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ABSTRACT

This paper provides the first rigorous analysis of estimation error bounds of diffu-
sion modeling, trained with a finite sample, for well-known function spaces. The
highlight of this paper is that when the true density function belongs to the Besov
space and the empirical score matching loss is properly minimized, the generated
data distribution achieves the nearly minimax optimal estimation rates in the total
variation distance and in the Wasserstein distance of order one. Furthermore, we
extend our theory to demonstrate how diffusion models adapt to low-dimensional
data distributions. We expect these results advance theoretical understandings of
diffusion modeling and its ability to generate verisimilar outputs.

1 INTRODUCTION

Diffusion modeling, in particular, score-based generative modeling (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021), requires the gradient
of the logarithmic density of the (diffused) data distribution, called the score. In practice, however,
we have only access to the true distribution through a finite sample from that, and therefore the true
score is replaced by a neural network (score network). We train the score network based on the
score of the diffusion process from the empirical distribution, using the score matching technique
(Hyvärinen & Dayan, 2005; Vincent, 2011). This replacement causes the difference between the
true data distribution and the distribution of the outputs generated by diffusion modeling, which
motivates the analysis of this error as a distribution estimation problem. In other words, is diffusion
modeling a good distribution estimator?

Existing literature has analyzed the estimation error given the score approximation error bound as
an assumption. (i) Under the L2-bound on the score approximation accuracy, Song et al. (2020)
showed the bound in the Kullback–Leibler (KL) divergence via Girsanov theorem, for continuous-
time dynamics. Recently, the polynomial bound has appeared in discrete-time in the total variation
distance (TV) (Lee et al., 2022b). Lee et al. (2022b) assumed the log-Sobolev inequality (LSI)
for the true density, which was later eliminated by Chen et al. (2022) and Lee et al. (2022a). (ii)
Concurrently, with the L∞-bound of the approximation error, De Bortoli et al. (2021) (also with
dissipativily) and De Bortoli (2022) (under the manifold hypothesis) derived non-polynomial bounds
in TV and in the Wasserstein distance of order one (W1), respectively.

However, the important problem has been unaddressed, that is, whether the score can be appro-
priately approximated with a finite number of sample via score matching. As the only exception,
De Bortoli (2022) derived the n−1/d bound in W1 for n data and a d-dimensional distribution. How-
ever, in their analysis, the neural network is assumed to almost perfectly fit the empirical score and
the estimation bound depends on the convergence rate of the empirical distribution to the true one
(Weed & Bach, 2019). Because of the same lower bound for the convergence of empirical measures
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(Dudley, 1969), their n−1/d bound is essentially unimprovable with any structural assumption on
the data distribution. Therefore, it is impossible to extend their result to formal density estimation
problems, where the faster convergence rates depending on the smoothness of the true density are
expected. We also mention generalization error analysis mainly on each one discretized step by
Block et al. (2020), but they do not explicitly state the final estimation error and their intermediate
bounds depend on the unknown Rademacher complexity which should be sufficiently large so that
the hypothesis class well approximates the true score.

In summary, the fundamental question on the performance of diffusion models as a distribution
learner largely remains open.

1.1 OUR CONTRIBUTIONS

This work establishes a statistical learning theory for diffusion modeling. The convergence rate of
the estimation error is derived assuming that the true density belongs to well-known function spaces
and deep neural network is employed as an estimator. Surprisingly, we find that diffusion modeling
can achieve the nearly minimax estimation rates. The contributions are detailed as follows:

(i) We give the explicit form of approximation of the score with a neural network and derive
the error bound in L2(pt) at each t, where the initial density is supported in [−1, 1]d, in the
Besov space Bs

p,q([−1, 1]d), and smooth in the boundary.
(ii) We then convert the approximation error analysis into the estimation error bounds. We

derive the bound of n− s
d+2s in TV. Moreover, the rate of n− s+1−δ

d+2s in W1 is derived for
an arbitrary fixed δ > 0, with modified score matching. Notably, both of them are nearly
minimax optimal.

(iii) We extend our theory to demonstrate that diffusion models can avoid the curse of dimen-
sionality under the manifold hypothesis, considering when the true data is distributed over
a low-dimensional plane. This is a special case of De Bortoli (2022) but by far tighter.

Appendix A provides further related works about estimation problems for those less familiar with
statistical learning theory and also introduces existing literature regarding the manifold hypothesis.

2 PROBLEM SETTINGS

Diffusion modeling We basically follow the setting of Song et al. (2020) and the notation of
De Bortoli (2022). (Bt)[0,T ] denote d-dimensional Brownian motion. We use pt for the distribution
of Xt, and therefore p0 is the data distribution. As a forward process (Xt)[0,T ] in Rd, we consider
the following Ornstein–Ulhenbeck (OU) process:

dXt = −βtXtdt+
√
2βtdBt, X0 ∼ p0.

Then we have that Xt|X0 ∼ N (mtX0, σt), where mt = exp(−
∫ t

0
βsds) and σ2

t = 1 −
exp(−2

∫ t

0
βsds). Under mild assumptions on p0, that are easily verified for our setting (Hauss-

mann & Pardoux, 1986), the backward process (Yt)[0,T ] with Yt = XT−t satisfies

dYt = βt(Yt + 2∇ log pt(Yt))dt+
√

2βT−tdBt, Y0 ∼ pT .

∇ log pt(x) is called the score, which is replaced by the score network ŝ(x, t) trained with the finite
sample. Also, because pt approaches N (0, Id), we take T = Õ(1) and replace the initial noise
distribution of Y0 by N (0, Id). Then the modified backward process (Ŷt)[0,T ] is defined as

dŶt = βt(Ŷt + 2ŝ(Ŷt, t))dt+
√

2βT−tdBt, Ŷ0 ∼N (0, Id).

Class of neural networks As usual in approximation with neural networks (Yarotsky, 2017;
Liang, 2017), the score network is selected from a class of deep neural network with the ReLU ac-
tivation ReLU(x) = max{0, x} (operated element-wise for a vector) (Nair & Hinton, 2010; Glorot
et al., 2011) with a sparsity constraint (on the number of non-zero parameters). The score network
is a function from (x, t) ∈ Rd × R+ to y ∈ Rd.
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Definition 2.1. A class of neural networks Φ(L,W, S,B) with height L, width W , sparsity con-
straint S, and norm constraint B is defined as Φ(L,W, S,B) := {(A(L)ReLU(·) + b(L)) ◦ · · · ◦
(A(1)x + b(1))| A(i) ∈ RWi×Wi+1 , b(i) ∈ RWi+1 ,

∑l
i=1(∥A(i)∥0 + ∥b(i)∥0) ≤ S,maxi ∥A(i)∥∞∨

∥b(i)∥∞ ≤ B}.

Score matching Score matching with finite data {x0,i}ni=1 selects the score network ŝ from the
hypothesis S so that ŝ minimizes the empirical score matching loss:

ŝ ∈ argmin
s∈S

1

n

n∑
i=1

∫ T

t=T

E
xt∼pt(xt|x0,i)

[∥s(xt, t)−∇ log pt(xt|x0,i)∥2]dt, (1)

where x0,i
i.i.d.∼ p0 is assumed. We clip the integral interval by T > 0 because generally the score

blows up as t → 0 and (1) gets ∞ for any neural network. We can use finite sample of t and xt,
instead of taking expectation, which is explained in Appendix H.

2.1 ASSUMPTIONS

We evaluate TV(X0, ŶT−T ) and W1(X0, ŶT−T ) under the following assumptions. Let d be a di-
menision of the space, n be the sample size, and 0 < p, q ≤ ∞, s > 0 with s > (1/p − 1/2)+
be parameters of the Besov space. The besov spaces include the Sobolev Hölder spaces, and can
contain not continuous functions (see Appendix B for details). Our main assumption is as follows.
Assumption 2.2. The true density p0 is supported on [−1, 1]d, where it is upper and lower bounded
by Cf and C−1

f , respectively. Also, p0 belongs to U(Bs
p,q([−1, 1]d);C) for some constant C.

U(·;C) means the ball of radius C and we sometimes write it as U(·). We additionally make two
technical assumptions. One is the smoothness of βt.

Assumption 2.3. β· : [0, T ]→ R+ satisfies 0 < β ≤ βt ≤ β for all t and β· ∈ U(C∞([0, T ]), 1) as
a function of t.

The other is the smoothness of the true density p0 on the boundary region. Let a0 be a sufficiently
small value defined later.
Assumption 2.4. p0 also belongs to U(C∞([−1, 1]d \ [−1 + a0, 1− a0]

d); 1).

This is used in the region where pt is not lower bounded. This is necessarily because in density es-
timation lower boundedness is typically assumed (Tsybakov, 2009) and without lower boundedness
the minimax optimal rate gets worse than otherwise (Niles-Weed & Berthet, 2022). This assumption
can be replaced by sufficiently slow decay of the density, such as LSI, used in Lee et al. (2022b).

3 MAIN RESULTS

Throughout this section, we fix δ > 0 as a constant. We assume n ≫ 1 and let N = n
d

d+2s , T =
poly(n−1), and T ≃ log n. Here N is the parameter that controls the score network size. We take
a0 = n− 1−δ

d+2s = N− 1−δ
d in Assumption 2.4.

3.1 APPROXIMATION OF THE TRUE SCORE

First, we consider approximating the true score∇ log pt via a deep neural network.
Theorem 3.1. There exists a neural network ϕscore ∈ Φ(L,W,S,B) that satisfies, for t ∈ [T , T ],∫

x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dx ≲
N− 2s

d log(N)

σ2
t

.

Here, L,W,S and B are evaluated as L = O(log4 N), ∥W∥∞ = O(N log6 N), S =
O(N log8 N), and B = exp(O(log4 N)). Moreover, we can take ϕscore so that ∥ϕscore(·, t)∥∞ =

O(σ−1
t log

1
2 N) holds.
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Proof overview In order to obtain this result, the approximation should be constructed in the fol-
lowing ways. (i) It should reflect the structure of p0(x), especially the fact of p0(x) ∈ U(Bs

p,q). (ii)
It should serve as a good score approximation for different timepoints simultaneously, as a function
of both x and t. To address these issues, we construct a novel basis decomposition in the space of
Rd × [T , T ], specially designed for score approximation. Moreover, as usual in approximation the-
ory (e.g., Yarotsky (2017)) each basis can be realized by a neural network very efficiently, meaning
that a polylogarithmic-sized network suffices with respect to the permissible error.

The basis decomposition goes as follows. First remind the B-spline basis decomposition of the
Besov functions (DeVore & Popov, 1988; Dũng, 2011; Suzuki, 2018). Let Nl(x) be cardinal
B-spline of order l, and for k ∈ Nd and j ∈ Zd, take the tensor product B-spline basis as
Md

k,j(x) =
∏d

i=1N (2kix − ji). This is the basis function in Rd and a function f in the Besov
space is approximated by a super-position of Md

k,j(x) as fN =
∑N

i=1 αiM
d
ki,ji

(x).

We decompose p0 as p0(x) ≈
∑N

i=1 αiM
d
ki,ji

(x). Defining the transition kernel Kt(x|y) =
1

σd(2π)
d
2
exp(−∥x−mty∥2

2σ2
t

), we have that pt(x) =
∫
p0(y)Kt(x|y)dy. Now, pt(x) is approximated

as pt(x) ≈
∑N

i=1 αi

∫
Md

ki,ji
(y)K(x|y)dy. Moreover, Ek,j(x, t) =

∫
Md

k,j(y)K(x|y)dy is further

decomposed as Ek,j(x, t) =
∏d

i=1

∫ N (2kiyi−ji)

σt

√
2π

exp(− (xi−mtyi)
2

2σ2
t

)dyi. We name Dki,ji(xi, t) =∫ N (2kiyi−ji)

σt

√
2π

exp(− (xi−mtyi)
2

2σ2
t

)dxi as the diffused B-spline basis and Ek,j as the tensor product
diffused B-spline basis. We show that there exists a neural network that approximatesDk,j and Ek,j .
Then we obtain an efficient approximation of pt(x). In the same way, we can approximate ∇pt(x).
Based on these, we finally obtain the approximation of the score∇ log pt(x) =

∇pt(x)
pt(x)

.

The complete proof can be found in Appendix D. For more detailed proof sketch, see Appendix D.1.

3.2 GENERALIZATION OF THE SCORE NETWORK

We then consider the generalization error of the score network. Before stating the bound, we
limit the hypothesis Φ given in Theorem 3.1 into S, which consists of a network ϕ satisfying
∥ϕ(·, t)∥∞ = O(σ−1

t log
1
2 n) because we can take ϕscore so that ∥ϕscore(·, t)∥∞ = O(σ−1

t log
1
2 N)

holds according to Theorem 3.1. Then we let L = {ℓs : [−1, 1]d → R+| s ∈ S}, where ℓs is defined

by ℓs(x) =
∫ T

t=T

∫
∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt. Note that the empirical score match-

ing loss (1) is written as 1
n

∑n
i=1 ℓŝ(xi). For L, letN = N (L, ∥ · ∥L∞([−1,1]d), ε) be the ε-covering

number of L with the L∞ norm. Based on this, we can bound the generalization error of the score
network selected in the empirical score matching.

Theorem 3.2. For sufficiently small ε > 0, the minimizer ŝ of the empirical score matching loss (1)
over S satisfies that

E{x0,i}n
i=1

[∫ T

t=T

Ext∼pt
[∥ŝ(xt, t)−∇ log pt(xt)∥2]dt

]
(2)

≲ inf
s∈S

∫ T

T

Ext∼pt
[∥s(xt, t)−∇ log pt(xt)∥22]dt+

sups∈S ∥ℓs∥L∞([−1,1]d) log(N )

n
+ ε. (3)

The proof is inspired by Schmidt-Hieber (2020); Hayakawa & Suzuki (2020). See Appendix E.4.

The first term can be bounded by N−2s/d logN(log(T/T )+(T−T )), according to Corollary D.13,
which is obtained from Theorem 3.1. The second term is bounded by ≲ N log2(n)(log16(N) +
log12(N) log(ε−1)), because Appendix E.2 gives sups∈S ∥ℓs∥L∞([−1,1]d) ≲ log2 n and Ap-
pendix E.3 gives log(N ) ≲ N(log16 N + log12 N log(ε−1)). Now, we apply N = nd/(2s+d) and
set ε = n−2s/(2s+d) to obtain (2) ≲ n− 2s

d+2s log18(n). For more detailed sketch, see Appendix E.1.
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3.3 ESTIMATION ERROR ANALYSIS

Here we finally obtain the estimation error bounds. As a small modification, if ∥ŶT−T ∥∞ ≥ 2, then

we reset it to ŶT−T = 0. First, the estimation error in the total variation distance is presented.

Theorem 3.3. Let T = n−O(1) and T = s logn
β(d+2s) . Then,

E[TV(X0, ŶT−T )] ≲ n−s/(2s+d) log9 n.

On the other hand, we can show the following lower bound exists.
Proposition 3.4. For 0 < p, q ≤ ∞, s > 0, and s > max{d( 1p −

1
2 ), 0}, we have that

inf
µ̂

sup
p∈Bs

p,q

E[TV(µ̂, p)] ≳ n−s/(2s+d),

where µ̂ runs over all estimators based on n observations.

We have proven that diffusion modeling achieves the minimax estimation rate for the Besov space
Bs

p,q in the total variation distance up to the logarithmic factor. Appendix F.1 provides the proofs.

Moreover, we also have the following bound in the Wesserstein distance of order one.
Theorem 3.5. We can train the score network with n sample and with that we have

E[W1(X0, ŶT−T )] ≲ n−(s+1−δ)/(d+2s). (4)

The minimax rate in W1 is n− s+1
2s+d (Niles-Weed & Berthet, 2022), and thus (4) is also nearly mini-

max optimal up to δ. For Theorem 3.5, we switch the score networks during the backward process,
where each network is adjusted to a different time interval, as a technical modification. This is
explained in Appendix F.2.

Also, the bound on the time discretization error is discussed in Appendix I.

4 ERROR ANALYSIS UNDER THE MANIFOLD HYPOTHESIS

When the true data is distributed over a d′-dimensional plane with d′ < d, we can replace d in (4)
by d′, obtaining the improved bound in W1. See Appendix A.2 for motivations and related works.

We assume that the true density p0 is a probability measure that is absolutely continuous with re-
spect to the Lebesgue measure on the plane. Its probability density, as a function on the canonical
coordinate system of the plane, is assumed to satisfy Assumptions 2.2 and 2.4, with d replaced by
d′. We also assume Assumption 2.3 as well. Then, we obtain the following bound.
Theorem 4.1. We can train the score network with n sample so that the estimation error in the
Wasserstein distance of order one is bounded by

E[W1(X0, ŶT−T )] ≲ n− s+1−δ
d′+2s .

Contrary to Theorem 3.3, the upper bound here depends on d′ (not on d). Thus, we conclude that
the diffusion models can avoid the curse of dimensionality.

In Appendix G, Appendix G.1 states the formal settings, Appendix G.2 provides the proof overview,
and Appendix G.3 gives the complete proof. Simply put, we decompose the score function into two
parts. One is determined by the diffusion process on the d′-dimensional plane, which the difficulty
in approximation mostly depends on. The other part corresponds to the diffusion process on the
orthocomplement and is easy to be approximated.

5 CONCLUSION

We showed that diffusion modeling can achieve nearly minimax estimation rates in both TV and
W1. To approximate the score, the novel basis is introduced, which we call the diffused B-spline
basis. We also demonstrated that diffusion models can avoid the curse of dimensionality under the
manifold hypothesis. In summary, we analyzed diffusion models from the statistical learning theory
and provided theoretical supports for the real-world success of diffusion models.
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A ADDITIONAL RELATED WORKS

A.1 DISTRIBUTION AND FUNCTION ESTIMATION

Recently, minimax estimation rates in the Wasserstein distance have been investigated by several
works (empirical distribution (Weed & Bach, 2019; Singh & Póczos, 2018; Lei, 2020); smooth
density (Liang, 2017; Singh et al., 2018; Schreuder et al., 2021)); Besov space (Niles-Weed &
Berthet, 2022)). Niles-Weed & Berthet (2022) utilized the wavelet basis for the Besov space, while
Liang (2017) used neural networks as an estimator motivated by Generative Adversarial Networks
(GAN) (Goodfellow et al., 2020).

We would like to emphasize that our work is not replacement of wavelet expansion of Niles-Weed
& Berthet (2022) with neural networks. In diffusion modeling, we first minimize the squared-error-
like score matching loss, and then consider the estimation error. This makes existing sharp bounds
in W1 unavailable. Contrary to the analysis of GAN, where the minimax problem of the final goal
directly relates to W1, analysis of diffusion models requires conversion of the score approximation
error to the estimation error.

What we are built on is rather the theory of function estimation with deep neural networks in
Lp norms (Barron, 1993; Yarotsky, 2017; Petersen & Voigtlaender, 2018; Suzuki, 2018; Schmidt-
Hieber, 2020; Hayakawa & Suzuki, 2020). Our approximation result can be seen as an extension of
the B-spline basis expansion used in Suzuki (2018). On the other hand, our generalization bound
relies on Schmidt-Hieber (2020); Hayakawa & Suzuki (2020).

A.2 ANALYSIS UNDER THE MANIFOLD HYPOTHESIS

Although the obtained rates in Theorem 3.3 is minimax optimal, it still suffers from the curse of
dimensionality: the exponent of the convergence rate depends on n. One approach to avoid this
curse of dimensionality in statistics is to assume mixed or anisotropic smoothness (Ibragimov &
Khas’minskii, 1984; Meier et al., 2009; Suzuki, 2018; Suzuki & Nitanda, 2021), and our theory
directly applies to them. On the other hand, the manifold hypothesis, that the distributions of real-
world data lie in low dimensional manifolds, has been proposed (Tenenbaum et al., 2000; Fefferman
et al., 2016), and this is another assumption that convergence rates dependent not on the dimension
d of the space itself but on the manifold’s dimension can be obtained Nakada & Imaizumi (2020);
Schmidt-Hieber (2019).
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Recently, the convergence of diffusion modeling under the manifold hypothesis has begun to be
investigated. The bound by Pidstrigach (2022), however, is not quantitative and does not consider
the estimation rate. De Bortoli (2022) considered the estimation rates, but the approximation error
should be exponentially small with respect to the desired estimation rate. Therefore, none of the
literature has shown that diffusion models can ease the curse of dimensionality. This is what we
work on in Appendix G, defining the specific class of density function with intrinsic dimensionality.

B THE BESOV SPACE

As a class of the true density, we used the Besov space, because this allows us to discuss many well-
known function classes in a unified manner. Here we give formal definition and some properties of
the Besov spaces. We first introduce the modulus of smoothness. We assume that Ω be a cube in
Rd.
Definition B.1. For a function f ∈ Lp(Ω) for some p ∈ (0,∞], the r-th modulus of smoothness of
f is defined by

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥p,

where ∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) (if x+ jh ∈ Ω for all j)

0 (otherwise).

Definition B.2 (Besov space Bs
p,q(Ω)). For 0 < p, q ≤ ∞, s > 0, r := ⌊s⌋ + 1, let the seminorm

| · |Bs
p,q

be

|f |Bs
p,q

=

{(∫∞
0

(t−swr,p(f, t))
q dt

t

) 1
q (q <∞),

supt>0 t
−swr,p(f, t) (q =∞).

The norm of the Besov space Bs
p,q is defined by ∥f∥Bs

p,q
= ∥f∥p + |f |Bs

p,q
, and we have Bs

p,q =

{f ∈ Lp(Ω)| ∥f∥Bs
p,q

<∞}.

Let us take several examples of function classes that can be embedded in the Besov spaces.
For α ∈ Zd

+, let ∂α = ∂|α|f

∂
α1
x1

···∂αd
xd

(x). The Hölder space for s ∈ R>0 \ Z+ is a set of

⌊s⌋ times differentiable functions Cs(Ω) = {f : Ω → R| ∥f∥Cs := max|α|≤s ∥Dα∥∞ +

maxm=⌊s⌋ supx,y∈Ω
|∂αf(x)−∂αf(y)

|x−y|s−⌊s⌋ < ∞} for s ∈ R>0 \ Z+. The Sobolev space for s ∈
N, 1 ≤ p ≤ ∞ is a set of s times differentiable functions W s

p (Ω) := {f : Ω → R| ∥f∥W s
p

:=

(
∑

|α|≤s ∥∂αf∥pp)
1
p <∞}. Then the following relationships are due to Triebel (1983):

• For s ∈ N, Bs
p,1(Ω) ↪→W s

p (Ω) ↪→ Bs
p,∞(Ω).

• Bs
2,2(Ω) = W s

2 (Ω).

• For s ∈ R>0 \ Z+, Cs(Ω) = Bs
∞,∞(Ω).

If s > d/p, Bs
p,q(Ω) is continuously embedded in the set of the continuous functions. Otherwise,

the elements in the space is no longer continuous. Our result is valid for Bs
p,q(Ω) with s > d(1/p−

1/2)+, and thus can include not continuous functions, unlike existing bounds assuming smoothness
or Lipschitzness (Lee et al., 2022b;a; Chen et al., 2022).

C SEVERAL HIGH-PROBABILITY BOUNDS ON THE BACKWARD PATHS

One of the difficulties in the analysis is the unboundedness of the space and the value of the score.
This subsection aims to provide several treatments for such issues, before going into the main part
of the proofs. These inequalities allow us to focus on the score approximation within the bounded
region. We note that, however, some of the following bounds still depend on the time t, and therefore
the level of difficulty for approximation and estimation of the score differs with respect to t.

In the following, we define several constants Ca,i. Other than in this section, we simply denote them
as Ca for simplicity.
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C.1 BOUNDS ON ∥Yt∥ AND ∥∆Yt∥ WITH HIGH PROBABILITY

We first provide several high-probability bounds, which guarantee that most of the paths travel
within some bounded region.

Lemma C.1 (Bounds on ∥Yt∥ and ∥∆Yt∥ with high probability). There exists a constant Ca,1 such
that

P
[
∥Yt∥∞ ≤ mT−t + Ca,1σT−t

√
log(ε−1T−1T ) for all t ∈ [0, T − T ]

]
≥ 1− ε.

Moreover, for an arbitrarily fixed 0 < τ ≤ 1,

P
[
∥Yt − Yt+τ∥∞ ≤ Ca,1

√
τ log(ε−1τ−1T ) for all t ∈ [0, T − τ ]

]
≥ 1− ε.

Proof. Remind that Yt = XT−t. Thus we discuss bounding Xt in the following.

We begin with the first assertion. Let t1, t2, · · · , tK be time steps satisfying T = t1 < t2 < · · · <
tK = T with ti − ti−1 = ∆t that is some scaler value specified later. We first show the following
for some constant C1:

P
[
∥Xt∥∞ ≤ mt + C1σt

√
log ε−1 for all t = ti (i = 1, 2, · · · ,K)

]
≥ 1− εK. (5)

Remind that Xt|X0 follows N (mtX0, σ
2
t ) and ∥X0∥∞ ≤ 1. Lemma J.14 yields that

P
[
∥X∥∞ ≤ mt + C1σt

√
log ε−1 for some fixed t = ti

]
≥ 1− ε,

which immediately yields (5).

Then we consider how far each particle Xt moves from t = ti−1 to ti. Equivalently, we consider
Xt and decompose it into

Xt = exp

(
−
∫ ti

s=ti−1

βsds

)
Xti−1 +B

1−exp(−2
∫ ti
s=ti−1

βsds)
, (6)

where Bs denotes a d-dimensional Brownian motion. This is obtained by considering the Ornstein-
Uhlenbeck process starting from t = ti−1. By Lemma J.15, with probability at least ε, the following
holds uniformly over t ∈ [ti−1, ti]:

∥Xt∥∞ ≤ exp

(
−
∫ ti

s=ti−1

βsds

)
∥Xti−1

∥∞ +

√
1− exp(−2

∫ ti

s=ti−1

βsds) · 2
√
β2 log dε−1

≤ exp

(
−
∫ ti

s=ti−1

βsds

)
∥Xti−1

∥∞ +
√

2β∆t · 2
√
β2 log dε−1.

If ∥Xti−1∥∞ ≤ mti−1 + C1σti−1

√
log ε−1, this is further bounded by

∥Xt∥∞ ≤ mti−1
+ C1σti−1

√
log ε−1 +

√
∆t · 4

√
ββ log dε−1.

Because we can check that σt ≃
√
t ∧ 1 ≥

√
T holds, if we take ∆ ≤ T , then we have that

C1σti−1

√
log ε−1 +

√
∆t · 4

√
ββ log dε−1 ≲ C2σti−1

√
log ε−1 (7)

for all t ∈ [ti−1, ti], with some constant C2.

Therefore, with probability 1−2Kε we have (5), and (7) for all i. We need to take K = O(T/T ) to
satisfy ∆ ≤ T . We reset ε

K as a new ε and adjust C2 accordingly. Now the first assertion is proved.

Next, we consider the second assertion. Let us consider a different time discretization t0 = 0, t1 =
τ, t2 = 2τ, · · · , tK = Kτ with K = min{i ∈ N|Kτ ≥ T}. Then, from the first argument,
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we have that ∥Xt∥∞ ≤ mt + C2σt

√
log(ε−1τ−1T ) holds with probability at least 1 − ε, for all

t = t0, t1, · · · , tK . We condition the event conditioned by this. By (6), we have that, for t ≥ ti−1,

Xt −Xti−1
=

[
exp

(
−
∫ ti

s=ti−1

βsds

)
− 1

]
Xti−1

+B
1−exp(−2

∫ ti
s=ti−1

βsds)
,

which yields that

∥Xt −Xti−1
∥∞ ≤

∣∣∣∣∣exp
(
−
∫ ti

s=ti−1

βsds

)
− 1

∣∣∣∣∣ ∥Xti−1
∥∞ +

∥∥∥∥B1−exp(−2
∫ ti
s=ti−1

βsds)

∥∥∥∥
∞

≤ τβ(mti−1 + C2σti−1

√
log(ε−1τ−1T )) +

∥∥∥∥B1−exp(−2
∫ ti
s=ti−1

βsds)

∥∥∥∥
∞

We bound the last term over t ∈ [ti−1, ti]. With probability at least 1 − ε
K , that is bounded by√

2βτ ·2
√
β2 log dKε−1 according to Lemma J.15. To summarize, with probability at least 1−2ε,

sup
t∈[ti−1,ti]

∥Xt −Xti−1
∥∞ ≤ τβ(mti−1

+ C2σti−1

√
log(ε−1τ−1T )) +

√
2βτ · 2

√
β2 log dKε−1

holds for all i = 0, 1, · · · ,K − 1. RHS is bounded by C3

√
τ log ε−1τ−1T with some sufficiently

large constant C3.

