.8)

The last term on the right-hand side of (A.7) can be characterized by

E
[∥∥∇θJ (πθn)− ∇̂θJ (πθn)∥∥22] = E

[∥∥∥∇θJ (πθn)− E
[
∇̂θJ (πθn)

]
+ E

[
∇̂θJ (πθn)

]
− ∇̂θJ (πθn)

∥∥∥2
2

]
≤ 2
∥∥∥∇θJ (πθn)− E

[
∇̂θJ (πθn)

]∥∥∥2
2
+ 2E

[∥∥∥∇̂θJ (πθn)− E
[
∇̂θJ (πθn)

]∥∥∥2
2

]
= 2b2n + 2vn, (A.9)

For N ≥ 4L2, by setting η = 1/
√
N , we have η < 1/L and (η − Lη2)/2 > 0. Therefore, following the results in (A.6)

and (A.9), we further have

min
n∈[N ]

E
[∥∥∇θJ (πθn)∥∥22]

≤ 4c

N
·
(
E[J (πθN )− J (πθ1)] +

N−1∑
n=0

(
η · E

[∥∥∇̂θJ (πθn)∥∥2] · bn +
η

2
· vn
))

+
4

N
·
N−1∑
n=0

(b2n + vn)

=
4

N
·

(
N−1∑
n=0

c ·
(
η · E

[∥∥∇̂θJ (πθn)∥∥2] · bn +
η

2
· vn
)
+ b2n + vn

)
+

4c

N
· E
[
J (πθN )− J (πθ1)

]
,

where the last step holds due to the definition c =
(
η − Lη2

)−1
.

By noting that η∇̂θJ (πθn) = θn+1 − θn, we conclude the proof by

min
n∈[N ]

E
[∥∥∇θJ (πθn)∥∥22]

≤ 4

N
·
(N−1∑
n=0

c ·
(
E
[∥∥θn+1 − θn

∥∥
2

]
· bn +

η

2
· vn
)
+ b2n + vn

)
+

4c

N
· E
[
J (πθN )− J (πθ1)

]
≤ 4

N
·
(N−1∑
n=0

c · (2δ · bn +
η

2
· vn) + b2n + vn

)
+

4c

N
· E
[
J (πθN )− J (πθ1)

]
.

where the second inequality holds since ∥θ∥2 ≤ δ for any θ. This concludes the proof.
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A.3. Proof of Theorem 4.4

We first provide the complete statement of Assumption 4.3.

Assumption A.1 (Lipschitz Continuous Functions). We assume that the policy πθ(x, ς), model f(x, u;ψ), and reward
function r(x, u) are Lπ , Lf , and Lr Lipschitz continuous, respectively, that is, for any θ, ψ,∥∥πθ(x1, ς1)− πθ(x2, ς2)∥∥2 ≤ Lπ · ∥∥(x1 − x2, ς1 − ς2)∥∥2,∥∥f(x1, u1)− f(x2, u2;ψ)∥∥2 ≤ Lf · ∥∥(x1 − x2, u1 − u2)∥∥2,∣∣r(x1, u1)− r(x2, u2)∣∣ ≤ Lr · ∥∥(x1 − x2, u1 − u2)∥∥2.
Additionally, we assume that the policy πθ(x, ς) is Lθ-Lipschitz continuous in θ, which implies ∥∇θπθ(x, ς)∥2 ≤ Lθ for
any state x ∈ X .

In what follows, we interchangeably write∇ab and db/da as the derivative, and use the notation ∂b/∂a to denote the partial
derivative. With slight abuse of notation, for vector s and vector w, we denote the Jacobian matrix consisting of entries
∂s(i)/∂w(j) as ∂s/∂w.

Proof. In order to upper-bound the gradient variance vn = E[∥∇̂θJ (πθn)−E[∇̂θJ (πθn)]∥22], we turn to find the supremum
of the norm inside the outer expectation, which serves as a loose yet acceptable variance upper bound.

We start with the case when the sample size M = 1, which can naturally generalize to N > 1. Specifically, consider an
arbitrary trajectory obtained by unrolling the model under policy πθn . Denote the pathwise gradient ∇̂θJ (πθn) of this
trajectory as g′. Then we have

vn ≤ max
g′

∥∥∥g′ − E
[
∇̂θJ (πθn)

]∥∥∥2
2
=
∥∥∥g − E

[
∇̂θJ (πθn)

]∥∥∥2
2
=
∥∥∥E[g − ∇̂θJ (πθn)]∥∥∥2

2
,

where we let g denote the pathwise gradient ∇̂θJ (πθn) of a fixed (but unknown) trajectory (x0, u0, x1, u1, · · · ) such that
the maximum is achieved.

