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Abstract
Recent advances in frontal ring-opening metathe-
sis polymerization (FROMP) offer a sustainable
and energy-efficient alternative for the rapid cur-
ing of thermoset polymers compared to conven-
tional bulk curing. To predict FROMP dynamics
for different formulations and processing condi-
tions, we require an accurate continuum model.
The driving force for FROMP lies in the under-
lying cure kinetics, but our understanding of the
mechanisms is limited and existing cure kinetics
models fall short. Herein, we demonstrate that
a differentiable simulator for partial differential
equations (PDEs) enables learning of cure kinetics
functions from video frames of the true solution.
With a hybrid PDE solver, where learnable terms
are parameterized by orthogonal polynomials or
neural networks, we can uncover missing physics
within the PDE by applying PDE-constrained op-
timizations and the adjoint method. Our work
paves the way for learning spatiotemporal physics
and kinetics from experimentally captured videos.

1. Introduction
1.1. Background

Thermoset polymers are integral in many industries, such
as energy, transport, and aerospace, due to their strong spe-
cific mechanical properties and thermo-chemical stability.
However, current manufacturing of thermosets requires the
formulation resin to be cured at high temperatures over long
periods in large autoclaves, making these processes unsus-
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tainable and energy inefficient. To illustrate this point, about
350 GJ is required to cure a section of Boeing 787’s carbon
fiber/epoxy fuselage over 8 hours and this process emits
more than 80 tons of CO2 (Timmis et al., 2014). Recent ad-
vancements in frontal ring-opening metathesis polymeriza-
tion (FROMP) (Robertson et al., 2018; Suslick et al., 2023)
have enabled the rapid and stable curing of thermosets, par-
ticularly polydicyclopentadiene (pDCPD). Since the heat
of polymerization released by the exothermic ring-opening
metathesis reaction is sufficient to propagate further FROMP
reactions, only an initial thermal trigger is required. Thus,
FROMP can be an energy-efficient and sustainable alterna-
tive for manufacturing thermosets at scale.

To discover formulations and processing conditions that can
have stable and rapid FROMP to form high-performance
thermosets, we need an accurate predictive model at the
continuum scale. The dynamics of FROMP are influenced
by the interplay of chemical formulations and process condi-
tions, and the process can be modeled at the continuum level
as thermo-chemical PDEs expressed in terms of the temper-
ature T (in K) and the degree of cure α (dimensionless), as
described in Eq. (1).

ρCp
∂T

∂t
= κ∇2T + ρHr

∂α

∂t
(1a)

∂α

∂t
= A exp

(
− E

RT

)
f(α) (1b)

Specifically, the PDEs involve the coupled reaction and
heat diffusion terms, where the reaction term (last term
in Eq. (1a)) provides the heat source associated with the
exothermic reaction, and the heat diffusion term describes
the heat transport ahead of the advancing polymerization
front. Solving the coupled problem in 2D gives us the
spatiotemporal evolution of the two-state variables: the
resin temperature (T (x, y, t)) and degree of cure (α(x, y, t)).
The degree of cure is a phenomenological quantity that
takes a value from 0 (uncured monomer) to 1 (fully cured
polymer). In experiments, the degree of cure is defined as
the ratio of the amount of heat released to the total heat
of polymerization (α = H/Hr), where the values of H
are extracted from differential scanning calorimetry (DSC)
curves (Robertson et al., 2018).
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T (x, y, 0) = T0,

α(x, y, 0) = α0,

T (0, y, t) = Ttrig, 0 < t ≤ ttrig,

∂T

∂x
(0, y, t) = 0, t > ttrig,

− κ∇T · n = hL(T − T0) or 0, y = ±w

2
.

(2)

The initial conditions and boundary conditions (BCs) are
described in Eq. (2) to complete the problem description, in
which T0 and α0 are the initial temperature and degree of
cure of the monomer resin, and a trigger temperature Ttrig
is applied on the left end x = 0 over ttrig (Dirichlet BC),
followed by an adiabatic BC. Adiabatic or heat convection
BCs (with heat transfer coefficient hL) are imposed on other
boundaries depending on problem settings, where w is the
width of the domain.

The dynamics of FROMP is largely driven by the underlying
reaction kinetics where the complex interplay between T
and α influence their spatio-temporal changes. At the core
of this interplay are the Arrhenius (exponential) term and
the function f(α) entering the cure kinetics model described
by Eq. (1b).

