
Under review as a conference paper at ICLR 2021

SECURE BYZANTINE-ROBUST MACHINE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasingly machine learning systems are being deployed to edge servers and
devices (e.g. mobile phones) and trained in a collaborative manner. Such dis-
tributed/federated/decentralized training raises a number of concerns about the
robustness, privacy, and security of the procedure. While extensive work has been
done in tackling with robustness, privacy, or security individually, their combina-
tion has rarely been studied. In this paper, we propose a secure two-server protocol
that offers both input privacy and Byzantine-robustness. In addition, this protocol
is communication-efficient, fault-tolerant and enjoys local differential privacy.

1 INTRODUCTION

Recent years have witnessed fast growth of successful machine learning applications based on data
collected from decentralized user devices. Unfortunately, however, currently most of the important
machine learning models on a societal level do not have their utility, control, and privacy aligned with
the data ownership of the participants. This issue can be partially attributed to a fundamental conflict
between the two leading paradigms of traditional centralized training of models on one hand, and
decentralized/collaborative training schemes on the other hand. While centralized training violates
the privacy rights of participating users, existing alternative training schemes are typically not robust.
Malicious participants can sabotage the training system by feeding it wrong data intentionally, known
as data poisoning. In this paper, we tackle this problem and propose a novel distributed training
framework which offers both privacy and robustness.

When applied to datasets containing personal data, the use of privacy-preserving techniques is
currently required under regulations such as the General Data Protection Regulation (GDPR) or
Health Insurance Portability and Accountability Act (HIPAA). The idea of training models on
decentralized datasets and incrementally aggregating model updates via a central server motivates the
federated learning paradigm (McMahan et al., 2016). However, the averaging in federated learning,
when viewed as a multi-party computation (MPC), does not preserve the input privacy because the
server observes the models directly. The input privacy requires each party learns nothing more than
the output of computation which in this paradigm means the aggregated model updates. To solve
this problem, secure aggregation rules as proposed in (Bonawitz et al., 2017) achieve guaranteed
input privacy. Such secure aggregation rules have found wider industry adoption recently e.g. by
Google on Android phones (Bonawitz et al., 2019; Ramage & Mazzocchi, 2020) where input privacy
guarantees can offer e.g. efficiency and exactness benefits compared to differential privacy (both can
also be combined).

The concept of Byzantine robustness has received considerable attention in the past few years for
practical applications, as a way to make the training process robust to malicious actors. A Byzantine
participant or worker can behave arbitrarily malicious, e.g. sending arbitrary updates to the server.
This poses great challenge to the most widely used aggregation rules, e.g. simple average, since a
single Byzantine worker can compromise the results of aggregation. A number of Byzantine-robust
aggregation rules have been proposed recently (Blanchard et al., 2017; Muñoz-González et al., 2017;
Alistarh et al., 2018; Mhamdi et al., 2018; Yin et al., 2018; Muñoz-González et al., 2019) and can be
used as a building block for our proposed technique.

Achieving both input privacy and Byzantine robustness however remained elusive so far, with
Bagdasaryan et al. (2020) stating that robust rules “...are incompatible with secure aggregation”. We
here prove that this is not the case. Closest to our approach is (Pillutla et al., 2019) which tolerates
data poisoning but does not offer Byzantine robustness. Prio (Corrigan-Gibbs & Boneh, 2017) is a
private and robust aggregation system relying on secret-shared non-interactive proofs (SNIP). While

1

Under review as a conference paper at ICLR 2021

their setting is similar to ours, the robustness they offer is limited to check the range of the input.
Besides, the encoding for SNIP has to be affine-aggregable and is expensive for clients to compute.

In this paper, we propose a secure aggregation framework with the help of two non-colluding honest-
but-curious servers. This framework also tolerates server-worker collusion. In addition, we combine
robustness and privacy at the cost of leaking only worker similarity information which is marginal
for high-dimensional neural networks. Note that our focus is not to develop new defenses against
state-of-the-art attacks, e.g. (Baruch et al., 2019; Xie et al., 2019b). Instead, we focus on making
arbitary current and future distance-based robust aggregation rules (e.g. Krum by Mhamdi et al.
(2018), RFA by Pillutla et al. (2019)) compatible with secure aggregation.

Main contributions. We propose a novel distributed training framework which is
• Privacy-preserving: our method keeps the input data of each user secure against any other

user, and against our honest-but-curious servers.
• Byzantine robust: our method offers Byzantine robustness and allows to incorporate

existing robust aggregation rules, e.g. (Blanchard et al., 2017; Alistarh et al., 2018). The
results are exact, i.e. identical to the non-private robust methods.
• Fault tolerant and easy to use: our method natively supports workers dropping out or

newly joining the training process. It is also easy to implement and to understand for users.
• Efficient and scalable: the computation and communication overhead of our method is

negligible (less than a factor of 2) compared to non-private methods. Scalability in terms of
cost including setup and communication is linear in the number of workers.

2 PROBLEM SETUP, PRIVACY, AND ROBUSTNESS

We consider the distributed setup of n user devices, which we call workers, with the help of two
additional servers. Each worker i has its own private part of the training dataset. The workers want to
collaboratively train a public model benefitting from the joint training data of all participants.

In every training step, each worker computes its own private model update (e.g. a gradient based on its
own data) denoted by the vector xi. The aggregation protocol aims to compute the sum z =

∑n
i=1 xi

(or a robust version of this aggregation), which is then used to update a public model. While the
result z is public in all cases, the protocol must keep each xi private from any adversary or other
workers.

