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ABSTRACT

Pre-trained Transformer models such as BERT have shown great success in a wide
range of applications, but with the cost of substantial increases in model complexity.
Quantization-aware training (QAT) is a promising way to lower the implementa-
tion cost and energy consumption. However, aggressive quantization below 2-bit
causes considerable accuracy degradation, especially when the downstream dataset
is not abundant. This work proposes a proactive knowledge distillation method
called Teacher Intervention (TI) for fast converging QAT of ultra-low precision
pre-trained Transformers. TI intervenes layer-wise signal propagation with the
intact signal from the teacher to remove the interference of propagated quantization
errors, smoothing loss surface and expediting the convergence. We further propose
a gradual intervention mechanism to stabilize tuning of the feed-forward network
and recover the self-attention map in steps. The proposed scheme enables fast
convergence of QAT and improves the model accuracy regardless of diverse char-
acteristics of downstream fine-tuning tasks. We demonstrate that TI consistently
achieves superior accuracy with lower fine-tuning budget.

1 INTRODUCTION

The Transformer-based pre-trained neural networks have significantly improved the performance of
various applications of artificial intelligence, including natural language processing (NLP) (Devlin
et al., 2018; Raffel et al., 2020; Brown et al., 2020) and computer vision (Dosovitskiy et al., 2020;
Touvron et al., 2021; Liu et al., 2021). The self-attention mechanism represents these models (Vaswani
et al., 2017), which links different symbols within a sequence to obtain a relational representation.
Thanks to the exceptional performance of the pre-trained Transformer models, there has been
an increasing need for their efficient deployment. However, the gigantic size of the pre-trained
Transformer models hinders straightforward implementation. Even relatively small models like
BERT-base (Devlin et al., 2018) contain a few hundred million parameters, incurring profound
memory and computation overhead for resource-constrained devices with limited memory and
computing fabric. Seminal research efforts attempted to reduce this burden via model compression.
Behnke & Heafield (2020) and Gordon et al. (2020) pruned unimportant weights to reduce the number
of parameters, while Mao et al. (2020) further employed low-rank matrix factorization. In addition,
Knowledge Distillation (KD) Hinton et al. (2015) was employed in (Sanh et al., 2019; Sun et al., 2019;
2020; Wang et al., 2020) to transfer knowledge of the original model (teacher) to the compressed one
(student) by mimicking the Teacher’s behavior.

Among many model compression techniques, quantization-aware training (QAT) stands out for its
recent success in reducing computational complexity and memory requirements of Transformer
models (Bhandare et al., 2019; Zafrir et al., 2019; Kim et al., 2021). QAT reflects quantization errors
during the forward pass computation of stochastic gradient descent to train a more accurate quantized
model. However, quantizing weight parameters of Transformers to a precision lower than 2-bits
degrades the accuracy, especially when the dataset size for the target downstream tasks is not large
enough (Zhang et al., 2020b; Bai et al., 2020). Although few-sample fine-tuning of Transformer
models has been reported to be highly unstable (Grießhaber et al., 2020; Yu et al., 2021; Zhang
et al., 2020a; Dodge et al., 2020; Mosbach et al., 2020), there is limited understanding on why QAT
is susceptible for small dataset tasks and how to improve the QAT accuracy. Recently, XTC (Wu
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et al., 2022) claimed that the few-sample fine-tuning is under-trained, and thus augmented the QAT
method with data augmentation and significantly increased fine-tuning iterations. While XTC was
successful in recovering accuracy degradation, it took an order of magnitude higher fine-tuning time.
The increased fine-tuning cost for QAT would become a significant hurdle for the broad deployment
of quantized Transformers.