Using the fact that ∥E[·]∥2 ≤ E[∥ · ∥2], we further obtain

vn ≤ E
[∥∥g − ∇̂θJ (πθn)∥∥2]2. (A.10)

Let yt = (xt, ut). By triangular inequality, we have

E
[∥∥g − ∇̂θJ (πθn)∥∥2] ≤ H−1∑

t=0

Eyt
[∥∥∇θr(yt)−∇θr(yt)∥∥2]. (A.11)

By the chain rule, we have for any t ≥ 1 that

dut
dθ

=
∂ut
∂xt
· dxt
dθ

+
∂ut
∂θ

, (A.12)

dxt
dθ

=
∂xt
∂xt−1

· dxt−1

dθ
+

∂xt
∂ut−1

· dut−1

dθ
. (A.13)

Plugging (A.12) at the (t− 1)-th timestep, i.e., dut−1/dθ , into (A.13), we get∥∥∥∥dxtdθ

∥∥∥∥
2

=

∥∥∥∥( ∂xt
∂xt−1

+
∂xt
∂ut−1

· ∂ut−1

∂xt−1

)
· dxt−1

dθ
+

∂xt
∂ut−1

· ∂ut−1

∂θ

∥∥∥∥
2

≤ Lf L̃π ·
∥∥∥∥dxt−1

dθ

∥∥∥∥
2

+ LfLθ, (A.14)

where the inequality follows from the Cauchy-Schwarz inequality and Assumption 4.3.
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Recursively applying (A.14), we obtain for any t ≥ 1 that∥∥∥∥dxtdθ

∥∥∥∥
2

≤ LfLθ ·
t−1∑
j=0

Ljf L̃
j
π ≤ i · LθLt+1

f L̃tπ, (A.15)

where the first inequality follows from the induction

zn = azt−1 + b = a · (azi−2 + b) + b = at · z0 + b ·
t−1∑
j=0

aj , (A.16)

In (A.16), {zj}0≤j≤i is the real sequence satisfying zj = azj−1 + b. For dut/dθ defined in (A.12), we further have∥∥∥∥dutdθ

∥∥∥∥
2

≤ Lπ ·
∥∥∥∥dxtdθ

∥∥∥∥
2

+ Lθ ≤ t · LθLt+1
f L̃t+1

π + Lθ. (A.17)

Combining (A.15) and (A.17), we obtain∥∥∥∥dytdθ

∥∥∥∥
2

=

∥∥∥∥dxtdθ

∥∥∥∥
2

+

∥∥∥∥dutdθ

∥∥∥∥
2

≤ 2t · LθLt+1
f L̃t+1

π + Lθ︸ ︷︷ ︸
K(t)

. (A.18)

By the chain rule, (A.11) can be decomposed and bounded by

Eyt
[∥∥∇θr(yt)−∇θr(yt)∥∥2]
= Eyt

[∥∥∇r(yt)∇θyt −∇r(yt)∇θyt∥∥2]
≤ Eyt

[∥∥∇r(yt)∇θyt −∇r(yt)∇θyt∥∥2]+ E
[∥∥∇r(yt)∇θyt −∇r(yt)∇θyt∥∥2]

≤ Lr ·
(
Exn

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
+ Eun

[∥∥∥∥dutdθ
− dut

dθ

∥∥∥∥
2

])
+ 2Lr ·K(t), (A.19)

where the last step follows from the Cauchy-Schwartz inequality and the Lipschitz reward assumption.

Plugging (A.19) into (A.11) and (A.10), we have

vn ≤ Lr ·
(H−1∑
t=0

(
Ext

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
+ Eut

[∥∥∥∥dutdθ
− dut

dθ

∥∥∥∥
2

]
+ 2K(t)

))2

= O

((H−1∑
t=0

t2L̃2t
f L̃

2t
π

)2)
= O

(
H4L̃4H

f L̃4H
π

)
, (A.20)

where the second inequality follows from the results from Lemma A.2 and by plugging the definition of K in (A.18).

Note that the variance vt scales with the batch size N at the rate of 1/M . Since the analysis above is established for M = 1,
the bound of the gradient variance vt is established by dividing the right-hand side of (A.20) by M , which concludes the
proof of Theorem 4.4.