Security model. We consider honest-but-curious servers which do not collude with each other but
may collude with malicious workers. An honest-but-curious server follows the protocol but may try
to inspect all messages. We also assume that all communication channels are secure. We guarantee
the strong notion of input privacy, which means the servers and workers know nothing more about
each other than what can be inferred from the public output of the aggregation z.

Byzantine robustness model. We allow the standard Byzantine worker model which assumes that
workers can send arbitrary adversarial messages trying to compromise the process. We assume that a
fraction of up to α (< 0.5) of the workers is Byzantine, i.e. are malicious and not follow the protocol.

Additive secret sharing. Secret sharing is a way to split any secret into multiple parts such that no
part leaks the secret. Formally, suppose a scalar a is a secret and the secret holder shares it with k
parties through secret-shared values 〈a〉. In this paper, we only consider additive secret-sharing
where 〈a〉 is a notation for the set {ai}ki=1 which satisfy a =

∑k
p=1 ap, with ap held by party p.

Crucially, it must not be possible to reconstruct a from any ap. For vectors like x, their secret-shared
values 〈x〉 are simply component-wise scalar secret-shared values.

Two-server setting. We assume there are two non-colluding servers: model server (S1) and worker
server (S2). S1 holds the output of each aggregation and thus also the machine learning model which
is public to all workers. S2 holds intermediate values to perform Byzantine aggregation. Another
key assumption is that the servers have no incentive to collude with workers, perhaps enforced via a
potential huge penalty if exposed. It is realistic to assume that the communication link between the
two servers S1 and S2 is faster than the individual links to the workers. To perform robust aggregation,
the servers will need access to a sufficient number of Beaver’s triples. These are data-independent
values required to implement secure multiplication in MPC on both servers, and can be precomputed
beforehand. For completeness, the classic algorithm for multiplication is given in in Appendix B.1.

2

Under review as a conference paper at ICLR 2021

S1 S2

(a) WorkerSecretShar-
ing: each worker i
secret-shares its update
xi locally and uploads
them to S1 and S2
separately.

S1 S2

(b) RobustWeightSelec-
tion: Compute and re-
veal {‖xi−xj‖2}i<j on
S2 and select a robust set
of indices represented by
p = {pi}i by calling the
Byzantine-robust oracle.

S1 S2

(c) AggregationAndUp-
date: Compute and re-
veal aggregation z =∑n

i=1 pixi on S1. S1 up-
dates the public model.

S1 S2

(d) WorkerPullModel:
Each worker i pulls
model from S1.

Figure 1: Illustration of Algorithm 2. The orange components on servers represent the computation-
intensive operations at low communication cost between servers.

Byzantine-robust aggregation oracles. Most of existing robust aggregation algorithms rely on
distance measures to identity potential adversarial behavior (Blanchard et al., 2017; Yin et al., 2018;
Mhamdi et al., 2018; Li et al., 2019; Ghosh et al., 2019). All such distance-based aggregation
rules can be directly incorporated into our proposed scheme, making them secure. While many
aforementioned papers assume that the workers have i.i.d datasets, our protocol is oblivious to the
distribution of the data across the workers. In particular, our protocol also works with schemes such
as (Li et al., 2019; Ghosh et al., 2019; He et al., 2020) designed for non-iid data.

3 SECURE AGGREGATION PROTOCOL: TWO-SERVER MODEL

Each worker first splits its private vector xi into two additive secret shares, and transmits those to
each corresponding server, ensuring that neither server can reconstruct the original vector on its own.
The two servers then execute our secure aggregation protocol. On the level of servers, the protocol is
a two-party computation (2PC). In the case of non-robust aggregation, servers simply add all shares
(we present this case in detail in Algorithm 1). In the robust case which is of our main interest here,
the two servers exactly emulate an existing Byzantine robust aggregation rule, at the cost of revealing
only distances of worker gradients on the server (the robust algorithm is presented in Algorithm 2).
Finally, the resulting aggregated output vector z is sent back to all workers and applied as the update
to the public machine learning model.

3.1 NON-ROBUST SECURE AGGREGATION

In each round, Algorithm 1 consists of two stages:
• WorkerSecretSharing (Figure 1a): each worker i randomly splits its private input xi into

two additive secret shares xi = x
(1)
i + x

(2)
i . This can be done e.g. by sampling a large

noise value ξi and then using (xi ± ξi)/2 as the shares. Worker i sends x(1)
i to S1 and x(2)

i
to S2. We write 〈xi〉 for the two secret-shared values distributed over the two servers.
• AggregationAndUpdate (Figure 1c): Given binary weights {pi}ni=1, each server locally

computes 〈
∑n

i=1 pixi〉. Then S2 sends its share 〈
∑n

i=1 pixi〉(2) to S1 so that S1 can then
compute z =

∑n
i=1 pixi. S1 updates the public model with z.

Our secure aggregation protocol is extremely simple, and as we will discuss later, has very low
communication overhead, does not require heavy cryptographic primitives, gives strong input privacy
and is compatible with differential privacy, and is robust to worker dropouts and failures. We believe
this makes our protocol especially attractive for federated learning applications.