Then, for any t, there exists i such that t ≤ ti ≤ t + τ . Thus, with probability 1 − 2ε,
∥Xt − Xt+τ∥∞ ≤ ∥Xt − Xti−1

∥∞ + ∥Xti − Xti−1
∥∞ + ∥Xt+τ − Xti∥∞ is bounded by

3C3

√
τ log ε−1τ−1T for all t. Setting 2ε to ε yields the second assertion.

C.2 BOUNDS ON pt(x)

We then give upper and lower bounds on pt(x).
Lemma C.2 (Upper and lower bounds on the density pt(x)). The following upper and lower bounds
on pt(x) holds for a constant Ca,2 depending on Cf and d:

C−1
a,2 exp

(
−
d(∥x∥∞ −mt)

2
+

σ2
t

)
≤ pt(x) ≤ Ca,2 exp

(
−
(∥x∥∞ −mt)

2
+

2σ2
t

)
. (for all t.)

Proof. We first consider the case when x ∈ [−mt,mt]
d. The upper bound is relatively easy. f(y) ≤

Cf1[y ∈ [−1, 1]d] means

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy (8)

≤
∫

Cf1[y ∈ [−1, 1]d]
σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
dy =

2dCf

σd
t (2π)

d
2

.

At the same time, we have that

pt(x) ≤
∫

Cf

σd
t (2π)

d
2

exp

(
−∥x−mty∥2

2σ2
t

)
dy =

Cf

md
t

. (9)

Thus, according to (8) and (9), pt(x) is bounded by min

{
2dCf

σd
t (2π)

d
2
,
Cf

md
t

}
. This is further bounded

by a constant that depends only on Cf and d, because m2
t + σ2

t = 1 holds for all t.

The lower bound can be understood as follows. We have

pt(x) =

∫
C−1

f

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≥ 1

(2π)
d
2

∫
f(x/mt − σty) exp

(
−∥mty∥2

2

)
dy (by letting (x−mty)/σt 7→ mty).

(10)
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Since x ∈ [−mt,mt]
d, we have x/mt ∈ [−1, 1]d. Thus, |{y ∈ [−1, 1]d| x/mt− σty ∈ [−1, 1]}| ≥

1. Moreover, exp
(
−∥mty∥2

2

)
≥ exp(−d2/2) in y ∈ [−1, 1]d. Therefore, the integral (10) is lower

bounded by exp(−d2/2).
We then consider the case when x /∈ [−mt,mt]

d. For such x, let r = (∥x∥∞ −mt)/σt and choose
i∗ from {1, 2, · · · , d} such that |xi∗ | = ∥x∥∞ = mt + r/σt holds. Then, we have the upper bound
of pt(x) as

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≤ Cf

d∏
i=1

∫
1[−1 ≤ yi ≤ 1]

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi

≲ Cf

∫
yi∗∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi∗ −mtyi∗)

2

2σ2
t

)
dy (11)(

because
∫

1[−1 ≤ yi ≤ 1]

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi for i ̸= i∗ is bounded by O(1),

as pt(x) for x ∈ [−mt,mt]
d.
)

≤ Cf

mt

∫ ∞

a=r/
√
2

1√
π
exp

(
−a2

)
da (by a = xi∗ −mtyi∗/

√
2σt)

≤ Cf

mt
exp

(
−r2/2

)
=

Cf

mt
exp

(
− (∥x∥∞ −mt)

2

2σ2
t

)

where we used
∫∞
z

e−a2

da ≤ e−z2

(see, e.g. Chang et al. (2011)) for the last inequality. Also,

(11) is alternatively bounded by 2Cf

σt(2π)
1
2
exp

(
− (∥x∥∞−mt)

2

2σ2
t

)
. Because m2

t + σ2
t = 1 means that

min{mt, σt} ≳ 1, it holds that pt(x) ≲ Cf exp
(
− (∥x∥∞−mt)

2

2σ2
t

)
.

On the other hand,

pt(x) =

∫
1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≥ C−1
f

d∏
i=1

∫
yi∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi −mtyi)

2

2σ2
t

)
dy︸ ︷︷ ︸

(a)

= C−1
f

(∫
yi∗∈[−1,1]

1

σt(2π)
1
2

exp

(
− (xi∗ −mtyi∗)

2

2σ2
t

)
dy

)d

(because (a) is minimized when i = i∗)

≥
C−1

f

md
t

(∫ r/
√
2+

√
2mt/σt

a=r/
√
2

1√
π
exp

(
−a2

)
dy

)d

(by (xi∗ −mtyi∗)/
√
2σt)

≥
C−1

f

md
t

(∫ r/
√
2+

√
2mt

a=r/
√
2

1√
π
exp

(
−a2

)
dy

)d
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≥
C−1

f

md
t

(√
2mt√
π

exp
(
−(r/

√
2 +
√
2mt)

2
))d

(by lower bounding exp(−a2) in the integral interval and just multiplying the width of the interval)

≥
C−1

f

md
t

(√
2mt√
π

exp
(
−r2 − 4

)
da

)d

≥
C−1

f 2d/2

e4dπd/2
exp

(
−dr2

)
,

which gives the lower bound on pt(x).

C.3 BOUNDS ON THE DERIVATIVES OF pt(x) AND THE SCORE

This subsection evaluates the derivatives of pt(x) and the score. On the one hand, straightforward
argument yields that the derivatives of pt(x) is bounded by ∂kpt(x) = O(1/σk

t ) = O(t−k/2). On
the other hand, as for the score, supx∈Rd ∥∇ log pt(x)∥ =∞ holds in general, which prevents us to
construct an approximation of the score with neural networks. This is because∇ log pt(x) =

∇pt(x)
pt(x)

and pt(x) can be arbitrarily small as ∥x∥ → ∞. Nevertheless, using Lemma C.2, we can show the
bounds on the score dependent on x and t, in the next Lemma C.3. In Lemma C.4, Lemma C.3 is
used to show that the decay of pt is so fast that the approximation error in the region with small
pt(x) (that can be≫ 1 in some x) does not much affects the L2(pt) approximation error bound; We
can show that ∥∇ log pt(x)∥ = Õ(1/σt) = Õ(1 ∨ 1/

√
t) with high probability (when x ∼ pt).

Lemma C.3 (Boundedness of derivatives). For k ∈ Z+, there exists a constant Ca,3 depending only
on k, d, and Cf such that

|∂xi1
∂xi2
· · · ∂xik

pt(x)| ≤
Ca,3

σk
t

. (12)

Moreover, we have that

∥∇ log pt(x)∥ ≤
Ca,3

σt
·
(
(∥x∥∞ −mt)+

σt
∨ 1

)
, (13)

and that for i ∈ {1, 2, · · · , d},

∥∂xi
∇ log pt(x)∥ ≤

Ca,3

σ2
t

(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

)
. (14)

and that

∥∂t∇ log pt(x)∥ ≤
Ca,3

σ3
t

[|∂tσt|+ |∂tmt|]
(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

) 3
2

. (15)

Proof. First, we consider (12). Let g1(x) = pt(x) =
∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy. For

s ∈ Zd
+, we abbreviate the notation as g

(s)
1 (x) = ∂s1

x1
∂s2
x2
· · · ∂sd

xd
g1(x). For s ∈ Zd

+, we define
Bs = {s′ ∈ Zd

+|s′i ≤ si (i = 1, · · · , d)} and a constant cs such that ∂s1
x1
∂s2
x2
· · · ∂sd

xd
e−∥x∥2/2 =∑

s′∈Bs
cs′x

s′1
1 x

s′2
2 · · ·x

s′d
d e−∥x∥2/2 holds. Then, because of ∂xi

= 1
σ∂ xi

σ
, we can write g

(s)
1 (x) as

g
(s)
1 (x) =

∑
s′∈Bs

cs′

σ
∑d

i=1 si
t

∫ d∏
i=1

(
xi −myi

σt

)s′i 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy︸ ︷︷ ︸

(a)

. (16)

Note that maxs :
∑

si≤k{
∑

s′∈Bs
cs′} is bounded by a constant that only depends on k. Thus we

focus on the evaluation of (a). When t ≤ 1, (a) in (16) can be bounded by O(1/md
t ) ≃ O(1) (we

15
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hide dependency on
∑d

i=1 s
′
i ≤ k and Cf ). This is because mt ≃ 1 and f(y) ≤ Cf . On the other

hand, when t ≥ 1, σt ≳ 1 holds, we can bound (a) by O(1) by noting that f(y) ̸= 0 only for
y ∈ [−1, 1]d. Now, the first statement (12) has been proven.

We then consider ∇ log pt(x) and its derivatives. We can focus on [∇ log pt(x)]1, and all the
other coordinates of the score are bounded in the same way. Let g2(x) = σt[∇pt(x)]1 =

−
∫

x1−mty1

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy, and define g

(s)
2 in the same way as that for g(s)1 .

We can see that

[∇ log pt(x)]1 =
1

σt
· g2(x)
g1(x)

, [∂xi∇ log pt(x)]1 =
1

σt
· ∂xi

g2(x)

g1(x)
− 1

σt
· g2(x)(∂xi

g1(x))

g21(x)
.

(17)

Moreover,

g2(x)

g1(x)
=

−
∫

x1−mty1

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

, (18)

∂xi
g1(x)

g1(x)
=

1

σt
·
−
∫

xi−mtyi

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

, (19)

∂xig2(x)

g1(x)
= − 1

σt
·

∫ 1[i=1]− x1−mty1
σt

xi−mtyi
σt

σd
t (2π)

d
2

f(y) exp
(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

. (20)

In order to bound them, we consider the following quantity with
∑d

i=1 si ≤ 2. Also, let ε be a scaler
value specified later, with which we assume pt(x) ≥ ε holds for the moment.

∫ ∏d
i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy

(21)

According to Lemma J.10, we have that∣∣∣∣∣
∫
Ax

d∏
i=1

(
xi −mtyi

σt

)si 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−my∥2

2σ2
t

)
dy

−
∫
Rd

d∏
i=1

(
xi −mtyi

σt

)si 1

σd
t (2π)

d
2

f(y) exp

(
−∥x−my∥2

2σ2
t

)
dy

∣∣∣∣∣ ≤ ε

2
.

where Ax =
∏d

i=1 a
x
i with axi = [ x1

mt
− σtCf

mt

√
log 2ε−1, x1

mt
+ σtCf

mt

√
log 2ε−1]. Note that Cf only

depends on
∑d

i=1 si, d, and Cf .

Therefore, when pt(x) = g1(x) ≥ ε,

(21) ≤
2
∫ ∏d

i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

Ax
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy
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≤
2
∫
Ax

∏d
i=1

(
xi−mtyi

σt

)si
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

Ax
1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

σ2
t

)
dy

+
2 · ε2
ε

(note that the denominator is larger than ε)

≤ 2 max
y∈Ax

[
d∏

i=1

(
xi −mtyi

σt

)si
]
+ 1

≤ 2
(
C2

f log ε
−1
)(∑d

i=1 si)/2
+ 1. (22)

Applying this bound to (18), (19), and (20), g2(x)
g1(x)

,
∂xi

g1(x)

g1(x)
, and ∂xi

g2(x)

g1(x)
are bounded by

log1/2 ε−1,
log1/2 ε−1

σt
, and

log ε−1

σt
,

up to constant factors, respectively. Finally, we apply this to (17) and obtain that

∥∇ log pt(x)∥ ≲
log1/2 ε−1

σt
and, ∥∂xi

∇ log pt(x)∥ ≲
log ε−1

σ2
t

.

Now we replace ε with a specific value. Remember that ε should satisfy ε ≤ pt(x). According to

Lemma C.2, we have C−1
a,2 exp

(
−d(∥x∥∞−mt)

2
+

σ2
t

)
≤ pt(x), which yields that

∥∇ log pt(x)∥ ≤
Ca,3

σt
· (∥x∥∞ −mt)+

σt
∨ 1, and ∥∂xi

∇ log pt(x)∥ ≤
Ca,3

σ2
t

(
(∥x∥∞ −mt)

2
+

σ2
t

∨ 1

)
,

with Ca,3 depending on k, d and Cf . Thus, we obtain (13) and (14).

Finally, we consider ∂t∇ log pt(x).

∂t[∇ log pt(x)]1 = ∂t

(
1

σt
· g2(x)
g1(x)

)
=

(
∂t

1

σt

)
g2(x)

g1(x)
− 1

σt
· (∂tg1(x))

g1(x)
· g2(x)
g1(x)

+
1

σt
· ∂tg2(x)

g1(x)

=
(−∂tσt)

σt
[∇ log pt(x)]1

− 1

σt
·

∫
A1(y)f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy
· [∇ log pt(x)]1

+
1

σt
·

∫
A2(y)f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

, (23)

where

A1(y) =
−d(∂tσt)σ

−1
t + ∥x−mty∥2(∂tσt)σ

−3
t − (∂tmt)y

⊤(mty − x)σ−2
t

σd
t (2π)

d
2

,

A2(y)

=
(∂tmt)y1+(x1−mty1)((d+1)(∂tσt)σ

−1
t −∥x−mty∥2(∇tσt)σ

−3
t +(∂tmt)y

⊤(mty−x)σ−2
t )

σd+1
t (2π)

d
2

.

By carefully decomposing (23) into the sum of (21), and then applying (22) and Lemma C.2, we
have the final bound (15).

Now, based on Lemma C.3 we show that we only need to approximate∇ log pt(x) on some bounded
region and on x where pt(x) is not too small.
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Lemma C.4 (Error bounds due to clipping operations). Let t ≥ T . There exists a constant Ca,4

depending on d and Cf , we have∫
∥x∥∞≥mt+Ca,4σt

√
log ε−1T−1

pt(x)∥∇ log pt(x)∥2dx ≤ ε, (24)∫
∥x∥∞≥mt+Ca,4σt

√
log ε−1T−1

pt(x)dx ≤ ε (25)

for all t ≥ T .

Moreover, there exists a constant Ca,5 depending on d and Cf and, for x such that ∥x∥∞ ≤ mt +

Ca,4σt

√
log ε−1, we have

∥∇ log pt(x)∥ ≤
Ca,5

σt

√
log ε−1.

Therefore,∫
∥x∥∞≤mt+Ca,4σt

√
log ε−1T−1

pt(x)1[pt(x) ≤ ε]∥∇ log pt(x)∥2dx ≤
Ca,5ε

σ2
t

· log
d+2
2 (ε−1T−1),(26)∫

∥x∥∞≤mt+Ca,4σt

√
log ε−1T−1

pt(x)1[pt(x) ≤ ε]dx ≤ Ca,5ε · log
d
2 (ε−1T−1). (27)

Proof. According to Lemma C.2 and Lemma C.3,

pt(x)∥∇ log pt(x)∥2 ≤ Ca,2 exp

(
−
(∥x∥∞ −mt)

2
+

2σ2
t

)
·
C2

a,3

σ2
t

(∥x∥∞ −mt)
2
+

σ2
t

≤
Ca,2C

2
a,3

σ2
t

exp

(
−r2

2

)
r2,

where we let r := (∥x∥∞ −mt)+/σt. Then,∫
∥x∥∞≥mt+Ca,4σt

√
log ε−1

pt(x)∥∇ log pt(x)∥2dx

≤
∫ ∞

Ca,4

√
log ε−1

Ca,2C
2
a,3

σt
exp

(
−r2

2

)
r2(d− 1)(σtr +mt)

d−1dr

≲
1

σt
ε logd/2 ε−1.

We can make sure the final inequality by integration by parts. Because σt ≳
√
T , if we take

ε′ =
√
T · ε2 then we have that 1

σt
ε′ logd/2((ε′)−1) ≲ ε. Therefore, replacing ε with ε′ and

adjusting Ca,4 yield the bound (24).

In the same way,∫
∥x∥∞≥m+Ca,4σt

√
log ε−1

pt(x)dx ≤
∫ ∞

Ca,4

√
log ε−1

Ca,2σt exp

(
−r2

2

)
(d− 1)(σtr +m)d−1dr

≲ σtε log
(d−2)/2 ε−1,

which yields (25).

We then consider the second part of the lemma. Eq. (25) is a direct corollary of Lemma C.3: for x
with ∥x∥∞ ≤ mt + Ca,5σt

√
log ε−1

∥∇ log pt(x)∥ ≤
Ca,3

σt
· Ca,4

√
log ε−1 ≤ Ca,5

σt

√
log ε−1. (by taking Ca,5 larger than Ca,3Ca,4.)

Using this, we have∫
∥x∥∞≤mt+Ca,4σt

√
log ε−1

pt(x)1[pt(x) ≤ ε]∥∇ log pt(x)∥2dx

≲ ε ·
C2

a,4

σ2
t

log ε−1 · (mt + Ca,5σt

√
log ε−1)d.

Adjusting Ca,4, Ca,5 and resetting ε yields (26). Eq. (27) follows in the same way.
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D APPROXIMATION OF THE SCORE FUNCTION

This section corresponds to Section 3.1. In this section, we analyze approximation error for
the (ideal) score matching loss minimization. We construct a neural network that approximates
∇ log pt(x) and bound the approximation error over different time t. Throughout this section,
we take a sufficiently large N as a parameter that determines the size of the neural network, and
T = poly(N−1) and T = O(logN).

D.1 DETAILED PROOF SKETCH

Here we provide detailed proof sketch of Theorem 3.1.

Approximation via the diffused B-spline Basis We consider the approximation for t ≪ 1. First
remind the B-spline basis decomposition of the Besov functions (DeVore & Popov, 1988; Suzuki,
2018). Let N (x) = 1 (x ∈ [0, 1]), 0 (otherwise). The cardinal B-spline of order l is defined by
Nl(x) = N ∗N ∗ · · · ∗ N︸ ︷︷ ︸

l+1 times convolution

(x), where (f ∗ g)(x) =
∫
f(x − t)g(t)dt. Then, the tensor product

B-spline basis in Rd is defined for k ∈ Nd and j ∈ Zd as Md
k,j(x) =

∏d
i=1N (2kix − ji). It

is known that a function f in the Besov space is approximated by a super-position of Md
k,j(x) as

fN =
∑

(k,j) α(k,j)M
d
k,j(x).

Lemma D.1 (Informal version of Lemma J.13; Suzuki (2018)). For any p0 ∈ U(Bs
p,q), there exists

a super-position fN of N tensor-product B-spline bases satisfying

∥p0 − fN∥L2 ≲ N−s/d∥f∥Bs
p,q

.

Inspired by this, we introduce our basis decomposition. Because of Xt|X0 ∼ N (mtX0, σt), we
can write pt as

pt(x) =

∫
p0(y)

1

σd(2π)
d
2

exp

(
−∥x−mty∥2

2σ2
t

)
︸ ︷︷ ︸

=:Kt(x|y)

dy.

Because the transition kernel Kt(x|y) linearly applies to p0 and p0 is approximated by fN =∑
(k,j) α(k,j)M

d
k,j(x), we come up with the following approximation of pt:

pt(x) ≈
∑
(k,j)

α(k,j)

∫
Md

k,j(y)K(x|y)dy︸ ︷︷ ︸
=:Ek,j(x,t)

.

Moreover, Ek,j is further decomposed as

Ek,j(x, t)

=

d∏
i=1

∫
N (2kixi − ji)

σt

√
2π

exp(− (xi −mtyi)
2

2σ2
t

)dxi︸ ︷︷ ︸
=:Dk,j(xi,t)

.

We name Dk,j as the diffused B-spline basis and Ek,j as the tensor product diffused B-spline basis.
We show that there exists a neural network that approximates Dk,j and Ek,j very efficiently. Our
construction then goes as follows. We construct networks approximating mt and σt.

Lemma D.2 (See also Lemma D.6). Under Assumption 2.4, there exists neural networks
ϕm(t), ϕσ(t) ∈ Φ(L,W,B, S) that approximates mt and σt up to ε for all t ≥ 0, where
L = O(log2(ε−1)), ∥W∥∞ = O(log3(ε−1)), S = O(log4(ε−1)), and B = exp(O(log2(ε−1))).

Next we clip the integral interval of Dk,j and approximate the integrand by a rational function of
(x,mt, σt). Then the following is obtained as an informal version of Lemma D.8.
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Lemma D.3. For ε > 0, there exists a neural network ϕTDB : Rd × R+ → Rd that satisfies
∥ϕTDB(x, t)−Ek,j(x, t)∥∞ ≤ ε. Here, ϕTDB ∈ Φ(L,W, S,B) with L = O(log4(ε−1)), ∥W∥∞ =

O(log6(ε−1)), S = O(log8(ε−1)), B = O(exp(O(log4(ε−1)))).

Here ϕTDB approximates Ek,j(x, t) given (x,mt, σt). Then we use ϕTDB(x, ϕm(t), ϕσ(t)) as the
approximation of Ek,j(x, t), and pt(x) is finally approximated. Similar approximation can also be
made for∇pt(x), and the score is finally approximated together with∇ log pt(x) =

∇pt(x)
pt(x)

and we
obtain the bound as in Theorem 3.1.

We remark that the bounds on the network class parameters given above are slightly larger than that
for the B-spline basis (Suzuki (2018)) because approximating integrals and exponential functions
(Appendix J.3) and rational functions (Appendix J.2) is more difficult than realizing the B-spline
basis via polynomials. Especially, B = exp(O(log4 N)) comes from approximation of exponential
functions. Because B affects the generalization error only in a logB term (see Lemma E.2), this
super-polynomial scaling does not much affects the the final estimation errors.

We also remark that, in this construction, the approximation error for ∇pt(x) is amplified in the
area where pt(x) ≪ 1. This is why we need the higher-order smoothness of p0 in the area with
distance less than Õ(

√
t) from the edge of the support (Assumption 2.4). This approach is used

during t ∈ [T , 3N− 2−δ
d ], and it suffices to set a0 to a0 = N− 1−δ

d .

Utilizing the smoothness induced by the noise The above approach enables approximation of
the score in t≪ 1, when the score is highly non-smooth, by using the structure of p0. On the other
hand, after a certain period of time, the shape of pt gets almost like a Gaussian, very smooth and
easy to be approximated. This paragraph extends the previous approach and gives an alternative
approximation based on the smoothness induced by the noise, yielding a tighter bound.

We begin with evaluating the derivatives of pt w.r.t. t.
Lemma D.4. For any k ∈ Z+, there exists a constant Ca depending only on k, d, and Cf such that∣∣∣∂xi1

∂xi2
· · · ∂xik

pt(x)
∣∣∣ ≤ Ca

σk
t

.

We have that ∥pt∗∥Wk
p

= O(t∗−
k
2 ) for t∗ > 0 from this, and that W k

p ↪→ Bk
p,∞. For t > t∗,

consider pt as the diffused distribution from pt∗ , instead of p0. We can show that ∇ log pt can be
approximated with a neural network with the size N ′, with an L2 error of O

(
N ′−2k/d

σ2
t
· t−k

∗

)
. If

N ′ and k are sufficiently large, this is tighter than the previous bound of N− 2s
d

σ2
t

. This argument is
formalized as follows. In Appendix D, this is presented as Lemma D.12.

Lemma D.5. Let N ≫ 1 and N ′ ≥ t
−d/2
∗ Nδ/2. Suppose t∗ ≥ N−(2−δ)/d. Then there exists a

neural network ϕ′
score ∈ Φ(L,W, S,B) that satisfies∫

x

pt(x)∥ϕ′
score(x, t)− s(x, t)∥2dx ≲

N− 2(s+1)
d

σ2
t

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B =
exp(O(log4 N)).

Setting t∗ = N− 2−δ
d and N ′ = N in this lemma, we obtain the bound in Theorem 3.1 after t ≳ t∗,

without Assumption 2.4. Moreover, further exploiting this lemma later plays an important role for
achieving the minimax optimal estimation rate in the W1 distance.

D.2 APPROXIMATION OF mt AND σt

We begin with construction of sub-networks that approximate mt and σt. In addition to the true data
distribution p0(x), the score ∇ log pt(x) also depends on mt and σt. Indeed, in our construction,
each diffused B-spline basis is approximated as a rational function of x, mt and σt. Here, mt and
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σt are as important as x, because we use exponentiation of mt and σt, as well as that of x, while
exact values of mt and σt are unavailable. In other words, because approximation errors of mt and
σt are amplified via such exponentiation, approximating mt and σt with high accuracy is necessary
for obtaining tight bounds. Therefore, in this subsection, we construct sub-networks for efficient
approximation of mt and σt. The following is the formal version of Lemma D.2.
Lemma D.6. Let 0 < ε < 1

2 . Then, there exists a neural network ϕm(t) ∈ Φ(L,W,B, S) that
approximates mt for all t ≥ 0, within the additive error of ε, where L = O(log2 ε−1), ∥W∥∞ =
O(log ε−1), S = O(log2 ε−1), and B = exp(O(log2 ε−1)).

Also, there exists a neural network ϕσ(t) ∈ Φ(L,W,B, S) that approximates σt for all t ≥ ε,
within the additive error of ε, where L ≤ O(log2 ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log4 ε−1),
and B = exp(O(log2 ε−1)).

Proof. First we consider mt = exp(−
∫ t

0
βsds). Since β ≥ β,

∫ t

0
βsds ≥ log 4ε−1 for all t ≥ A :=

log 4ε−1/β. We limit ourselves within [0, A]. Then, from Assumption 2.3, we can expand βs as

βs =
∑k−1

i=0
β(i)

i! si + β(k)

k! (θs)k with |β(i)| ≤ 1 and 0 < θ < 1, and therefore we obtain that∣∣∣∣∣
∫ t

0

βsds−
∫ t

0

k−1∑
i=1

β(i)

i!
sids

∣∣∣∣∣ ≤ |β(k)|Ak+1

(k + 1)!
≤ Ak+1

(k + 1)!
.

We take k = max{2eA, ⌈log2 4ε−1⌉} − 1 so that we have Ak+1

(k+1)! ≤
(

eA
k+1

)k+1

≤ ε
4 .∫ t

0

∑k−1
i=1

β(i)

i! si =
∑k−1

i=1
β(i)

(i+1)! t
i+1 can be realized with an additive error up to ε

4 by the neural net-

work with L = O(A2 + log2 ε−1) = O(log2 ε−1), ∥W∥∞ = O(A+ log ε−1) = O(log ε−1), S =
O(A2 + log2 ε−1) = O(log2 ε−1), B = exp(log2O(A + log ε−1)) = O(log2 ε−1), using Lem-
mas J.3 and J.6. From the definition of A, we can easily check that e−A ≤ ε

4 holds. We clip the
input with [0, A] to obtain the neural network ϕ1, which approximates

∫ t

0
βsds with an additive error

of ε
4 + ε

4 = ε
2 for x ∈ [0, A], and satisfies |ϕ1(x)| = |ϕ1(A)| for all x ≥ A.

Then we apply Lemma J.12 with ε = ε
4 . Then we obtain the neural network ϕm of the desired size,

which approximates mt = exp(−
∫ t

0
βsds) with an additive error of ε

2 + ε
4 = 3ε

4 for x ∈ [0, A] and
|ϕm(x)− e−x| ≤ |ϕm(x)−ϕm(A)|+ |ϕm(A)− e−A|+ |e−A− e−x| ≤ 0+ 3ε

4 + ε
4 = ε for x ≥ A.

Similarly, we can approximate σ2 = 1 − exp(−2
∫ t

0
βsds) with an additive error of O(ε1.5) us-

ing a neural network with L = O(log2 ε−1), ∥W∥∞ = O(log ε−1), S = O(log2 ε−1), B =

exp(O(log2 ε−1)). Since t ≥ ε, we have σ2
t = 1 − exp(−2

∫ t

0
βsds) ≥ cε for some constant c

depending on β. Then, we apply Lemma J.9 with ε = cε and finally obtain a neural network ϕσ(t)

that approximates σt with an additive error of cε+ ε1.5√
cε

= O(ε), with L = O(log2 ε−1), ∥W∥∞ =

O(log3 ε−1), S = O(log4 ε−1), and B = exp(O(log2 ε−1)). Adjusting hidden constants can make
the approximation error smaller than ε, and concludes the proof.

D.3 APPROXIMATION VIA THE DIFFUSED B-SPLINE BASIS

This subsection introduces the approximation via the diffused B-spline basis and the tensor-product
diffused B-spline basis, which enable us to approximate the score ∇ log pt(x) in the space of
Rd × [T , T ]. Although we consider the function approximation in a (d + 1)-dimensional space,
the obtained rate (Theorem 3.1) is the typical one for a d-dimensional space. This is because our
basis decomposition can reflect the structure of p0 for t > 0. Before beginning the formal proof,
we provide extended proof outline about the approximation via the diffusion B-spline basis and
tensor-product diffused B-spline basis, which is more detailed than that in Section 3.