Figure 1: The training time and accuracy compari-
son between ours and other SOTA results on CoLA
task

This work proposes a proactive KD method
called Teacher Intervention (TI) for fast con-
verging QAT of ultra-low precision pre-trained
Transformers. We reveal that difficulty of quan-
tization on few-sample fine-tuning originates
from disruption of loss surface due to quantiza-
tion error propagation. To mitigation this unde-
sirable phenomena, we propose TI to intervene
layer-wise signal propagation with the intact
signal from the teacher. TI removes the interfer-
ence of propagated quantization errors, smooth-
ing loss surface and expediting the convergence.
We further discover that self-attention map is
particularly susceptible to the quantization er-
ror. Thus, we propose a gradual intervention
mechanism that first intervenes attention output
for stable tuning of the feed-forward network,
followed by self-attention map intervention for
its recovery. The proposed gradual intervention
scheme enables fast convergence of QAT and improves the model accuracy regardless of diverse char-
acteristics of downstream fine-tuning tasks. We perform extensive evaluation on various fine-tuned
Transformers (BERT-base/large, TinyBERT-4L/6L, and SkipBERT-6L for NLP, and ViT for CV),
and demonstrate that TI consistently achieves superior accuracy with lower fine-tuning budget. In
particular, TI outperforms TernaryBERT on GLUE tasks with 15× savings in fine-tuning hours, as
shown in Fig.1.

We summarize our contributions as follows:

• We reveal that root cause of QAT’s failure is the disruption of loss surface due to propagation
of quantization error.

• We propose a proactive KD method called Teacher Intervention (TI), which removes the
interference of propagated quantization errors. TI works as a quick warm-up phase to
stabilize ultra-low precision QAT and improve convergence.

• We propose a gradual intervention mechanism that first intervene attention output to tune
the feed-forward network followed by self-attention map intervention for its enhanced
recovery. The proposed gradual intervention improves QAT convergence regardless of
diverse characteristics of downstream fine-tuning tasks.

• We demonstrate that TI significantly enhances convergence of state-of-the-art QAT methods
on various fine-tuned Transformers in NLP and CV by achieving higher accuracy within
smaller fine-tuning budgets. This improved fine-tuning efficiency will facilitate rapid
deployment of ultra-low precision fine-tuned Transformers.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION FOR BERT COMPRESSION

Knowledge distillation (KD) Hinton et al. (2015) is a transfer learning framework to pass on knowl-
edge of a large model (teacher) to a smaller one (student) by mimicking the teacher’s behavior.
Because KD provides fruitful information not contained in the output label, KD can compress the
model size without significant performance degradation. Therefore, KD has been widely studied to
train smaller BERT models for various application domains.
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The most common distillation approach is to match the probability distribution from the final output
softmax between the Teacher and Student for the same input, as in DistilBERT Sanh et al. (2019).
In addition to the distillation loss at the model output, PKD Sun et al. (2019) suggested matching
the normalized output of each Transformer layer claiming that loss on intermediate output can be
beneficial for the Student. MobileBERT Sun et al. (2020) also employed per-head attention map
transfer along with the customized architecture for efficient Transformer computations. MiniLM Wang
et al. (2020) further transferred knowledge from the self-attention map as well as the value-relation.
Considering the structural mismatch between the Teacher and Student models, MiniLM performed
distillation only at the last Transformer layer.

While the abovementioned studies focused on the task-agnostic BERT, there have been several
efforts Tang et al. (2019); Aguilar et al. (2020) to train a tiny task-specific Student. In this line of
study, the task-specific, downstream fine-tuned BERT is first prepared, and the Student is trained with
KD by utilizing this fine-tuned model as a teacher. As a hybrid approach, TinyBERT Jiao et al. (2019)
proposed a two-step KD, the first step for general distillation, followed by task-specific distillation.

Although these KD techniques for BERT compression have developed efficient BERT structures with
a reduced number of parameters and computations, there has been limited understanding of KD on
the model quantization. In this work, we reveal that more aggressive intervention of the teacher on
the self-attention map of each layer helps the ultra-low precision model regain the model accuracy.