1.2. Learning the complete PDE from data

Many multiscale physical phenomena can be modeled by
solving PDEs if we know the underlying physics. However,
in FROMP, the reaction kinetics coupled with different pro-
cessing conditions are complex and not well understood.
Existing cure kinetics functions f(α) are defined explicitly
and parameters are obtained by nonlinear fitting of the DSC
curves, where experiments are performed at a controlled
and low heating rate (typically dT/dt ≤ 20 oC/min). How-
ever, the heating rate at the polymerization front is up to
∼105 oC/min in FROMP - thus these f(α) functions fitted
from DSCs would not robustly predict the FROMP dynam-
ics for different initial conditions and chemical formulations.
To learn unknown physics or kinetics, it may be possible
to augment the existing PDE (i.e. our prior physical un-
derstanding) with learnable terms and learn the dynamics
from experimentally observed spatiotemporal data. With a
learned continuum model, we can accurately screen formu-
lation and process condition degrees of freedom to predict
FROMP dynamics and thus frontal speeds.

Herein, we adopt a hybrid solver approach where known
terms form the base PDE and we focus on learning unknown
physics from data. Although most PDEs do not have ana-
lytical solutions, solving PDEs is not an issue as we have
robust accurate numerical methods such as finite difference
and finite element methods. Furthermore, spectral methods
to solve PDEs, such as applying fast Fourier transform or

Chebyshev polynomials, can enable fast and accurate so-
lutions for many PDEs (Olver & Townsend, 2012; Boyd,
2001).

In this work, we demonstrate that we can recover the un-
known physics from simulation videos by applying PDE-
constrained optimization using a differentiable PDE simula-
tor. The framework developed will eventually be useful to
learn unknown physics and cure kinetics from thermal cap-
ture videos obtained experimentally, thus this work paves
the way towards that goal. We need a PDE simulator that is
end-to-end differentiable so we can update learnable terms
within the PDE using gradient descent. The gradients of
the loss function (between the true observed dynamics and
the simulated PDE solutions) with respect to the parameters
are backpropagated through the simulation time steps by
solving the adjoint equations. For the numerical method, we
choose the finite element method (FEM) due to its versatility
and flexibility over different geometries. Unknown terms
can be represented as neural networks or orthogonal bases,
such as Legendre polynomials.

1.3. Related works in scientific machine learning and
neural PDEs

Neural PDE models aim to learn a data-driven PDE solver
that can predict solutions for each time step autoregres-
sively (Brandstetter et al., 2022). Notably, Neural Operators
learn the mapping between function spaces (Kovachki et al.,
2023). Some examples include the Fourier (Li et al., 2021),
Laplace (Cao et al., 2023), Wavelet (Xiao et al., 2023), and
spectral neural operators (Liu et al., 2023). Various NN and
neural operator models have found successes in climate and
weather forecasting where the models are trained on a large
corpus of historic data (Pathak et al., 2022). However, for
applications as surrogate PDE solvers, neural operators are
usually trained on PDE solutions that are generated by a
numerical solver (Takamoto et al., 2023). Another direc-
tion involves Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2017; Liu et al., 2024a) where NNs param-
eterize the underlying PDE solutions and incorporate the
equations of the PDE to construct the loss function (i.e. with
PDE residual, boundary conditions, initial conditions terms).
In our case, we do not know the complete physics of the
underlying PDE - our goal is to learn the PDE rather than to
learn the solution or its operator.

Hybrid physics machine learning methods combine numeri-
cal methods with data-driven methods and these could be
useful in multiscale closure modeling. This emerging di-
rection has been applied to learn closure relations in PDEs
(Crilly et al.), hybrid general circulation model of the at-
mosphere (Kochkov et al., 2024), and to learn kinetics of
Lithium intercalation and pattern formations (Zhao et al.,
2023; 2020). Unknown physics within the differential equa-
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Figure 1. Differentiable hybrid PDE solver to learn unknown term(s) within the PDE

tions, either due to unknown complex relationships or gov-
erned by higher-order behaviors not captured by the existing
model assumptions, may be parameterized by learnable
functions to recover the true physics. At the core of these
methods is an end-to-end differentiable simulator enabled
by the growing ecosystem of differentiable programming
(Kochkov et al., 2024), differentiable PDE solvers (Xue
et al., 2023), and the field of neural differential equations
(Chen et al., 2019; Kidger, 2022). In our work, we build on
top of the FEniCS-adjoint and JAX-FEniCS (Mitusch et al.,
2019; Yashchuk, 2023) frameworks, where FEM is the un-
derlying PDE solver and the interface with JAX provides
differentiable programming and neural networks support.