We now argue about correctness and privacy. It is clear that the output z of the above protocol satisfies
z =

∑n
i=1 pixi, ensuring that all workers compute the right update. Now we argue about the privacy

guarantees. We track the values stored by each of the servers and workers:

• S1: Its own secret shares {x(1)
i }ni=1 and the sum of the other shares 〈

∑n
i=1 pixi〉(2).

• S2: Its own secret shares {x(2)
i }ni=1.

• Worker i: xi and z =
∑n

i=1 pixi.

3

Under review as a conference paper at ICLR 2021

Clearly, the workers have no information other than the aggregate z and their own data. S2 only has
the secret share which on their own leak no information about any data. Hence surprisingly, S2 does
not learn anything in this process. S1 has its own secret share and also the sum of the other shares. If
n = 1, then z = xi and hence S1 is allowed to learn everything. If n > 1, then S1 cannot recover
information about any individual secret share x(2)

i from the sum. Thus, S1 learns z and nothing else.

3.2 ROBUST SECURE AGGREGATION

We now describe how Algorithm 2 replaces the simple aggregation with any distance-based robust
aggregation rule Aggr, e.g. Multi-Krum (Blanchard et al., 2017). The key idea is to use two-party
MPC to securely compute multiplication.

• WorkerSecretSharing (Figure 1a): As before, each worker i secret shares 〈xi〉 distributed
over the two servers S1 and S2.
• RobustWeightSelection (Figure 1b): After collecting all secret-shared values {〈xi〉}i,

the servers compute pairwise difference {〈xi − xj〉}i<j locally. S2 then reveals—to
itself exclusively—in plain text all of the pairwise Euclidean distances between workers
{‖xi − xj‖2}i<j with the help of precomputed Beaver’s triples and Algorithm 3. The
distances are kept private from S1 and workers. S2 then feeds these distances to the
distance-based robust aggregation rule Aggr, returning (on S2) a binary weight vector
p = {pi}ni=1 ∈ {0,1}n, representing the indices of the robust subset selected by Aggr.
• AggregationAndUpdate (Figure 1c): Given weight vector p from previous step, we would

like S1 to compute
∑n

i=1 pixi. To do so, S2 secret shares with S1 the values of {〈pi〉}
instead of sending in plain-text since they may be private. Then, S1 reveals to itself, but
not to S2, in plain text the value of z =

∑n
i=1 pixi using secret-shared multiplication and

updates the public model.
• WorkerPullModel (Figure 1d): Workers pull the latest public model on S1 and update it

locally.

The key difference between the robust and the non-robust aggregation scheme is the weight selection
phase where S2 computes all pairwise distances and uses this to run a robust-aggregation rule in
a black-box manner. S2 computes these distances i) without leaking any information to S1, and
ii) without itself learning anything other than the pair-wise distances (and in particular none of the
actual values of xi). To perform such a computation, S1 and S2 use precomputed Beaver’s triplets
(Algorithm 3 in the Appendix), which can be made available in a scalable way (Smart & Tanguy,
2019).

3.3 SALIENT FEATURES

Overall, our protocols are very resource-light and straightforward from the perspective of the workers.
Further, since we use Byzantine-robust aggregation, our protocols are provably fault-tolerant even if a
large fraction of workers misbehave. This further lowers the requirements of a worker. We eleborate
the features as follows.

Communication overhead. In applications, individual uplink speed from worker and servers is
typically the main bottleneck, as it is typically much slower than downlink, and the bandwidth
between servers can be very large. For our protocols, the time spent on the uplink is within a factor
of 2 of the non-secure variants. Besides, our protocol only requires one round of communication,
which is an advantage over interactive proofs.

Fault tolerance. The workers in Algorithm 1 and Algorithm 2 are completely stateless across
multiple rounds and there is no offline phase required. This means that workers can start participating
in the protocols simply by pulling the latest public model. Further, our protocols are unaffected
if some workers drop out in the middle of a round. Unlike in (Bonawitz et al., 2017), there is no
entanglement between workers and we don’t have unbounded recovery issues.

Compatibility with local differential privacy. One byproduct of our protocol can be used to convert
differentially private mechanisms, such as (Abadi et al., 2016) which only guarantees the privacy of
the aggregated model, into the stronger locally differentially private mechanisms which guarantee
user-level privacy.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Two-Server Secure Aggregation (Non-robust variant)

Setup: n workers (non-Byzantine) with private vectors xi. Two non-colluding servers S1 and S2.
Workers: (WorkerSecretSharing)

1. split private xi into additive secret shares 〈xi〉 = {x(1)
i ,x

(2)
i } (such that xi = x

(1)
i +x

(2)
i)

2. send x(1)
i to S1 and x(2)

i to S2
Servers:

1. ∀ i, S1 collects x(1)
i and S2 collects x(2)

i
2. (AggregationAndUpdate):

(a) On S1 and S2, compute 〈
∑n

i=1 xi〉 locally
(b) S2 sends its share of 〈

∑n
i=1 xi〉 to S1

(c) S1 reveals z =
∑n

i=1 xi to everyone

Algorithm 2 Two-Server Secure Robust Aggregation (Distance-Based)

Setup: n workers, αn of which are Byzantine. Two non-colluding servers S1 and S2.
Workers: (WorkerSecretSharing)

1. split private xi into additive secret shares 〈xi〉 = {x(1)
i ,x

(2)
i } (such that xi = x

(1)
i +x

(2)
i)

2. send x(1)
i to S1 and x(2)

i to S2
Servers:

1. ∀ i, S1 collects gradient x(1)
i and S2 collects x(2)

i
2. (RobustWeightSelection):

(a) For each pair (xi, xj) compute their Euclidean distance (i < j):
• On S1 and S2, compute 〈xi − xj〉 = 〈xi〉 − 〈xj〉 locally
• Use precomputed Beaver’s triples (see Algorithm 3) to compute the

distance ‖xi − xj‖2
(b) S2 perform robust aggregation rule p =Aggr({‖xi − xj‖2}i<j)
(c) S2 secret-shares 〈p〉 with S1

3. (AggregationAndUpdate):
(a) On S1 and S2, use MPC multiplication to compute 〈

∑n
i=1 pixi〉 locally

(b) S2 sends its share of 〈
∑n

i=1 pixi〉(2) to S1
(c) S1 reveals z =

∑n
i=1 pixi to all workers.

Workers:
1. (WorkerPullModel): Collect z and update model locally

Other Byzantine-robust oracles. We can also use some robust-aggregation rules which are not
based on pair-wise distances such as Byzantine SGD (Alistarh et al., 2018). Since the basic structures
are very similar to Algorithm 2, we put Algorithm 8 in the appendix.

Security. The security of Algorithm 1 is straightforward as we previously discussed. The security of
Algorithm 2 again relies on the separation of information between S1 and S2 with neither the workers
nor S1 learning anything other than the aggregate z. We will next formally prove that this is true
even in the presence of malicious workers.

Remark 1. Our proposed scheme leverages classic 2-party secret-sharing for addition and multi-
plication. These building blocks however are originally proposed for integers and quantized values,
not real values. For floating point operations as used in machine learning, one can use the secure
counterparts (Aliasgari et al., 2013) of the two operations. This is facilitated by deep learning
training being robust to limited precision training (Gupta et al., 2015) and additional noise (Nee-
lakantan et al., 2016), with current models routinely trained in 16 bit precision. In contrast to
(Bonawitz et al., 2017) which relies on advanced cryptographic primitives such as Diffie-Hellman’s
key agreement which must remain exact and discrete, our protocols only use much simpler secure
arithmetic operations—only addition and multiplication—which are tolerant to rounding errors. For
the privacy implications of secret sharing when using floating point, which go beyond the scope of
our work, we refer the reader to the information theoretic analysis of Aliasgari et al. (2013).

5

Under review as a conference paper at ICLR 2021

4 THEORETICAL GUARANTEES

4.1 EXACTNESS

In the following lemma we show that Algorithm 2 gives the exact same result as non-privacy-
preserving version.
Lemma 2 (Exactness of Algorithm 2). The resulting z in Algorithm 2 is identical to the output of
the non-privacy-preserving version of the used robust aggregation rule.

Proof. After secret-sharing xi to 〈xi〉 to two servers, Algorithm 2 performs local differences {〈xi −
xj〉}i<j . Using shared-values multiplication via Beaver’s triple, S2 obtains the list of true Euclidean
distances {‖xi − xj‖2}i<j . The result is fed to a distance-based robust aggregation rule oracle, all
solely on S2. Therefore, the resulting indices {pi}i as used in z := Σn

i=1pixi are identical to the
aggregation of non-privacy-preserving robust aggregation.

With the exactness of the protocol established, we next focus on the privacy guarantee.

4.2 PRIVACY

We prove probabilistic (information-theoretic) notion of privacy which gives the strongest guarantee
possible. Formally, we will show that the distribution of the secret does not change even after
being conditioned on all observations made by all participants, i.e. each worker i, S1 and S2. This
implies that the observations carry absolutely no information about the secret. Our results rely on the
existence of simple additive secret-sharing protocols as discussed in the Appendix.

Each worker i only receives the final aggregated z at the end of the protocol and is not involved in
any other manner. Hence no information can be leaked to them. We will now examine S1. The proofs
below rely on Beaver’s triples which we summarize in the following lemma.
Lemma 3 (Beaver’s triples). Suppose we secret share 〈x〉 and 〈y〉 between S1 and S2 and want to
compute xy on S2. There exists a protocol which enables such computation which uses precomputed
shares BV = (〈a〉, 〈b〉, 〈c〉) such that S1 does not learn anything and S2 only learns xy.

Due to the page limit, we put the details about Beaver’s triples, multiplying secret shares, as well as
the proofs for the next two theorems to the Appendix.
Theorem I (Privacy for S1). Let z =

∑n
i=1 pixi where {pi}ni=1 is the output of byzantine oracle or

a vector of 1s (non-private). Let BVij = 〈aij , bij , cij〉 and BV pi = 〈ap
i , b

p
i , c

p
i 〉 be the Beaver’s

triple used in the multiplications. Let 〈·〉(1) be the share of the secret-shared values 〈·〉 on S1. Then
for all workers i

P(xi = xi | {〈xi〉(1), 〈pi〉(1)}ni=1, {BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{〈‖xi − xj‖2〉(1)}i<j , {BV p(1)i , pi − ap
i , pi − b

p
i }

n
i=1, z) = P(xi = xi|z)

Note that the conditioned values are what S1 observes throughout the algorithm. {BV (1)
ij ,xi −xj −

aij ,xi − xj − bij}i<j and {BV p(1)i , pi − ap
i , pi − b

p
i }ni=1 are intermediate values during shared

values multiplication.