Lemma A.2. Denote e = supEx0 [∥dx0/dθ − dx0/dθ∥2], which is a constant that only depends on the initial state
distribution1. For any timestep t ≥ 1 and the corresponding state xt, control input ut, we have the following inequality
results,

Ext

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
≤ L̃tf L̃tπ

(
e+ 4t · L̃f L̃π ·K(t− 1) + 2t · L̃fLθ

)
,

Eun

[∥∥∥∥dutdθ
− dut

dθ

∥∥∥∥
2

]
≤ L̃tf L̃t+1

π

(
e+ 4i · L̃f L̃π ·K(t− 1) + 2t · L̃fLθ

)
+ 2LπK(t) + 2Lθ.

1We define e to account for the stochasticity of the initial state distribution. e = 0 when the initial state is deterministic.
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Proof. From (A.13), we obtain for any t ≥ 1 that

Ext

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
= E

[∥∥∥∥ ∂xt
∂xt−1

· dxt−1

dθ
+

∂xt
∂ut−1

· dut−1

dθ
− ∂xt
∂xt−1

· dxt−1

dθ
− ∂xt
∂ut−1

· dut−1

dθ

∥∥∥∥
2

]
According to the triangle inequality, we continue by

≤ E
[∥∥∥∥ ∂xt
∂xt−1

· dxt−1

dθ
− ∂xt
∂xt−1

· dxt−1

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂xt
∂xt−1

· dxt−1

dθ
− ∂xt
∂xt−1

· dxt−1

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂xt
∂ut−1

· dut−1

dθ
− ∂xt
∂ut−1

· dut−1

dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥ ∂xt
∂ut−1

· dut−1

dθ
− ∂xt
∂ut−1

· dut−1

dθ

∥∥∥∥
2

]
≤ 2Lf ·

(∥∥∥∥dxt−1

dθ

∥∥∥∥
2

+

∥∥∥∥dut−1

dθ

∥∥∥∥
2

)
+ Lf · Ext−1

[∥∥∥∥dxt−1

dθ
− dxt−1

dθ

∥∥∥∥
2

]
+ Lf · Eut−1

[∥∥∥∥dut−1

dθ
− dut−1

dθ

∥∥∥∥
2

]
. (A.21)

Similarly, we have from (A.12) that

Eun

[∥∥∥∥dutdθ
− dut

dθ

∥∥∥∥
2

]
= E

[∥∥∥∥∂ut∂xt
· dxt
dθ

+
∂ut
∂θ
− ∂ut
∂xt
· dxt
dθ
− ∂ut

∂θ

∥∥∥∥
2

]
≤ E

[∥∥∥∥∂ut∂xt
· dxt
dθ
− ∂ut
∂xt
· dxt
dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂ut∂xt
· dxt
dθ
− ∂ut
∂xt
· dxt
dθ

∥∥∥∥
2

]
+ E

[∥∥∥∥∂ut∂θ − ∂ut
∂θ

∥∥∥∥
2

]
≤ 2Lπ · E

[∥∥∥∥dxtdθ

∥∥∥∥]+ Lπ · E
[∥∥∥∥dxtdθ

− dxt
dθ

∥∥∥∥
2

]
+ 2Lθ. (A.22)

Plugging (A.22) back to (A.21),

Ext

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
≲ 4Lf L̃π ·

(∥∥∥∥dxt−1

dθ

∥∥∥∥
2

+

∥∥∥∥dut−1

dθ

∥∥∥∥
2

)
+ Lf L̃π · Ext−1

[∥∥∥∥dxt−1

dθ
− dxt−1

dθ

∥∥∥∥
2

]
+ 2LfLθ

≤ 4Lf L̃π ·K(t− 1) + Lf L̃π · Ext−1

[∥∥∥∥dxt−1

dθ
− dxt−1

dθ

∥∥∥∥
2

]
+ 2LfLθ, (A.23)

where the last inequality follows from the definition of K in (A.18).

Recursively applying (A.23), we obtain

Ext

[∥∥∥∥dxtdθ
− dxt

dθ

∥∥∥∥
2

]
= e
(
Lf L̃π

)t
+
(
4Lf L̃π ·K(t− 1) + 2L̃fLθ

)
·
t−1∑
j=0

(
L̃f L̃π

)j
≤ L̃tf L̃tπ

(
e+ 4t · L̃f L̃π ·K(t− 1) + 2t · L̃fLθ

)
,

where the first equality follows from (A.16).

As a consequence, we have from (A.22) that

Eut

[∥∥∥∥dutdθ
− dut

dθ

∥∥∥∥
2

]
≤ L̃tf L̃t+1

π

(
e+ 4t · L̃f L̃π ·K(t− 1) + 2t · L̃fLθ

)
+ 2LπK(t) + 2Lθ.