2. Results
2.1. Optimizing and learning parameters within the

PDE

We first demonstrate that the differentiable simulator can be
used for the control and learning of parameters within the
PDE.

Optimizing material parameters towards high frontal
velocities. We apply our approach to optimize material pa-
rameters that would steer the PDE solutions toward high
frontal velocities. We solve the 1D problem of the PDE
forward and calculate the frontal velocities (Vf ) using the
relative positions of the front with α=0.5. By setting a target
Vf in the loss function, we optimize the material parameters
within the PDE to control the PDE solutions to reach a high
Vf by taking the gradients with respect to each parameter.
Specifically, we optimize for the thermal conductivity (κ),
specific heat capacity (Cp), and the enthalpy of polymeriza-
tion (Hr). Intuitively, from the PDE, we know that a high
κ, low Cp, and high Hr would lead to high Vf . With this
toy problem, we demonstrate that known parameters within
the PDE can be optimized (Fig. 4) to give high Vf , thus
reproducing our physical intuition built within the PDE.

Learning initial conditions and thermal conductivity.
Similarly, we can recover parameters and initial conditions

with the same approach. We generate a 2D solution and use
only the first 10 time steps (first 0.1s) for learning. Initial-
izing the κ term and the initial temperature T0 as zeros, we
solve the PDE forward for 10 steps and backpropagate the
loss (mean squared error for all 10 frames) to update both
κ and T0. With 300 iterations, the parameters converged to
recover κ and T0 as 0.1523 and 24.90, which are close to
the true values of 0.152 W/m · K and 25.0 ◦C respectively
(Fig. 4).

2.2. Learning cure kinetics models

Eventually, we aim to learn unknown physics from experi-
mental videos of FROMP. In this section, we demonstrate
the ability to learn unknown cure kinetics from simulated
FROMP videos (i.e. numerical PDE solutions). To test the
robustness of the differentiable framework, we will examine
different FROMP formulations, namely the polymerization
of DCPD with Grubbs catalyst type 1 (DCPD-GC1), DCPD
with Grubbs catalyst type 2 (DCPD-GC2) and the unstable
FROMP of cyclooctadiene (COD) (Lloyd et al., 2021).

For all cases, we parameterize the f(α) term with a linear
combination of orthogonal polynomials, specifically with
the first ten Legendre polynomials (Eq. (3)), and learn the
eleven bn coefficients that weigh each polynomial’s contri-
bution (including the 0-th order term) (Zhao et al., 2023).
We choose orthogonal Legendre polynomials due to their
high expressivity and interpretability while having less tun-
able parameters. We impose a prior of (1 − α) since the
reaction rate is 0 when the resin is fully cured.

fθ(α) = (1− α)

N=10∑
n=0

bnPn (3)

The loss function (Eq. (4)) is constructed based on the rela-
tive L2-norm between the simulated solutions (predictions)
and the true solutions, summed over all temporal frames
(Nt). During training, the gradients of the loss with respect
to the learnable parameters are backpropagated to update
the f(α) function iteratively via gradient descent.
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Figure 2. Learned cure kinetics functions f(α) for DCPD-GC1 by learning from a) degree of cure or b) temperatures. Learned f(α) for
the FROMP of c) COD and d) DCPD-GC2 by learning from temperatures.

L(Tsim, Ttrue) =

Nt∑
i=1

∥Tsim,i − Ttrue,i∥2
∥Ttrue,i∥2

(4)

In Section 2.3, we also compare the various parameteriza-
tions of the f(α) using Legendre polynomials, multilayer
perceptrons (MLPs), and Kolmogorov-Arnold Networks
(KANs) (Liu et al., 2024b).

Learning f(α) for the stable FROMP of DCPD-GC1. In
the first case, we attempt to learn f(α) for the DCPD-GC1
system using 21 training samples. The true f(α) (Eq. (5))
is the nth-order Prout-Tompkins model (PTn) (Kumar et al.,
2021) and this was used to solve the PDE to obtain the true
solutions.

f(α) = (1− α)1.927(1 + 0.365α) (5)

The Legendre polynomial parameters are initiated to be
zeros and the PDE is solved forward for 100 steps (dt =
0.01). With a batch size of 3, the average gradients in each
batch are backpropagated with respect to the 11 parameters
to update them every batch. For this scheme, we learned
from either degree of cure (Fig. 2a) or temperature (Fig. 2b).
Evidently, it is easier to reproduce the true f(α) when we
learn directly from the degree of cure as the cure kinetics
function is a function of α. Our problem is a coupled time-
dependent PDE where both temperature and degree of cure
influence each solution in the next time step. In practice, we
can only measure the spatiotemporal changes in temperature
but not the degree of cure. As such, it is more meaningful to
learn the f(α) from the sample’s temperatures and solve for
the degree of cure using the learned f(α) in each iteration.