For S2, the theorem to prove is a bit different because in this case S2 doesn’t know the output of
aggregation z. In fact, this is more similar to an independent system which knows little about the
underlying tasks, model weights, etc. We show that while S2 has observed many intermediate values,
it can only learn no more than what can be inferred from model distances.
Theorem II (Privacy for S2). Let {pi}ni=1 is the output of byzantine oracle or a vector of 1s (non-
private). Let BVij = 〈aij , bij , cij〉 and BV pi = 〈ap

i , b
p
i , c

p
i 〉 be the Beaver’s triple used in the

multiplications. Let 〈·〉(2) be the share of the secret-shared values 〈·〉 on S2. Then for all workers i

P(xi = xi | {〈xi〉(2), 〈pi〉(2), pi}ni=1, {BV
(2)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{〈‖xi − xj‖2〉(2), ‖xi − xj‖2}i<j , {BV p(2)i , pi − ap
i , pi − b

p
i }

n
i=1)

= P(xi = xi | {‖xi − xj‖2}i<j)

(1)

6

Under review as a conference paper at ICLR 2021

Note that the conditioned values are what S2 observed throughout the algorithm. {BV (2)
ij ,xi−xj −

aij ,xi − xj − bij}i<j and {BV p(2)i , pi − ap
i , pi − b

p
i }ni=1 are intermediate values during shared

values multiplication.

The model distances indeed only leaks similarity among the workers. Such similarity, however, does
not tell S2 information about the parameters; in (Mhamdi et al., 2018) the leeway attack attacks
distance based-rules because they don’t distinguish two gradients with evenly distributed noise and
two different gradients very different in one parameter. This means the leaked information has low
impact to the privacy.

It is also worth noting that curious workers can only inspect others’ values by learning from the
public model/update. This is because in our scheme, workers don’t interact directly and there is only
one round of communication between servers and workers. So the only message a worker receives is
the public model update.

4.3 COMBINING WITH DIFFERENTIAL PRIVACY

While input privacy is our main goal, our approach is naturally compatible with other orthogonal
notions of privacy. Global differential privacy (DP) (Shokri & Shmatikov, 2015; Abadi et al., 2016;
Chase et al., 2017) is mainly concerned about the privacy of the aggregated model, and whether
it leaks information about the training data. On the other hand, local differential privacy (LDP)
(Evfimievski et al., 2003; Kasiviswanathan et al., 2011) is stronger notions which is also concerned
with the training process itself. It requires that every communication transmitted by the worker does
not leak information about their data. In general, it is hard to learn deep learning models satisfying
LDP using iterate perturbation (which is the standard mechanism for DP) (Bonawitz et al., 2017).

Our non-robust protocol is naturally compatible with local differential privacy. Consider the usual
iterative optimization algorithm which in each round t performs

wt ← wt−1 − η(xt + νt) , where xt = 1
n

∑n
i=1 xt,i . (2)

Here xt is the aggregate update,wt is the model parameters, and νt is the noise added for DP (Abadi
et al., 2016).

Theorem III (from DP to LDP). Suppose that the noise νt in (2) is sufficient to ensure that the set
of model parameters {wt}t∈[T] satisfy (ε, δ)-DP for ε ≥ 1. Then, running (2) with using Alg. 1 to
compute (xt + ηt) by securely aggregating {x1,t + nηt,x2,t, . . . ,xn,t} satisfies (ε, δ)-LDP.

Unlike existing approaches, we do not face a tension between differential privacy which relies on
real-valued vectors and cryptographic tools which operate solely on discrete/quantized objects. This
is because our protocols do not rely on cryptographic primitives like Diffie-Hellman key agreement, in
contrast to e.g. (Bonawitz et al., 2017). In particular, the vectors xi can be full-precision (real-valued)
at the cost of adding marginal rounding error which can be tolerated by robust aggregation rule and
stochastic gradient descent algorithms. Thus, our secure aggregation protocol can be integrated with
a mechanism which has global DP properties e.g. (Abadi et al., 2016), and prove local DP guarantees
for the resulting mechanism.

5 EMPIRICAL ANALYSIS OF OVERHEAD

S1 Avg S2 Avg S2 Krum
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
Pe

r A
gg

re
ga

tio
n

(s
)

Simulation time
Tgrad

Tw2s

Ts2s

S1 Avg S2 Avg S2 Krum
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Adjusted simulation time

Tgrad

Tw2s

Ts2s

Figure 2: Left: Actual time spent; Right: Time
adjusted for network bandwidth.

We present an illustrative simulation on a local
machine (i7-8565U) to demonstrate the over-
head of our scheme. We use PyTorch with MPI
to train a neural network of 1.2 million parame-
ters on the MNIST dataset. We compare the fol-
lowing three settings: simple aggregation with 1
server, secure aggregation with 2 servers, ro-
bust secure aggregation with 2 servers (with
Krum (Blanchard et al., 2017)). The number
of workers is always 5.

Figure 2 shows the time spent on all parts of
training for one aggregation step. Tgrad is the

7

Under review as a conference paper at ICLR 2021

time spent on batch gradient computation; Tw2s

refers to the time spend on uploading and down-
loading gradients; Ts2s is the time spend on
communication between servers. Note that the
server-to-server communication could be further reduced by employing more efficient aggregationn
rules. Since the simulation is run on a local machine, time spent on communication is underestimated.
In the right hand side figure, we adjusts time by assuming the worker-to-server link has 100Mbps
bandwidth and 1Gbps respectively for the server-to-server link. Even in this scenario, we can see
that the overhead from private aggregation is small. Furthermore, the additional overhead by the
robustness module is moderate comparing to the standard training, even for realistic deep-learning
settings. For comparison, a zero-knowledge-proof-based approach need to spend 0.03 seconds to
encode a submission of 100 integers (Corrigan-Gibbs & Boneh, 2017).