2.2 QUANTIZATION FOR ULTRA-LOW PRECISION BERT

Quantization is a promising technique for reducing the high inference cost of large-scale models
without changing the model structure. Instead of representing numbers with the 32-bit floating-point
(FP32) format, employing fixed-point representation, such as 8-bit integer (INT8) quantization, has
achieved significant speedup and storage savings for BERT Zafrir et al. (2019); Kim et al. (2021).
However, direct quantization of weight parameters would suffer accuracy degradation of the original
model accuracy when the quantization bit-precision is low. Therefore, quantization-aware training
(QAT) is commonly applied for ultra-low precision model quantization.

Recently, QAT has been applied for compressing BERT with precision lower than 2-bit. Ternary-
BERT Zhang et al. (2020b) represents each weight element into one of three values {−1, 0, 1}.
TernaryBERT actively incorporates KD into QAT for improving accuracy degradation. Especially,
KD with the MSE loss on the attention score (before taking Softmax) and the output of each Trans-
former layer is employed for QAT. To further reduce the bit-precision, BinaryBERT Bai et al. (2020)
suggested a modified QAT procedure that initializes the weights for binary quantization. However,
ternarizing or binarizing weight parameters significantly degrades the model accuracy, especially
when the dataset size for the target downstream tasks is not large enough.

In fact, it has been reported that finetuning BERT on downstream tasks with insufficient data is
highly unstable Grießhaber et al. (2020); Yu et al. (2021). As a result, several works proposed
modified finetuning procedures for improving the stability (Zhang et al., 2020a; Dodge et al., 2020;
Mosbach et al., 2020). Still, the proposed approaches do not address the sensitivity of Transformer
models on QAT for small datasets. XTC (Wu et al., 2022) recently proposed a QAT method with
significantly increased iterations and data augmentation to improve quantization accuracy of ultra-low
bit precision Transformers. As illustrated in Fig. 1, however, this prolonged fine-tuning results in
sizable deployment overhead, let alone costly data augmentation. In this work, we discover that
quantization significantly disrupts the propagation of self-attention in Transformer layers hindering
the optimization process of QAT. Therefore, we propose a new KD-based method that proactively
intervene the error propagation to improve convergence of QAT methods.

3 BACKGROUND AND MOTIVATION

3.1 TRANSFORMER LAYER

The BERT model Devlin et al. (2018) is built with Transformer layers Vaswani et al. (2017). A
standard Transformer layer includes two main sub-modules: Multi-Head Attention (MHA) and
Feed-Forward Network (FFN). Input to the l-th Transformer layer is Xl ∈ Rn×d where n and d are
the sequence length and hidden state size, respectively. Let NH be the number of attention heads
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and dh = d/NH . WQ
h ,WK

h ,WV
h ∈ Rd×dn are the weight parameters converting Xl into Querry

(Q = XlW
Q
h ), Key (K = XlW

K
h ), and Value (V = XlW

V
h ), respectively. Then, attention score

(AS), self-attention map (SA), and attention context (AC) are defined as follows:

ASh = QK⊤; SAh = Softmaxh(
ASh√

d
); ACh = SAhV. (1)

Then, attention output (= MHA) is defined as MHA(Xl) = Concat(AC1,AC2, ...ACNH
)WO. Moti-

vated by Kobayashi et al. (2020), attention output can be re-written per each token i:

MHA(Xl)(i) =

n∑
j=1

αi,jf(Xl(j)), (2)

where f(x) := (xWV + bV )WO and αi,j is j’th value of i’th token in AMh. Therefore, MHA can
be decomposed into two parts: self-attention generation (SA-GEN) corresponding to the attention
map (α), and self-attention propagation (SA-PROP) corresponding to f(x). Fig. ?? shows which
part is SA-GEN and SA-PROP respectively. FFN consists of two fully-connected layers with weight
parameters W 1 and W 2:

FFN(Yl) = GeLU(XlW
1 + b1)W 2 + b2. (3)

Therefore, a Transformer layer Xl is defined as:

Yl = LayerNorm(Xl + MHA(Xl)),

Xl+1 = LayerNorm(Yl + FFN(Yl)).
(4)

3.2 QUANTIZATION-AWARE TRAINING

Figure 2: Illustration of three knowledge distil-
lation locations (attention score-Lscore, layer
output-Llayer, and the final prediction-Lpred)
for quantization-aware training of Transformer
models.