Learning f(α) for FROMP of COD and DCPD-GC2. In
the next two cases, we demonstrate that with only 3 solutions
for training, we can learn a good approximation of the f(α)
over 50 epochs. Instead of mini-batching and updating with
average gradients, we solve the PDE forward and update
the parameters over each sample. COD polymerizes with
an unstable FROMP profile with certain initial temperatures

and pre-cure despite having a relatively simpler cure kinetics
following the Prout-Tompkins (PT) model (Eq. (6)).

f(α) = (1− α)2.514α0.817 (6)

We generate 3 solutions with chaotic fronts and attempt
to learn the f(α) with only the first 5 frames of the PDE
solution (Fig. 2c). Thus, with only 15 frames of temperature
solution, we can recover the f(α). This is possible because
the (1−α) prior enforces f(α) to be 0 when α is 1, and the
3 training samples have 3 different initial conditions of α
that give a sufficient range of trajectories for learning. The 5
frames provide sufficient dynamical information involving
the change of T and α.

f(α) = (1− α)1.72α0.77e−14.48(α−0.41) (7)

Finally, we try to learn a more complicated f(α) involving
the Prout-Tompkins model with a diffusion term (Eq. (7)),
this model accounts for diffusion effects at higher temper-
atures (Kumar et al., 2021). Similarly, we apply a similar
approach and use 3 solutions for training. However, for this
case, we find that solving the PDE over longer trajectories
(50 steps, compared to 5 steps) is required for more accurate
recovery of the f(α) function (Fig. 2d).

For all experiments discussed, the trajectories of the learned
f(α) over iterations and the learning curves are in (Fig. 5)
in the Appendix. Using the learned f(α), we solve the PDE
forward and plot the roll-out solutions for both T and α at
different t (Fig. 6, Fig. 7, Fig. 8) for a few test samples.

2.3. Comparing function representations

Learnable terms can be parameterized by neural networks or
linear combinations of basis sets or orthogonal polynomials.
In this section, we compare the representations of f(α) to
learn the PT model (Eq. (6)) for COD. For applications in AI
for science, the expressivity, accuracy, and interpretability
of these learned models are important. We compare the
learning curve and the best learned f(α) for MLPs, KANs,
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Figure 3. Comparison of validation loss curves and learned f(α) functions parameterized by Legendre polynomials, MLP, and KAN on
the unstable COD FROMP case.

and Legendre polynomials (Fig. 3). For all models, a prior
of (1 − α) is applied. While MLPs, with the appropriate
activation function and learning rates, can converge to a
satisfiable function, we find it harder to learn f(α) using
MLPs compared to orthogonal polynomials. With a learning
rate of 0.001, we train an MLP with a width of 10 nodes, a
depth of 5 layers, and the tanh activation function. Using
ReLU or SiLU as activation functions give poorer results.
For both Legendre polynomials and KANs, a learning rate
of 0.01 was used.

We find that with less training data, orthogonal bases like
Legendre polynomials are preferred due to the lower number
of tunable parameters (only 11 coefficients here). Legen-
dre polynomials also provide good interpretability and give
good convergence for learning f(α). With MLPs, the induc-
tive biases have to be enforced through the right selection
of activation functions to accurately capture the physical
dynamics. Nevertheless, neural networks would be more
useful when we have a larger amount of training data. Since
KAN is relatively new, more experiments are needed to
conclude its effectiveness for use in differentiable simula-
tions or learning PDEs from data. From this example, it has
shown great promise in learning f(α). Herein, we adopt a
JAX re-implementation, based on b-splines as the underly-
ing basis functions, of KANs. A grid size of 5 with layers [1,
2, 1] were used. For future work, it could be meaningful to
examine the effectiveness of KANs, particularly with other
basis sets such as Legendre and Chebyshev polynomials, in
learning PDEs.

3. Method
3.1. Numerical simulations with Finite Element Method

To generate all the true numerical solutions examined in this
paper, we solved the PDE using the finite element method
implemented in FEniCS. The Continuous Galerkin elements

from the Lagrange family of function spaces are used to ap-
proximate the physical fields. For 2D problems, convective
heat loss is applied on y = ±w

2 , where w is the width of the
domain. For all examples, a Dirichlet boundary condition is
imposed on one end of the domain (x = 0) with T = Ttrig.