This concludes the proof.
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A.4. Proof of Theorem 4.5

In the following proof, we use the notation ∥z∥2 to represent the Euclidean l2 norm for vector z, and ∥Z∥2 to represent the
induced 2-norm for matrix Z, i.e., ∥Z∥2 = max∥x∥2=1 ∥Zx∥2. Recall that ∥Z∥F denotes the Frobenius norm of matrix Z,
i.e., ∥Z∥F =

√
tr(ZZ⊤).

To characterize the Lipschitz of the LCS model, we need the partial derivatives of xt+1 with respect to xt and ut, which,
however, further depend on the partial derivatives of λt with respect to xt and ut and cannot be expressed in closed form.
Instead, they are implicitly defined by the LCP. Therefore, we introduce the following implicit function theorem.
Theorem A.3 (Implicit Function Theorem). An implicit function g : Rds × Rdw → Rds is defined as g(s, w) = 0 for
solution s ∈ Rds and problem data w ∈ Rdw . Then the Jacobian ∂s/∂w, i.e., the sensitivity of the solution with respect to
the problem data, is given by

∂s

∂w
= −

(∂g
∂s

)−1 ∂g

∂w
.

Proof. Differentiating g with respect to the problem data w gives

dg

dw
=
∂g

∂w
+
∂g

∂s

∂s

∂w
.

Since for any w, g(s, w) = 0 always holds, the above total derivative is also always 0. This observation allows us to calculate
the Jacobian

∂s

∂w
= −

(∂g
∂s

)−1 ∂g

∂w
.

Proof of Theorem 4.5. To begin with, we first study the Jacobian ∂xt+1/∂xt, so the Jacobian ∂xt+1/∂ut can be analyzed
using similar techniques.

Denote C(i) ∈ Rdx as the i-th column of the matrix C ∈ Rdx×dλ . Similarly, denote D(i) ∈ Rdx , E(i) ∈ Rdu , F (i) ∈ Rdλ
as the i-the rows of matrices D,E, F , respectively. Then we have the Jacobian with the form

∂xt+1

∂xt
= A+

dλ∑
i=1

C(i) ∂λ
(i)

∂xt
. (A.24)

We rewrite the contact equation λt ◦ (Dxt + Eut + Fλt + d) = µ
#»
1 in (3.1) as follows, such that for any i ∈ [1, dλ],

λ
(i)
t

(
D(i)⊤xt + E(i)⊤ut + F (i)⊤λt + d(i)

)
= µ. (A.25)

By the Implicit Function Theorem A.3, we have for any i ∈ [1, dλ] that

∂λ(i)

∂xt
= −

(
D(i)⊤xt + E(i)⊤ut +

∂

∂λ
(i)
t

λ
(i)
t F (i)⊤λt + d(i)

)−1

λ
(i)
t D(i)⊤

= −
(
D(i)⊤xt + E(i)⊤ut + F (i)⊤λt + λ

(i)
t F (i)(i) + d(i)

)−1
λ
(i)
t D(i)⊤, (A.26)

where F (i)(i) ∈ R is the i-th element of F (i).

Since F is a P-matrix, we know that all its first order principal sub-matrices are positive, i.e., F (i)(i) > 0.

Plugging (A.26) into (A.24) and take the induced 2-norm, we obtain∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

=

∥∥∥∥A− dλ∑
i=1

C(i)
(
D(i)⊤xt + E(i)⊤ut + F (i)⊤λt + λ

(i)
t F (i)(i) + d(i)

)−1
λ
(i)
t D(i)⊤

∥∥∥∥
2

≤ ∥A∥2 +
dλ∑
i=1

λ
(i)
t ∥C(i)∥2 · ∥D(i)∥2 ·

∣∣D(i)⊤xt + E(i)⊤ut + F (i)⊤λt + λ
(i)
t F (i)(i) + d(i)

∣∣−1
,
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where the inequality holds due to the Cauchy–Schwarz inequality. From (A.25), we know that D(i)⊤xt + E(i)⊤ut +

F (i)⊤λt + d(i) = µ/λ
(i)
t , it then follows that

= ∥A∥2 +
dλ∑
i=1

λ
(i)
t ∥C(i)∥2 · ∥D(i)∥2 ·

∣∣µ/λ(i)t + λ
(i)
t F (i)(i)

∣∣−1

≤ ∥A∥2 +
dλ∑
i=1

λ
(i)
t ∥C(i)∥2 · ∥D(i)∥2 ·

∣∣µ/λ(i)t ∣∣−1

= ∥A∥2 +
dλ∑
i=1

∥C(i)∥2 · ∥D(i)∥2 · (λ(i)t )2/µ, (A.27)

where the inequality holds since F (i)(i) > 0, µ > 0, and λ(i)t > 0.