Quantization-aware training (QAT) emulates
inference-time quantization during training
to learn parameters robust to the quantiza-
tion error. In particular, ternary quantiza-
tion represents all the weight parameters
(WQ,WK ,WV ,WO,W 1,W 2) into ternary
values {+1, 0,−1} along with a scale factor α for
sub-2bit inference at deployment. In this work,
we follow the approach of TWN Zhu et al. (2016)
that analytically estimates the optimal α and T to
minimize ∥W − αT∥.

Due to aggressive bit-reduction, ternary quantiza-
tion causes significant accuracy loss. KD can help
compensate for accuracy degradation, where the
original full-precision model works as a teacher
to guide the training of the quantized model as a
student. In case of Transformer models, Ternary-
BERT Zhang et al. (2020b) applied KD on every
output activation X l as well as attention scores AS
with mean squared error (MSE) loss:

Ltrm =

L+1∑
l=1

MSE(XS
l , X

T
l ) +

L∑
l=1

MSE(AS
l , A

T
l ),

(5)
where S and T represent the student and teacher
models, respectively.

Also, the output logits of the student (PS) and the teacher (PT ) are used in TernaryBERT Zhang
et al. (2020b) to compute the cross-entropy loss:

Lpred = CE(PS , PT ). (6)

We follow the settings of TernaryBERT Zhang et al. (2020b) as our baseline QAT method. Fig. 2
shows the KD locations utilized for Transformer models.
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Figure 3: (a) Loss landscape visualization of different QAT methods over CoLA task (b) Hessian
max eigenvalue spectra of different QAT methods

3.3 CHALLENGES

Despite attempts to bridge the accuracy gap, prior works on ultra-low precision Transformers Bai
et al. (2020); Zhang et al. (2020b) still suffer noticeable accuracy degradation, especially when the
dataset size is small. Recall Mosbach et al. (2020) that the few-sample fine-tuning is susceptible
to bad local minima. However, we observed that QAT often fails even if it fine-tunes from the
successfully trained model. Therefore, we visualize the loss landscape of the quantized Transformers.
Fig. 3(a) illustrates the loss surfaces of the full-precision BERT-base model successfully fine-tuned
on CoLA of GLUE tasks, along with the models quantized with TernaryBERT. As expected, the
loss surface of TernaryBERT exhibits sharp curvatures with many bad valleys, contrasting with the
smooth loss surface of the full-precision model. To gain further intuition of the internal behavior of
Transformer layers under quantization, we measured the mean-square error (MSE) of the output of
each Transformer layer between the full-precision baseline (teacher) and TernaryBERT (student). As
shown in Fig. 3(b), there is a trend of growing MSE over the layers. (Similar trends can be observed in
the other GLUE tasks.) This exaggerated error along the layers would degrade the model’s accuracy.

In this work, we focus on alleviating this aggravating impact of quantization errors on Transformers
with a proactive knowledge distillation called Teacher Intervention (TI). Interestingly, as shown in
Fig. 3, TI could successfully suppress the error propagation and flatten the loss surface for favorable
convergence without precipitously increased fine-tuning iterations. We describe the detail of TI in the
next section.

4 METHOD

4.1 TEACHER INTERVENTION

Teacher intervention (TI) is a KD method that aggressively intervenes in the student’s signal propaga-
tion to guide QAT for more rapid convergence. Fig. 4(a) illustrates the options for teacher intervention.
First, intervention on the attention output (a.k.a. output intervention, TI-O) replaces the student’s
attention output (= MHA) with the teacher’s. In this case, the FFN sub-layers are trained with
ultra-low precision quantization without concerns of erroneous input from MHA. Meanwhile, the
computation within the MHA sub-layer is quantized for internal distillation. Similarly, intervention
on the self-attention map (a.k.a. map intervention, TI-M) replaces the student’s SA-GEN output with
the teacher’s.