Remind that the cardinal B-spline basis of order l can be written as

Nm(x) =
1

l!
1[0 ≤ x ≤ l + 1]

l∑
l′=0

(−1)j l+1Cl′(x− l′)l+
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(see Eq. (4.28) of Mhaskar & Micchelli (1992) for example) and the function in the Besov space
can be approximated by a sum of Md

k,j(x)

Md
k,j(x) =

d∏
i=1

Nm(2kixi − ji)

where k ∈ Zd
+ and j ∈ Zd.

Therefore, the denominator and numerator of the score

∇ log pt(x) =
∇pt(x)
pt(x)

= − 1

σt
·

∫
x−mty

σd+1
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy∫

1

σd
t (2π)

d
2
f(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

are decomposed into the sum of

E
(1)
k,j (x, t) :=

∫
1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy (28)

and

E
(2)
k,j (x, t) :=

∫
x−mty

σd+1(2π)
d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy, (29)

respectively. This corresponds to what we called the tensor-product diffused B-spline basis in Sec-
tion 3. Here E(1)

k,j (x, t) is the same as Ek,j(x, t) in Section 3, except for the term of 1[∥y∥∞ ≤ Cb,1].
Note that Cb,1 be a scaler value adjusted later. We then approximate each of the denominator and
numerator of∇ log pt(x) combining sub-networks that approximates each E

(1)
k,j (x, t) or E(2)

k,j (x, t).

Here we briefly remark why 1[∥y∥∞ ≤ Cb,1] appears. Let us assume Cb,1 = 1 and approximate
pt(x) based on basis decomposition of p0(x), although later we need to consider other situations. If
we use basis decomposition as p0(x) ≈ fN (x) =

∑
Md

k,j(x), existing results such as Lemma J.13
only assure that the approximation is valid within [−1, 1]d and do not guarantee anything outside
the region. This might harm the approximation accuracy when we integrate the approximation of
pt(x) over all Rd. Therefore, we need to force fN (x) = 0 if ∥x∥∞ > 1 by the indicator function.

From now, we realize the (modified) tensor-product diffused B-spline basis with neural networks.
We take E

(1)
k,j as an example, and the procedures for E(2)

k,j is essentially the same. Remind that in
Section 3 we decomposed Ek,j into the product of the diffused B-spline basis:

Dk,j(xi, t) =

∫
N (2kxi − ji)

σt

√
2π

exp

(
− (xi −mtyi)

2

2σ2
t

)
dxi.

Although the way we proceed is essentially the same as that in Section 3, here, more formally, we
first truncate the integral intervals. We clip the integral interval as

E
(1)
k,j (x, t) ≒

∫
y∈Ax,t

1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

d∏
i=1

(
l+1∑
l′=0

(−1)l′ l+1Cl′

l!

∫
yi∈ax

i

1

σt(2π)
1
2

1[|yi| ≤ Cb,1]1[0 ≤ 2kiyi − ji ≤ l + 1]

× (2kyi − l′ − ji)
l
+ exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi

)
, (30)

where Ax,t =
∏d

i=1 a
x,t
i with ax,ti = [ xi

mt
− σtCf

mt

√
log ε−1, xi

mt
+ σtCf

mt

√
log ε−1], Cf = O(1),

and 0 < ε < 1. This clipping causes the error at most O(ε) according to Lemma J.10 and the
observation 1[∥y∥∞ ≤ Cb,1]M

d
k,j(y) ≤

(
(l + 1)l+12l+1

)d
. In summary, owing to the fact that

Md
k,j(x) is a product of univariate functions of xi (i = 1, 2, · · · , d), the integral over Rd is now
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decomposed into the integral with respect to only one variable over the bounded region, which is a
truncated version of the diffused B-spline basis Dk,j introduced in Section 3.

We now begin the formal proof with the following lemma. We approximate∫
yi∈ax,t

i

1

σt(2π)
1
2

1[|yi| ≤ Cb,1]1[0≤2kyi−ji≤ l + 1](2kiyi−l′−ji)l+ exp

(
−(xi −mtyi)

2

2σ2
t

)
dyi

(31)

(remind (30)). Note that 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1] ≡ 0 or = 1[a ≤ 2kyi ≤ b] holds
with a, b satisfying

−C2k − l ≤ min
i

ji ≤ ji ≤ a < b ≤ ji + l + 1 ≤ max
i

ji + l + 1 ≤ C2k + l + 1, (32)

if we assume supp(p0) = [−C,C]d (see Lemma J.13). Based on (32), (31) (if 1[|yi| ≤ Cb,1]1[0 ≤
2kyi − ji ≤ l + 1](2kyi − l′ − ji)

l
+ ̸≡ 0) can alternatively written as∫

yi∈ax,t
i

1

σt(2π)
1
2

1[j ≤ 2ky ≤ j](2kyi − j′)l exp

(
− (xi −mtyi)

2

2σ2
t

)
dyi, (33)

with j, j, j′ ∈ R, j − l − 1 ≤ j′ ≤ j ≤ j, −C2k − l ≤ j′, j, j ≤ C2k + l + 1.

In the following lemma, we consider the approximation of (33). We omit the subscript i for the
coordinates, for simple presentation. Also, j′ in (33) is denoted by j, because j ∈ Rd will not be
used in the following lemma.
Lemma D.7 (Approximation of the diffused B-spline basis). Let j, k, l ∈ Z, j, j ∈ R satisfy j− l−
1 ≤ j ≤ j ≤ j, −C2k− l ≤ j, j, j ≤ C2k+ l+1, and k, l ≥ 0. Assume that |σ′−σt|, |m′−mt| ≤
εerror, and take ε from 0 < ε < 1

2 and C > 0 arbitrarily. Then, there exists a neural network

ϕ
j,j,j,k

dif,1 ∈ Φ(L,W, S,B) with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1.

such that∣∣∣∣∣ϕj,j,j,k

dif,1 (x, σ′,m′)−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky−j)l exp
(
−(x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤ Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1.

holds for all x in −C ≤ x ≤ C and for all t ≥ ε.

Also, with the same conditions, there exists a neural network ϕ
j,j,j,k

dif,2 ∈ Φ(L,W, S,B) with the same
bounds on L, ∥W∥∞, S,B as above such that∣∣∣∣∣ϕj,j,j,k

dif,2 (x, σ′,m′)−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

[x−mty]i√
2πσ2

t

1[j≤2ky≤j](2ky−j)l exp
(
−(x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤ Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1.

holds for all x in −C ≤ x ≤ C and for all t ≥ ε.

Furthermore, we can take these networks so that ∥ϕj,j,j,k

dif,1 ∥∞, ∥ϕj,j,j,k

dif,2 ∥∞ = O(1) hold.

Proof. Here we only consider ϕ
j,j,j,k

dif,1 , because the assertion for ϕ
j,j,j,k

dif,2 essentially follows the ar-

gument for ϕ
j,j,j,k

dif,1 .

23



Published at the Workshop on Understanding Foundation Models at ICLR 2023

First, we approximate the exponential function within the closed interval, using polynomials of
degree at most O(log ε−1). Note that 1[j ≤ 2ky ≤ j](2ky − j)l is bounded by (l + 1)l, from
the assumption of j − l − 1 ≤ j ≤ j ≤ j. Therefore, according to Lemma J.11, there exists
S = O(log ε−1) and we have that∣∣∣∣∣exp

(
− (x−mty)

2

2σ2
t

)
−

S−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

∣∣∣∣∣ ≤ ε2

for all y ∈ [−σtCf

mt

√
log ε−1 + x, σtCf

mt

√
log ε−1 + x]. Then, we have that∣∣∣∣∣

∫ σtCf
mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

−
∫ σtCf

mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l

(
S−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

)
dy

∣∣∣∣∣
≤ max

{
2σtCf

mt

√
log ε−1, (l + 1)

}
· 1√

2πσ2
t

(l + 1)l · ε ≲ ε log
1
2 ε−1.

Here, 2σtCf

mt

√
log ε−1 comes from the length of the integral interval and l+1 comes from the interval

where 1[j ≤ 2ky ≤ j] = 1 holds.

Now all we need is to approximate the integral of polynomials over the closed interval:
S−1∑
s=0

∫ σtCf
mt

√
log ε−1+ x

mt

−σtCf
mt

√
log ε−1+ x

mt

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l · (−1)
s

s!

(x−mty)
2s

2sσ2s
t

dy

=

S−1∑
s=0

l∑
l′=0

−(−1)s+l

√
2πml+1

t s!2s

·

[
lCl′(2

kσt)
l′(jmt − 2kx)l−l′

∫ Cf

√
log ε−1

−Cf

√
log ε−1

1

[
x−mt2

−kj

σt
≤ y ≤

x−mt2
−kj

σt

]
yl

′+2sdy

]
(

by resetting y ← x−mty

σt

)
=

S−1∑
s=0

l∑
l′=0

−(−1)s+l
lCl′2

kl′σl′(jmt − 2kx)l−l′

√
2πml+1

t s!2s(l′ + 2s+ 1)

·

[(
min

{
Cf

√
log ε−1,max

{
x−mt2

−kj

σt
,−Cf

√
log ε−1

}})l′+2s+1

−
(
min

{
Cf

√
log ε−1,max

{
x−mt2

−kj

σt
,−Cf

√
log ε−1

}})l′+2s+1
]
. (34)

We decompose (34) into the following sub-modules for convenience. We let

f l′,s
1 (x, σ,m) = (min{Cf log

1
2 (ε−1),max{

x−m2−kj

σ
,−Cf log

1
2 (ε−1)}})l

′+2s+1,

f l′,s
2 (x, σ,m) = (min{Cf log

1
2 (ε−1),max{x−m2−kj

σ
,−Cf log

1
2 (ε−1)}})l

′+2s+1,

f l′,s
3 (x, σ,m) = f l′,s

1 (x, σ,m)− f l′,s
2 (x, σ,m)

f l′

4 (x,m) = (jm− 2kx)l−l′ ,

f l′

5 (σ) = σl′ ,

f6(m) = m−(l+1),

f l′,s
7 (x, σ,m) = f l′,s

3 (x, σ,m)f l′

4 (x,m)f l′

5 (σ)f6(m).
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They also depends on j, j, j, k, and l, but we omit the dependency on these variables for simple
presentation. We take some ε1 > 0, which is adjusted at the final part of the proof.

We first consider approximation of f l′,s
1 (x, σ,m). We realize this as

f l′,s
1 (x, σ,m) ≒ ϕl′,s

1 (x, σ,m)

:= ϕmult(·; l′ + 2s+ 1) ◦ ϕclip(·;−Cf log
1
2 (ε−1),−Cf log

1
2 (ε−1)) ◦ (ϕmult(x−m2−kj, ϕrec(σ))).

by setting ε = min{σε, ε1} in Corollary J.8 for ϕrec, ε = ε1, C = max{2C + l + 1, σ−1
ε } ≥

max{|x|+m2−kj, σ−1
ε } in Lemma J.6 for the first ϕmult, a = −Cf log

1
2 (ε−1), b = Cf log

1
2 (ε−1)

in Lemma J.4 for ϕclip, and ε = ε1, C = Cf log
1
2 (2ε−1) in Lemma J.6 for the second ϕmult. Note

that σε ≃
√
ε. Then, using Lemmas J.1, J.4, J.6 and J.7 the size of the network is at most

L = O(log2 ε−1
1 + log2 ε−1 + log2 C),

∥W∥∞ = O(log3 ε−1
1 + log3 ε−1),

S = O(log4 ε−1
1 + log4 ε−1 + log2 C),

B = O(ε−2
1 + C2) + logO(log ε−1) ε−1.

(35)

Approximation error between f l′,s
1 (x, σt,mt) and ϕl′,s

1 (x, σ′,m′) is bounded by

ε1 +O(log ε−1)(Cf log
1
2 ε−1)O(log ε−1) · (ε1 +max{C + l + 2, σ−1

ε }2 · (ε1 + εerror(ε
−2
1 +ε−2)))

= (ε1 + εerror)
(
logO(log ε−1) ε−1 + C2

)
.

f l′,s
2 (x, σt,mt) is also approximated in the same way, and therefore aggregating f l′,s

1 (x, σt,mt) and
f l′,s
2 (x, σt,mt) (by using Lemma J.3) yields that f l′,s

3 (x, σt,mt) is approximated by ϕl′,s
3 (x, σ′,m′)

with the error up to an additive error of (ε1 + εerror)
(
logO(log ε−1) ε−1 + C2

)
using a neural net-

work with the same size as that of (35).

Next, we consider f l′

4 (x,mt). Since 2kx = O(C2k) and |jmt − jm′| ≤ O(C2kεerror), we ap-
proximate f l′

4 (x,mt) with a neural network ϕl′

4 (x,m
′) ∈ Φ(L,W, S,B), where L, ∥W∥∞, S,B are

evaluated by Lemmas J.1 and J.6 (setting ε = ε1, C = O(C2k)) as

L = O(log ε−1
1 + k logC), W = O(1), S = O(log ε−1

1 + k logC), B = O(Cl2kl).

Approximation error between f l′

4 (x,mt) and ϕl′

4 (x,m
′) is bounded as ε1 + O(Cl2kl)εerror, using

Lemma J.6.

The arguments for f l′

5 (σ) and f6(m) are just setting appropriate parameters in Lemma J.6
and Corollary J.8, respectively. For f l′

5 (σt), there exists a neural network ϕl′

5 (σ
′) with L =

O(log ε−1
1 ), ∥W∥∞ = 48l, S = O(log ε−1

1 ), B = 1 and the approximation error between f l′

5 (σ)

and ϕl′

5 (σ
′) is bounded by ε1 + lεerror, by setting d = l′(≤ l), ε = ε1 in Lemma J.6. For

f6(mt), there exists a neural network ϕ6(m
′) with L = O(log2 ε−1

1 + log2 m−1
ε ), ∥W∥∞ =

O(log3 ε−1
1 + log3 m−1

ε ), S = O(log4 ε−1
1 + log4 m−1

ε ), B = O(ε−l−1
1 +m−l−1) and the approxi-

mation error between f6(mt) and ϕ6(m
′) is bounded by ε1+(l+1)ε−l−2

1 εerror+(l+1)m−l−2
ε εerror,

by setting d = l + 1, ε = min{ε1,mε} in Corollary J.8. Note that mε ≳ 1.

Therefore, Lemma J.6 with ε = ε1 yields that there exists a neural network ϕl′,s
7 (x,m, σ) such that

L = O(log2 ε−1
1 + log2 ε−1 + log2 C + k),

∥W∥∞ = O(log3 ε−1
1 + log3 ε−1),

S = O(log4 ε−1
1 + log4 ε−1 + log2 C + k),

B = O(ε−2
1 + C2) + logO(log ε−1) ε−1 + Cl2kl.

where approximation error between f l′,s
7 (x,mt, σt) and ϕl′,s

7 (x,m′, σ′) is bounded as∣∣∣f l′,s
7 (x, σ,m)− ϕl′,s

7 (x,m′, σ′)
∣∣∣ ≤ (ε1 + εerror(ε

−l−2
1 + C4l24kl)) logO(log ε−1) ε−1.
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Finally, we sum up ϕl′,s
7 (x,m′, σ′) multiplied −(−1)s+l

lCl′2
kl′

√
2πs!2s(l′+2s+2)

over (l′, s), according to (34) and

using Lemma J.3. Here, the coefficient is bounded by 2(k+1)l and the total number of possible
combinations (l′, s) is bounded by O(lS) = O(log ε−1). Then, approximation error for (34) is
bounded as

2(k+1)l(ε1 + εerror(ε
−l−2
1 + C4l24kl)) logO(log ε−1) ε−1.

In order to bound the terms related to ε1 by O(ε), we take ε1 = O(2−(k+1)l log−O(log ε−1) ε−1).
Then, the total approximation error is bounded by Õ(ε) + εerrorC

4l2k(4l+1) logO(log ε−1) ε−1 and
this is achieved by a neural network with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1.

Finally, because∣∣∣∣∣
∫ σtCf

mt

√
log ε−1+ x

mt

−
σtCf,1

mt

√
log ε−1+ x

m

1√
2πσt

1[j ≤ 2ky ≤ j](2ky − j)l exp

(
− (x−mty)

2

2σ2
t

)
dy

∣∣∣∣∣
≤
∫

1√
2πσt

1[j ≤ 2ky ≤ j](l + 1)l exp

(
− (x−mty)

2

2σ2
t

)
dy ≲ Cf ,

we can clip ϕ
j,j,j,k

dif,1 so that it is bounded by O(1).

We now approximate the (modified) tensor product diffused B-spline basis. The following is the
formal version of Lemma D.3. Without the term of 1[∥y∥∞ ≤ Cb,1], the statement matches that of
Lemma D.3. This network ϕdif,3 corresponds to ϕTDB in Lemma D.3.

Lemma D.8 (Approximation of the tensor-product diffused B-spline bases). Let k ∈ Z+, j ∈
Zd, l ∈ Z+ with −C2k − l ≤ ji ≤ C2k (i = 1, 2, · · · , d), ε (0 < ε < 1

2 ) and C > 0. There
exists a neural network ϕdif,3(x, t) ∈ Φ(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k2),

∥W∥∞ = O(log6 ε−1 + log3 C + k3),

S = O(log8 ε−1 + log4 C + k4),

B = exp
(
log4 ε−1 + logC + k

)
,

such that∣∣∣∣∣ϕk,j
dif,3(x, t)−

∫
Rd

1

σd
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∣∣∣∣∣ ≤ ε

holds for all x ∈ [−C,C]d.

Also, with the same conditions, there exists a neural network ϕdif,4 ∈ Φ(L,W,S,B) with the same
bounds on L, ∥W∥∞, S,B as above such that∥∥∥∥∥ϕk,j

dif,4(x, σ
′,m′)−

∫
Rd

x−mty

σd+1
t (2π)

d
2

1[∥y∥∞ ≤ Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∥∥∥∥∥ ≤ ε.

holds for all x ∈ [−C,C]d.

Furthermore, we can choose these networks so that ∥ϕk,j
dif,3∥∞, ∥ϕk,j

dif,4∥∞ = O(1) hold.
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Proof. Here we only prove the first part, because the second part follows in the same way. We
assume |σ′ − σt|, |m′ −mt| ≤ εerror.

From the discussion (30), we approximate
d∏

i=1

(
l+1∑
l′=0

(−1)l′ l+1Cl′

l!

∫
yi∈ax

i

1

σ(2π)
1
2

1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1]

× (2kiyi − l′ − ji)
l
+ exp

(
− (xi −myi)

2

2σ2

)
dyi

)
, (36)

which is equal to Dd
k,j(x) within an additive error of O(ε), so we approximate (36). Here axi =

[ xi

mt
− σtCf

mt

√
log ε−1, xi

mt
+ σtCf

mt

√
log ε−1].

We let fi(yi; ji, k, l
′) := 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1](2kyi −

l′ − ji)
l
+ exp

(
− (xi−mtyi)

2

2σ2
t

)
dyi. First,

∑l+1
l′=0

(−1)l
′
l+1Cl′
l! fi(yi; ji, k, l

′) is approximated by∑l+1
l′=0

(−1)l
′
l+1Cl′
l! ϕ

ji−l′,jl′ ,jl′
,k

dif,1 (yi, σ
′,m′) (see Lemma J.3 for aggregation of the networks). Here,

jl′ and j
l′

are defined so that 1[j
l′
≤ 2ky ≤ jl′ ] = 1[|yi| ≤ Cb,1]1[0 ≤ 2kyi − ji ≤ l + 1] holds.

Now we multiply
∑l+1

l′=0
(−1)l

′
l+1Cl′
l! ϕ

ji,jl′ ,jl′
,k

dif,1 (yi, σ
′,m′) over i = 1, 2, · · · , d using ϕmult to ob-

tain the desired network ϕk,j
dif,3. According to Lemma D.7 with ε = ε and Lemma J.6 with ε = ε

and C = O(1) (because ∥ϕ
ji,jl′ ,jl′

,k

dif,1 ∥∞ = O(1)), there exists a neural network ϕ1(x,m
′, σ′) ∈

Φ(L,W,S,B) with

L = O(log4 ε−1 + log2 C + k),

∥W∥∞ = O(log6 ε−1),

S = O(log8 ε−1 + log2 C + k),

B = O(Cl2kl) + logO(log ε−1) ε−1

and we can bound the approximation error between ϕ1(x,m
′, σ′) and (36) with

Õ(ε) + εerrorC
4l2k(4l+1) logO(log ε−1) ε−1. (37)

Now, we consider ϕdif,3 = ϕ1(x, ϕm(t), ϕσ(t)). We apply Lemma D.6 with ε =

C−4l2−k(4l+1) log−O(log ε−1) ε−1, so that εerror gets small enough and (37) is bounded by Õ(ε).
Then, the size of ϕdif,3 is bounded by

L = O(log4 ε−1 + log2 C + k2),

∥W∥∞ = O(log6 ε−1 + log3 C + k3),

S = O(log8 ε−1 + log4 C + k4),

B = exp
(
log4 ε−1 + logC + k

)
.

Now, adjusting ε to replace Õ(ε) by ε yields the first assertion.

We can make ∥ϕk,j
dif,3∥∞ hold, because

∫
Rd

1

σd
t (2π)

d
2
1[∥y∥∞ ≤

Cb,1]M
d
k,j(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy = O(1).

D.4 APPROXIMATION ERROR BOUND: BASED ON p0

Now we put it all together and derive Theorem 3.1. Throughout this and the next subsections, we
take N ≫ 1, T1 = T = poly(N−1) and T5 = T = O(logN). Moreover, we let T2 = N−(2−δ)/d,
T3 = 2T2, T4 = 3T2. This subsection considers the approximation for t ∈ [T1, T4].

We begin with the following lemma, which gives the basis decompositon of the Besov functions.
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Lemma D.9 (Basis decomposition). Under N ≫ 1, Assumptions 2.2, 2.3, 2.4 with a0 =
N−(1−δ)/d, there exists fN that satisfies

∥p0 − fN∥L2([−1,1]d) ≲ N−s/d,

∥p0 − fN∥L2([−1,1]d\[−1+N−(1−δ)/d,1−N−(1−δ)/d]d) ≲ N−(3s+2)/d,

and fN (x) = 0 for all x with ∥x∥∞ ≥ 1, and has the following form:

fN (x) =

N∑
i=1

αi1[∥x∥∞ ≤ 1]Md
k,ji(x) +

3N∑
i=N+1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
k,ji(x), (38)

where −2(k)m − l ≤ (ji)m ≤ 2(k)m (i = 1, 2, · · · , N, m = 1, 2, · · · , d), |k| ≤ K∗ = (O(1) +
logN)ν−1 + O(d−1 logN) for δ = d(1/p − 1/r)+ and ν = (2s − δ)/(2δ). Moreover, |αi| ≲
N (ν−1+d−1)(d/p−s)+ .

Proof. Because p0 ∈ C3s+2([−1, 1]d \ [−1 + N−(1−δ)/d, 1 − N−(1−δ)/d]d), according to
Lemma J.13, we have f1 such that

∥p0 − f1∥L2([−1,1]d\[−1+N−(1−δ)/d,1−N−(1−δ)/d]d) ≲ N−(3s+2)/d.

and has the following form:

f1(x) =

N∑
i=1

αiM
d
k,ji(x),

where −2(k)m − l ≤ (ji)m ≤ 2(k)m (i = 1, 2, · · · , N, m = 1, 2, · · · , d), |k| ≤ K∗ = (O(1) +
logN)ν−1 + O(d−1 logN) for δ = d(1/p − 1/r)+ and ν = (2s − δ)/(2δ). Moreover, |α1,i| ≲
N (ν−1+d−1)(d/p−2s)+ .

Next let us approximate f in [−1, 1]d. Because ∥p0∥Bs
p,q

≲ 1, we have f2 such that

∥p0 − f2∥L2([−1,1]d) ≲ N−s/d.

and has the following form:

f2(x) =

2N∑
i=N+1

αiM
d
k,ji(x),

where −2(k)j − l ≤ (ji)j ≤ 2(k)j (i = 1, 2, · · · , N, j = 1, 2, · · · , d), |k| ≤ K∗ = (O(1) +
logN)ν−1 + O(d−1 logN) for δ = d(1/p − 1/r)+ and ν = (s − δ)/(2δ). Moreover, |α2,i| ≲
N (ν−1+d−1)(d/p−s).

Therefore,
1[∥x∥∞ ≤ 1]f1(x)− 1[∥x∥∞ ≤ 1−N−(1−δ)/d]f1(x) + 1[∥x∥∞ ≤ 1−N−(1−δ)/d]f2(x)

=

N∑
i=1

αiM
d
ki,ji(x)−

N∑
i=1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
ki,ji(x)

+

2N∑
i=N+1

αi1[∥x∥∞ ≤ 1−N−(1−δ)/d]Md
ki,ji(x)

holds and reindexing the bases gives the result.

The following lemma gives neural network that approximates∇ log pt(x) in [T1, T4].
Lemma D.10 (Approximation of score function for T1 ≤ t ≤ T4). There exists a neural network
ϕscore,1 ∈ Φ(L,W, S,B) that satisfies∫

pt(x)∥ϕscore,1(x, t)−∇ log pt(x)∥2dxdt ≲
N−2s/d logN

σ2
t

(39)

Here, L, ∥W∥∞, S,B is evaluated as

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(log4 N)).
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Proof. Before we proceed to the main part of the proof, we limit the discussion into the bounded
region. According to Lemma C.4, we have that∫

∥x∥∞≥mt+O(1)σt

√
logN

pt(x)∥s(x, t)−∇ log pt(x)∥2dx ≲
T

N (2s+1)/d

(
1 + ∥s(·, t)∥2∞

)
, (40)

with a sifficiently large hidden constant in O(1). Because ∥∇ log pt(x)∥ is bounded with log
1
2 N
σt

in

∥x∥∞ ≥ mt +O(1)σt

√
logN due to Lemma C.3, s can be taken so that ∥s(·, t)∥∞ ≲ log

1
2 N
σt

and
therefore (40) is bounded by T

N(2s+1) · logN
T = N−(2s+1)/d logN , which is smaller than the upper

bound of (39). Thus, we can focus on the approximation of the score ∇ log pt(x) within ∥x∥∞ ≤
mt+O(1)σt

√
logN = O(1). Moreover, we can also exclude the case where pt(x) ≤ N−(2s+1)/d,

because Lemma C.4 can bound the error∫
∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≤ ε]∥s(x, t)−∇ log pt(x)∥2dx

≲
ε

σ2
t

log
d+2
2 (ε−1T−1) + ε∥s(x, t)∥

≲
ε

σ2
t

log
d+2
2 (ε−1T−1) +

ε

σ2
t

logN, (41)

and setting ε = N−(2s+1)/d makes (41) smaller than the bound (39).

Thus, in the following, we consider x such that ∥x∥∞ ≤ mt+O(1)σt

√
logN = O(1) and pt(x) ≥

N−(2s+1)/d holds. In this case, we have ∥∇ log pt(x)∥ ≲ log
1
2 N
σt

.