By the definition of Frobenius norm, we know that

∥C∥F =

√√√√ dλ∑
i=1

∥C(i)∥22 =
√
dλ ·

√√√√ dλ∑
i=1

1

dλ
∥C(i)∥22

≥
√
dλ ·

dλ∑
i=1

1

dλ

√
∥C(i)∥22 =

1√
dλ

dλ∑
i=1

∥C(i)∥2, (A.28)

where we adopt Jensen’s inequality in the inequality.

Besides, denote by Λt = diag(λ(1)t , · · · , λ(dλ)t ) ∈ Rdλ×dλ the diagonal matrix. By definition, we have ∥Λt∥2 = maxi λ
(i)

and thus

∥λt∥22 =

dλ∑
i=1

(λ
(i)
t )2 ≤ dλ · ∥Λt∥2F . (A.29)

Therefore, we can further bound (A.27) by∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

≤ ∥A∥2 +
1

µ

( dλ∑
i=1

∥C(i)∥2
)
·
( dλ∑
i=1

∥D(i)∥2
)
·
( dλ∑
i=1

(λ
(i)
t )2

)
≤ ∥A∥2 +

dλ
µ
∥C∥F ∥D∥F ∥λt∥22

≤ ∥A∥F +
d2λ
µ
∥C∥F ∥D∥F ∥Λt∥2F , (A.30)

where the first inequality holds since
∑
i yi · zi ≤ (

∑
i yi) · (

∑
i zi) for any non-negative scalar sequences yi, zi and the

second inequality follows from (A.28). The third inequality follows from (A.29) and the fact that ∥A∥2 ≤ ∥A∥F .

The final step is to characterize the magnitude of ∥Λt∥2F . This can be done by rewriting the contact equation λt ◦ (Dxt +
Eut + Fλt + d) = µ

#»
1 in (3.1) as

Λt(Dxt + Eut + FΛt
#»
1 + d) = µ

#»
1

By the Cauchy-Schwartz inequality we have

∥Λt∥F ·
(
∥Dxt + Eut + d∥2 + ∥F∥F ∥Λt∥F

)
≥ µ.

Denote e = sup ∥Dxt + Eut + d∥2. The above inequality can be simplified as

∥F∥F · ∥Λt∥2F + e · ∥Λt∥F − µ ≥ 0. (A.31)
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Solving (A.31) gives

∥Λt∥F ≥
√
e2 + 4µ∥F∥F − e

2∥F∥F

Since ε = e2/(2∥F∥2F ), we further have

l(µ) =
∥Λt∥2F
µ

≥
2e2 + 4µ∥F∥F − 2e

√
e2 + 4µ∥F∥F

4µ∥F∥2F

=
e2

2µ∥F∥2F
+

1

∥F∥F
+
e2
√

1
µ2 + 4∥F∥F

µe2

2∥F∥2F

=
ε

µ
+

1

∥F∥F
+ ε

√
1

µ2
+

2

εµ∥F∥F
. (A.32)

Plug (A.32) into (A.30), we get the Jacobian norm∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

≤ ∥A∥F + d2λ∥C∥F ∥D∥F · l(µ).

Using the same proof steps, the norm of Jacobian ∂xt+1/∂ut satisfies∥∥∥∥∂xt+1

∂ut

∥∥∥∥
2

≤ ∥B∥F + d2λ∥C∥F ∥E∥F · l(µ).

We conclude the proof by noticing the relationship between the norm of Jacobian and the Lipschitz of the LCS model.

A.5. Proof of Theorem 5.1

Proof. From (A.25), we have for any i ∈ [1, dλ] that

µ = λ
(i)
t

(
z
(i)
t + F (i)⊤λt

)
≥ λ(i)t · z

(i)
t ,

where the inequality holds since F (i)⊤λt > 0.

Therefore, for z(i)t > 0, we obtain

λ
(i)
t ≤ µ/z

(i)
t . (A.33)

Plugging (A.33) into (A.27), we have∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

≤ ∥A∥2 +
dλ∑
i=1

∥C(i)∥2 · ∥D(i)∥2 · (λ(i)t )2/µ

≤ ∥A∥2 + µ

dλ∑
i=1

∥C(i)∥2 · ∥D(i)∥2/(z(i)t )2. (A.34)

Since ∥A∥2 ≤ ∥A∥F and ∥C(i)∥2 ≤
∑dλ
i=1 ∥C(i)∥2 ≤

√
dλ∥C∥F following (A.28), we further have from (A.34) that∥∥∥∥∂xt+1

∂xt

∥∥∥∥
2

≤ ∥A∥F + ∥C∥F ∥D∥F dλµ
dλ∑
i=1

1/(z
(i)
t )2.