The development of TI is motivated by the previous observation of the aggravating impact of quanti-
zation error along the layers (cf. Fig. 3(b)). We conjecture that the root cause of this phenomenon is
error propagation instead of the quantization error itself. To confirm our hypothesis, we conducted
controlled experiments for TI-O with two quantization cases (and similar experiments for TI-M):

• Case-1: Quantize all except MHA (SA-GEN for TI-M).
• Case-2: Quantize all + TI.
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Figure 4: (a) Illustration of Teacher Intervention TI (b) Accuracy curves during QAT with Teacher
intervention (TI) and MSA Full-Precision model QAT in CoLA task (c) Layer-wise MSE loss of FFN
output with Zhang et al. (2020b) and QAT with TI

Map Intervention Output Intervention Gradual Intervention

SA-GEN PROP FFN SA-GEN PROP FFN SA-GEN PROP FFN

Step-1-Phase1 T S S T S T S

Step-1-Phase2 T S S

Step-2 S S S

Table 1: Detailed TI settings. S: Stduent Model, T: Teacher Model

The key difference is that Case-2 propagates the quantization error through the Transformer layers
while Case-1 does not. Fig. 4(b) shows the convergence curves of the two cases on CoLA for
TI-O and TI-M. As shown in the figure, Case-1 converges rapidly to full-precision accuracy despite
the ultra-low bit quantization in the quantized sub-layers. Whereas, Case-2 converges slowly to
the sub-optimal point with noticeable accuracy degradation. For example (in the setting of TI-O),
although Case-2’s MHA computation is in full-precision, the error propagated from its preceding FFN
sub-layers still affects it, corrupting the attention output. On the other hand, TI interrupts this error
propagation to stabilize QAT on FFN sub-layers. Therefore, Fig. 3(b) shows that error propagation
disappears when TI is applied.

4.2 GRADUAL TEACHER INTERVENTION

Given that there are two options for teacher intervention, how can we choose one for achieving the
best performance? In this section, we propose a unified approach that gradually applies the output
intervention followed by the map intervention. Note that the two TI options have strengths and
weaknesses. For example, TI-O focuses on tuning the FFN sub-layers, but it lacks consideration of the
self-attention map recovery. On the other hand, TI-M is best suited for recovering the self-attention
map, but it does not protect signal propagation through SA-PROP. Interestingly, we empirically
discover that different downstream tasks of the pre-trained Transformers have diverse preferences;
e.g., BERT-base fine-tuned on STS-B is sensitive to disruption in the self-attention map while the
model fine-tuned on CoLA prefers careful tuning of the FFN sub-layers. Therefore, it is helpful to
develop a unified solution for teacher intervention. As a natural combination, we propose a gradual
teacher intervention mechanism that applies TI-O first to tune the FFN sub-layers, followed by TI-M
to recover the self-attention map. (We conducted an ablation study for the other possibilities.) The
proposed gradual intervention method (TI-G) has shown practical success in most cases studied in
this work. Table ?? summarizes the TI settings.
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Figure 5: Left: Cross-entropy loss in QAT with different TI methods Right: Layer-wise MSE loss
with different TI methods

Fig. 5(a) shows the convergence curves of different TI options for STS-B and CoLA. As discussed
earlier, TI-M shows better convergences than TI-O on STS-B, but the opposite trend is shown
on CoLA. Nevertheless, TI-G always shows superior convergence compared to the other options,
demonstrating its universal applicability. The MSE error of MHA reported in Fig. 5(b) explains the
reasoning behind TI-G’s superiority. As discussed earlier, BERT-base trained on STS-B and CoLA
exhibit distinct characteristics. In the case of STS-B, TI-M is more effective in reducing the error
at the MHA output than TI-O. Whereas, TI-G takes advantage of the superior tuning of the FFN
sub-layers in the first phase, and thus map intervention in its second phase reduces more error. A
similar situation happens in the CoLA case. Therefore, we can conclude that the proposed gradual
intervention can be a great fit for managing diverse characteristics of various downstream tasks for
QAT of fine-tuned Transformers.