6 LITERATURE REVIEW

Secure Aggregation. In the standard distributed setting with 1 server, Bonawitz et al. (2017) proposes
a secure aggregation rule which is also fault tolerant. They generate a shared secret key for each pair
of users. The secret keys are used to construct masks to the input gradients so that masks cancel each
other after aggregation. To achieve fault tolerance, they employ Shamir’s secret sharing. To deal with
active adversaries, they use a public key infrastructure (PKI) as well as a second mask applied to the
input. A followup work (Mandal et al., 2018) minimizes the pairwise communication by outsourcing
the key generation to two non-colluding cryptographic secret providers. However, both protocols are
still not scalable because each worker needs to compute a shared-secret key and a noise mask for
every other client. When recovering from failures, all live clients are notified and send their masks to
the server, which introduces significant communication overhead. In contrast, workers in our scheme
are freed from coordinating with other workers, which leads to a more scalable system.

Byzantine-Robust Aggregation/SGD. Blanchard et al. (2017) first proposes Krum and Multi-Krum
for training machine learning models in the presence of Byzantine workers. Mhamdi et al. (2018)
proposes a general enhancement recipe termed Bulyan. Alistarh et al. (2018) proves a robust SGD
training scheme with optimal sample complexity and the number of SGD computations. Muñoz-
González et al. (2019) uses HMM to detect and exclude Byzantine workers for federated learning.
Yin et al. (2018) proposes median and trimmed-mean based robust algorithms which achieve optimal
statistical performance. For robust learning on non-i.i.d dataset only appear recently (Li et al., 2019;
Ghosh et al., 2019; He et al., 2020). Further, Xie et al. (2018) generalizes the Byzantine attacks to
manipulate data transfer between workers and server and Xie et al. (2019a) extends it to tolerate an
arbitrary number of Byzantine workers.

Pillutla et al. (2019) proposes a robust aggregation rule RFA which is also privacy preserving.
However, it is only robust to data poisioning attack as it requires workers to compute aggregation
weights according to the protocol. Corrigan-Gibbs & Boneh (2017) proposes a private and robust
aggregation system based on secret-shared non-interactive proof (SNIP). Despite the similarities
between our setups, the generation of a SNIP proof on client is expansive and grows with the
dimensions. Besides, this paper offers limited robustness as it only validates the range of the data.

Inference As A Service. An orthogonal line of work is inference as a service or oblivious inference.
A user encrypts its own data and uploads it to the server for inference. (Gilad-Bachrach et al., 2016;
Rouhani et al., 2017; Hesamifard et al., 2017; Liu et al., 2017; Mohassel & Zhang, 2017; Chou et al.,
2018; Juvekar et al., 2018; Riazi et al., 2019) falls into a general category of 2-party computation
(2PC). A number of issues have to be taken into account: the non-linear activations should be replaced
with MPC-friendly activations, represent the floating number as integers. Ryffel et al. (2019) uses
functional encryption on polynomial networks. Gilad-Bachrach et al. (2016) also have to adapt
activations to polynomial activations and max pooling to scaled mean pooling.

Server-Aided MPC. One common setting for training machine learning model with MPC is the
server-aided case (Mohassel & Zhang, 2017; Chen et al., 2019). In previous works, both the
model weights and the data are stored in shared values, which in turn makes the inference process
computationally very costly. Another issue is that only a limited number of operations (function
evaluations) are supported by shared values. Therefore, approximating non-linear activation functions
again introduces significant overhead. In our paper, the computation of gradients are local to the

8

Under review as a conference paper at ICLR 2021

workers, only output gradients are sent to the servers. Thus no adaptations of the worker’s neural
network architectures for MPC are required.

7 CONCLUSION

In this paper, we propose a novel secure and Byzantine-robust aggregation framework. To our
knowledge, this is the first work to address these two key properties jointly. Our algorithm is simple
and fault tolerant and scales well with the number of workers. In addition, our framework holds for
any existing distance-based robust rule. Besides, the communication overhead of our algorithm is
roughly bounded by a factor of 2 and the computation overhead, as shown in Algorithm 3, is marginal
and can even be computed prior to training.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 308–318. ACM, 2016.

Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on floating
point numbers. In NDSS, 2013.

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In NeurIPS -
Advances in Neural Information Processing Systems, pp. 4613–4623, 2018.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. arXiv 1807.00459v3, 2020.

Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. arXiv preprint arXiv:1902.06156, 2019.

Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual International
Cryptology Conference, pp. 420–432. Springer, 1991.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine Learning with
Adversaries: Byzantine Tolerant Gradient Descent. In NeurIPS - Advances in Neural Information
Processing Systems 30, pp. 119–129, 2017.

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudoran-
dom bits. SIAM journal on Computing, 13(4):850–864, 1984.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191. ACM, 2017.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konecny, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. In SysML - Proceedings of the 2nd SysML Conference,
Palo Alto, CA, USA, 2019.

Melissa Chase, Ran Gilad-Bachrach, Kim Laine, Kristin E Lauter, and Peter Rindal. Private
collaborative neural network learning. IACR Cryptology ePrint Archive, 2017:762, 2017.