Similarly, we obtain ∥∥∥∥∂xt+1

∂ut

∥∥∥∥
2

≤ ∥B∥F + ∥C∥F ∥E∥F dλµ
dλ∑
i=1

1/(z
(i)
t )2.

This completes the proof of Theorem 5.1.
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A.6. Proof of Proposition 5.2

Proof. We first consider the original unsmoothed problem λt(Dxt +Eut + Fλt + d) = 0. Since λt ≥ 0, we know that the
solution λt is a piece-wise linear function with the following form,

λt =

{
−(Dxt + Eut + d)/F if Dxt + Eut + d ≤ 0

0 else
.

By rewriting the above formula as a function of zt = Dxt +Eut + d, we can express the solver Sµ=0 of the exact LCP as
follows,

Sµ=0(zt) =

{
−zt/F if zt ≤ 0

0 else
. (A.35)

Now our goal is to find the noise distribution ρ(w) such that the following holds,

Sµ(zt)(zt) = Ew∼ρ(w)[Sµ=0(zt + w)] =

∫
Sµ=0(zt + w)ρ(w)dw.

Define H(x) as a Heaviside-like step function

H(x) =

{
−1/F if x ≤ 0

0 else
.

We observe that the derivative of Sµ=0(zt) is in fact H(zt). This allows us to write

∇ztSµ(zt)(zt) = ∇zt
∫
Sµ=0(zt + w)ρ(w)dw

=

∫
∇ztSµ=0(zt + w)ρ(w)dw

=

∫
H(zt + w)ρ(w)dw.

Since the derivative of the Heaviside step function is the dirac delta function δ(·), we have

∇2
ztSµ(zt)(zt) = ∇zt

∫
H(zt + w)ρ(w)dw

=

∫
δ(zt + w)ρ(w)dw = ρ(zt).

This concludes the proof.

A.7. Proof of Proposition 5.3

Recall that Proposition 5.2 connects the proposed barrier smoothing with the randomized smoothing. Therefore, we first
provide the following lemma established in randomized smoothing as a preparation before proving Proposition 5.3.
Lemma A.4 (Randomized Smoothing as Linearization Minimizer (Pang et al., 2022)). Let ρ(w) = N (0,Σ) be a zero-mean,
Σ-covariance Gaussian. Consider the problem of regressing a function g with parameters (K,W ) such that the residual
around x distributed according to ρ is minimized, i.e.,

L(K,W ) = min
K,W

1

2
Ew∼ρ(w)

[∥∥g(x+ w)−Ww −K
∥∥2
2

]
. (A.36)

The solution is the linearization of the smoothed surrogate

K∗ = Ew∼ρ(w)[g(x+ w)],

W ∗ =
∂

∂x
Ew∼ρ(w)[g(x+ w)]|x=x.
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Proof. The proof is originally provided in (Pang et al., 2022), which is adapted here for completeness.

Since (A.36) is a linear regression problem and is convex, the first-order stationarity condition implies optimality. By
calculating the gradients and setting them to zero, we have

∂L
∂K

= Ew∼ρ(w)[g(x+ w)]−K∗ = 0

∂L
∂W

= Ew∼ρ(w)[ww
⊤]W ∗ − Ew∼ρ(w)[g(x+ w)w⊤] = 0.

Therefore, we obtain the solution

K∗ = Ew∼ρ(w)[g(x+ w)],

W ∗ = Ew∼ρ(w)[ww
⊤]−1Ew∼ρ(w)[g(x+ w)w⊤]

=
∂

∂x
Ew∼ρ(w)[g(x+ w)]|x=x,

where the last step follows from the likelihood ratio gradient with the form (2.1), as well as the fact that the score function of
the Gaussian is Σ−1w.

Proof of Proposition 5.3. By applying Lemma A.4, we know that Proposition 5.3 holds once the following equivalence is
established,

Sµ(zt)(zt) = Ew∼ρ(w)[Sµ=0(zt + w)], (A.37)

where ρ(w) is any zero-mean Gaussian distribution.

This is a direct result from Proposition 5.2. Specifically, when µ(zt) = κ · (zt + Fκ), the corresponding softened LCP is

λt(zt + Fλt) = µ(zt) = κ · (zt + Fκ).