5 EXPERIMENTS

In this section, we evaluate SARQ on fine-tuned BERT with ternary quantization. We empirically
demonstrate that 1) SARQ outperforms the state-of-the-art (TernaryBERT) on various tasks and
datasets and 2) SARQ significantly boosts the convergence of QAT.

5.1 EXPERIMENT SETTINGS

We use the task-specific, fine-tuned BERT-Base Devlin et al. (2018) (12 layer) and TinyBERT Jiao
et al. (2019) (4 layer) for evaluation of SARQ. We evaluate our method on the GLUE Wang et al.
(2018) and SQuAD Rajpurkar et al. (2016). TernaryBERT and SARQ-1step perform training for
three epochs, the same as the full-precision finetuning. In the case of SARQ, the first step QAT with
Teacher intervention is performed until convergence (up to one epoch), then the second step QAT is
performed for two epochs. Note that the QAT with Teacher intervention converges much faster than
one epoch.
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Table 2: Different training budgets and training details for the GLUE tasks.

Zhang et al. (2020b) Wu et al. (2022)

Budget-O Budget-O2 Budget-O4 Budget-A Budget-C

DA ✗ ✗ ✗ ✓ ✓
Epoch 3 6 12 1 12

CoLA RTE MRPC STS-B

Train batch-size 16 32 32 32
Train (noDA) 8551 2490 3668 5749
Train (DA) 213212 142991 225630 322121
DA / noDA 24.9 57.4 61.5 56.0

Budget-O Time 259 97 72 223
Budget-A Time 2149 1862 1484 4160
Budget-C Time 25792 22342 17813 49915

BERTBASE BERTLARGE

GLUE Task Cost RTE CoLA STS-B MRPC RTE CoLA STS-B MRPC
Full-Prec 73.28 58.04 89.24 87.77 70.39 60.31 89.83 88.43

TernaryBERT Budget-O 67.44 ±1.30 49.44 ±1.11 87.58 ±0.09 85.58 ±0.58 63.36 ±1.01 53.25 ±1.20 88.65 ±0.16 88.31 ±0.20

TI-Map Budget-O 69.60 ±0.92 51.37 ±1.23 87.75 ±0.12 86.25 ±1.03 66.13 ±1.12 52.40 ±1.65 88.61 ±0.16 88.67 ±0.32

TI-Output Budget-O 69.31 ±0.57 50.91 ±0.94 87.76 ±0.22 86.04 ±0.61 65.20 ±0.94 52.66 ±1.27 88.56 ±0.16 88.68 ±0.51

TI-Gradual Budget-O 70.32 ±0.72 51.98 ±1.35 87.77 ±0.29 86.44 ±0.49 66.27 ±0.79 54.12 ±1.13 88.66 ±0.05 88.80 ±0.41

TernaryBERT Budget-O2 70.51 ±0.41 52.65 ±0.77 88.04 ±0.14 86.00 ±0.38 66.42 ±0.62 55.72 ±1.26 89.00 ±0.09 88.22 ±0.82

TI-Gradual Budget-O2 71.48 ±0.36 54.98 ±0.66 88.04 ±0.18 88.63 ±0.55 68.11 ±0.75 57.55 ±1.69 89.12 ±0.04 88.25 ±0.46

TernaryBERT Budget-O4 71.23 ±0.42 53.57 ±0.80 88.22 ±0.04 86.58 ±0.32 67.50 ±0.95 57.70 ±0.64 89.12 ±0.01 89.12 ±0.84

TI-Gradual Budget-O4 73.16 ±0.36 57.92 ±1.19 88.48 ±0.61 89.56 ±0.52 69.67 ±0.72 59.89 ±1.07 89.33 ±0.10 88.74 ±0.76

TinyBERT-4L TinyBERT-6L

GLUE Task Cost RTE CoLA STS-B MRPC RTE CoLA STS-B MRPC
Full-Prec 68.23 43.06 87.07 87.76 74.00 57.78 88.74 87.35