Valerie Chen, Valerio Pastro, and Mariana Raykova. Secure computation for machine learning with
spdz. arXiv preprint arXiv:1901.00329, 2019.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pp. 259–282, 2017.

9

Under review as a conference paper at ICLR 2021

Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pp. 211–222, 2003.

Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning in a
heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International Conference on Machine Learning, pp. 201–210, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In ICML - Proceedings of the 32nd International Conference on
Machine Learning, volume 37, pp. 1737–1746. PMLR, 07–09 Jul 2015.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via resampling. arXiv preprint arXiv:2006.09365, 2020.

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. CryptoDL: Deep Neural Networks over
Encrypted Data. arXiv preprint arXiv:1711.05189, 2017.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1651–1669, 2018.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious arithmetic secure
computation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 830–842, 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making SPDZ great again. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp.
158–189. Springer, 2018.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. RSA: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 1544–1551, 2019.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 619–631. ACM, 2017.

Kalikinkar Mandal, Guang Gong, and Chuyi Liu. Nike-based fast privacy-preserving highdimensional
data aggregation for mobile devices. Technical report, CACR Technical Report, CACR 2018-10,
University of Waterloo, Canada, 2018.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in byzantium. arXiv preprint arXiv:1802.07927, 2018.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
optimization. arXiv preprint arXiv:1708.08689, 2017.

Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. Byzantine-robust federated machine
learning through adaptive model averaging. arXiv preprint arXiv:1909.05125, 2019.

10

Under review as a conference paper at ICLR 2021

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, and
James Martens. Adding gradient noise improves learning for very deep networks. In ICLR, 2016.

Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust Aggregation for Federated Learning.
arXiv preprint arXiv:1912.13445, 2019.

Daniel Ramage and Stefano Mazzocchi. Federated analytics: Collaborative data
science without data collection. https://ai.googleblog.com/2020/05/
federated-analytics-collaborative-data.html, May 27 2020.

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz Koushan-
far. Xonn: Xnor-based oblivious deep neural network inference. arXiv preprint arXiv:1902.07342,
2019.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. DeepSecure: Scalable Provably-
Secure Deep Learning. arXiv preprint arXiv:1705.08963, 2017.

Theo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, and David Pointcheval. Partially
encrypted machine learning using functional encryption. arXiv preprint arXiv:1905.10214, 2019.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security, pp. 1310–1321. ACM, 2015.

Nigel P. Smart and Titouan Tanguy. TaaS: Commodity MPC via Triples-as-a-Service. In CCSW’19
- Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop,
CCSW’19, pp. 105–116, 2019. doi: 10.1145/3338466.3358918. URL https://doi.org/10.
1145/3338466.3358918.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies, 2019(3):26–49, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-resilient
stochastic gradient descent. arXiv preprint arXiv:1805.09682, 2018.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In ICML 2019 - 35th International Conference on Machine
Learning, 2019a.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Fall of Empires: Breaking Byzantine-tolerant SGD by
Inner Product Manipulation. arXiv preprint arXiv:1903.03936, 2019b.

Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pp. 80–91. IEEE, 1982.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498, 2018.

Appendix

A PROOFS

Theorem I (Privacy for S1). Let z =
∑n

i=1 pixi where {pi}ni=1 is the output of byzantine oracle or
a vector of 1s (non-private). Let BVij = 〈aij , bij , cij〉 and BV pi = 〈ap

i , b
p
i , c

p
i 〉 be the Beaver’s

triple used in the multiplications. Let 〈·〉(1) be the share of the secret-shared values 〈·〉 on S1. Then
for all workers i

P(xi = xi | {〈xi〉(1), 〈pi〉(1)}ni=1, {BV
(1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{〈‖xi − xj‖2〉(1)}i<j , {BV p(1)i , pi − ap
i , pi − b

p
i }

n
i=1, z) = P(xi = xi|z)

11

https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://doi.org/10.1145/3338466.3358918
https://doi.org/10.1145/3338466.3358918

Under review as a conference paper at ICLR 2021

Note that the conditioned values are what S1 observes throughout the algorithm. {BV (1)
ij ,xi −xj −

aij ,xi − xj − bij}i<j and {BV p(1)i , pi − ap
i , pi − b

p
i }ni=1 are intermediate values during shared

values multiplication.

Proof. First, we use the independence of Beaver’s triple to simplify the conditioned term.

• The Beaver’s triples are data-independent. Since 〈ap
i 〉(2) and 〈bpi 〉(2) only exist in {pi −

ap
i , pi − b

p
i }i and they are independent of all other variables, we can remove {pi − ap

i , pi −
bpi }i from conditioned terms.

• For the same reason {BV p(1)i }ni=1 are independent of all other variables and can be removed.
• The secret shares of aggregation weights 〈pi〉(1) := (pi + ηi)/2 and 〈pi〉(2) := (pi − ηi)/2

where ηi is random noise. Then {〈pi〉(1)}i are independent of all other variables. Thus it
can be removed.