The solution of the above equation is given by

Sµ(zt)(zt) = λt = κ = zt · erf(zt, σ) + e−z
2
t /(2σ)/

√
π + c1zt + c2. (A.38)

Proposition 5.2 states that when ρ(w) = ∇2
wSµ(zt)(w), then Sµ(zt)(zt) = Ew∼ρ(w)[Sµ=0(zt+w)]. For Sµ(zt)(zt) satisfying

(A.38), its second-order derivative is the GaussianN (0, σ), due to the definition of the error function. Therefore,Sµ(zt)(zt) =
Ew∼N (w;0,σ)[Sµ=0(zt + w)], which concludes the proof of (A.37) and the proposition.

A.8. Proof of Theorem 5.4

Proof. According to the definition of Sµ=0(zt) in (A.35), we know that∣∣∣∣Sµ=0(zr + w)− Sµ=0(zt)

w
−∇zSµ=0(zt)

∣∣∣∣ ≤ 1

F
. (A.39)

We define the linearization residual at point zt + w as

ν(w) =
∣∣Sµ=0(zr + w)−∇zSµ(zt)(zt) · w − Sµ(zt)(zt)

∣∣.
Then we have from (A.39) that∣∣∣∣ν(w) + Sµ(zt)(zt)− Sµ=0(zt)

w
+∇zSµ(zt)(zt)−∇zSµ=0(zt)

∣∣∣∣ ≤ 1

F
.
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Since |Sµ(zt)(zt)− Sµ=0(zt)| ≤ |Sµ(zt)(0)− Sµ=0(0)| = 1/
√
π + c2 = ς , we obtain from the triangle inequality that the

bias of gradient satisfies ∣∣∇zSµ(zt)(zt)−∇zSµ=0(zt)
∣∣ ≤ 1

F
+
ν(w) + ς

|w|
. (A.40)

From Proposition 5.3, we know that

Ew∼N (0,σ)[ν(w)] = δ. (A.41)

We claim that there exists σQ(2/3) ≤ w ≤ σQ(3/4) such that ν(w) ≤ 12δ.

This can be proved by contradiction. Specifically, suppose for any w ∈ [σQ(2/3), σQ(3/4)], ν(w) > 12δ. Then the
expectation Ew∼N (0,σ)[ν(w)] > (3/4− 2/3) · 12δ = δ. This contradicts with (A.41). Therefore, the claim is correct.

Using the above claim, we have from (A.40) that∣∣∇zSµ(zt)(zt)−∇zSµ=0(zt)
∣∣ ≤ 1

F
+

12δ + ς

σQ(2/3)
.

We conclude the proof by applying the chain rule in the LCS model (3.1)∥∥∇xfµ=0 −∇xfµ(zt)
∥∥
2
≤ ∥C∥F ∥D∥F ·

( 1

F
+

12δ + ς

σQ(2/3)

)
,∥∥∇ufµ=0 −∇ufµ(zt)

∥∥
2
≤ ∥C∥F ∥E∥F ·

( 1

F
+

12δ + ς

σQ(1/2)

)
.

B. Interior-Point Solver
In Algorithm 1, we provide the high-level framework of the proposed Adaptive Barrier Smoothing mechanism. In this section,
we describe the IPM solver that is used to solve the complementarity problems, such as the Nonlinear Complementarity
Problem (NCP) in (2.3) (or when µ = 0 in the LCP in (3.1)). Besides, we depict how the gradients are calculated.

We adopt the primal-dual interior-point solver with Mehrotra correction (Mehrotra, 1992). Each iteration of the primal-dual
interior-point solver consists of a predictor step that computes the affine search direction for zero complementarity violation,
and a centering (with Mehrotra correction) step that computes a target relaxation for the search direction. As we have
discussed in Section 3.2, the interior-point method solves a sequence of µ-softened problems with decreasing µ > 0. For
notation simplicity, we consider the problem of the following form,

find a, b, c

subject to E(a, b, c) = 0, b ◦ c = µ
#»
1 , b ≥ #»

0 , c ≥ #»
0 ,

where a, b ∈ Rn×1, c ∈ Rn×1 are the decision variables and E is the set of equality constraints. We denote ω = (a, b, c).

The solver aims to find a fixed point for the following residual,

R(ω;µ) = [E(a, b, c), bc− µ #»
1 ]⊤.

We denote the Jacobian of this residual with respect to the decision variables as

RJ(ω;µ) = ∂R(ω;µ)/∂ω,

where ∆baff and ∆caff are the corresponding elements in the affine scaling direction ∆aff = −R−1
J (ω;µ)R(ω;µ).