The construction is straightforward. Based on (38) of Lemma D.9, we let

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≒
∫

1

σd
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy =

N∑
i=1

αiE
(1)
ki,ji

(x, t) =: f̃1(x, t),

f1(x, t) := f̃1(x, t) ∨N−(2s+1)/d,

and

σt∇pt(x) =
∫

x−mty

σd+1
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

≒
∫

x−mty

σd+1
t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy =

N∑
i=1

αiE
(2)
ki,ji

(x, t) =: f2(x, t),

f3(x, t) :=
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]

so that αi, E
(1)
ki,ji

(x, t) and E
(2)
ki,ji

(x, t) correspond to the basis decomposition in Lemma D.9. Thus,

|αi| ≲ N (ν−1+d−1)(d/p−s)+ and |ki| = O(logN). We remark that Cb,1 is set to be 1 or 1 −
N−(1−δ)/d in (28) and (29). We approximate E

(1)
k,ji

and E
(2)
k,ji

by ϕki,ji
dif,3 and ϕki,ji

dif,4 in Lemma D.8,

by setting ε = ε1 and C = mt + O(1)σt

√
logN = O(1) (because σt ≤ σT2

≲ log−
1
2 N ),

where ε1 = poly(N−1) is a scaler value adjusted below. Then we sum up these sub-networks using
Lemma J.3 and obtain neural networks ϕdif,5(x, t) and ϕdif,6(x, t) that approximate f1(x, t) and
f2(x, t), respectively.
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Because we can decompose the error as∫
∥x∥∞≤mt+O(1)σt

√
logN

pt(x)1[pt(x) ≥ N− 2s+1
d ]∥s(x, t)−∇ log pt(x)∥2dx

≲
∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥2 dx (42)

+

∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥f3(x, t)σt
−∇ log pt(x)

∥∥∥∥2 dx, (43)

we consider the approximation of f3(x,t)
σt

for the moment, instead of ∇ log pt(x) = ∇pt(x,t)
f1(x,t)

, and
bound (42). From the construction of the networks, we have the following bounds:

|f1(x, t)− ϕdif,5(x, t)| ≲ N ·max |αi| · ε1, (44)
∥f2(x, t)− ϕdif,6(x, t)∥ ≲ N ·max |αi| · ε1. (45)

for all x with ∥x∥∞ ≤ mt + O(1)σt

√
logN = O(1). Note that max |αi| is bounded by

N (ν−1+d−1)(d/p−s)+ . Thus, we take ε1 ≲ N−1 · N−(ν−1+d−1)(d/p−s)+ · N− 9s+3
d so that (44)

and (45) are bounded by N− 9s+3
d in Lemma J.6.

Then we define ϕdif,7 as

[ϕdif,7(x, t)]i := ϕclip(ϕmult

(ϕrec(ϕclip(ϕdif,5(x, t);N
−(2s+1)/d,O(1)))), [ϕdif,6(x, t)]i);−O(log

1
2 N),O(log

1
2 N)).

to approximate σt∇ log pt(x). Here we used the boundedness of pt(x) with [N−(2s+1)/d,O(1)] to
clip ϕdif,5(x, t) and the boundedness of σt∇ log pt(x) with [−O(log

1
2 N),O(log

1
2 N)] to clip the

whole output. For ϕrec we let ε = N−(3s+1)/d in Lemma J.7 and for ϕmult we let ε = N−s/d and
C = N (2s+1)/d. Then,

∥ϕdif,7(x, t)− f3(x, t)∥ =

∥∥∥∥∥ϕdif,7(x, t)−
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]∥∥∥∥∥
≲ N−s/d

+N (2s+1)/d · (N−(3s+1)/d +N2(3s+1)/d|f1(x, t)− ϕdif,5(x, t)|+ ∥f2(x, t)− ϕdif,6(x, t)∥)
≲ N−s/d +N (8s+3)/d|f1(x, t)− ϕdif,5(x, t)|+N (2s+1)/d∥f2(x, t)− ϕdif,6(x, t)∥. (46)

Applying (44)≤ N− 9s+3
d and (45)≤ N− 9s+3

d yields that (46)≤ N− s
d .

Finally, we let

ϕscore,1(x, t) := ϕmult(ϕdif,7(x, t), ϕσ(t)).

By setting ε = N−s/d and C ≃ max{log
1
2 N, σT } ≲ poly(N) in Lemma J.6 for ϕmult and

ε = N−s/d/poly(N) in Lemma D.6 for ϕσ . Then,∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥ ≲ N−s/d + poly(N) ·N−s/d/poly(N) ≲ N−s/d,

which yields

(42) =

∫
∥x∥∞≤mt+O(1)σt

√
logN

1[pt(x) ≥ N− 2s+1
d ]pt(x)

∥∥∥∥ϕscore,1(x, t)−
f3(x, t)

σt

∥∥∥∥2 dx
≲ N−2s/d.

The structure of ϕdif,7 and ϕscore,1 are evaluated as

L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp
(
log4 N

)
.

Here we used |ki| = O(logN) and C = O(1).
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We move to the error analysis between f3(x,t)
σt

and ∇ log pt(x) to bound (43). Remind that we
consider x such that ∥x∥∞ ≤ mt +O(1)σt

√
logN = O(1) and pt(x) ≥ N−(2s+1)/d holds. In this

case, we have ∥∇ log pt(x)∥ ≲ log
1
2 N
σt

. First, we consider the case x ∈ [−mt,mt]
d. Since pt(x) is

lower bounded by C−1
a according to Lemma C.2, as long as |f1(x, t) − pt(x)| ≤ C−1

a /2, we can
say that the approximation error is bounded by ≲ |f1(x, t) − pt(x)| + ∥f2(x, t) − σt∇pt(x)∥. On
the other hand, if |f1(x, t)− pt(x)| ≥ C−1

a /2, we no longer have such bound, but this time we can
use the fact that f2(x,t)

f1(x,t)
and σt

σt∇pt(x)
pt(x)

is bounded by log
1
2 N . Therefore, when x ∈ [−mt,mt]

d,
we can bound the approximation error as

∥∥∥∥f3(x, t)− σt
∇pt(x)
pt(x)

∥∥∥∥ ≤ ∥∥∥∥f2(x, t)f1(x, t)
− σt

∇pt(x)
pt(x)

∥∥∥∥
≲ log

1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥).

Next, we consider the case when x ∈ [−mt−O(1)σt

√
logN,mt+O(1)σt

√
logN ]d \ [−mt,mt]

d.
Then, we have that

∥∥∥∥f3(x, t)− σt
∇pt(x)
pt(x)

∥∥∥∥ ≤ ∥∥∥∥f2(x, t)f1(x, t)
− σt

∇pt(x)
pt(x)

∥∥∥∥
≲
∥f2(x, t)− σt∇pt(x)∥

f1(x, t)
+ ∥σt∇pt(x)∥

∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣ . (47)

The first term is bounded by N (2s+1)/d∥f2(x, t)(x, t) − σt∇pt(x)∥ because we focus on the case

pt(x) ≥ N−(2s+1)/d. For the second term, because ∥∇ log pt(x)∥ =
∥∥∥σt

∇pt(x)
pt(x)

∥∥∥ ≲ log
1
2

σt
, we have

∥σt∇pt(x)∥ ≲ pt(x) log
1
2 N . By using this, we can bound the second term as

∥σt∇pt(x)∥
∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣ ≲ log
1
2 Npt(x)

∣∣∣∣ 1

f1(x, t)
− 1

pt(x)

∣∣∣∣
≲ log

1
2 N
|pt(x)− f1(x, t)|

f1(x, t)

≲ N
2s+1

d log
1
2 N |pt(x)− f1(x, t)| ,

where we used f1(x, t) ≥ N−(2s+1)/d. Thus, for x ∈ [−mt − O(1)σt

√
logN,mt +

O(1)σt

√
logN ]d \ [−mt,mt]

d and pt(x) ≥ N− 2s+1
d , (47) is bounded by

∥∥∥∥ϕdif,7(x, t)−
σt∇pt(x)
pt(x)

∥∥∥∥ ≲ N
2s+1

d log
1
2 N(|ϕdif,5(x, t)− pt(x)|+ ∥ϕdif,6(x, t)− σt∇pt(x)∥).

Therefore, we have that

∥∥∥∥ f2(x, t)

σtf1(x, t)
− ∇pt(x)

pt(x)

∥∥∥∥
≲


log

1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥)/σt (∥x∥∞ ≤ mt)

N
2s+1

d log
1
2 N(|f1(x, t)− pt(x)|+ ∥f2(x, t)− σt∇pt(x)∥)/σt

(x ∈ [−mt −O(1)σt

√
logN,mt +O(1)σt

√
logN ]d \ [−mt,mt]

d).

(48)
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We consider the L2(pt) loss of (48). First, we consider the case of ∥x∥∞ ≤ mt.∫
∥x∥∞≤mt

pt(x)

∥∥∥∥ f2(x, t)

σtf1(x, t)
− ∇pt(x)

pt(x)

∥∥∥∥2 dx
≲
∫
∥x∥∞≤mt

(|f1(x, t)− pt(x)|2 + ∥f2(x, t)− σt∇pt(x)∥2) logN/σ2
t dx

(we used(48) and pt(x) = O(1) by Lemma C.2.)

≲
∫
∥x∥∞≤mt

logN/σ2
t dx∣∣∣∣∣

∫
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σd
t (2π)

d
2
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(
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2σ2
t

)
dy −

∫
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t (2π)

d
2

fN (y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

∣∣∣∣∣
2

+

∥∥∥∥∥
∫

x−mty

σd+1
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d
2

p0(y) exp

(
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2σ2
t
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∫
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2σ2
t

)
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∥∥∥∥∥
2
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t ·
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d
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2σ2
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t ·
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∫
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t ·
∫
|p0(y)− fN (y)|2dy ≲ logN/σ2

t ·N−2s/d.

For the third inequality, we used Jensen’s inequality. For the second last inequality, we used the
construction of fN and Lemma D.9.

We then consider the case of x ∈ [−mt − O(1)σt

√
logN,mt + O(1)σt

√
logN ]d \ [−mt,mt]

d.
Most of the part is the same as previously.∫
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√
logN
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d ]
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)
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2)

≲ N
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d logN/σ2
t ·
∫
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√
logN
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2σ2
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|p0(y)− fN (y)|2dydx

+N
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∫
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≲ N
4s+2

d logN/σ2
t ·

[∫
mt≤∥x∥∞≤mt+O(1)σt

√
logN[∫

∥ x
mt

−y∥∞≤O(1)σt
√
logN

1
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d
2

exp

(
−∥x−mty∥2

2σ2
t

)
|p0(y)− fN (y)|2dy +N− 6s+2

d

]
dx

+

∫
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mt
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]
(we used Lemma J.10.)
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t ·
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∫
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+

∫
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For the third inequality, we used Jensen’s inequality. Here, we note that if (x, y) satisfies mt ≤
∥x∥∞ ≤ mt + O(1)σt

√
logN = O(1) and ∥ x

mt
− y∥∞ ≤ O(1)σt

√
logN , then we have that

1−O(1)σt

√
logN ≤ ∥y∥∞ ≤ 1+O(1) σt

mt

√
logN and that 1−O(1)

√
t ≤ ∥y∥∞ ≤ 1+O(1)

√
t.

Because we are considering the time t ≤ T4 = 3N− 2−δ
d , O(1)

√
t ≲ N− 1−δ

d holds for sufficiently
large N . Therefore, (49) is further bounded by

(49)
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∫
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d +N− 2s
d logN/σ2

t ≲ N− 2s
d logN/σ2

t ,

where we used the construction of fN and Lemma D.9 for the second last inequality. Now we
successfully bounded (43) and the conclusion follows.

D.5 APPROXIMATION ERROR BOUND: USING THE INDUCED SMOOTHNESS

We then consider the approximation for t ≳ T2 = N−(2−δ)/d. This can be proved by considering
diffusion process starting at t = t∗ > 0. We begin with the following lemma.
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Lemma D.11 (Basis decomposition of pt at t = t∗). If N,N ′ ≫ 1 and N ′ ≥ t
− d

2
∗ N

δ
2 , there exists

fN ′ such that

∥pt∗ − fN ′∥L2(Rd) ≲ N−(3s+5)/d,

fN ′(x) = 0 for x with ∥x∥∞ ≳ O(
√
logN), and has the following form:

fN (x) =

N ′∑
i=1

1[∥x∥∞ ≲ O(
√
logN)]Md

ki,ji(x),

where −
√
logN2(ki)m − l ≲ (ji)l ≲

√
logN2(ki)l (i = 1, 2, · · · , N, m = 1, 2, · · · , d), ∥ki∥∞ ≤

K = O(d−1 logN) and |αi| ≲ N
(3s+6)(2−δ)

δ .

Proof. Let α = 2(3s+6)
δ + 1. According to Lemma C.3, for any x, we have

∥∂xi1
∂xi2
· · · ∂xik

pT2
(x)∥ ≤ Ca

σk
t∗

.

Because all derivatives up to order α is bounded by σ−α
t∗ ≲ t

−α
2

∗ ∨ 1, pt∗ (x)

t
−α

2
∗ ∨a

belongs to Wα
∞ and its

norm in Wα
∞ is bounded by a constant depending on α, and hence to Bα

∞,∞. Therefore, according
to Lemma J.13, there exists a basis decomposition with the order of the B-spline basis l = α+ 2:

fN ′(x) = (t
−α

2
∗ ∨ 1)

N ′∑
i=1

αiM
d
ki,ji(x).

such that

∥pt∗ − fN ′∥L2([−O(
√
logN),O(

√
logN)]d) ≲ (

√
logN)αN ′−α/d

t
−α

2
∗

= (
√

logN)αNαδ/2d = (
√
logN)αN−(3s+6)/d ≲ N−(3s+5)/d,

where −
√
logN2(ki)m − l ≲ (ji)l ≲

√
logN2(ki)l (i = 1, 2, · · · , N, m = 1, 2, · · · , d),

∥ki∥∞ ≤ K = O(d−1 logN), and |αi| ≲ 1. Also, Lemma C.4 with ε = N− 6s+10
d and

mt∗ + O(1)σt∗

√
logN ≲

√
logN guarantees that ∥pT2

− fN∥L2(Rd⊆[−O(
√
logN),O(

√
logN)]d) ≲

N−(3s+5)/d. Therefore, by resetting αi ← (t
−α

2
∗ ∨ 1)αi, the assertion holds. (αi is then bounded by

T
−α

2
2 .)

Lemma D.11 gives a concrete construction of the neural network for T3 ≤ t ≤ T5.

Lemma D.12 (Approximation of score function for T3 ≤ t ≤ T5; Lemma D.5). Let N ≫ 1

and N ′ ≥ t
−d/2
∗ Nδ/2. Suppose t∗ ≥ N−(2−δ)/d. Then there exists a neural network ϕscore,2 ∈

Φ(L,W,S,B) that satisfies∫
x

pt(x)∥ϕscore,2(x, t)− s(x, t)∥2dx ≲
N− 2(s+1)

d

σ2
t

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B =

exp(O(log4 N)). Moreover, we can take ϕscore,2 satisfying ∥ϕscore,2∥∞ = O(σ−1
t log

1
2 N).

Proof. The proof is essentially the same as that of Lemma D.10. Here, the slight differences are that
(i) pt, ϕdif,8, and f1 are lower bounded by N−(2s+3)/d, not by N−(2s+1)/d, that (ii) L2(pt) error

should be bounded by N− 2(s+1)
d

σ2
t

, not by N− 2s
d

σ2
t

, and that (iii) pt∗ is supported on Rd, not on [−1, 1]d.

Bounding the difference between Observe that t∗ ≥ T1 = N− 2−δ
d holds, which is necessary to

apply the argument of Lemma D.10.
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Let us reset the time t← t− t∗ in the following proof and consider the diffusion process from p0 (in
the new definition), for simplicity. We have t ≥ t∗ ≳ poly(N−1) in the new definition. According
to Lemma C.4, we have that∫

∥x∥∞≥mt+O(1)σt

√
logN

pt(x)∥s(x, t)−∇ log pt(x)∥2dx ≲
t∗

N (2s+2)/d

(
1 + ∥s(·, t)∥2∞

)
, (50)

with a sifficiently large hidden constant in O(1). We limit the domain of x into ∥x∥∞ ≤ mt +

O(1)σt

√
logN = O(

√
logN). In this region, Lemma C.3 yields ∥∇ log pt(x)∥ ≲

√
logN
σt

, and

therefore we can take s such that ∥s(·, t)∥∞ ≤
√
logN
σt

≲
√
logN√
t∗∧1

holds. Then, (50) is bounded by

N−2(s+1)/d. Moreover,∫
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logN
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log
d+2
2 (N) + ε∥s(x, t)∥
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(
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σ2
t

log
d+2
2 (N) +

N−(2s+3)/d

σ2
t

logN

)
log

d
2 N ≲ N−2(s+1)/d.

This means that we only need to consider x with pt(x) ≥ N−(2s+3)/d.

Using the basis decomposition in the previous lemma, we let

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
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2σ2
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dy

≒
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fN (y) exp
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2σ2
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)
dy =
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αiE
(1)
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(x, t) =: f̃1(x, t),

f1(x, t) := f̃1(x, t) ∨N−(2s+3)/d,

and

σt∇pt(x) =
∫
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(x, t) =: f2(x, t),

f3(x, t) :=
f2(x, t)

f1(x, t)
1

[∥∥∥∥f2(x, t)f1(x, t)

∥∥∥∥ ≲
log

1
2 N

σt

]

(exactly the same definitions as that in Lemma D.10, except for f1(x, t) := f̃1(x, t)∨N−(2s+3)/d).
Then we approximate each αiE

(1)
ki,ji

(x, t) and αiE
(2)
ki,ji

(x, t) using Lemma D.8 with ε ≲ N ′−1 ·
N

(3s+6)(2−δ)
δ · N− 9s+10

d and C = mt + O(1)σt

√
logN = O(

√
logN) and aggregate them by

Lemma J.3 to obtain ϕdif,8(x, t) and ϕdif,9(x, t), that approximate f1 and f2, respectively, and
satisfy

|f1(x, t)− ϕdif,8(x, t)| ≲ N− 9s+3
d , ∥f2(x, t)− ϕdif,9(x, t)∥ ≲ N− 9s+10

d .

for all x with ∥x∥∞ = O(
√
logN). Now, we define ϕdif,7 as

[ϕdif,10(x, t)]i := ϕclip(ϕmult

(ϕrec(ϕclip(ϕdif,8(x, t);N
−(2s+3)/d,O(1)))), [ϕdif,9(x, t)]i);−O(log

1
2 N),O(log

1
2 N)),

where we let ε = N−(3s+4)/d in Lemma J.7 for ϕrec and we let ε = N−(s+1)/d and C = N (2s+3)/d

for ϕmult in Lemma J.6. Finally, we let

ϕscore,2(x, t) := ϕmult(ϕdif,10(x, t), ϕσ(t)).
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where ε = N−(s+1)/d and C ≃ max{log
1
2 N, σT } ≲ poly(N) in Lemma J.6 for ϕmult and ε =

N−(s+1)/d/poly(N) in Lemma D.6 for ϕσ . In summary, we can check that∥∥∥∥ϕscore,2(x, t)−
f3(x, t)

σt

∥∥∥∥ ≲ N−(s+1)/d

holds for all x with ∥x∥∞ ≲
√
logN and therefore∫
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logN
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Moreover, the size of ϕscore,2 is bounded by

L = O(log4 N), ∥W∥∞ = O(N ′ log6 N) ≲ O(N), S = O(N ′ log8 N), and B = exp
(
log4 N

)
.

(52)

Now, we consider the difference between f3(x, t)/σt and ∇ log pt(x). Its L2 error in ∥x∥∞ ≤
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√
logN is bounded as previously, and we finally get∫
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d
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2σ2
t
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|p0(y)− fN (y)|2dy ≲ N
4s+6

d logN/σ2
t ·N− 6s+10

d ≲ N− 2(s+1)
d /σ2

t . (53)

Here we used the result of the previous lemma for the last inequality. Eqs. (51) and (52), (53) yield
the conclusion.

Combining Lemmas D.10 and D.12, where we use Lemma D.10 for T1 ≤ t ≤ T4 and Lemma D.12
for T3 ≤ t ≤ T5, we immediately obtain Theorem 3.1.

Proof of Theorem 3.1. Note that we can set N ′ = N and t∗ = N−(2−δ)/d in Lemma D.12. Accord-
ing to Lemmas D.10 and D.12, we have two neural networks ϕscore,1(x, t) and ϕscore,2(x, t), that
approximate the score function in [T1, T4] and [T3, T5]. Therefore, letting t1 = T4 and t2 = T3 in
Lemma J.5, ϕscore(x, t) = ϕ1

swit(t; t2, t1)ϕscore,1(x, t) + ϕ2
swit(t; t2, t1)ϕscore,2(x, t) approximates

the approximation error in L2(pt) with an additive error of N−2s/d logN
σ2
t

. Realization of the mul-
tiplications (ϕ1

switϕscore,1 and ϕ2
switϕscore,2 and aggregation ϕ1

switϕscore,1 + ϕ2
switϕscore,2 is trivial.

Finally, according to Lemmas D.10 and D.12, the size of the network is bounded by

L = O(log4(N)), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(log4 N)),

which concludes the proof.
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We also prepare an integral form of the approximation theorems.
Corollary D.13 (Approximation theorem). Suppose Assumptions 2.2, 2.3, 2.4 with a0 =
N−(1−δ)/d, N ≫ 1, T = poly(N−1), and T ≃ logN . Then there exists a neural network
ϕscore ∈ Φ(L,W,S,B) that satisfies∫ T

t=T

∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dxdt ≲ N−2s/d logN(log(T/T ) + (T − T )).

Here, L, ∥W∥∞, S,B is evaluated as

L = O(log4 N), ∥W∥∞ = O(N), S = O(N), and B = exp(O(log4 N)).

Moreover, suppose N ′ ≥ t
−d/2
∗ Nδ/2, t∗ ≥ N−(2−δ)/d, and T ≥ 2t∗, then there exists a neural

network ϕscore ∈ Φ(L,W,S,B) that satisfies∫ T

t=T

∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dxdt ≲ N− 2(s+1)
d (log(T/T ) + (T − T )).

Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B = exp(O(log4 N)).

Proof. We only show the first part; the second part comes from Lemma D.12 in the same way.
According to Theorem 3.1, there exists a network ϕscore with the desired size that satisfies∫

x

pt(x)∥ϕscore(x, t)− s(x, t)∥2dx ≲
N− 2s

d log(N)

σ2
t

.

Note that σt ≳ t ∧ 1. Therefore,∫ T

t=T

N− 2s
d log(N)

σ2
t

dt ≲
∫ T

t=T

N− 2s
d log(N)(1 ∨ 1/t)dt ≤ N− 2s

d log(N)(log(T/T ) + (T − T )),

which gives the first part of the theorem.

E GENERALIZATION OF THE SCORE NETWORK

E.1 DETAILED PROOF SKETCH

This section corresponds to Section 3.2. Here we provide detailed proof sketch of Theorem 3.2. We
begin with the following fact (Lemma E.5; Vincent (2011)).
Lemma E.1. The following holds for all s(x, t) and t > 0:∫

x

∫
y

∥s(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(y)dydx (54)

=

∫
x

∥s(x, t)−∇ log pt(x)∥2pt(x)dx+ Ct.

Here Ct is a constant depending on pt. According to this, minimizing the population score matching
loss (54) is equivalent to minimizing the difference between the network and the score in L2(pt).

Let us define

ℓs(x)=

∫ T

t=T

∫
∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt,

so that the expected score matching loss (54) and the empirical score matching loss (1) are written as
Ex∼p0

[ℓ(x)] and 1
n

∑n
i=1 ℓ̂(xi), respectively. For the hypothesis S which we specify later, we define

L = {ℓs| s ∈ S}. Define the empirical loss minimizer ŝ ∈ argmins∈S
1
n

∑
i ℓs(x0,i). Then we can

evaluate the difference between the empirical loss 1
n

∑n
i=1 ℓ̂(xi) and the polutation loss Ex∼p0

[ℓ(x)]
for ŝ, which yields Theorem 3.2.

The first term of (3) in Theorem 3.2 can be bounded by N
−2s/d

log N(log(T/T )+(T −T )), according
to Corollary D.13, which is obtained from Theorem 3.1. In order to evaluate the second term in
Theorem 3.2, we need to bound (i) ∥ℓ∥∞ uniformly over L and (ii) the covering number of L.
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(i) Bounding sup-norm According to Theorem 3.1, ŝ(x, t) can be taken so that ∥ŝ(·, t)∥∞ ≲
log

1
2 N
σt

. Thus we limit Φ(L,W, S,B) of Theorem 3.1 into

S := {ϕ ∈ Φ(L,W,S,B)| ∥ϕ(·, t)∥∞ ≲
log

1
2 n

σt
}.

Then Appendix E.2 shows that,

sup
s∈S

sup
x0∈[−1,1]d

ℓs(x0) ≲ log2 n.

(ii) Covering number evaluation By Lemma 3 of Suzuki (2018) and the fact that ∥ℓs∥∞ is
bounded by ∥s∥∞ up to poly(n), we obtain the following.

Lemma E.2. The covering number of L is evaluated by

logN (L, ∥ · ∥L∞([−1,1]d), δ) ≲ SL log(δ−1L∥W∥∞Bn).

The proof is found in Appendix E.3. Applying this to the specified values of L, ∥W∥∞, S, and B in
Theorem 3.1, the covering number is bounded by logN ≲ N(log16 N + log12 N log ε−1).

Putting it all together, the second term of (3) in Theorem 3.2 can be bounded by ≲
N log2(n)(log16(N) + log12(N) log(ε−1)). Now, (2) is bounded by

(2) ≲ N−2s/d logN(log(T/T ) + (T − T )) +N log2(n)(log16(N) + log12(N) log(ε−1)) + ε.

Applying N = n
d

d+2s , T = poly(n−1), and T ≃ log n and setting ε = n− 2s
d+2s yield

(2) ≲ n− 2s
d+2s log2(n) + n− 2s

d+2s log18(n) + n− 2s
d+2s ≲ n− 2s

d+2s log18(n).

In the following, we will first consider (i) (see Appendix E.2)and (ii) (see Appendix E.3), and then
we will give the proof of Theorem 3.2 in Appendix E.4.

E.2 BOUNDING SUP-NORM

Lemma E.3. Suppose that ∥s(·, t)∥∞ = O(σ−1
t log

1
2 n), T = poly(n−1) and T ≃ log n. Then, we

have that ∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)dxtdt ≲ log2 n.

Proof. The evaluation is mostly straightforward.∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)dxtdt

≤ 2

∫ T

t=T

∫
xt

∥s(xt, t)∥2pt(xt|x0)dxdt+ 2

∫ T

t=T

∫
xt

∥ log pt(xt|x0)∥2pt(xt|x0)dxtdt

≲
∫ T

t=T

log n

σ2
t

dt+

∫ T

t=T

1

σ2
t

dt

≲
∫ T

t=T

log n

t ∧ 1
dt ≤ (log n) · (log T−1 + T ) ≲ log2 n

For the evaluation of
∫
xt
∥ log pt(xt|x0)∥2pt(xt|x0)dxt, we used the fact that pt(xt|x0) is the den-

sity function of N (mtx0, σ
2
t ). Also, we used that T = poly(n−1) and T ≃ log n for the last

inequality.
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E.3 COVERING NUMBER EVALUATION

Lemma E.4 (Covering number of L). For a neural network s ·Rd×R→ Rd, we define ℓ ·Rd → R
as

ℓs(x) =

∫ T

t=T

∫
xt

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxdt.

For the hypothesis network class S ∈ Φ(L,W, S,B), we define a function class L = {ℓs| s ∈ S}.
If the corresponding s is obvious for some ℓs, we sometimes abbreviate ℓs as ℓ.

Assume that s(x, t) is bounded by ∥∥s(·, t)∥2∥L∞ = O(σ−1
t log

1
2 n) uniformly over all s ∈ S and

C ≥ 1. Then the covering number of S is evaluated by

logN (S, ∥∥ · ∥2∥L∞([−C,C]d+1), ε) ≲ 2SL log(ε−1L∥W∥∞(B ∨ 1)C), (55)

and based on this, the covering number of L is evaluated by

logN (L, ∥ · ∥L∞([−1,1]d), ε) ≲ SL log(ε−1L∥W∥∞(B ∨ 1)n) (56)

when ε−1, T−1, T ,N = poly(n).

Proof. The first bound (55) is directly obtained from Suzuki (2018), with a slight modification of the
input region. By following their proof, we can see that their ε-net for the L∞([0, 1]d)-norm serves
as the Cε-net for the L∞([−C,C]d)-norm. Therefore, we simply set ε ← C−1ε in their bound to
obtain (55).