For examples involving the optimization of parameters and
learning cure kinetics of DCPD-GC1, the PDEs of Eq. (1)
are framed as a coupled scheme that solves T and α si-
multaneously using a nonlinear solver following Newton’s
method and the iterative linear solver of the generalized min-
imal residual (GMRES) method with an algebraic multigrid
(amg) preconditioner.

Due to convergence issues using the coupled scheme, for
examples involving the learning of cure kinetics of DCPD-
GC2 and unstable COD FROMP, Eq. (1) is solved in a
decoupled scheme, in which an iterative linear solver with
the conjugate gradient method and an amg preconditioner
are used to solve the diffusion PDE (Eq. (1a)) for T in an
implicit Euler scheme, and an explicit Euler scheme is used
to solve the reaction ordinary differential equation (ODE,
Eq. (1b)) for α. The material properties shown in Eq. (1)
for thermal conductivity κ (in W m−1 K−1), specific heat
capacity Cp (J kg−1 K−1), density ρ (kg m−3), enthalpy of
polymerization Hr (J kg−1), pre-exponent A (in s−1) and
activation energy E (in kJ mol−1) for DCPD-GC1, DCPD-
GC2 and COD can be found in (Kumar et al., 2021).

3.2. Differentiable PDE simulator

A differentiable PDE simulator is required to allow end-to-
end learning of unknown terms in the PDE. We apply PDE-
constrained optimizations with the adjoint method (Sadr
et al., 2024; Zhao et al., 2020), and backpropagate the loss
to update learnable parameters within the PDE. With reverse-
mode auto-differentiation, the vector-Jacobian product func-
tions solve the adjoint equations in JAX and FEniCS-adjoint
(Mitusch et al., 2019). In our time-dependent PDE, solv-
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ing the PDE forward evaluates T (Eq. (8)) while the ad-
joint equation (Eq. (9)) is solved backward in time. The
adjoint variable, λ, is the solution of the adjoint equation
and θ is a set of parameters that we are trying to learn.
A loss function (or objective function) which depends on
the state variable (i.e. temperature T ) integrated over time
(L(T ) =

∫ t

0
l(T ) dt), is constructed based on the relative

L2 norm between the true T and simulated T . Eq. (10)
shows the gradient of the loss function with respect to the
parameters where ∂T/∂θ is the sensitivity.

M
dT

dt
= F (T, θ) (8)

−M† dλ

dt
=

(
∂F

∂T

)†

λ+
∂l

∂T
(9)

∂L

∂θ
=

∫ t

0

(
∂l

∂T

)†
∂T

∂θ
dt (10)

By interfacing with JAX (Bradbury et al., 2018), we can
create end-to-end differentiable simulators and parameterize
learnable functions within the PDE with versatile representa-
tions, such as orthogonal polynomials and neural networks.
The ADAM optimizer is used to update parameters itera-
tively through gradient descent with weight decay. An L2

regularization is imposed in the loss function to discourage
larger values of the parameters.

4. Conclusion
With a hybrid differentiable PDE simulator, we have demon-
strated that we can learn missing functions within the PDE
by applying gradient-based PDE-constrained optimizations.
We applied the approach to learn the cure kinetics models for
three different FROMP systems - DCPD-GC1, DCPD-GC2,
and the unstable FROMP of COD. With limited training
samples and a few frames of PDE solutions, we can recover
the true f(α) by iteratively updating the learnable function
with gradient descent. Parameterizing the unknown func-
tions with orthogonal polynomials give high accuracy and
interpretability. Our work paves the way to uncover missing
physics and cure kinetics from videos captured experimen-
tally - thereby allowing end-to-end learning of continuum
models from observed dynamics.
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A. Appendix

Figure 4. a) Optimizing material parameters for high FROMP frontal velocities. b) Learning thermal conductivity and initial temperature.

Figure 5. Evolution of learned f(α) over training iterations for DCPD-GC1, COD, and DCPD-GC2.
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Figure 6. Comparisons of roll-out solutions with the learned f(α) and the true solutions for FROMP of DCPD-GC1. Both T and α
solutions are plotted at different t (Test set example).
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Figure 7. Comparisons of roll-out solutions with the learned f(α) and the true solutions for unstable FROMP of COD. Both T and α
solutions are plotted at different t (Example 1, test set).
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Figure 8. Comparisons of roll-out solutions with the learned f(α) and the true solutions for unstable FROMP of COD. Both T and α
solutions are plotted at different t (Example 2, test set).
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