TernaryBERT Budget-O 63.15 ±0.50 32.15 ±1.43 83.33 ±0.36 84.90 ±0.38 68.74 ±1.42 47.77 ±0.35 87.29±0.12 84.89 ±0.53

TI-Map Budget-O 64.25 ±0.83 35.59 ±1.24 83.41 ±0.21 85.22 ±0.29 68.92 ±1.25 48.30 ±1.10 87.23 ±0.12 86.16 ±0.91

TI-Output Budget-O 63.89 ±0.68 35.06 ±1.43 83.57 ±0.29 85.40 ±0.25 68.08 ±1.04 48.15 ±0.50 87.31 ±0.10 86.04 ±0.61

TI-Gradual Budget-O 64.29 ±0.72 35.17 ±1.35 83.58 ±0.29 85.48 ±0.49 69.38 ±0.78 49.08 ±1.24 87.31 ±0.11 86.30 ±0.63

TernaryBERT Budget-O2 64.74 ±0.76 34.49 ±1.89 84.10 ±0.34 85.73 ±0.05 69.67 ±0.95 49.54 ±0.22 87.51 ±0.04 86.61 ±0.41

TI-Gradual Budget-O2 64.98 ±1.45 36.30 ±0.24 84.27 ±0.22 86.44 ±0.31 71.12 ±0.63 50.38 ±0.56 87.56 ±0.09 86.80 ±0.42

TernaryBERT Budget-O4 65.10 ±0.55 35.91 ±0.31 84.36 ±0.26 86.70 ±0.13 70.75 ±0.36 51.66 ±0.51 87.75 ±0.04 86.76 ±0.23

TI-Gradual Budget-O4 65.22 ±0.55 37.40 ±1.30 84.39 ±0.27 87.22 ±0.13 72.13 ±0.12 52.08 ±0.01 87.90 ±0.14 87.15 ±0.39

Table 3: Evaluation Budget-O/O2/O4 results of BERT family models on GLUE benchmark (Small
dataset). Each task are repeated 10 times.

5.2 QAT ACCURACY ON GLUE BENCHMARK

First, we perform an extensive performance comparison of the proposed teacher intervention methods
with the basic and the state-of-the-art QAT methods (TernaryBERT (Zhang et al., 2020b) and
XTC (Wu et al., 2022), respectively). To investigate the convergence of these QAT methods, we
consider the following fine-tuning budgets:

• Budget-O: The number of iterations reported in the original paper (Zhang et al., 2020b).
• Budget-O2: 2x number of iterations from Budget-O.
• Budget-O4: 4x number of iterations from Budget-O.
• Budget-A/C: the budget reported in (Wu et al., 2022).

A summary of fine-tuning budgets is shown in Table 2. Note that the number of fine-tuning iterations
of Budge-A is roughly 15× larger than Budget-O4. In the following subsections, we categorize
the experiments to two scenarios: Few-Sample Fine-tuning (Scenario-1: Budget O/O2/O4) and
Prolonged Fine-tuning (Scenario-2: Budget A/C)1.

Scenario-1: Few-Sample Fine-tuning Table 3 summarizes the experimental results of few-sample
fine-tuning. The following lessons can be observed:

• Consistent with the prior observations (), the QAT accuracy increases as the fine-tining
budget grows from Budget-O to Budget-O4.

1We report the experimental results for the small dataset tasks here; the experimental results on the other
GLUE tasks are reported in Appendix.
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TinyBERT-6L SkipBERT-6L

Method Cost RTE CoLA STS-B MRPC Method RTE CoLA STS-B MRPC
Full-Prec 74.00 57.78 88.74 87.35 74.72 55.37 89.27 86.11

TernaryBERT Budget-A 72.02 ±0.21 53.44 ±1.11 88.43 ±0.07 88.14 ±0.31 XTC 69.91 ±0.41 53.74 ±0.77 88.77 ±0.03 86.29 ±0.57