We next consider (56). First we clip the integral interval in the definition of ℓ.∣∣∣∣∣ℓs(x)−
∫ T

t=T

∫
∥xt∥∞≤O(

√
logn)

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt

∣∣∣∣∣
≤
∫ T

t=T

∫
∥xt∥∞≥O(

√
logn)

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdtdt

≤ ∥∥s(·, ·)∥2∥2L∞

∫ T

t=T

∫
∥xt∥∞≥O(

√
logn)

pt(xt|x)dxtdt

+

∫ T

t=T

∫
∥xt∥∞≥O(

√
logn)

∥∇ log pt(xt|x)∥2pt(xt|x)dxtdt. (57)

Because pt(xt|x) is the density function of N (mtx|σ2
t ), we can show that∫

∥xt∥∞≥O(
√
logn)

pt(xt|x)dxt and
∫
∥xt∥∞≥O(

√
logn)

∥∇ log pt(xt|x)∥2pt(xt|x)dxt are bounded

by ε
3T (∥∥s(·,·)∥2∥2

L∞∨1)
if ε−1, T−1, T ,N = poly(n) and the hidden constant in O(

√
log n) is

sufficiently large (see Lemma J.14). Therefore, (57) is bounded by

∥∥s(·, ·)∥2∥L∞(T − T ) · ε

3T∥∥s(·, ·)∥2∥L∞
+ (T − T ) · ε

3T
≤ 2

3
ε. (58)

We then take C = poly(n) ≳
√
log n and construct ε

3 -net for a set of

ℓ′(x) :=

∫ T

t=T

∫
∥xt∥∞≤C

∥s(xt, t)−∇ log pt(xt|x)∥2pt(xt|x)dxtdt (59)

over all s ∈ S. For this, we take ε
nO(1) -net of S with the L∞([−C,C]d+1)-norm. According to (55),

the covering number is evaluated as

logN
(
S, ∥∥ · ∥2∥L∞([−C,C]d+1),

ε

nO(1)

)
≲ 2SL log(ε−1L∥W∥∞(B ∨ 1)n).
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For different s and s′, because ∥∇ log pt(xt|x)∥ ≲ C
σ2
t

for ∥xt∥∞ ≤ C, we have that

|∥s(xt, t)−∇ log pt(xt|x)∥2 − ∥s′(xt, t)−∇ log pt(xt|x)∥2| (60)

≤ (∥s(xt, t)−∇ log pt(xt|x)∥+ ∥s′(xt, t)−∇ log pt(xt|x)∥2)
· |∥s(xt, t)−∇ log pt(xt|x)∥ − ∥s′(xt, t)−∇ log pt(xt|x)∥|

≤ (∥∥s(·, ·)∥2∥L∞ + ∥∥s′(·, ·)∥2∥L∞ + 2C/σ2
t ) ·

ε

nO(1)
. (61)

By taking the hidden constant in ε
nO(1) sufficiently large, this is further bounded by ε

3T (2C)d
when

C, T−1, T = poly(n). Integrating (60) and (61) over
∫ T

t=T

∫
∥xt∥∞≤C

dxtdt yields that this ε
nO(1) -

net of S actually gives the ε
3 -net for the set of (59); finally, we have obtained the ε-net for L together

with (58).

E.4 GENERALIZATION ERROR BOUND ON THE SCORE MATCHING LOSS

This subsection gives the complete proof of Theorem 3.2. First, the following relationship is useful.
This shows the equivalence of explicit score matching and denoising score matching, and can be used
to show that the minimizer of the empirical denoising score matching also approximately minimizes
the explicit score matching loss.

Lemma E.5 (Equivalence of explicit score matching and denoising score matching (Vincent
(2011))). The following equality holds for all s(xt, t) and t > 0:

∫
xt

∥s(xt, t)−∇ log pt(xt)∥2pt(xt)dxt

=

∫
x0

∫
xt

∥s(xt, t)−∇ log pt(xt|x0)∥2pt(xt|x0)p0(x0)dx0dx0 + C,

where C =
∫
xt
∥∇ log pt(xt)∥2pt(xt)dxt −

∫
x0

∫
xt
∥∇ log pt(xt|x0)∥2pt(xt|x0)p0(x0)dxtdx0.
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Proof. The proof follows Vincent (2011).∫
xt

∥s(xt, t)−∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

pt(xt)s(xt, t)
⊤∇ log pt(xt)dx

+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dx

= −2
∫
xt

s(xt, t)
⊤∇pt(xt)dxt +

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dx

= −2
∫
xt

s(xt, t)
⊤∇

(∫
x0

pt(xt|x0)p0(x0)dx0

)
dxt

+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

s(xt, t)
⊤
(∫

x0

p0(x0)∇pt(xt|x0)dx0

)
dxt

+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
xt

pt(xt|y)p0(x0)s(xt, t)
⊤
(∫

x0

∇ log pt(xt|x0)dx0

)
dxt

+

∫
xt

∥s(xt, t)∥2pt(xt)dxt +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

= −2
∫
x0

∫
xt

pt(xt|x0)p0(x0)s(xt, t)
⊤∇ log pt(xt|x0)dxtdx0

+

∫
x0

∫
xt

pt(xt|x0)p0(x0)∥s(xt, t)∥2dxtdx0 +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

=

∫
x0

∫
xt

pt(xt|x0)p0(x0)∥s(xt, t)−∇ log pt(xt|x0)∥2dxtdx0 +

∫
xt

∥∇ log pt(xt)∥2pt(xt)dxt

−
∫
x0

∫
xt

pt(xt|x0)p0(x0)∥∇ log pt(xt|x0)∥2dxtdx0,

where we used∇ log pt(xt) = (∇pt(xt))/pt(xt) for the second, pt(xt) =
∫
x0

pt(xt|x0)p0(x0)dx0

for the third,∇ log pt(xt|x0) = (∇pt(xt|x0))/pt(xt|x0) for the fifth equalities.

Now, we evaluate the generalization error and the following theorem is a formal version of Theo-
rem 3.2.

Theorem E.6 (Generalization error bound based on the covering number). Let ŝ be the minimizer
of

1

n

n∑
i=1

∫ T

t=T

∫
x

∥s(x, t)−∇ log pt(x|xi)∥22pt(x|x0,i)dxdt, (62)

taking values in S ⊂ L2(Rd × [T , T ]). For each s ∈ S, let ℓ(x) =
∫ T

t=T

∫
x
∥s(x, t) −

∇ log pt(y|x)∥22pt(y|x)dydt and L be a set of ℓ corresponding to each s ∈ S. Suppose every
element ℓ ∈ L satisfies ∥ℓ∥L∞([−1,1]d) ≤ Cℓ for some fixed 0 < Cℓ. For an arbitrary ε > 0, if
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N := N (L, ∥ · ∥L∞([−1,1]d), ε) ≥ 3, then we have that

E{xi}n
i=1

[∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx

]

≤ 2 inf
s∈S

∫
x

∫ T

T

∥s(x, t)−∇ log pt(x)∥22pt(x)dxdt+
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

Proof. In the following proof, x0,i is denoted as xi for simplicity. (62) is written as 1
n

∑n
i=1 ℓ(xi).

Also, with s◦(x, t) = ∇ log pt(x), we write

R(ℓ̂, ℓ◦) :=

∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx

=

∫
x

∫ T

t=T

∥ŝ(x, t)−∇ log pt(x)∥2pt(x)dtdx−
∫
x

∫ T

t=T

∥s◦(x, t)−∇ log pt(x)∥2pt(x)dtdx︸ ︷︷ ︸
=0

=

∫
y

∫ T

t=T

∫
x

∥s(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(x)dydtdx+ C(T − T )

−
∫
y

∫ T

t=T

∫
x

∥s◦(x, t)−∇ log pt(x|y)∥2pt(x|y)p0(x)dydtdx− C(T − T )

= E{x′
i}n

i=1

[
1

n

n∑
i=1

(ℓ̂(x′
i)− ℓ◦(x′

i))

]
(63)

with {x′
i}ni=1, that is an i.i.d. sample from p0 and independent of {xi}ni=1. For the second equality,

we used Lemma E.5.

First, we evaluate the value of

D :=

∣∣∣∣∣E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
−R(ℓ̂, ℓ◦)

∣∣∣∣∣ .
Using (63), we obtain

D =

∣∣∣∣∣Exi,x′
i

[
1

n

n∑
i=1

((ℓ̂(xi)− ℓ◦(xi))− (ℓ̂(x′
i)− ℓ◦(x′

i)))

]∣∣∣∣∣
≤ 1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

((ℓ̂(xi)− ℓ◦(xi))− (ℓ̂(x′
i)− ℓ◦(x′

i)))

∣∣∣∣∣
]
.

Let Ld = {ℓ1, ℓ2, · · · , ℓN} be a ε-covering of L with the minimum cardinality in the L∞([−1, 1]d)
metric. From the assumption of N(L, ∥ · ∥∞, ε) ≥ 3, we have logN ≥ 1. We define gj(x, x

′) =
(ℓj(x) − ℓ◦(x)) − (ℓj(x

′) − ℓ◦(x′)) and a random variable J taking values in {1, 2, · · · , N} such
that ∥ℓ̂− fJ∥∞ ≤ ε, so that we have

D ≤ 1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

gJ(xi, x
′
i)

∣∣∣∣∣
]
+ ∥(ℓ̂j(x)− ℓJ(x))− (ℓ̂j(x

′)− ℓJ(x
′)∥∞

≤ 1

n
Exi,x′

i

[∣∣∣∣∣
n∑

i=1

gJ(xi, x
′
i)

∣∣∣∣∣
]
+ ε. (64)

Then we define rj := max{A,
√

Ex′ [ℓj(x′)− ℓ◦(x′)]} (j = 1, 2, · · · ,N ) and a random variable

G := max
1≤j≤N

∣∣∣∣∣
n∑

i=1

gj(xi, x
′
i)

rj

∣∣∣∣∣ ,
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where A > 0 is a constant adjusted later. Then we further evaluate (64) as

D ≤ 1

n
Exi,x′

i
[rJG] + ε ≤ 1

n

√
Exi,x′

i
[r2J ]Exi,x′

i
[G2] + ε ≤ 1

2
Exi,x′

i
[r2J ] +

1

2n2
Exi,x′

i
[G2] + ε,

(65)

by the Cauthy-Schwarz inequality and the AM-GM inequality. The definition of J yields that

Exi,x′
i
[r2J ] ≤ A2 + Ex′ [ℓJ(x

′)− ℓ◦(x′)] ≤ A2 + Ex′ [ℓ̂(x′)− ℓ◦(x′)] + ε = R(ℓ̂, ℓ◦) +A2 + ε.

(66)

Because of the independence of xi and x′
i, we have that

Exi,x′
i

( n∑
i=1

gj(xi, x
′
i)

rj

)2
 ≤ n∑

i=1

Exi,x′
i

[(
gj(xi, x

′
i)

rj

)2
]

=

n∑
i=1

(
Exi,x′

i

[
(ℓj(xi)− ℓ◦(xi))

2

r2j

]
+ Exi,x′

i

[
(ℓj(x

′
i)− ℓ◦(x′

i))
2

r2j

])
≤ 2Cℓn (67)

holds, where we used the fact that gj(xi, x
′
i) is centered and |ℓj(x)−ℓ◦(x)| is bounded by Cℓ. Also,

gj(xi,x
′
i)

rj
is bounded with Cℓ/A. Then, using Bernstein’s inequality, we have that

P[G2 ≥ t] = P[G ≥
√
t] ≤ 2N exp

(
− t

2Cℓ(2n+
√
t

3A )

)
,

for any t ≥ 0. This gives evaluation of Exi,x′
i
[G2]. For any t0 > 0, we have that

Exi,x′
i
[G2] =

∫ ∞

0

P[G2 ≥ t]dt

≤ t0 +

∫ ∞

t0

P[G2 ≥ t]dt

≤ t0 + 2N
∫ ∞

t0

exp

(
− t

8Cℓn

)
dt+ 2N

∫ ∞

t0

exp

(
−3A

√
t

4Cℓ

)
dt.

These two integrals are computed as∫ ∞

t0

exp

(
− t

8Cℓn

)
dt =

[
−8Cℓn exp

(
− t

8Cℓn

)]∞
t0

= 8Cℓn exp

(
− t0
8Cℓn

)
∫ ∞

t0

exp

(
−3A

√
t

4Cℓ

)
dt =

∫ ∞

t0

exp
(
−a
√
t
)
dt (a := 3A/4Cℓ)

=

[
−2(a

√
t+ 1)

a2
exp(−a

√
t)

]∞
t0

=
8Cℓ

√
t0

3A
exp

(
−3A

√
t0

4Cℓ

)
+

32Cℓ

9A2
exp

(
−3A

√
t0

4Cℓ

)
.

We take A =
√
t06n so that

Exi,x′
i
[G2] ≤ t0 + 2N

(
8Cℓn+ 16Cℓn+

128Cℓn
2

t0

)
exp

(
− t0
8Cℓn

)
≤ t0 + 16NCℓn(3 + 16n/t0) exp

(
− t0
8Cℓn

)
holds. Furthermore, we take t0 = 8Cℓn logN , and then it holds that

Exi,x′
i
[G2] ≤ 8Cℓn

(
logN + 6 +

2

Cℓ logN

)
. (68)
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Now, we combine (65), (66), (68), and A2 = 2Cℓ logN
9n to obtain

D ≤
(
1

2
R(ℓ̂, ℓ◦) +

1

2
A2 +

1

2
ε

)
+

4Cℓ

n

(
logN + 6 +

2

Cℓ logN

)
+ ε

≤ 1

2
R(ℓ̂, ℓ◦) +

Cℓ

n

(
37

9
logN + 32

)
+

3

2
ε,

where we have used that logN ≥ 1. Therefore, we obtain

R(ℓ̂, ℓ◦) ≤ 2E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
+

2Cℓ

n

(
37

9
logN + 32

)
+ 3ε. (69)

For any fixed ℓ ∈ L,

E{xi}n
i=1

[
1

n

n∑
i=1

(ℓ̂(xi)− ℓ◦(xi))

]
≤ E{xi}n

i=1

[
1

n

n∑
i=1

(ℓ(xi)− ℓ◦(xi))

]
= Ex[ℓ(x)− ℓ◦(x)].

RHS is minimized as infℓ∈L Ex[ℓ(x)− ℓ◦(x)]. Finally, combining this with (69), we obtain

R(ℓ̂, ℓ◦) ≤ 2 inf
ℓ∈L

Ex[ℓ(x)− ℓ◦(x)] +
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

According to Lemma E.5, we have

R(ℓ̂, ℓ◦) ≤ 2 inf
s∈S

∫ T

T

∫
x

∥s(x, t)−∇ log pt(x)∥22pt(x)dxdt+
2Cℓ

n

(
37

9
logN + 32

)
+ 3ε.

F ESTIMATION ERROR ANALYSIS

This section corresponds to Appendix F.

Let us define (Ȳt)
T−T
t=0 , that replaces Ŷ0 ∼ N (0, Id) in the definition of (Ŷt)

T−T
t=0 by Ȳ0 ∼ pt.

The following Girsanov theorem is useful when converting the error of the score matching to the
estimation error.
Proposition F.1 (Girsanov’s Theorem (Karatzas et al., 1991)). Let p0 be any probability distribution,
and let Z = (Zt)t∈[0,T ], Z

′ = (Z ′
t)t∈[0,T ] be two different processes satisfying

dZt = b(Zt, t)dt+ σ(t)dBt, Z0 ∼ p0,

dZ ′
t = b′(Z ′

t, t)dt+ σ(t)dBt, Z ′
0 ∼ p0.

We define the distributions of Zt and Z ′
t as pt and p′t, and the path measures of Z and Z ′ as P and

P′, respectively.

Suppose the following Novikov’s condition:

EP

[
exp

(∫ T

0

1

2

∫
x

σ−2(t)∥(b− b′)(x, t)∥2dxdt

)]
<∞. (70)

Then, the Radon-Nikodym derivative of P with respect to P′ is

dP
dP′ (Z) = exp

{
−1

2

∫ T

0

σ(t)−2∥(b− b′)(Zt, t)∥2dt−
∫ T

0

σ(t)−1(b− b′)(Zt, t)dBt

}
,

and therefore we have that

KL(pT |p′T ) ≤ KL(P|P′) =

∫ T

0

1

2

∫
x

pt(x)σ(t)
−2∥(b− b′)(x, t)∥2dxdt.

Moreover, Chen et al. (2022) showed that if
∫
x
pt(x)σ

−2(t)∥(b− b′)(x, t)∥2dx ≤ C holds for some
consant C over all t, we have that

KL(pT |p′T ) ≤
∫ T

0

1

2

∫
x

pt(x)σ(t)
2∥(b− b′)(x, t)∥2dxdt,

even if the Novikov’s condition (70) is not satisfied.
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F.1 ESTIMATION BOUNDS IN THE TV DISTANCE

We show the upper and lower estimation rates in the total variation distance in this subsection. Let
Ȳ be Ŷ with replacing Ŷ0 ∼ N (0, Id) by Ȳ0 ∼ pt. First notice that

E[TV(X0, ŶT−T)] ≲ E[TV(YT,YT−T)] + E[TV(ȲT−T , ŶT−T )] + E[TV(ȲT−T , YT−T )]

≲ TV(X0,XT) + E[TV(XT , Ŷ0)] + E[TV(ȲT−T , YT−T )]

= TV(X0,XT) + E[TV(XT ,N (0, Id))] + E[TV(ȲT−T , YT−T )] (71)

Here, E[TV(YT,YT−T)] = TV(X0,XT) + E[TV(XT , Ŷ0)] follows from the correspondence be-

tween the forward and backward processes, and E[TV(ȲT−T , ŶT−T )] ≤ E[TV(XT , Ŷ0)] follows

from the definitions of Ŷ and Ȳ (the only difference is the initial distribution.). We then bound the
three terms in (71) in a row. We begin with the first term.
Theorem F.2. We have that

TV(X0,XT) ≲
√

TnO(1)

for T ≲ n−O(1). Therefore, by taking T ≲ n−O(1), we have that TV(X0,XT) ≲ n−s/(d+2s).

Proof. We need to evaluate ∥p0−pT ∥L1 . When p0 is Lipschitz continous, an intuitive proof strategy
is as follows: For small t, pt(x) is an average of p0(y) nearby x. Because of the Lipshitzness, p0(x)
and p0(y) with |x − y| ≪ 1 are close, and therefore p0(x) and pt(x) are close. However, our
setting also includes the not continous functions. To consider these cases in a uniform manner, we
approximate p0 with the B-spline basis decomposition because each B-spline basis is a Lipschitz
function.

Remember that p0 is decomposed as

fN (x) =

N∑
i=1

αi1[∥x∥∞ ≤ 1]Md
ki,ji(x)

in Lemma J.13, where ∥k∥∞ ≤ K∗ = (O(1) + logN)ν−1 +O(d−1 logN) for δ = d(1/p − 1)+
and ν = (2s − δ)/(2δ), and ∥p0 − fN∥L1([−1,1]d) ≲ N−s/d ≃ n−s/(2s+d) holds. Because we
take N = nd/(2s+d) = nO(1), we can say that each Md

ki,ji
(x) is nO(1)-Lipschitz. Moreover,

|αi| ≲ N (ν−1+d−1)(d/p−s) = nO(1). Therefore, fN is nO(1)-Lipschitz.

We decompose p0 as p0 = fN + (p0 − fN ) using the above fN . Then we have that∣∣∣∣∣pT (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ (72)

=

∣∣∣∣∣
∫

(p0(y)− fN (y))

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣
≤
∫
|p0(y)− fN (y)|

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy.

Integrating this over all x yields that∫ ∣∣∣∣∣pT (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣dx
≤
∫ ∫

|p0(y)− fN (y)|
σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dydx

=

∫
|p0(y)− fN (y)|

∫
1

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dxdy

≤
∫
|p0(y)− fN (y)|dy = ∥p0 − fN∥L1([−1,1]d).
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Thus, ∥p0 − pT ∥L1
is upper bounded by

∥p0 − fN∥L1([−1,1]d) +

∫ ∣∣∣∣∣fN (x)−
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣dx︸ ︷︷ ︸
if fN is replaced by p0, this is equal to ∥p0 − pt∥L1

+ ∥p0 − fN∥L1([−1,1]d)︸ ︷︷ ︸
(72)

. (73)

Because ∥p0 − fN∥L1([−1,1]d) is bounded by n−s/(2s+d), we focus on the second term.

Note that at each x,∣∣∣∣∣
∫

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
Ax

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ ≲ n−s/(d+2s),

(74)

where Ax =
∏d

i=1 a
x
i with axi = [ xi

mT
− σTO(1)

mT

√
log n, xi

mT
+

σTO(1)

mT

√
log n], according to

Lemma J.10. Because σT = O(
√
T ) and mT = O(1) for sufficiently small T , the value of pT (x)

is almost determined by the value from points that is only O(
√
T log n) away from x. Because of

the Lipschitzness of p0, for each x ∈ [−mT −O(
√
T log n),mT +O(

√
T log n)]d,∣∣∣∣∣

∫
Ax

fN (y)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣ (75)

≤ nO(1) ·
√
T log n.

where we used the Lipshitzness of fN . By taking T polynomially small w.r.t. n, we have that
(75) ≲ n−s/(d+2s). Moreover,∣∣∣∣∣

∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy − fN (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Ax

fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy −

∫
fN (x)

σd
T (2π)

d
2

exp

(
−
∥x−mT y∥2

2σ2
T

)
dy

∣∣∣∣∣
≲ n−s/(d+2s), (76)

again with Lemma J.10.

Therefore, combining (73), (74), (75), and (76), we obtain that

∥p0 − pT ∥L1
≲
√

TnO(1) ≲ n−s/(d+2s).

for T = n−O(1).

We next consider the second term.

Lemma F.3. We can bound TV(XT ,N (0, Id)) as follows.

TV(XT ,N (0, Id)) ≲ exp(−βT ).

Proof. Exponential convergence of the Ornstein–Ulhenbeck process (Bakry et al., 2014) yields that

TV(XT ,N (0, Id)) ≲
√
KL(pT ∥N (0, Id)) ≤ exp(−βT )

√
KL(p0∥N (0, Id)) ≲ exp(−βT ),

because C−1
f ≤ p0 ≤ Cf holds and the density ofN (0, Id) is lower bounded by ≳ 1 in supp(p0) =

[−1, 1]d, which means that KL(p0∥N (0, Id)) = O(1).
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Therefore, by setting T = s logn
β(d+2s) , the second term is bounded by n−s/(d+2s).

The third term E[TV(ȲT−T , YT−T )] in (71) is bounded by Girsanov’s theorem Proposition F.1 and
the generalization error bound from Section 3.2:

E{x0,i}n
i=1

TV(ȲT−T , YT−T ) ≲ E{x0,i}n
i=1

√√√√∫ T

t=T

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt

≲

√√√√E{x0,i}n
i=1

∫ T

t=T

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt

≲
√
n− 2s

d+2s log18 n

≲ n− s
d+2s log9 n.

Therefore, all three terms in (71) are bounded as above and the first part of Theorem 3.3 follows.
We also show the lower bound as follows. This is the rephrased version of Proposition 3.4.
Proposition F.4. Assume that 0 < p, q ≤ ∞, s > 0, and

s >

{
d

(
1

p
− 1

2

)
, d

(
1

p
− 1

)
, 0

}
holds. Then, we have that

inf
µ̂

sup
p∈Bs

p,q([−1,1]d)

E[TV(µ̂, p)] ≳ n−s/(d+2s),

where the expectation is with respect to the sample, and the infimum is taken over all estimators
based on n observations.

Proof. Theorem 10 of Triebel (2011) showed that, for a bounded domain Ω ⊂ Rd,

logN(U(Bs
p,q(Ω)), ∥ · ∥r, ε) ≃ ε−d/s, (77)

for 0 < p, q ≤ ∞, 1 ≤ r <∞, and s > 0 that satisfy

s > max

{
d

(
1

p
− 1

r

)
, d

(
1

p
− 1

)
, 0

}
.

Although they considered all Besov functions that does not satisfy
∫
fdµ = 1, we can check by

following their proof that bounding the functions does not harm the order of the entropy num-
ber. Now we use Theorem 4 of Yang & Barron (1999). Note that the equivalence of the covering
number and the entropy holds because ∥ · ∥r is a distance, and therefore (77) is transferred to the
entropy. The condition 2 of the theorem is checked directly from (77). Moreover, the condition
3 holds if we take f∗(x) = 1/2d (x ∈ [−1, 1]d), 0 (otherwise) for all α ∈ (0, 1). Finally, if
s >

{
d( 1p −

1
2 ), d(

1
p − 1), 0

}
, logN(U(Bs

p,q(Ω)), ∥ · ∥2, ε) ≃ logN(U(Bs
p,q(Ω)), ∥ · ∥1, ε) holds.

Therefore, Theorem 4 (i) of Yang & Barron (1999) is applied, and we get

min
µ̂

max
p∈Bs

p,q

E[∥µ̂− p∥1] ≃ εn,

where εn is chosen as logN(U(Bs
p,q(Ω)), ∥ · ∥r, εn) = nε2n holds. Together with (77), we obtain

the assertion.

F.2 ESTIMATION RATE IN THE W1 DISTANCE

Switching score networks First, let us explain our proof sketch. Theorem 3.3 directly yields the
convergence rate of n−s/(2s+d) log9 n. However, it is known from Niles-Weed & Berthet (2022) that
the minimax estimation rate in W1 is faster than this. Thus, this approach yields the sub-optimal rate.
To overcome this issue, let us carefully consider where we lose the estimation rate, going back to
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the approximation error analysis in the previous subsection. Although we used Theorem 3.1 for all
T ≤ t ≤ T , Lemma D.5 tells us that if t ≳ N− 2−δ

d ≃ n− 2−δ
2s+d , we can make the approximation error

smaller than N− 2(s+1)
d

σ−2
t

= n
− 2(s+1)

d+2s

σ−2
t

with a smaller network of size N ′ ≤ N . This means that we

have used a sub-optimal network for t ≳ n− 2−δ
d+2s in terms of both approximation and generalization

errors.

Based on this discussion, we divide the time into t0 = T < t1 = 2n− 2−δ
d+2s < · · · < tK∗ = T − T

with ti+1/ti = const. ≤ 2 (i ≥ 1). The number of intervals amounts to K∗ = O(log n). We
consider to train a tailored network for each time interval [ti, ti+1] and to switch them for different
intervals. Lemma D.5 yields that for i ≥ 1 these exists a network si ∈ Φ(Li,Wi, Si,Wi) such that

Ex∼pt
[∥si(x, t)−∇ log pt(x)∥2]≲

n− 2(s+1)
d+2s

σ2
t

(t ∈ [ti, ti+1]),

with L = O(log4(N)), ∥W∥∞ = O(N), S = O(t−d/2
i Nδ/2), and B = exp(O(log4 N)). There-

fore, we choose a sequence of score networks ŝi so that ŝi minimizes the score matching loss re-
stricted to [ti, ti+1]:

1

n

n∑
j=1

E
t∼Unif[ti,tj+1]
xt∼pt(xt|x0,j)

[∥s(xt, t)−∇ log pt(xt|x0,j)∥2].

In other words, we let ŝ(x, t) := ŝi(x, t) for t ∈ [ti, ti+1].

Similarly to Theorem 3.2, Theorem E.6 yields that the following generalization error bound for
i ≥ 1:

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
≤

(
n− 2(s+1)

d+2s +
t
−d/2
i n

δd
(d+2s)

n

)
· Õ(ti/σ2

ti)︸ ︷︷ ︸
=Õ(1)

.

(78)

For t ≲ n− 2−δ
d+2s , we use a network trained via the score matching loss restricted to [ti, ti+1]. Thus,

(78) for i = 0 is bounded by Õ(n− 2s
d+2s ) similarly to Section 3.2.

One may think that the above improvement would be useless because the error caused at t ≤ n− 2−δ
d+2s

has the n−2s/(d+2s) rate and dominates the estimation error. However, another important observa-
tion is that the Wasserstain distance is a transportation distance. The score estimation error at time
closer to t = 0 less contributes to the estimation error, because the distance how much each path
evolves is small from that time. As we will see, the idea of improving accuracy for large t indeed
yields the minimax optimal rate in W1.

To utilize this observation, let us consider a sequence of stochastic processes. Let (Yt)[0,T ] =

(Ȳ
(0)
t )[0,T ], and for i ≥ 1, let (Ȳ (i))[0,T ] be a stochastic process which uses the true score during

[0, T − ti] and the estimated score ŝ during [T − ti, T − T ], and Ȳ
(i)
0 ∼ pT . Then, we have that

E[W1(X0, ŶT−T )] ≤ E[W1(YT , YT−T )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]

≤ E[W1(X0, XT )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]. (79)

The first term is bounded by
√
T due to Lemma F.7 and the second term is bounded by

exp(−T ) due to Lemma F.8. The last term E[W1(ȲT−T , YT−T )] is upper bounded by∑K∗
i=1 E[W1(Ȳ

(i−1)

T−T
, Ȳ

(i)

T−T
)]. Then, we use the following lemma, an informal version of Lemma F.9.

Lemma F.5. For i = 1, 2, · · · ,K∗, we have that

W1(Ŷ
(i−1)

T−T
, Ŷ

(i)

T−T
) ≤ Õ(1) ·

√√√√ti−1E{x0,i}n
i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
.
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RHS is decomposed to the two factors: the score matching loss during [ti−1, ti] and
√
ti. The latter

corresponds to how much Yt moves from t = T − ti to T − T . This bound represents that, as
ti → 0, while score matching gets more difficult, its contribution to the W1 error is reduced. The
formal proof requires construction of a path-wise transportation map; see the proof for Lemma F.9.