With Mehrotra correction, we define

R(ω;µ) = [E(a, b, c), bc− µ #»
1 + ∆baff∆caff]

⊤.
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Then the search direction ∆ is given by Newton’s method as

∆ = −R−1
J (ω;µ)R(ω;µ). (B.1)

The IPM solver adaptively relaxes the above problem by first computing the duality measure ϱ, the affine duality measure
ϱaff, and the centering parameter σ,

ϱ =
1

n
b⊤c =

1

n

n∑
i=1

b(i)c(i), (B.2)

ϱaff =
1

n
(b+ αpri

aff∆baff)
⊤(c+ αdual

aff ∆caff), (B.3)

σ = (ϱaff/ϱ)
3, (B.4)

where αpri
aff and αdual

aff are the maximum step-sizes to the boundary, defined as

αpri
aff = min

(
1, min
i:∆b

(i)
aff <0

− b(i)

∆b
(i)
aff

)
, αdual

aff = min

(
1, min
i:∆c

(i)
aff <0

− c(i)

∆c
(i)
aff

)
.

For a µ-softened complementarity system, the predictor steps and the centering steps are performed iteratively until the
complementarity violation is smaller than the stopping criteria (or tolerance threshold) µ. Specifically, the pseudocode of the
solver is provided in Algorithm 3.

Algorithm 3 Primal-Dual Interior-Point Solver with Stopping Criteria SOLVER(µ)
Input: Stopping criteria µ
1: Initialize a = a0, b = b0, c = c0, ω = (a, b, c)
2: Update the complementarity violation µvio ← maxi{∥b(i)c(i)∥∞}
3: while µvio ≥ µ do
4: Calculate the duality measure ϱ, affine duality measure ϱaff, and the centering parameter σ by (B.2), (B.3), and (B.4)
5: Update µ← σϱ
6: Calculate the search direction ∆ by (B.1), ∆ = −R−1

J (ω;µ)R(ω;µ)
7: Update ω ← ω + α∆
8: Update the complementarity violation µvio ← maxi{∥b(i)c(i)∥∞}
9: end while

10: Output: ω

To obtain the gradients of the output with respect to the inputs, we adopt the Implicit Function Theorem in A.3 to obtain the
implicit gradients, following (Howell et al., 2022; Geilinger et al., 2020; Zhao et al., 2022).

C. Details of Experiments
C.1. Dynamics in the Ball Bouncing Example

In Section 8.1, we plot the dynamics and derivatives of the contact behavior. Here, we describe how they are generated using
ordinary differential equations.

Without loss of generality, we assume that the discretization timestep size, the mass of the ball, and its initial velocity v0
are all 1. Denote the initial vertical coordinate of the ball is q0. Then the distance of the ball to the ground is given by
q0 −

∫ ∫
(g − γt)dtdt, where recall that γt is the normal impact contact force at timestep t.

Then we are able to obtain the µ-softened complementarity problem as

γt

(
q0 −

∫ ∫
(g − γt)dtdt

)
= µ.
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This can be rewritten as

−(g − γt) =
∂2

∂t2
µ

γt
=
(
−µ∂

2γt
∂t2

γt + 2µ
(∂γt
∂t

)2)/
γ3t .

We simplify this second-order ODE by defining another variable et, such that

∂γt
∂t

= et,

∂et
∂t

=
γ4t − γ3t g − 2µe2t

−µγt
. (C.1)

Solving (C.1) with Python, we obtain γt. Then the y-axis velocity is naturally obtained by vy = −
∫
(g − γt)dt. Since

qx = v0t = t, we get the relationship between vy and qx. The derivatives can be calculated using finite differences.

C.2. Experimental Details

In our Dojo experiments in Section 8.3, we use a contact-aware central-path parameter for the proposed Adaptive Barrier
Smoothing method. From the results in Figure 3, to balance the gradient variance and bias, we would like µ → 0 when
all impact contacts are active or the distance-to-obstacle is large, and µ ≈ 10−2 when this distance approaches zero. To
accomplish this, the adaptive µ(xt, ut) is designed as

µ(xt, ut) = 10−2
(
100d2 + 1

)−4
= 10−2

(
100min

i∈I′
|ϕ(xt, ut)(i)|2 + 1

)−4
. (C.2)

Here, the set I of the inactive impact contact points is approximated by I ′ = {1 ≤ i ≤ c | γ(i)t,µ ≤ 1}, where γt,µ is solved
from the µ-softened complementarity problem.

We also visualize the three tasks that are used in our experiments for performance evaluation, namely, the ball-throwing task
and the hopper, half-cheetah locomotion tasks.

goal

Figure 7. 7(a): Throw a ball and optimize θ to reach the goal at a certain velocity. The return curve in Section 8.3 is the negative mean
squared error at the final timestep. 7(b),7(c): Screenshots of the locomotion tasks using the Dojo (Howell et al., 2022) simulator.
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