TI-Gradual Budget-A 72.92 ±0.72 54.29 ±1.35 88.45 ±0.29 88.36 ±0.49 TI-Gradual 70.87 ±0.20 56.46 ±0.68 88.94 ±0.04 86.98 ±0.44

TernaryBERT Budget-C 73.40 ±1.30 54.11 ±1.11 88.60 ±0.02 88.43 ±0.58 XTC 73.76 ±0.54 56.30 ±0.67 88.91 ±0.03 87.38 ±0.19

TI-Gradual Budget-C 73.82 ±0.41 55.05 ±1.13 88.60 ±0.01 88.62 ±0.02 TI-Gradual 74.48 ±0.79 56.32 ±1.13 88.92 ±0.03 87.34 ±0.41

Table 4: Evaluation results of BERT family models on GLUE benchmark (Small dataset) with
Budget-A/C.

ViT-B with Short Fine-Tuning (1K steps) ViT-B with Fine-Tuning (10K/20K steps)

Dataset CIFAR100 CIFAR10 CIFAR100 ImageNet
Method 2bit 4bit 2bit 4bit 2bit 4bit 2bit 4bit

Full-Prec 92.78 99.1 92.78 82.65
Baseline 84.61 ±0.12 89.80 ±0.09 97.32 ±0.02 98.46 ±0.02 89.57 ±0.04 91.82 ±0.07 75.40 ±0.12 79.92 ±0.12

Ours 85.28 ±0.04 90.19 ±0.12 97.59 ±0.05 98.59 ±0.05 90.07 ±0.04 91.98 ±0.10 76.66 ±0.04 80.40 ±0.14

Table 5: Evaluation QAT performance of ImageNet-21K pre-trained ViT-B on Vision benchmarks
with shorter train and longer train.

• All teacher intervention options achieve higher accuracy than the baseline (TernaryBERT).

• The preference between TI-M and TI-O varies across the tasks and models. For example,
TI-M is mostly preferred on CoLA and RTE, while there is a marginal preference for TI-O
for STS-B.

• For all the cases (except one corner case for BERT-Large on MRPC), TI-G outperforms the
other TI options. Although the accuracies of TI-M and TI-O are similar, TI-G significantly
outperforms both.

From these observations, we can conclude that the proposed gradual intervention significantly
improves the QAT convergence for regaining model accuracy.

Scenario-2: Prolonged Fine-tuning Table 3 summarizes the experimental results of prolonged
fine-tuning. For fair comparisons, we followed the instructions of XTC to match the fine-tuning
budgets, learning rates, and the model compression mechanism (including both TinyBERT and
SkipBERT). As expected, TI-G achieves higher accuracy with Budget-A/C than Budget-O4. But
TI-G’s accuracy is higher than TernaryBERT and XTC for these prolonged fine-tuning budgets with
noticeable margins. In fact, XTC’s average accuracy on Budget-A (for SkipBERT-6L) is lower than
TI-G’s average accuracy on Budge-O, highlighting superior convergence of TI-G compared to XTC.

5.3 QAT ACCURACY ON VIT BENCHMARKS

We further evaluate the proposed teacher intervention method on vision Transformer (ViT). Table 5
summarizes the QAT accuracies of ViT fine-tuned for CIFAR10, CIFAR100, and ImageNet with the
fine-tuning budgets following the original paper Dosovitskiy et al. (2020). As shown in the figure, TI-
G outperforms TernaryBERT on all the test cases for both ternary (2-bit) and 4-bit quantization-aware
training. It is noteworthy that TI-G is exceptionally effective for fine-tuned ImageNet.

6 CONCLUSION

In this work, we proposed a proactive knowledge distillation method for improving convergence
of QAT for ultra-low precision Transformers called teacher intervention. The proposed method
intervenes in the propagation of quantization error to suppress accuracy degradation and improve
QAT’s convergence speed. We demonstrate that the proposed method outperforms the state-of-the-art
in achieving higher QAT accuracy on various fine-tuned Transformers.
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