Putting it all together, we finally yields Theorem 3.5, the nearly minimax optimal rate in W1. Specif-
ically, if we ignore logarithmic factors, (79) is bounded by√

T + exp(−T ) +
√
t0n

− 2s
d+2s

+

K∗∑
i=2

√
ti

√
n− 2(s+1)

d+2s +
t
−d/2
i n

δd
2(d+2s)

n
≲ n− s+1−δ

d+2s ,

where we set T = n− 2(s+1)
d+2s and T = (s+1) logn

β(d+2s) .

Remark F.6. Although we used differently optimized multiple networks, it is also possible that
such modification is implicitly made in reality. The first evidence is implicit reguralization, where
sparsify of the solution is induced by learning procedures (Gunasekar et al., 2017; Arora et al., 2019;
Soudry et al., 2018). When the sub-networks for differnt time intervals are learned in parallel via the
score matching at once (1), these theory suggests the good score network is obtained without explicit
regularization like our switching procedure. Another evidence is that in practice the weight function
λ(t) sometimes increases as t gets large (Song & Ermon, 2019; Song et al., 2020), suggesting that
the quality of the score network at larger t is more emphasized.

Now we proceed to the main part of the proof. First, we bound the first term of (79).

Lemma F.7 (Section 4.3 of De Bortoli (2022)). We can bound W1(X0, XT ) as follows.

W1(X0, XT ) ≲
√
T

Proof. Let X ∼ p0 and Z ∼ N(0, Id). Then,

W1(X0, XT ) ≤ E[∥X −mT1
X + σT1

Z∥] ≤ (1−mT )E[∥X∥] + σTE[∥Z∥]

≤ (1−mT )
√
d+ σT

√
d ≲

√
T ,

which concludes the proof.

Next, we bound the second term of (79).

Lemma F.8. We can bound E[W1(ȲT−T , ŶT−T )] as follows.

E[W1(ȲT−T , ŶT−T )] ≲ TV(XT , Ŷ0) ≲ exp(−βT ).

Proof. Exponential convergence of the Ornstein–Ulhenbeck process (Bakry et al., 2014) yields that

TV(XT , Ŷ0)

= TV(pT ,N (0, Id)) ≤
√
2KL(pT ∥N (0, Id)) ≤ 2 exp(−Tβ)

√
KL(p0∥N (0, Id)) ≲ exp(−βT ),

because C−1
f ≤ p0 ≤ Cf holds and the density of N (0, Id) is lower bounded by O(1)

in supp(p0) = [−1, 1]d, which means KL(p0∥N (0, Id)) = O(1). In addition because
∥Ŷ (k)

T−T
∥∞, ∥ŶT−T ∥∞ ≤ 2 = O(1), and because the only difference between Ŷ (k) and Ŷ is the

initial distribution, we have W1(Ŷ
(k)

T−T
, ŶT−T ) ≲ TV(XT , Ŷ0) = TV(pT ,N (0, Id)). Putting it all

together, we obtain that

W1(Ŷ
(k)

T−T
, ŶT−T ) ≲ TV(XT , Ŷ0) = TV(pT ,N (0, Id)) ≲ exp(−βT ),

which yields the assertion.
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Finally, we bound the third term of (79). As we sketched in the first part of this subsection,

E[W1(ȲT−T , YT−T )] ≤
K∗∑
i=1

E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)]. (80)

We define a sequence of stochastic processes {(Ȳ (i)
t )

T−T
t=0 }

K∗
i=0. First, Ȳ (0) = (Ȳ

(0)
t )t∈[0,T ] = Y =

(Yt)t∈[0,T ] is defined as a process such that

dYt = βT−t(Yt + 2∇ log pt(Yt, T − t))dt+
√
2βT−tdBt (t ∈ [0, T ]), Y

(0)
0 ∼ pT .

Then, YT−t ∼ pt holds for all t ∈ [0, T ]. Next, for i = 1, 2, · · · ,K∗, we let Ȳ (i) = (Ȳ
(i)
t )t∈[0,T−T ]

to satisfy

Ȳ
(i)
0 ∼ pT , dȲ

(i)
t = βT−t(Ȳ

(i)
t + 2∇ log pt(Ȳ

(i)
t , T − t))dt+

√
2βT−tdBt (t ∈ [0, T − ti]),

dȲ
(i)
t = βT−t(Ȳ

(i)
t + 2ŝ(Ȳ

(i)
t , T − t))dt+

√
2βT−tdBt (t ∈ [T − ti, T − T ]).

Note that t0 = T , t1 = N− 2−δ
d = n− 2−δ

d+2s , 1 < ti+1

ti
= const. ≤ 2, and tK∗ = T − T . Then,

Ȳ (K∗) = Ȳ holds. Here Ȳ
(i)

T−t
∼ pt holds for all t ∈ [0, T − ti], but after t = T − ti, the true

score function is replaced by the estimated one. If ∥Ȳ (i)

T−T
∥∞ > 2 in the original definition, we reset

Ȳ
(i)

T−T
as Ȳ (i)

T−T
:= 0.

Also, we introduce another stochastic process Ȳ (i)′ . We define d+ 1-dimensional set A ⊆ Rd+1 as

A =
{
(x, t) ∈ Rd × R

∣∣∣ ∥x∥∞ ≤ mt + Ca,1σt

√
log(n), T ≤ t ≤ T

}
.

According to Lemma C.1, with probability at least 1 − n−O(1), a path of the backward process
(Yt)

T
t=0 satisfies (Yt, T − t) ∈ A for all T ≤ t ≤ T . Based on this, for i = 0, 1, · · · ,K∗ − 1, Ȳ (i)′

is defined as

Ȳ
(i)′

0 ∼ pT ,

dȲ
(i)′

t = βT−t(Ȳ
(i)′

t + 2∇ log pt(Ȳ
(i)′

t , T − t))dt+
√
2βT−tdBt (t ∈ [0, T − ti]),

dȲ
(i)′

t = βT−t

(
Ȳ

(i)′

t + 21[(Ȳ (i)′

s , T − s) /∈ A for some s ≤ t]∇ log pt(Ȳ
(i)′

t )

+ 21[(Ȳ (i)′

s , T − s) ∈ A for all s ≤ t]ŝ(Ȳ
(i)′

t , T − t)
)
dt+

√
2βT−tdBt (t ∈ [T − ti+1, T − ti]),

dȲ
(i)′

t = βT−t(Ȳ
(i)′

t + 2ŝ(Ȳ
(i)′

t , T − t))dt+
√
2βT−tdBt (t ∈ [T − ti, T − T ]).

Lemma F.9. Suppose that ∥ŝ(·, t)∥∞ ≲ log
1
2 n√
t∧1

holds. Then, the following holds for all i =

1, 2, · · · ,K∗:

W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
) ≲

√
ti log n

√√√√E{x0,i}n
i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
+ n− s+1

d+2s .

(81)

Therefore, we have that

E{x0,i}n
i=1

[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)]

≲
√
ti log n

√√√√E{x0,i}n
i=1

[∫ ti

t=ti−1

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]

]
+ n− s+1

d+2s . (82)
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Proof. We construct the transportation map between Ȳ
(i−1)

T−T
and Ȳ

(i)

T−T
. Our approach focuses on

each path.

Because the Novikov’s condition is not satisfied for Ȳ
(i−1)

T−T
and Ȳ

(i)

T−T
, Proposition F.1 can-

not be used to consider the total variation distance between the two paths; Proposition F.1 only
gives KL(Ȳ

(i−1)

T−T
, Ȳ

(i)

T−T
), not KL(Ȳ (i−1), Ȳ (i), and this bound is insufficient for our discussion.

Therefore, we first bound E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
)]. According to Lemma C.1, with probability

at least 1 − n−O(1), a path of the processes (Ȳ
(i−1)
t )Tt=0 and (Ȳ

(i−1)′

t )Tt=0 satisfy (Ȳ
(i−1)
t , T −

t), (Ȳ
(i−1)′

t , T − t) ∈ A for all 0 ≤ t ≤ T − ti−1. Thus, E[TV(Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
)] is bounded

by n−O(1) (with a sufficiently large constant in O(1).). This implies E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
)] ≲

n−O(1), because Ȳ
(i−1)

T−T
, Ȳ

(i−1)′

T−T
= O(1) (a.s.).

We now discuss E[W1(Ȳ
(i−1)′

T−T
, Ȳ

(i)

T−T
)]. Let us write the path measures of Ȳ (i−1)′ and Ȳ (i) be P

and P′, and take some path p that is y at t = T − T and is z at t = T − ti. If dP[p] > dP′[p], then
we move the mass of Ȳ (i−1)′

T−T
= y that amounts to dP[p]−dP′[p], to z, along the path p by reversing

the time until t = T − ti. Applying this to all paths p, then the total mass of Ȳ (i−1)′

T−T
that is moved

is at most

1

2
TV((Ȳ (i−1)′), (Ȳ (i))) ≤ 1

2

√∫ ti

t=ti−1

∫
x

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt. (83)

according to Proposition F.1. Here we remark that the Novikov’s condition certainly holds for this
case.

Until now, a part of the mass of Ŷ (i−1)′

T−T
is moved along each corresponding path, but at this time

no coupling measure has been constructed. To realize the coupling measure, we consider the same
process for Ȳ (i)

T−T
. That is, for each path p with Ȳ

(i)

T−T
= y and Ȳ

(i)

T−ti
= z, if dP[p] < dP′[p], then

we move the mass of Ȳ (i)

T−T
= y, as much as dP′[p] − dP[p], to z along the path p. The total mass

of Ȳ (i)

T−T
affected is bounded by 1

2TV((Ȳ (i−1)′), (Ȳ (i)′)), which is bounded by (83).

Now, we can see that, the same amount of mass is transported from both Ȳ
(i−1)′

T−T
and Ȳ

(i)

T−T
to

t = T − ti. Thus, at each z, we can arbitrarily associate the mass from Ȳ
(i−1)′

T−T
to that from Ȳ

(i)

T−T
.

Using this, as much as 1
2TV((Ȳ (i−1)′), (Ȳ (i)′)) of the mass is transported from Ȳ

(i−1)′

T−T
to Ȳ

(i)

T−T
,

by reversing the path to t = T − ti.

Now our interest is how far each transport is required to move on average. First we consider when
ti ≲ 1.

First we bound ∥Ȳ (i)

T−T
− Ȳ

(i)

T−ti
∥. According to Lemma C.1, we have ∥

∫ T−T

T−ti
2βT−tdBt∥ ≲

√
ti log n for all t ∈ [T −ti, T −T ], and Ȳ

(i)

T−ti
≲ mT−ti

+σT−ti

√
log n ≲

√
log n with probability

1 − n−O(1). We consider the event conditioned on them. Note that ∥s(x, t)∥ ≲
√
logn
σt

≲
√
logn√
t
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holds. Then we have that, for all T − ti ≤ t ≤ T − T ,

∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ =

∥∥∥∥∥
∫ T−T

T−ti

βT−s(Ȳ
(i)
s + 2∇ log pt(Ȳ

(i)
s , T − s))dt+

∫ T−T

T−ti

√
2βT−sdBs

∥∥∥∥∥
≲ β

∫ T−T

T−ti

∥Ȳ (i)
s ∥ds+ 2β

∫ T−T

T−ti

√
log n√
s

ds+
√
ti log n,

≲ β

∫ T−T

T−ti

∥Ȳ (i)
s ∥ds+

√
ti log n+

√
ti log n.

≲
∫ T−T

T−ti

∥Ȳ (i)
s − Ȳ

(i)

T−ti
∥ds+

√
ti log n+ ti∥Ȳ (i)

T−ti
∥

≲
∫ T−T

T−ti

∥Ȳ (i)
s − Ȳ

(i)

T−ti
∥ds+

√
ti log n+ ti

√
log n

Now we apply the Gronwall’s inequality to obtain

∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ ≲ eβti

√
ti log n ≲

√
ti log n.

for all T − ti ≤ t ≤ T − T . Thus, with probability 1 − n−O(1), ∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥ is bounded by

√
ti log n up to a constant factor, over all T − ti ≤ t ≤ T − T .

Next we bound ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti
∥. This is decomposed into

∥Ȳ (i−1)′

T−ti
− Ȳ

(i−1)′

T−ti−1
∥+ ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti−1
∥.

The first term is bounded by ≲
√
ti log n with probability at least 1 − n−O(1). This is because

Ȳ
(i−1)′

t ∈ A holds with probability 1−n−O(1) due to the first part of Lemma C.1, and for such paths
the evolution of Ȳ (i−1)′

t is the same as that of Yt, where we apply the second part of Lemma C.1.
The second term is bounded by

√
ti−1 log n with probability 1− n−O(1), following the discussion

on ∥Ȳ (i)
t − Ȳ

(i)

T−ti
∥. In summary, with probability 1 − n−O(1) we can bound ∥Ȳ (i−1)′

T−T
− Ȳ

(i−1)′

T−ti
∥

by
√

ti−1 log n(≤
√
ti log n) up to a constant factor.

In summary, when ti ≲ 1, the transportation map moves at most O(
√
ti log n) with probability

1−n−O(1). Because the supports of Ȳ (i−1)′

T−T
and Ȳ

(i)

T−T
are both bounded, for the mass moved more

than
√
ti log n affects the Wasserstein distance at most n−O(1). Therefore, we obtain the desired

bound (81) for ti ≲ 1.

For ti ≳ 1, because the supports of Ȳ (i−1)

T−T
and Ȳ

(i)

T−T
are both bounded,

W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
) ≲ TV(Ȳ

(i−1)

T−T
, Ȳ

(i)

T−T
) ≲

1

2

√∫ ti

t=ti−1

∫
x

pt(x)β
−2
t ∥ŝ(x, t)−∇ log pt(x)∥2dxdt

holds. Therefore we obtain (81) as well.

From (81), (82) is easily obtained by jensen’s inequality.

Also, we bound the generalization error of each network si.
Lemma F.10. For 1 ≤ i ≤ K∗ − 1, let si be a network that is selected from Φ(L,W, S,B) with

L = O(log4 n), ∥W∥∞ = O(n
d

d+2s ), S = O(t−d/2
i n

δd
2(2s+d) ), and B = exp(O(log4 n)),

and ∥si(·, t)∥L∞ ≲ log
1
2 n

σt
. Then, we have that

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
≲ n− 2(s+1)

d+2s log n+
t
−d/2
i n

δd
2(d+2s) log10 n

n
.
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Moreover, for i = 0, let s0 be a network that is selected from Φ(L,W,S,B) with

L = O(log4 n), ∥W∥∞ = O(n
d

d+2s log6 n), S = O(n
d

2s+d log8 n), and B = exp(O(log4 n)),

and ∥s0(·, t)∥L∞ ≲ log
1
2 n

σt
. Then, we have that

E{x0,j}n
i=j

[∫ t1

t=t0

Ex

[
∥ŝ0(x, t)−∇ log pt(x)∥2dt

]]
≲ n− 2s

d+2s log18 n.

Proof. First we consider the first part. We take N = n
d

d+2s and t∗ = ti/2 in Lemma D.5. Note
that N and t∗(≥ n− 2−δ

d+2s ) satisfies t∗ ≥ N−(2−δ)/d(, which is assumed in Lemma D.5). Then, there
exists a neural network ϕ ∈ Φ(L,W, S,B) that satisfies

∫ ti+1

t=ti

∫
x

pt(x)∥ϕ(x, t)− s(x, t)∥2dxdt ≲ N− 2(s+1)
d log n = N− 2(s+1)

d+2s log n.

Specifically, L = O(log4(n)), ∥W∥∞ = O(n
d

d+2s ), S = O(t−d/2
i n

δd
2(d+2s) ), and B =

exp(O(log4 n)). Therefore, we apply Theorem E.6 by replacing T and T by ti and ti+1, respec-

tively, and with ε = n− 2(s+1)
d+2s to obtain the first assertion as

E{x0,j}n
i=j

[∫ ti+1

t=ti

Ex

[
∥ŝi(x, t)−∇ log pt(x)∥2dt

]]
≲ N− 2(s+1)

d log n+
Cℓ

n
logN + ε

≲ n− 2(s+1)
d+2s log n+

log2 n

n

(
t
−d/2
i n

δd
2(d+2s) log8

)
+ n− 2(s+1)

d+2s

≲ n− 2(s+1)
d+2s log n+

t
−d/2
i n

δd
2(d+2s) log10 n

n
.

For the second part, we simply follow the discussion that derived the generalization error in Sec-
tion 3.2, by replacing T by t1(< T ), which does not increase the generalization error.

Proof of Theorem 3.5. We use the sequence of networks presented in Lemma F.10. Specifically, we
consider the following process.

Ŷ
(i)
0 ∼ N (0, I), dŶ

(i)
t = βT−t(Ŷ

(i)
t + 2ŝ(Ŷ

(i)
t , T − t))dt

+
√
2βT−tdBt (t ∈ [T − ti, T − ti+1], i = 0, 1, · · · ,K∗),

and we modify Ŷ
(i)

T−T
to 0 if ∥Ŷ (i)

T−T
∥∞ > 2.
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Finally, we sum up the errors for the above process. Eq. (80) is further bounded by

E[W1(ȲT−T , YT−T )]

≤
K∗∑
i=1

E[W1(Ȳ
(i−1)

T−T
, Ȳ

(i)

T−T
)].

≲
K∗∑
i=1

[√
ti−1 log n

√
E{x0,i}n

i=1

[∫ ti

t=ti

Ex [∥ŝ(x, t)−∇ log pt(x)∥2dt]
]
+ n− s+1

d+2s

]
(by Lemma F.9)

≲
K∗∑
i=2

[√
ti log n

(
n− (s+1)

d+2s

√
log n+

t
−d/4
i n

δd
4(d+2s) log5 n√

n

)
+ n− (s+1)

d+2s

]
+
√
t1 log n

[
n− s

d+2s log9 n+ n− s
d+2s

]
(by Lemma F.10)

≲

[
√
t1n

− s
d+2s +

√
t1
t
−d/4
1 n

δd
4(d+2s)

√
n

]
· Õ(1)

(because K∗ = O(log n) and t1 ≤ · · · tK∗ = O(logN) with 1 < ti+1/ti = const. ≤ 2 (i ≥ 1).)

=

[
(n− 2−δ

d+2s )
1
2n− s

d+2s + (n− 2−δ
d+2s )

1
2
(n− 2−δ

d+2s )−d/4n
δd

4(d+2s)

√
n

]
· Õ(1)

≲ n− (s+1−δ)
d+2s . (84)

Therefore, by taking T ≲ n− 2(s+1)
d+2s and T = (s+1) logn

β(d+2s) , we obtain that

W1(X0, ŶT−T ) ≤ E[W1(X0, XT )] + E[W1(ȲT−T , ŶT−T )] + E[W1(ȲT−T , YT−T )]

≲
√
T + exp(−βT ) + n− (s+1−δ)

d+2s (by Lemmas F.7 and F.8 and (84))

≲ n− (s+1−δ)
d+2s + n− (s+1−δ)

d+2s + n− (s+1−δ)
d+2s ≲ n− (s+1−δ)

d+2s ,

which concludes the proof for Theorem 3.5.

G ERROR ANALYSIS WITH INTRINSIC DIMENSIONALITY

This section corresponds to Section 4.

G.1 PROBLEM SETTINGS

We first formalize the problem settings. Let A ∈ Rd×d′
be a matrix made of orthogonal column vec-

tors with the norm one. We consider the d′-dimensional subspace V := {y ∈ Rd | ∃x ∈ Rd′
s.t. y =

Ax} where the true density has its support, i.e., d′ represents the intrinsic dimensionality. Together
with Assumption 2.3, we assume the followings.

Assumption G.1. The true density p0 is a probability measure that is absolutely continuous with
respect to the Lebesgue measure on the sub-space V . Its probability density function as a function
on the canonical coordinate system of the subspace V is denoted by q.

Assumption G.2. q is upper and lower bounded by Cf and C−1
f , respectively. Moreover, q belongs

to U(Bs
p,q; [−1, 1]d

′
).

Assumption G.3. q belongs to U(C∞([−1, 1]d′ \ [−1 + a0, 1− a0]
d′
)) with a0 = n− 1−δ

d′ .

G.2 PROOF OVERVIEW

The generalization error analysis of the score network and how much the score estimation error
affects in the final estimation rate in Theorem 4.1 are derived by just replacing d by d′ in the previous
analysis. Therefore we focus on the approximation error bounds. In order to obtain the counterparts
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of Theorem 3.1 and Lemma D.5, we aim to decompose the score function into two parts: each of
them is determined by the intrinsic structure components (in V ) and other components (in V ⊥). We
use z as a d′-dimensional vector corresponding to the canonical system of V . The first observation
to this goal is

pt(x) =

∫
1

σd
t (2π)

d
2

p0(y) exp

(
−∥x−mty∥2

2σ2
t

)
dy

=

∫
V

1

σd
t (2π)

d
2

q(z) exp

(
−∥A

⊤x−mtz∥2 + ∥(Id −A⊤)x∥2

2σ2
t

)
dz

(z is a d′-dimensional vector corresponding to the canonical system of V .)

=

∫
V

q(z)

σd′
t (2π)

d′
2

exp

(
−∥A

⊤x−mtz∥2

2σ2
t

)
dz︸ ︷︷ ︸

p
(1)
t (x)

· 1

σd−d′

t (2π)
d−d′

2

exp

(
−∥(Id −A⊤)x∥2

2σ2
t

)
︸ ︷︷ ︸

p
(2)
t (x)

.

Here p(1)t (x) and p
(2)
t (x) can be seen as the density function with respect to the intrinsic components

and remaining space. Note that

∇ log pt(x) = ∇ log(p
(1)
t (x)p

(2)
t (x)) = ∇ log p

(1)
t (x) +∇ log p

(2)
t (x).

Due to this, we only need to construct the neural networks approximating each term and concatenate
them. In addition, p(1)t (x) can be seen as the density at A⊤x, about the diffusion process on the d′-
dimensional space, where the initial density is defined by q. Thus we let

qt(z
′) =

∫
V

q(z)

σd′
t (2π)

d′
2

exp

(
−∥z

′ −mtz∥2

2σ2
t

)
dz

for z′ ∈ Rd′
. Here p

(1)
t (x) = qt(A

⊤x) holds.

G.3 PROOF OF THEOREM 4.1

We first consider the approximation of p(1)t (x). We have the following counterpart of Theorem 3.1
and Lemma D.5, where the only difference is that here d is replaced by d′.

Lemma G.4. Let N ≫ 1, T = poly(N−1) and T = O(logN). Then there exists a neural network
ϕscore,3 ∈ Φ(L,W, S,B) that satisfies, for all t ∈ [T , T ],∫

x∈Rd

pt(x)∥∇ log p
(1)
t (x)− ϕscore,3(A

⊤x, t)∥2dx ≲
N− 2s

d′ log(N)

σ2
t

. (85)

Here, L,W,S and B are evaluated as L = O(log4 N), ∥W∥∞ = O(N log6 N), S =
O(N log8 N), and B = exp(O(log4 N)). We can take ϕscore,3 satisfying ∥ϕscore,3(·, t)∥∞ =

O(σ−1
t log

1
2 N).

Moreover, let N ′ ≥ t
−d′/2
∗ Nδ/2 and t∗ ≥ N−(2−δ)/d′

. Then there exists a neural network ϕscore,4 ∈
Φ(L,W,S,B) that satisfies∫

x∈Rd

pt(x)∥∇ log p
(1)
t (x)−Aϕscore,4(A

⊤x, t)∥2dx ≲
N− 2(s+1)

d′

σ2
t

(86)

for t ∈ [2t∗, T ]. Specifically, L = O(log4(N)), ∥W∥∞ = O(N), S = O(N ′), and B =

exp(O(log4 N)). We can take ϕscore,4 satisfying ∥ϕscore,4(·, t)∥∞ = O(σ−1
t log

1
2 N).

Proof. Let ϕscore : Rd′ × R+ → Rd′
that approximates qt(z). Note that

∇ log p
(1)
t (x) = A∇ log qt(A

⊤x)
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and therefore ∫
x∈Rd

pt(x)∥∇ log p
(1)
t (x)−Aϕscore(A

⊤x, t)∥2dx

=

∫
x∈Rd

p
(1)
t (x)p

(2)
t (x)∥A∇ log p

(1)
t (A⊤x)−Aϕscore(A

⊤x, t)∥2dx

=

∫
x∈Rd

qt(A
⊤x)∥A∇ log p

(1)
t (A⊤x)−Aϕscore(A

⊤x, t)∥2dx

=

∫
z∈Rd′

qt(z)∥∇ log qt(z)− ϕscore(z, t)∥2dz,

where we used the fact that p(1)t and p
(2)
t depend on A⊤x and (I−A⊤)x, respectively, and A⊤x and

(I −A⊤)x are orthogonal. Moreover, we used det(A⊤A) = 1 and orthogonality of the columns of
A. Thus, we can translate Theorem 3.1 and Lemma D.5.

We next consider the approximation of p(2)t (x). As we did in Appendix C, we first show that it
suffice to consider the approximation within the bounded region.
Lemma G.5. For ε > 0, we define Bt,ε as

Bt,ε =
{
x ∈ Rd

∣∣∣∥(Id −A⊤)x∥ ≤ Ceσt

√
log ε−1.

}
We sometimes abbreviate this as Bε. Then, we have that∫

x∈B̄ε

pt(x)
[
1 ∨ ∥∇ log(p

(2)
t (x))∥2

]
dx ≲ ε.

Proof. The the columns of A are orthogonal. p(1)t and p
(2)
t depend on A⊤x and (I −A⊤)x, respec-

tively, and A⊤x and (I −A⊤)x are orthogonal. Thus, we have that∫
x∈B̄t,ε

pt(x)
[
1 ∨ ∥∇ log(pt(x))∥2

]
dx (87)

=

∫
x∈B̄t,ε

p
(1)
t (x)p

(2)
t (x)

[
1 ∨ ∥∇ log(pt(x))∥2

]
dx

=

∫
x∈B̄t,ε

p
(2)
t (x)

[
1 ∨ ∥∇ log(pt(x))∥2

]
dx

=

∫
w∈Rd−d′ : ∥w∥≥Ceσt

√
log ε−1

1 ∨ ∥w∥2/σ2
t

σd−d′

t (2π)
d−d′

2

exp

(
−∥w∥

2

2σ2
t

)
dw.

Applying Corollary J.8, (87) is bounded by ε with a sufficiently large constant Ce.

Now we only need consider the approximation of∇ log p
(2)
t (x) within Bt,ε.

Lemma G.6. Let N ≫ 1, T , ε = poly(N−1) and T ≃ logN . There exists a neural network
ϕscore,4 ∈ Φ(L,W, S,B) such that

sup
t∈[T ,T ]

∫
x

pt(x)∥∇ log p
(2)
t (x)− ϕscore,4(x, t)∥2dx ≲

N− 2(s+1)

d′

σ2
t

. (88)

Specifically, ϕscore,4 ∈ Φ(L,W,S,B) holds, where

L = O(log2 N)), ∥W∥∞ = O(log3 N), S = O(log4 N), and B = exp(O(log2 N)). (89)

Proof. First note that ∇ log p
(2)
t (x) = − 1

σ2
t
(Id − A)(Id − A⊤)x. We approximate this via the

following four steps.

1. σt is approximated by ϕσ from Lemma D.2. Here we set ε← (T 4 ∧ ε4)ε4.

56



Published at the Workshop on Understanding Foundation Models at ICLR 2023

2. Based on the approximation of σt, σ−2
t is approximated by ϕrec(·; 2) from Corollary J.8.

Here we set ε← (T ∧ ε)ε.

3. (Id − A)(Id − A⊤) is realized by ReLU((Id − A)(Id − A⊤) · x + 0) − ReLU(−(Id −
A)(Id −A⊤) · x+ 0).

4. According to Lemma J.6 with ε ← ε and C ← T−1 ∨
√

log ε−1, multiplication of σ−2
t

and (Id −A)(Id −A⊤) is constructed.

By concatenating these networks (using Lemma J.1), the obtained network size is bounded as

L = O(log2 ε−1 + log2 T−1)), ∥W∥∞ = O(log3 ε−1 + log3 T−1), S = O(log4 ε−1 + log4 T−1),

and B = exp(O(log2 ε−1 + log2 T−1)).

Then, for x ∈ Bt,ε with t ≥ T , we have that

∥∇ log p
(2)
t (x)− ϕscore,4∥ ≲ ε.

This yields that ∫
Bt,ε

pt(x)∥∇ log p
(2)
t (x)− ϕscore,4∥dx ≲ ε.

Together with Lemma G.5, by taking ε = poly(N−1), we have the assertion.

Proof of Theorem 4.1. Note that while the error bound (88) in Lemma G.6 is tighter than the bounds
(85) and (86) in Lemma G.4, the required network size (89) in Lemma G.6 is smaller than the
size bounds in Lemma G.4. Also note that the bounds in Lemma G.4 are the same as those in
Theorem 3.1 and Lemma D.5, except for that d is replaced by d′. Therefore, by simply aggregating
ϕscore,3 and ϕscore,4, we obtain the counterpart of the approximation theorems Theorem 3.1 and
Lemma D.5, and the rest of the analysis are the same as that of the d-dimensional case. Therefore,
we obtain the statement.

H SAMPLING t AND xt IN THE EMPIRICAL SCORE MATCHING LOSS

Since our main interest lies in the sample complexity, and for simple presentation, we have consid-
ered the situation where ℓ(x) can be exactly evaluated. However, in usual implementation (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019), two expectations in (1) with respect to t and xt are
also replaced by sampling for computational efficiency. Here we also introduce two ways to replace
the expectation by a finite sample of t and xt. As in Section 3, we assume Assumptions 2.2 to 2.4.

Approximation via polynomial-size sample Let us sample (ij , tj , xj) from ij ∼
Unif({1, 2, · · · , n}), tj ∼ Unif(T , T ), and xj ∼ ptj (xj |x0,i). Then we let ŝ as

argmin
s∈S

1

M

M∑
j=1

∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2

and evaluate the difference between
1

n

n∑
i=1

ℓŝ(xi)− argmin
s∈S

1

n

n∑
i=1

ℓs(xi). (90)

The complete proof and formal statement can be found in Theorem H.2 of Appendix H, and here
we provide the proof sketch. We first show that ∥s(xj , tj) − ∇ log ptj (xj |x0,ij )∥ is sub-Gaussian

(Lemma H.1). Here, we simply interpret this as ∥s(xj , tj) − ∇ log ptj (xj |x0,ij )∥ = Õ(t−
1
2

j ) ≲

Õ(T− 1
2 ) with high probability to proceed. Then, by a similar argument that derived Theorem 3.2,

we can bound (90) by Õ(T
−1·logN

M ). Here, N satisfies logN ≲ Õ(n
d

2s+d ). In order to make (90)
as small as the generalization error Õ(n− 2s

2s+d ), we need to take M ≳ n · T−1. Thus, for each x0,i,
Õ(T−1) = poly(n−1) sample of (tj , xj |x0,i) should be considered. We remark that the reason why
we need polynomial-size sample is mainly due to the scale of ∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2.
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Modifying the distribution of t One may think whether it is possible to consider only one path for
each sample x0,i. Here, the main problem is that the variance of ∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2

can grow to infinity as tj approaches to 0. To address this issue, we sample tj from µ(t) ∝ 1[T≤t≤T ]
t

and modify λ(t) as λ(t) = t log T/T

T−T
, while ij , xj are sampled as previously. Then, we have that

Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ log ptj (xj |x0,i)∥2

]
=
1

n

n∑
i=1

ℓ(xi),

and that λ(tj)∥s(xtj , tj) − ∇ log pti(xtj |x0,i)∥2 = Õ(1) holds with high probability (because
∥s(xj , tj) − ∇ log ptj (xj |x0,ij )∥3 = Õ(t−1

j ) and that λ(tj) ≲ 1/tj). In this way of sampling,
we let ŝ as

argmin
s∈S

1

M

M∑
j=1

λ(tj)∥s(xj , tj)−∇ log ptj (xj |x0,ij )∥2

and evaluate the difference (90). Finally, using a similar argument for Theorem 3.2, we again obtain

that (90) is bounded by Õ( logN
M ) ≲ Õ(n

d
2s+d

M ). Taking M = n suffices to make this difference as
small as the generalization error Õ(n− 2s

2s+d ).

Now we provide justification of two approaches presented here. We first begin with the following
lemma. This shows that ∥s(xj , tj)−∇ptj (xj |x0,ij )∥ is sub-Gaussian.

Lemma H.1. Let us sample (ij , tj , xj) from ij ∼ Unif({1, 2, · · · ,n}), tj ∼ Unif(T,T), and
xj ∼ ptj (xj |x0,ij ). Then, we have that, for all t > 0,

P

[
∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≥ sup

(x,t)

∥s(x, t)∥+
√
dt

σT

]
≤ 2 exp

(
−t2/2

)
.

Proof. First note that

∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≤ ∥s(xj , tj)∥+ ∥∇ptj (xj |x0,ij )∥ ≤ sup
x,t
∥s(x, t)∥+ ∥∇ptj (xj |x0,ij )∥.

Because ∇ptj (xj |x0,ij ) =
xj−mtx0,ij

σ2
t

and xj ∼ ptj (xj |x0,ij ) = N
(
mtx0,ij , σ

2
t

)
, we have that

[∇ptj (xj |x0,ij )]i is sub-Gaussian with σ−1
t . Thus, ∥∇ptj (xj |x0,ij )∥ is sub-Gaussian with

√
dσ−1

t .
Now, applying σt ≥ σT , we have the assertion.

Now, we give the following theorem for the first approach.
Theorem H.2. Let us sample (ij , tj , xj) from ij ∼ Unif({1, 2, · · · ,n}), tj ∼ Unif(T,T), and
xj ∼ ptj (xj |x0,i). Let s1 be the minimizer of

1

M

M∑
j=1

∥s(xj , tj)−∇ptj (xj |x0,i)∥2

and s2 be the minimizer of

1

n

n∑
i=1

ℓ(xi) =
1

n

n∑
i=1

∫ T

t=T

∥s(xt, t)−∇pt(xt|x0,i)∥2pt(xt|x0,i)dxtdt,

over S ⊆ Φ(L,W,S,B), where s ∈ S satisfies ∥∥s(·, t)∥2∥L∞ = O(σ−1
t log

1
2 n) ≲

O(σ−1
T log

1
2 n) =: Cs. Then, we have that

E{(ij ,tj ,xj)}n
i=1

∣∣∣∣∣ 1n
n∑

i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣ ≲ C2
s + σ−2

T

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε.
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Proof. We denote (ij , tj , xj) = yj for simplicity and Y = {(ij , tj , xj)}Mj=1 = {yj}Mj=1. Let
Y ′ = {(i′j , t′j , x′

j)}Mj=1 = {y′j}Mj=1 be a copy of Y , which is independent of Y . We write κ(yj) =

∥s(xj , tj)−∇ptj (xj |x0,ij )∥2. Then, we have that

EY

∣∣∣∣∣∣ 1M
M∑
j=1

κ1(yj)−
1

M

M∑
j=1

κ2(yj)−
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣∣ (91)

= EY

∣∣∣∣∣∣ 1M
M∑
j=1

(κ1(yj)− κ2(yj))− EY ′

 1

M

M∑
j=1

(κ1(y
′
j)− κ2(y

′
j))

∣∣∣∣∣∣
≤ EY,Y ′

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣ . (92)

Next, we let Cs be the minimum integer that satisfies Cs ≥ sups∈C supx,t ∥s(x, t)∥, and for

i = 1, 2, · · · , we define Ei as an event where Cs +
√
d(i−1)
σT

≤ sups∈C maxj max{∥s(xj , tj) −

∇ptj (xj |x0,ij )∥, ∥s(x′
j , t

′
j) − ∇pt′j (x

′
j |x0,i′j

)∥} < Cs +
√
di

σT
holds. For i = 0, we define E0 as an

event where sups∈S maxj max{∥s(xj , tj)−∇ptj (xj |x0,ij )∥, ∥s(x′
j , t

′
j)−∇pt′j (x

′
j |x0,i′j

)∥} < Cs

holds. We let ai = P [Ei] and Ei be the expectation conditioned by the event Ei. Then, (92) is
bounded by

E0

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣
+

∞∑
i=1

aiEi

∣∣∣∣∣∣ 1M
M∑
j=1

((κ1(yj)− κ2(yj))− (κ1(y
′
j)− κ2(y

′
j)))

∣∣∣∣∣∣ . (93)

We remark that 1
M

∑M
j=1((κ1(yj) − κ2(yj)) − (κ1(y

′
j) − κ2(y

′
j))) is bounded by 8C2

s + 8di2

σ2
t

for

each Ei. Here, κ1 is the minimizer of 1
M

∑M
j=1 κ(yj) and κ2 is the minimizer of E [κ(y)]. Moreover,

because ∥(xj − x0,ij )/σt∥ = ∥∇ptj (xj |x0,ij )∥ ≤ ∥s(xj , tj) −∇ptj (xj |x0,ij )∥ + ∥s(xj , tj)∥, we
have that ∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≤ Cs+

√
di

σT
implies ∥xj∥ ≤ 2Cs+

√
di. We apply the same

argument as that in Theorem E.6 to obtain that

Ei

∣∣∣∣∣∣ 1M
M∑
j=1

κ1(yj)−
1

M

M∑
j=1

κ2(yj)−
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

∣∣∣∣∣∣
≲

C2
s + σ−2

T i2

M
logN (S, L∞([−(2Cs +

√
di), 2Cs +

√
di]d+1), ε/(Cs + iσ−1

T )) + ε.

≲
C2

s + σ−2
T i2

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε.

We remark that, yj and y′j are not independent, when conditioned by Ei. However, the similar
argument still holds in (67), where we used the independentness of xi and x′

i in the original proof,
because the symmetry of yj and y′j is not collapsed by taking the conditional expectation. Based on
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this, and ai ≤ 2 exp(−(i− 1)2/2) (i ≥ 1) due to Lemma H.1, we evaluate (93) as

(93) ≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

+

∞∑
i=1

ai

[
C2

s + σ−2
T i2

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε

]

≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

+

∞∑
i=1

exp

(
− (i− 1)2

2

)[
C2

s + σ−2
T i2

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs + i)) + ε

]

≲
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε.

This bounds (91). Thus, we finally obtain that

E{yi}n
i=1

[
1

n

n∑
i=1

ℓ1(xi)−
1

n

n∑
i=1

ℓ2(xi)

]

≤ E{yi}M
j=1

 1

M

M∑
j=1

κ1(yj)−
M∑
j=1

κ2(yj)

+
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

≤
C2

s + σ−2
T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

because κ1 is the minimizer of 1
M

∑M
j=1 κ(yj). Now, we obtain the assertion.

Remark H.3. When ∥s(x, t)∥ =
√
logN/σt holds, T = poly(N−1), T = O(logN), we have

sup(x,t) ∥s(x, t)∥ = Cs ≲
√
T−1 logN . we set N = n

d
2s+d , ε = n− 2s

d+2s and use the network class
in Theorem 3.1 to obtain that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi)

≲
C2

s + σ−2
T

M
2SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε

≲
T−1 log n+ T−1

M
n− d

2s+d log16 n ≲
n− d

2s+d log17 n

TM
.

Next, we show the proof for the second approach.

Theorem H.4. We sample tj from µ(t) ∝ 1[T≤t≤T ]
t and modify λ(t) as λ(t) = t log T/T

T−T
, while

ij , xj are sampled as ij ∼ Unif({1, 2, · · · ,n}) and xj ∼ ptj (xj |x0,i). Then, the minimizer s1 over
S ⊆ Φ(L,W, S,B) of

1

M

M∑
j=1

λ(tj)∥s(xj , tj)−∇ptj (xj |x0,i)∥2

satisfies

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≲
C2

s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

Here, Cs = supt,x
√
λ(t)∥s(x, t)∥.
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Proof. We just replace ∥s(xj , tj) − ∇ptj (xj |x0,i)∥ by
√
λ(tj)∥s(xj , tj) − ∇ptj (xj |x0,i)∥ in the

previous lemma. Similarly to Lemma H.1, we have that, for all t > 0,

P

[
λ

1
2 (tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥ ≥ sup

(x,t)

λ
1
2 (t)∥s(x, t)∥+

√
dλ

1
2 (tj)t

σtj

]
≤ 2 exp

(
−t2/2

)
.

Then, we replace sup(x,t) ∥s(x, t)∥ by sup(x,t) λ
1
2 (t)∥s(x, t)∥, and

√
d

σT
by supt

√
dλ

1
2 (t)

σt
, respec-

tively, to obtain that

Eij ,tj ,xjEi′j ,t
′
j ,x

′
j

[
λ(tj)∥s1(xj , tj)−∇ptj (xj |x0,ij )∥2

]
− inf

s∈S
Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥2

]
≲

C2
s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε, (94)

where (i′j , t
′
j , x

′
j) are the independent copy of (ij , tj , xj). Note that

Eij ,tj ,xj

[
λ(tj)∥s(xj , tj)−∇ptj (xj |x0,ij )∥2

]
=

1

n

n∑
i=1

ℓ(xi) (95)

for all (fixed) s. (94) and (95) yield that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi)

≤ C2
s + T

M
SL log(ε−1L∥W∥∞(B ∨ 1)(Cs)) + ε,

which concludes the proof.

Remark H.5. When ∥s(x, t)∥ =
√
logN/σt holds, T = poly(N−1), T = O(logN), we have

sup(x,t)
√
λ(t)∥s(x, t)∥ = Cs ≲

√
logN . we set N = n

d
2s+d , ε = n− 2s

d+2s and use the network
class in Theorem 3.1 to obtain that

E(ij ,tj ,xj)

[
1

n

n∑
i=1

ℓ1(xi)

]
−
∫
ℓs : s∈S

1

n

n∑
i=1

ℓs(xi) ≲ n− 2s
d+2s log17 n.

I DISCUSSION ON THE DISCRETIZATION ERROR

Although the continuous time SDE is mainly focused on for simple presentation, we can also take
the discretization error into consideration. As in Section 3, we assume Assumptions 2.2 to 2.4. Let
t0 = T < t1 < · · · < tK∗ = T be the time steps with η ≡ tk+1 − tk. We train the score network as
the minimizer of

n∑
i=1

K−1∑
k=0

ηE[∥s(xtk , tk)−∇ log pT−tk
(xtk |x0,i)∥2].

Here the expectation is taken with respect to xT−tk
∼ pT−tk

(xT−tk
|x0,i). Then consider the

following process (Y d
t )ηKt=0 with Y d

0 ∼ N (0, Id): for t ∈ [T − ti, T − ti+1],

dY d
t = βt(Y

d
t + 2ŝ(Y d

T−ti
, T − ti))dt+βT−tdBt

This is just replacement of the drift term at t by that at the last discretized step, and we can obtain
Ȳη(k+1) from Ȳηk as easy as the classical Euler-Maruyama discretization because Ȳη(k+1) condi-
tioned on Ȳηk is a Gaussian. This is also adopted in De Bortoli (2022); Chen et al. (2022). However,
De Bortoli (2022) requires ηi ≤ exp(−nO(1)) and Chen et al. (2022) assumes Lipschitzness of the
score, which does not necessarily hold in our setting.

The following discretization error bound holds:
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Theorem I.1. Let T = n−O(1), T = s logn
2s+d , and η = poly(n−1). Then,

E[TV(X0, ȲT−T )] ≲ n− 2s
d+2s log18 n+ η2T−3 log3 n+ ηT−1 log3 n+ η log4 n.

Thus, taking η = T−1.5n−s/(2s+d) = poly(n−1) suffices to ignore the discretization error.

Proof of Appendix I. We first show that the minimizer ŝ over Φ′ (given in Section 3.2) of

ŝ ∈ argmin
1

n

n∑
i=1

K∑
k=

ηE[∥s(xtk , tk)−∇ log ptk(xtk |x0,i)∥2].

satisfies

E{x0,i}n
i=1

[
K∑

k=1

ηExtk
∼ptk

[∥ŝ(xtk , tk)−∇ log ptk(xtk)∥2]

]
≲ n−2s/(2s+d) log18 n. (96)

We take N = n
d

d+2s According to Theorem 3.1, for N ≫ 1, there exists a neural network ϕscore

with L = O(log4 N), ∥W∥∞ = O(N log6 N), S = O(N log8 N), and B = exp(O(log4 N)) that
satisfies ∫

x

pt(x)∥ϕscore(x, t)− s(x, t)∥2dx ≲
N− 2s

d log(N)

σ2
t

. (97)

for all t ∈ [T , T ]. By summing up this for all t = tk, we have that
K∑

k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log pηk(Xtk)∥2] ≲
K∑

k=1

η
N− 2s

d log(N)

1 ∧ tk
(98)

≤ N− 2s
d log(N)

(
ηK + η

K∑
k=1

1

tk

)
≲ N− 2s

d log(N)(T + log(T/T )) ≲ N− 2s
d log2(N).

In order to convert this into the generalization bound, we need to evaluate the following two things.
First, ŝ can be taken so that

sup
x
∥ϕscore(x, t)∥dx ≲

log
1
2 (N)

σt
,

and therefore we clip s as in Section 3.2. Because such s satisfies∫
x

pt(x)∥ϕscore(x, t)−∇ log pt(x)∥2dx ≲
log(N)

σ2
t

,

we have that
K∑

k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log ptk(xtk)∥2] ≤ Cℓ = O(log2(n))

(follow the argument for Lemma E.3 and how we derived (98) from (97)). Second, the covering
number of the network class of ℓ(x) =

∑K
k=1 ηE[∥s(xtk , tk)−∇ log ptk(xtk |x)∥2] over all s with

δ = n− 2s
d+2s is bounded by n

d
d+2s log16 n, by following Appendix E.3. Thus, Theorem E.6 can be

modified to this setting and we obtain that

E{x0,i}n
i=1

[
K∑

k=1

ηExtk
∼ptk

[∥s(xtk , tk)−∇ log ptk(xtk)∥2]

]
≲ n−s/(2s+d) log2 n.

holds. Therefore, following the discussion in Section 3.2, we have that

E{x0,i}n
i=1

[
K∑

k=1

ηkExtk
∼ptk

[∥s(xtk , tk)−∇ log ptk(xtk)∥2]

]

≲
K∑

k=1

ηExtk
∼ptk

[∥ϕscore(xtk , tk)−∇ log pηk(Xtk)∥2] +
Cℓ

n
logN + δ

≲n
d

d+2s log2 n+
log2 n

n
· n

d
d+2s log18 n+ n− 2s

d+2s ≲ n− 2s
d+2s log18 n,
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which proves (96).

From now, we bound TV(Y0, Y
d
T−T

). We introduce the following processes. Ȳ d = (Ȳ d
t )

T−T
t=0 is

defined in the same way as Y d, except for the initial distribution of Ȳ d
0 ∼ pT . At t = T − T , if the∫

-norm is more than 2, then we reset it to 0. Ȳ = (Ȳt)
T−T
t=0 is defined as Ȳ0 ∼ pT , and

Ȳ0 ∼ pT ,

dȲt = βT−t

(
Yt + 21[(Ȳs, T − s) /∈ A for some s ≤ t]∇ log pt(Ȳt)

+ 21[(Ys, T − s) ∈ A for all s ≤ t]ŝ(ȲT−tk
, T − tk)

)
dt+

√
2βT−tdBt (t ∈ [T − ti, T − ti−1]).

At t = T − T , if the∞-norm is more than 2, then we reset it to 0. Here, A ⊆ Rd+1 is defined as

A =
{
(x, t) ∈ Rd × R

∣∣∣ ∥x∥∞ ≤ mt + Caσt

√
log(n), T ≤ t ≤ T

}
.

Then, we have that

TV(YT , Y
d
T−T

) ≤ TV(YT , YT−T ) + TV(Y0, ȲT−T ) + TV(ȲT−T , Ȳ
d
T−T

) + TV(Ȳ d
T−T

, Ȳ d)

≤ TV(X0, XT ) + TV(Y0, ȲT−T ) + TV(ȲT−T , Ȳ
d
T−T

) + TV(XT ,N (0, Id)).

The first term is bounded by n− 2s
d+2s , by setting T = n−O(1) in Theorem F.2. The second term

is bounded by n− 2s
d+2s , by taking Ca sufficient large, according to Lemma C.1. The forth term is

bounded by exp(−βT ) by Lemma F.3, and thus setting T = O(log n) yields exp(−βT ) ≲ n− 2s
d+2s .

Now, we bound the third term. Proposition F.1 yields that

TV(ȲT−T , Ȳ
d
T−T

)

≲
K∑

k=1

∫ T−tk−1

t=T−tk

EȲ [1[(Ȳs, T − s) ∈ A for all s ≤ t]∥ŝ(ȲT−tk
, T − tk)−∇ log pt(Ȳt)∥2]dt

≤
K∑

k=1

∫ T−tk−1

t=T−tk

EȲ [1[(Ȳt, T − t) ∈ A, (ȲT−tk
, tk) ∈ A]∥ŝ(ȲT−tk

, T − tk)−∇ log pt(Ȳt)∥2]dt

≤
K∑

k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥ŝ(Xtk , tk)−∇ log pt(Xt)∥2]dt

≲
K∑

k=1

∫ tk

t=tk−1

Extk
∼ptk

[∥ŝ(xtk , tk)−∇ log ptk(xtk)∥2]dt (99)

+

K∑
k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥∇ log pt(Xt)−∇ log ptk(Xt)∥2]dt (100)

+

K∑
k=1

∫ tk

t=tk−1

EX [1[(Xt, t) ∈ A, (Xtk , tk) ∈ A]∥∇ log ptk(Xt)−∇ log ptk(Xtk)∥2]dt (101)

First, we consider (100). Because (Xt, t) ∈ A, (∥Xt∥∞−mt)+ ≲ σt

√
log(n). Over all t ≤ s ≤ tk,

|∂sσs| ≲ 1√
t
, |∂sms| ≲ 1, and

∥∂s∇ log ps(x)∥ ≲
|∂sσs|+ |∂sms|

σ3
s

(
(∥x∥∞ −ms)

2
+

σ2
s

∨ 1

) 3
2

≲
|∂tσtk |+ |∂tmtk |

σ3
tk

(
(∥x∥∞ −mtk)

2
+

σ2
tk

∨ 1

) 3
2

,

according to Lemma C.3. Therefore, (100) is bounded by
∑K

k=1 η(η(t
−2
k ∨ 1) log

3
2 n)2 = η2(t−4

k ∨
1) log3 n.
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Next, for (101), we first note that ∥Xt∥∞ −mtk , ∥Xtk∥∞ −mtk ≲ σtk

√
log(n) = Õ(1). There-

fore, according to Lemma C.3, ∥∂xi
∇ log ptk(x)∥ is bounded by 1

σ2
tk

(
(∥Xtk

∥∞−mtk
)2+

σ2
tk

∨ 1

)
≲

t−1
k log n. With probability at least 1−n−O(1), ∥Xt−Xtk∥∞ ≲

√
η log n, according to Lemma J.15.

Therefore,

(101) ≲
K∑

k=1

η(
√

η log n · (t−1
k ∨ 1) log n)2 + n−O(1) · Õ(1) ≲

K∑
k=1

η2(t−2
k ∨ 1) log3 n.

Finally, for (101), we apply (96). Now, all three terms of (99), (100), and (101) are bounded and we
obtain that

E{x0,i}n
i=1

[
TV(ȲT−T , Ȳ

d
T−T

)
]
≲ n− 2s

d+2s log18 n+

K∑
k=1

(η3(t−4
k ∨ 1) log3 n+ η2(t−2

k ∨ 1) log3 n)

≲ n− 2s
d+2s log18 n+ η2T−3 log3 n+ ηT−1 log3 n+ ηT log3 n

≲ n− 2s
d+2s log18 n+ η2T−3 log3 n+ ηT−1 log3 n+ η log4 n.

Therefore, by setting η = T−1.5n− s
d+2s yields the assersion.

J AUXILIARY LEMMAS

This final section summarizes existing results and prepares basic tools for the main parts of the
proofs. A large part of this section (Appendix J.1 to J.4) is devoted to introduction of basic tools for
the function approximation with neural networks, and thus those familiar with such topics (Yarotsky,
2017; Petersen & Voigtlaender, 2018; Schmidt-Hieber, 2019) can skip these subsections (although
they contain some refinement and extension). Lemma J.14 is for elementary bounds on the Gaussian
distribution and hitting time of the Brownian motion.

In the following we will define constants Cf,1 and Cf,2. Other than in this section, they are denoted
by Cf , and sometimes other constants that comes from this section can be also denoted by Cf .

J.1 CONSTRUCTION OF A LARGER NEURAL NETWORK

Through construction of the desired neural network, we often need to combine sub-networks that
approximates simpler functions to realize more complicated functions. We prepare the following
lemmas, whose direct source is Nakada & Imaizumi (2020) but similar ideas date back to earlier
literature such as Yarotsky (2017); Petersen & Voigtlaender (2018).

First we consider construction of composite functions. Although the bound on the sparsity S was
not given in the original version, we can verify it by carefully checking their proof.

Lemma J.1 (Concatenation of neural networks (Remark 13 of Nakada & Imaizumi (2020))). For
any neural networks ϕ1 : Rd1 → Rd2 , ϕ2 : Rd2 → Rd3 , · · · , ϕk : Rdk → Rdk+1 with ϕi ∈
Ψ(Li,W i, Si, Bi) (i = 1, 2, · · · , d), there exists a neural network ϕ ∈ Φ(L,W, S,B) satisfying
ϕ(x) = ϕk ◦ ϕk−1 · · · ◦ ϕ1(x) for all x ∈ Rd1 , with

L =

k∑
i=1

Li, W ≤ 2

k∑
i=1

W i, S ≤
k∑

i=1

Si +

k−1∑
i=1

(∥Ai
Li∥0 + ∥biLi∥0 + ∥Ai+1

1 ∥0) ≤ 2

k∑
i=1

Si,

and B ≤ max
1≤i≤k

Bi.

Here Ai
j is the parameter matrix and bij is the bias vector at the jth layer of the ith neural network

ϕi.

Next we introduce the identity function.
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Lemma J.2 (Identity function (p.19 of Nakada & Imaizumi (2020))). For L ≥ 2 and
d ∈ N, there exists a neural network ϕd,L

Id ∈ Φ(L,W,S,B) with parameters (A1, b1) =

((Id,−Id)⊤, 0), (Ai, bi) = (I2d, 0)(i = 1, 2, · · · , L − 2), (AL) = ((Id,−Id), 0), that realize d-
dimensional identity map. Here,

∥W∥∞ = 2d, S = 2dL, B = 1.

For L = 1, a neural network ϕd,1
Id ∈ Φ(1, (d), d, 1) with parameters (A1, b1) = (Id, 0) realizes

d-dimensional identity map.

We then consider parallelization of neural networks. The following lemmas are Remarks 14 and 15
of Nakada & Imaizumi (2020) with a modification to allow sub-networks to have different depths.

Lemma J.3 (Parallelization of neural networks). For any neural networks ϕ1, ϕ2, · · · , ϕk with
ϕi : Rdi → Rd′

i and ϕi ∈ Ψ(Li,W i, Si, Bi) (i = 1, 2, · · · , d), there exists a neural network
ϕ ∈ Φ(L,W,S,B) satisfying ϕ(x) = [ϕ1(x1)⊤ ϕ2(x2)⊤ · · · ϕk(xk)⊤]⊤ : Rd1+d2+···+dk →
Rd′

1+d′
2+···+d′

k for all x = (x⊤
1 x⊤

2 · · · x⊤
k )

⊤ ∈ Rd1+d2+···+dk (here xi can be shared), with

L = L, ∥W∥∞ ≤
k∑

i=1

∥W i∥∞, S ≤
k∑

i=1

Si, and B ≤ max
1≤i≤k

Bi (when L = Li holds for all i),

L= max
1≤i≤k

Li, ∥W∥∞≤2

k∑
i=1

∥W i∥∞, S≤2

k∑
i=1

(Si + LW i
L), and B≤max{ max

1≤i≤k
Bi, 1} (otherwise).

Moreover, there exists a network ϕsum(x) ∈ Φ(L,W, S,B) that realizes =
∑k

i=1 ϕ
i(x), with

L = max
1≤i≤k

Li + 1, ∥W∥∞ ≤ 4

k∑
i=1

∥W i∥∞, S ≤ 4

k∑
i=1

(Si + LWL) + 2WL,

and B ≤ max{ max
1≤i≤k

Bi, 1}.

Proof of Lemma J.3. Let us consider the first part. For the case when L = Li holds for all i, the
assertions are exactly the same as Remarks 14 and 15 Nakada & Imaizumi (2020). Otherwise, we
first prepare a network ϕ′i realizing ϕd,L−Li

Id ◦ϕi for all i, so that every network have the same depth
without changing outputs of the networks. From Lemmas J.1 and J.2, ϕ′i ∈ Φ(L,W ′i, S′i, B′i)
holds, with L = max1≤i≤k L

i, ∥W ′i∥∞ = max{∥W i∥∞, 2WL} ≤ 2∥W i∥∞, S′i ≤ 2Si + 2(L−
Li)W

i
L ≤ 2(Si + LW i

L), and B′i = max{Bi, 1}. We then apply the results for the case of
L = Li (i = 1, 2, · · · , k).
For the second part, since summation of the outputs of k neural networks can be realized by a 1 layer
neural network with the width of k, Lemma J.3 together with Lemma J.1 gives the bound to realize∑k

i=1 ϕ
i(x).

In the analysis of the score-based diffusion model, we often face unbounded functions. To resolve
difficulty coming from the unboundedness, the clippling operation is often be adopted.

Lemma J.4 (Clipping function). For any a, b ∈ Rd with ai ≤ bi (i = 1, 2, · · · , d), there exists a
clipping function ϕclip(x; a, b) ∈ Φ(2, (d, 2d, d)⊤, 7d,max1≤i≤d max{|ai|, bi}) such that

ϕclip(x; a, b)i = min{bi,max{xi, ai}} (i = 1, 2, · · · , d)

holds. When ai = c and bi = C for all i, we sometimes denote ϕclip(x; a, b) as ϕclip(x; c, C) using
scaler values c and C.

Proof. Because, for each coordinate i, min{bi,max{xi, ai}} is realized as

min{bi,max{xi, ai}} = ReLU(xi − ai)− ReLU(xi − bi) + ai ∈ Φ(2, (1, 2, 1), 7,max{|ai|, bi}),

parallelizing this for all i with Lemma J.3 yields the assertion.
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With the above clipping function, we prepare switching functions, which gives the way to construct
approximation in the combined region when there are two different approximations valid for differ-
ent regions.

Lemma J.5 (Switching function). Let t1 < t2 < t1 < t2, and f(x, t) be some scaler-
valued function (for a vector-valued function, we just apply this coordinate-wise). Assume that
ϕ1(x, t) and ϕ2(x, t) approximate f(x, t) up to an additive error of ϵ but approximation with
ϕ1(x, t) and ϕ2(x, t) are valid for [t1, t1] and [t2, t2], respectively. Then, there exist neu-
ral networks ϕ1

swit(t; t2, t1), ϕ
2
swit(t; t2, t1) ∈ Φ(3, (1, 2, 1, 1)⊤, 8,max{t1, (t1 − t2)

−1}), and
ϕ1
swit(t; t2, t1)ϕ

1(x, t) + ϕ2
swit(t; t2, t1)ϕ

2(x, t) approximates f(x, t) up to an additive error of ϵ
in [t1, t2].

Proof. We define

ϕ1
swit(t; t2, t1) =

1

t1 − t2
ReLU(ϕclip(t; t2, t1)− t2),

and ϕ2
swit(t; t2, t1) =

1

t1 − t2
ReLU(t1 − ϕclip(t; t2, t1)).

Here ϕ1
swit(t; t2, t1), ϕ

2
swit(t; t2, t1) ∈ [0, 1], ϕ1

swit(t; t2, t1) + ϕ2
swit(t; t2, t1) = 1 for all t,

ϕ1
swit(t; t2, t1) = 0 for all t ≥ t1, and ϕ2

swit(t; t2, t1) for t ≤ t2. From this construction, the
assertion follows.

J.2 BASIC NEURAL NETWORK STRUCTURE THAT APPROXIMATES RATIONAL FUNCTIONS

When approximating a function in the Besov space with a neural network, the most basic structure of
the network is that of approximating polynomials (Suzuki, 2018). In our construction of the diffused
B-spline basis, we need to approximate rational functions.

We begin with monomials. Although the traditional fact that we can approximate monomials with
neural networks with an arbitrary additive error of ϵ using only O(log ε−1) non-zero parameters
has been very famous (Yarotsky, 2017; Petersen & Voigtlaender, 2018; Schmidt-Hieber, 2020), we
could not find the result that explicitly states the dependency on parameters including the degree and
the range of the input. Therefore, just to be sure, we revisit Lemma A.3 of Schmidt-Hieber (2020)
and here gives the extended version of that lemma.

Lemma J.6 (Approximation of monomials). Let d ≥ 2, C ≥ 1, 0 < εerror ≤ 1. For any ε > 0,
there exists a neural network ϕmult(x1, x2, · · · , xd) ∈ Ψ(L,W, S,B) with L = O(log d(log ε−1 +
d logC)), ∥W∥∞ = 48d, S = O(d log ε−1 + d logC)), B = Cd such that∣∣∣∣∣ϕmult(x

′
1, x

′
2, · · · , x′

d)−
d∏

d′=1

xd′

∣∣∣∣∣ ≤ ε+ dCd−1εerror,

for all x ∈ [−C,C]d and x′ ∈ R with ∥x− x′∥∞ ≤ εerror,

|ϕmult(x)| ≤ Cd for all x ∈ Rd, and ϕmult(x
′
1, x

′
2, · · · , x′

d) = 0 if at least one of x′
i is 0.

We note that some of xi, xj (i ̸= j) can be shared. For
∏I

i=1 x
αi
i with αi ∈ Z+ (i = 1, 2, · · · , I)

and
∑I

i=1 αi = d, there exists a neural network satisfying the same bounds as above, and the
network is denoted by ϕmult(x;α).

Proof. First of all, it is known from Schmidt-Hieber (2020) that there exists a neural network
ϕ̄′
mult(x, y) ∈ Ψ(L,W, S,B) with L = i+ 5, ∥W∥∞ = 6, B = 1 such that

|ϕ̄′
mult(x, y)− xy| ≤ 2−i, for all (x, y) ∈ [0, 1]2,

and |ϕ̄′
mult(x, y)| ≤ 1 for all (x, y) ∈ R2, and ϕ̄′

mult(x, y) = 0 if either x or y is 0. With this
network, we can see that |sign(xy)ϕ̄′

mult(|x|, |y|) − xy| ≤ 2−i holds for all (x, y) ∈ [−1, 1]2,
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|ϕ̄′
mult(x, y)| ≤ 1 for all (x, y) ∈ R2, and ϕ̄mult(x, y) = 0 if either x or y is 0. Because

sign(xy)ϕ̄′
mult(|x|, |y|) = ReLU(ϕ̄′

mult(ReLU(x),ReLU(y)) + ϕ̄′
mult(ReLU(−x),ReLU(−y))

− ϕ̄′
mult(ReLU(−x),ReLU(y))− ϕ̄′

mult(ReLU(x),ReLU(−y)))
− ReLU(−ϕ̄′

mult(ReLU(x),ReLU(y))− ϕ̄′
mult(ReLU(−x),ReLU(−y))

+ ϕ̄′
mult(ReLU(−x),ReLU(y)) + ϕ̄′

mult(ReLU(x),ReLU(−y)))
=: ϕ̄mult(x, y)

holds, we can realize the function xy for [−1, 1]d, by a neural network ϕ̄mult(x, y) ∈ Ψ(L,W, S,B)
with L = i+7, ∥W∥∞ = 48, S ≤ L∥W∥∞(∥W∥∞+1) = 48(i+7), B = 1 with an approximation
error up to 2−i.

Then, following Schmidt-Hieber (2020), we recursively construct ϕ̄mult(x1, x2, · · · , x2j+1) using
ϕ̄mult(x1, x2, · · · , x2j+1) = ϕ̄mult(ϕ̄mult(x1, x2, · · · , x2j ), ϕ̄mult(x2j+1, x2j+2, · · · , x2j+1)).

By filling extra dimensions of (x1, x2, · · · , x2j ) with 1, we obtain the neural network
ϕmult(x1, x2, · · · , xd) ∈ Ψ(L,W, S,B) for all d ≥ 2 and L = O(log d(log ε−1+log d)), ∥W∥∞ =
48d, S = O(d(log ε−1 + log d)), B = 1 such that∣∣∣∣∣ϕ̄mult(x1, x2, · · · , xd)−

d∏
d′=1

xd′

∣∣∣∣∣ ≤ ε, for all x ∈ [−1, 1]d.

We then construct ϕmult as follows:
ϕmult(x) = Cdϕ̄mult(ϕclip(x;−C,C)/C).

Here the approximation error over [−C,C]d is bounded by C−dε. We reset ε ← C−dε so that
the approximation error is smaller than ε, and then we have ϕmult ∈ Φ(L,W,S,B) with L =
O(log d(log d+ log ε−1 + d logC)), ∥W∥∞ = 48d, S = O(d(log d+ log ε−1 + d logC)), B = 1.
Therefore, the bounds on L, ∥W∥∞, B, S in the assertion follows from Lemmas J.1 and J.4.

When the input fluctuates, we have∣∣∣∣∣Cdϕ̄mult(ϕclip(x
′;−C,C)/C)−

d∏
i=1

xi

∣∣∣∣∣
≤

∣∣∣∣∣Cdϕ̄mult(ϕclip(x
′;−C,C)/C)−

d∏
i=1

min{C,max{x′
i,−C}}

∣∣∣∣∣
+

∣∣∣∣∣
d∏

i=1

min{C,max{x′
i,−C}} −

d∏
i=1

xi

∣∣∣∣∣
≤ Cd · C−dε+ Cd−1

d∑
i=1

|xi −min{C,max{x′
i,−C}}| = ε+ dCd−1εerror,

which yields the first part of the assertion.

Finally, we note that some of xi, xj (i ̸= j) can be shared because all we need is to identify columns
in the first layer of ϕ̄mult(x1, · · · , xd) that correspond to the same coordinate.

We next provide how to approximate the reciprocal function y = 1
x . Approximation of rational

functions has already investigated in (Telgarsky, 2017; Boullé et al., 2020). However, we found that
their bounds (in Lemma 3.5 of Telgarsky (2017)) of L = O(log7 ε−1) and O(log4 ε−1) nodes can
be improved with careful use of local Taylor expansion up to the order ofO(log ε−1), so we provide
our own proof.
Lemma J.7 (Approximating the reciprocal function). For any 0 < ε < 1, there exists ϕrec ∈
Ψ(L,W, S,B) with L ≤ O(log2 ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log4 ε−1), and B =
O(ε−2) such that∣∣∣∣ϕrec(x

′)− 1

x

∣∣∣∣ ≤ ε+
|x′ − x|

ε2
, for all x ∈ [ε, ε−1] and x′ ∈ R.
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Proof. We approximate the inverse function y = 1
x with a piece-wise polynomial function. We take

xi = 1.5i · ε (i = 0, 1, · · · , i∗ := ⌈2 log1.5 ε−1⌉) so that xi∗ ≥ ε−1 and approximate y = 1
x in the

following way:

1

x
≒

i∗∑
i=1

fi(ϕclip(x;xi−1, xi)) +
1

ε
,

where fi(x) is a function that satisfies fi(x) = 0 for x ≤ xi−1, fi(x) = − 1
xi−1

+ 1
xi

for xi ≤ x,
and

max
xi−1≤x≤xi

|fi(x)− 1/x+ 1/xi−1| ≤
ε

2
.

Now we show construction of such functions. First, by 1
x = 1

xi−1

xi−1

x = 1
xi−1

∑∞
l′=1(−

x
xi−1

+

1)l
′
(1 ≤ x

xi−1
≤ 1.5), let

f̃i(x) =
1

xi−1

l∑
l′=1

(−x/xi−1 + 1)l
′
− 1

xi−1
.

The difference between f̃i(x) and 1
x −

1
xi−1

is ((xi−1 − x)/xi−1)
l+1/x, which is bounded by

2−l−1/x. Moreover, by adding
( 1
xi

−f̃i(xi))(x−xi−1)

xi−xi−1
= ((xi−1−xi)/xi−1)

l+1(x−xi−1)
xi(xi−xi−1)

to f̃i(x), we
have fi(x), with fi(xi−1) = 0, fi(xi) = − 1

xi−1
+ 1

xi
, and

max
xi−1≤x≤xi

|fi(x)− 1/x+ 1/xi−1| ≤ 2−l/x ≤ 2−lε−1.

Thus, we take l = ⌈log2 2ε−1⌉ so that RHS is smaller than ε
2 . Therefore, we finally have the explicit

approximation of y = 1
x :

f(x) =

i∗∑
i=1

1

xi−1

l∑
l′=1

(−ϕclip(x;xi−1, xi))/xi−1 + 1)l
′

︸ ︷︷ ︸
(a)

−
i∗∑
i=1

1

xi−1
(102)

+

i∗∑
i=1

((xi−1 − xi)/xi−1)
l+1(ϕclip(x;xi−1, xi))− xi−1)

xi(xi − xi−1)︸ ︷︷ ︸
(b)

+
1

ε
.

From Lemma J.6, (−ϕclip(x;xi−1, xi))/xi−1 + 1)l
′

is realized by L = O((log log ε−1 +
log ε−1) log log ε−1), ∥W∥∞ = O(log ε−1), S = O(log ε−1(log log ε−1 + log ε−1)), B =

1.5⌈log2 2ε−1⌉ = O(ε−1) so that approximation error for each is bounded by O(ε2/li∗). Because
there are O(li∗) terms in (a) of (102), from Lemmas J.1 and J.3, the final approximation error of
f(x) using a neural network ϕrec is ε

2 , where ϕrec ∈ Φ(L,W, S,B) with L ≤ O((log log ε−1 +

log ε−1) log log ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log3 ε−1(log log ε−1 + log ε−1)), and B =
O(ε−2). (Here B = O(ε−2) is calculated because in (b) we need to bound the coefficient
((xi−1−xi)/xi−1)

l+1

xi(xi−xi−1)
by ε−2.)

The sensitivity analysis follows from |ϕrec(x
′)− 1

x | ≤ |ϕrec(x
′)− 1

max{x′,ε} |+ |
1

max{x′,ε} −
1
x |.

Combining Lemmas J.6 and J.7, we have the following corollary.

Corollary J.8. For any 0 < ε < 1, there exists ϕrec ∈ Ψ(L,W,S,B) with L ≤ O(log2 l +
log2 ε)), ∥W∥∞ = O(l + log3 ε−1), S = O(l log l + l log ε−1 + log4 ε−1), and B = O(ε−(2∨l))
such that ∣∣∣∣ϕrec(x

′; l)− 1

xl

∣∣∣∣ ≤ ε+ l
|x′ − x|
εl+1

, for all x ∈ [ε, ε−1] and x′ ∈ R.
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Proof. Consider ϕmult(·; l) ◦ϕrec. The result directly follows from Lemma J.6 and Lemma J.7.

In the same way, by using Taylor expansion of
√
1 + x at each interval defined in the above proof,

we can obtain a similar result for y =
√
x.

Lemma J.9 (Approximating the root function). For any 0 < ε < 1, there exists ϕroot ∈
Ψ(L,W, S,B) with L ≤ O(log2 ε−1), ∥W∥∞ = O(log3 ε−1), S = O(log4 ε−1), and B =
O(ε−1) such that∣∣ϕroot(x

′)−
√
x
∣∣ ≤ ε+

|x′ − x|√
ε

, for all x ∈ [ε, ε−1] and x′ ∈ R.

J.3 HOW TO DEAL WITH EXPONENTIAL FUNCTIONS

We sometimes need to approximate certain types of integrals where the integrand contains a density
function of some Gaussian distribution and the integral interval is Rd. for example, the diffused
B-spline basis is a typical example of them. To deal with them, we adopt the following two-step
argument: first we clip the integral interval, and next we approximate the integrand with rational
functions. We need rational functions because the density function depends on the inverse of (the
squared-root of) the variance, which depends on t and should be approximated. The first lemma
corresponds to the first step, and the second and third correspond to the second step, respectively.

Lemma J.10 (Clipping of integrals). Let x ∈ Rd, 0 < mt ≤ 1, α ∈ Zd
+ with

∑d
i=1 αi ≤ k, and f

be an any function on Rd whose absolute value is bounded by Cf . For any 0 < ε < 1
2 , there exists

a constant Cf,1 that only depends on k and d, such that∣∣∣∣∣
∫
Rd

d∏
i=1

(
mtyi − xi

σt

)αi

f(y)
1

σd
t (2π)

d
2

exp

(
−∥mty − x∥2

2σ2
t

)
dy

−
∫
Ax

d∏
i=1

(
mtyi − xi

σt

)αi

f(y)
1

σd
t (2π)

d
2

exp

(
−∥mty − x∥2

2σ2
t

)
dy

∣∣∣∣∣ ≲ ε,

where Ax =
∏d

i=1 a
x
i with axi = [ xi

mt
− σtCf,1

mt

√
log ε−1, xi

mt
+

σtCf,1

mt

√
log ε−1].

Proof.

1

σd
t (2π)

d
2

∣∣∣∣∣
∫
Rd

d∏
i=1

(
mtyi − xi

σt

)αi

f(y) exp

(
−∥mty − x∥2

2σ2
t

)
dy

−
∫
Ax

d∏
i=1

(
mtyi − xi

σt

)αi

f(y) exp

(
−∥mty − x∥2

2σ2
t

)
dy

∣∣∣∣∣
≤ Cf

σd
t (2π)

d
2

∫
Rd\Ax

d∏
i=1

(
|mtyi − xi|

σt

)αi

1[∥y∥∞ ≤ 1] exp

(
−∥mty − x∥2

2σ2
t

)
dy (by |f(y)| ≤ Cf )

≤ Cf

σd(2π)
d
2

d∑
i=1

∫
R× · · · × R︸ ︷︷ ︸

i−1 times

×(R\ax
i )×R× · · · × R︸ ︷︷ ︸

d−i times

dy

d∏
j=1

(
|mtyj − xj |

σt

)αj

1[|yj | ≤ 1] exp

(
−∥mty − x∥2

2σ2
t

)

= Cf

d∑
i=1

d∏
j=1

(
1[i ̸= j]

∫
R

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

+1[i = j]

∫
R\ax

i

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

)
. (103)
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We now bound each term. First,∫
R

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj

≤


1
mt

∫
R |y

′
j |αj 1

(2π)
1
2
exp

(
−y′2

j

2

)
dy′j

(
mtyj−xj

σt
= y′j

)
2d+αj

σ
αj+1

t (2π)
1
2

(because of the term of 1[|yj | ≤ 1].)

Thus, LHS can be bounded by ≲ max

{
1
mt

, 1

σ
αj+1

t

}
≲ 1.

Next,∫
R\ax

i

(
|mtyj − xj |

σt

)αj
1[|yj | ≤ 1]

σt(2π)
1
2

exp

(
− (mtyj − xj)

2

2σ2
t

)
dyj (104)

≤ 2

mt

∫ ∞

Cf,1

√
log ε−1

|yj |αj exp

(
−
y2j
2

)
dyi

(
by letting

mtyj − xj

σt
7→ yj

)

≤

 2
mt

∑αj−1

2

l=0
(αj−1)!!
(2l)!! (C2

f,1 log ε
−1)lε

Cf,1
2 ( if αj is odd)

2
mt

∑αj
2

l=1
(αj−1)!!
(2l−1)!! (C

2
f,1 log ε

−1)lε
Cf,1

2 + 2
mt

∫∞
Cf,1

√
log ε−1 exp

(
−y2

j

2

)
dyj ( if αj is even).

Therefore, by setting Cf,1 sufficiently large, in a way that Cf,1 depends on αj(≤ k) and d, this can be
bounded by ε

mt
. Moreover, if mt ≳ 1, then the integral interval does not overlap with−1 ≤ yj ≤ 1,

and in this case (104) is alternatively bounded by 0.

Therefore, (103) can further be bounded by

(103) ≲
d∑

i=1

d∏
j=1

1d−1 · ε ≲ ε,

which gives the assertion.

Next we give the ways of Taylor expansion of exponential functions with polynomials (Lemma J.11)
and with neural networks (Lemma J.12), respectively.

Lemma J.11 (Approximating an exponential function with polynomials). Let A > 0 and 0 ≤ mt ≤
1. For t ≥ max{4eA2, ⌈log2 ε−1⌉}, we have that∣∣∣∣∣exp

(
− (x−mty)

2

2σ2
t

)
−

t−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

∣∣∣∣∣ ≤ ε

for all y ∈ [−σtA+x
mt

, σtA+x
mt

].

Proof. By standard Taylor expansion of ez up to degree t− 1, we have

exp

(
− (x−mty)

2

2σ2
t

)
=

t−1∑
s=0

(−1)s

s!

(x−mty)
2s

2sσ2s
t

+
(−1)t

t!

(θ(x−mty))
2t

2tσ2t
t

with some θ ∈ (0, 1). We bound the second term of the residual. When y ∈ [−σtA+x
mt

, σtA+x
mt

] and t

is the minimum integer satisfying t ≥ max{4eA2, ⌈log2 ε−1⌉}, we have

1

t!

(θ(x−mty) + (1− θ)x)2t

2tσ2t
t

≤ (2σtA)2t

t!2tσ2t
t

≤ (2σtA)2t

(t/e)t · 2tσ2t
t

≤ 2tA2t

(4A2)t
≤ 1

2t
≤ ε,

where we used the fact t! ≥ (t/e)t.
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Lemma J.12 (Approximating an exponential function with a neural network). Take ε > 0 arbitrar-
ily. There exists a neural network ϕexp ∈ Φ(L,W,S,B) such that

sup
x,x′≥0

∣∣∣e−x′
− ϕexp(x)

∣∣∣ ≤ ε+ |x− x′|

holds, where L = O(log2 ε−1), ∥W∥∞ = O(log ε−1), S = O(log2 ε−1), B = exp(O(log2 ε−1)).
Moreover, |ϕexp(x)| ≤ ε for all x ≥ log 3ε−1.

Proof. Let us take A = log 3ε−1. From Taylor expansion, for all x in 0 ≤ x ≤ A, we have∣∣∣∣∣e−x −
k−1∑
i=0

(−1)i

i!
xi

∣∣∣∣∣ ≤ Ak

k!
.

Moreover, we can evaluate RHS as Ak

k! ≤
(
eA
k

)k
, so by taking k = max{2eA, ⌈log2 3ε−1⌉}, we can

bound the RHS by ε
3 . Now we approximate each xi using Lemma J.6 with d = O(A+log ε−1), C =

O(A), ε = ε
3k and aggregate them using Lemma J.3. This gives the neural network with L =

O(A2 + log2 ε−1), ∥W∥∞ = O(A + log ε−1), S = O(A2 + log2 ε−1), B = exp(logA · O(A +
log ε−1)). Finally, we add two layers ϕclip(x; 0, A) before this neural network to limit the input
within x > 0. Then, we obtain a neural network ϕexp that approximates e−x with an additive error up
to 2ε

3 in [0, A]. Moreover, for x > A, we have |ϕexp(x)−e−x| ≤ |e−x−e−A|+ |ϕexp(A)−e−A| ≤
ε
3 + 2ε

3 = ε.

The sensitivity analysis follows from |ϕexp(x
′) − e−x| ≤ |ϕexp(max{x′, 0}) − e−x| ≤

|ϕexp(max{x′, 0})−e−max{x′,0}|+|e−max{x′,0}−e−x| ≤ ε+|max{x′, 0}−x| ≤ ε+|x′−x|.

J.4 EXISTING RESULTS FOR APPROXIMATION

Our diffused B-spline basis decomposition (Section 3 and Appendix D) is built on the B-spline
basis decomposition of the Besov space (DeVore & Popov, 1988; Suzuki, 2018). The following fact
can be found in Lemma 2 of Suzuki (2018) (although the original version adopts Ω = [0, 1]d, we
can easily adjust the difference by dividing the domain into cubes with each side length 1). The
magnitude of |αk,j | is evaluated in p.17 of Suzuki (2018).
Lemma J.13 (Approximability of the Besov space (Suzuki (2018))). Let C > 0. Under s >
d(1/p− 1/r)+ and 0 < s < min{l, l − 1 + 1/p} where l ∈ N is the order of the cardinal B-spline
bases, for any f ∈ Bs

p,q([−C,C]d), there exists fN that satisfies

∥f − fN∥Lr([−C,C]d) ≲ CsN−s/d∥f∥Bs
p,q([−C,C]d)

for N ≫ 1, and has the following form:

fN (x) =

K∑
k=0

∑
j∈J(k)

αk,jM
d
k,j(x) +

K∗∑
k=K+1

nk∑
i=1

αk,jiM
d
k,ji(x) with

K∑
k=0

|J(k)|+
K∗∑

k=K+1

nk = N,

where J(k) = {−C2k − l,−C2k − l + 1, · · ·C2k − 1, C2k}, (ji)
nk
i=1 ⊆ J(k), K =

O(d−1 log(N/Cd)), K∗ = (O(1)+ log(N/Cd))ν−1 +K,nk = O((N/Cd)2−ν(k−K)) (k = K +

1, · · · ,K∗) for δ = d(1/p−1/r)+ and ν = (s−δ)/(2δ). Moreover, |αk,j | ≲ N (ν−1+d−1)(d/p−s)+ .

J.5 ELEMENTARY BOUNDS FOR THE GAUSSIAN AND HITTING TIME

Lemma J.14. Let 0 < ε ≪ 1, l ∈ Zd
+, and p(x) be the density funciton of N (0, σ2

t Id), i.e.,

p(x) = 1

σd
t (2π)

d
2
exp

(
−∥x∥2

σ2
t

)
. Then, the following bound holds:

∫
∥x∥∞≥σt

√
4 log dlε−1

∏d
i=1 x

li
i

σ
∑d

i=1 li
p(x)dx ≲ ε.

We sometimes write
√
4 log dlε−1 = Cf,2

√
log ε−1.

71



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Proof. Let us denote xl =
∏d

i=1 x
li
i and |l| =

∑d
i=1 li for simple presentation. Let r = ∥x∥∞, and

we get∫
∥x∥∞≥σt

√
4 log ε−1

xl

σ
|l|
t

p(x)dx∫
∥x∥1≥σt

√
4 log ε−1

xl

σ
|l|
t

p(x)dx

≤
∫ ∞

r=σt

√
4 log ε−1

r|l|

σ
|l|
t

1

σd
t (2π)

d
2

exp

(
− r2

2σ2

)
(d− 1)rd−1dr

=

∫ ∞

s=
√

4 log ε−1

s|l|+d−1 1

(2π)
d
2

exp

(
−s2

2

)
(d− 1)ds (by letting s = r/σt)

=
(4 log ε−1)(|l|+d−1)/2

(2π)
d
2

exp

(
−4 log ε−1

2

)
(d− 1)

+

∫ ∞

s=
√

4 log ε−1

(|l|+ d− 1)s|l|+d−2

(2π)
d
2

exp

(
−s2

2

)
(d− 1)ds

= · · · =
∑

0≤i≤⌊ |l|+d−1
2 ⌋

(|l|+d−1)!!
(|l|+d−1−2i)!! (4 log ε

−1)(|l|+d−1−2i)/2(d− 1)

(2π)
d
2

ε2

+


∫∞
s=
√

4 log ε−1

(|l|+d−1)!!

(2π)
d
2

1

(2π)
d
2
exp

(
− s2

2

)
(d− 1)ds (|l|+ d: even)

0 (|l|+ d: odd)

(by iterating integration by parts)

≲ ε2 log
d+|l|−1

2 ε−1. (105)

Replacing ε by ε/dl, RHS of (105) is bounded by

ε2

d2l2
log

dn+|l|−1
2 (ε/dl)−1 ≲ ε,

which yields the conclusion.

Lemma J.15. Let (Bs)[0,t] be the 1-dimensional Brownian motion and Xt =
∫ t

0
βsdBs, with βs ≤

β. Then, we have that

P

[
sup

s∈[0,t]

|Xt| ≥ 2

√
βt log(2ε−1)

]
≤ ε.

Proof. We bound the case βs ≡ β because it maximize the hitting probability. According to
Karatzas et al. (1991), for x > 0,

P

[
sup

s∈[0,t]

|Xt| ≥ x

]
=

4√
2π

∫ ∞

x√
2βt

e−y2/2dy =
4√
2π

∫ ∞

x√
4βt

e−z2√
2dz ≤ 2e−x2/4βt.

For the second equality, we simply replaced y/
√
2 with z. For the last inequality, we used 4√

2π
·
√
2 ≤

2 and
∫∞
x

e−y2

dy ≤ e−x2

. Therefore, setting x = 2
√
βt log(2ε−1) yields the assertion.
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