Now the left hand side (LHS) can be simplified as

LHS =P(xi = xi|{〈xi〉(1)}ni=1,

{BV (1)
i,j ,xi − xj − aij ,xi − xj − bij ,

〈‖xi − xj‖2〉(1)}i<j , z)

(3)

There are other independence properties:

• The secret shares of the input 〈xi〉 can be seen as generated by random noise ξi. Thus
〈xi〉(1) := (ξi + xi)/2 and 〈xi〉(2) := (−ξi + xi)/2 are independent of others like xi.
Besides, for all j 6= i, 〈xi〉(·) and 〈xj〉(·) are independent.
• Beaver’s triple {BV (1)

i,j }i<j and {BV (2)
i,j }i<j are clearly independent. Since they are gener-

ated before the existance of data, they are always independent of {x(·)
j }j .

Next, according to Beaver’s multiplication Algorithm 3,

〈‖xi − xj‖2〉(1) = c
(1)
ij + (xi − xj − aij)b

(1)
ij + (xi − xj − bij)a(1)

ij

we can remove this term from condition:
LHS = P(xi = xi|{〈xi〉(1)}ni=1, z,

{BV (1)
i,j ,xi − xj − aij ,xi − xj − bij}i<j)

(4)

By the independence between 〈xi〉(·) and BV (·)
ij , we can further simplify the conditioned term

LHS = P(xi = xi|{〈xi〉(1)}ni=1, z,

{BV (1)
i,j , 〈xi − xj − aij〉(2), 〈xi − xj − bij〉(2)}i<j)

(5)

Since BV (1)
ij and BV (2)

ij are always independent of all other variables, we know that

LHS = P(xi = xi|{〈xi〉(1)}ni=1, z) (6)

For worker i, ∀j 6= i, 〈xi〉(·) and 〈xj〉(1) are independent

LHS = P(xi = xi|z).

Theorem II (Privacy for S2). Let {pi}ni=1 is the output of byzantine oracle or a vector of 1s (non-
private). Let BVij = 〈aij , bij , cij〉 and BV pi = 〈ap

i , b
p
i , c

p
i 〉 be the Beaver’s triple used in the

multiplications. Let 〈·〉(2) be the share of the secret-shared values 〈·〉 on S2. Then for all workers i

P(xi = xi | {〈xi〉(2), 〈pi〉(2), pi}ni=1, {BV
(2)
i,j ,xi − xj − aij ,xi − xj − bij}i<j ,

{〈‖xi − xj‖2〉(2), ‖xi − xj‖2}i<j , {BV p(2)i , pi − ap
i , pi − b

p
i }

n
i=1)

= P(xi = xi | {‖xi − xj‖2}i<j)

(1)

Note that the conditioned values are what S2 observed throughout the algorithm. {BV (2)
ij ,xi−xj −

aij ,xi − xj − bij}i<j and {BV p(2)i , pi − ap
i , pi − b

p
i }ni=1 are intermediate values during shared

values multiplication.

12

Under review as a conference paper at ICLR 2021

Proof. Similar to the proof of Theorem I, we can first conclude

• {pi − ap
i , pi − b

p
i }i and {BV p(2)i }ni=1 could be dropped because these they are data inde-

pendent and no other terms depend on them.
• {〈pi〉(2)}ni=1 is independent of the others so it can be dropped.
• {pi}ni=1 can be inferred from {‖xi − xj‖2}ij so it can also be dropped.
• By the definition of {〈‖xi−xj‖2〉(2)}ij , it can be represented by {xi}(2) and {BV (2)

ij ,xi−
xj − aij ,xi − xj − bij}i<j .

Now the left hand side (LHS) can be simplified as

LHS =P(xi = xi|{〈xi〉(2)}ni=1,

{BV (2)
ij ,xi − xj − aij ,xi − xj − bij ,

‖xi − xj‖2}i<j)

(7)

Because xi is independent of {〈xi〉(2)}ni=1 as well as data independent terms like
{BV (2)

ij ,a
(1)
ij , b

(1)
ij }i<j , we have

LHS = P(xi = xi
∣∣ ‖xi − xj‖2}i<j)

Theorem III (from DP to LDP). Suppose that the noise νt in (2) is sufficient to ensure that the set
of model parameters {wt}t∈[T] satisfy (ε, δ)-DP for ε ≥ 1. Then, running (2) with using Alg. 1 to
compute (xt + ηt) by securely aggregating {x1,t + nηt,x2,t, . . . ,xn,t} satisfies (ε, δ)-LDP.

Proof. Suppose that worker i ∈ [n] copmutes it gradient xi based on data di ∈ D. For the sake of
simplicity, let us assume that the arregate model satisfies ε-DP. The proof is identical for the more
relaxed notion of (ε, δ)-DP fo rε ≥ 1. This implies that for any j ∈ [n] and dj , d̃j ∈ D,

Pr
[
1
n (
∑n

i=1 xi(di)) + ν = y
]

Pr
[
1
n (
∑

i6=j xi(di)) + 1
nxj(d̃j) + ν = y

] ≤ ε ,∀y . (8)

Now, we examine the communication received by each server and measure how much information is
revealed about any given worker j ∈ [n]. The values stored and seen are:

• S1: The secret share (x1 + nν)(1), {xi(di)
(1)}ni=2 and the sum of other shares (x1 +

nν)(2) +
∑n

i=2 xi(di)
(2) = ((

∑n
i=1 xi(di)) + nν)(2).

• S2: The secret share (x1 + nν)(2), {xi(di)
(2)}ni=2.

• Worker i: z = (
∑n

i=1 xi(di)) + nν.
The equality above is because our secret shares are linear. Now, the values seen by any worker satisfy
ε-LDP directly by (8). For the server, note that by the definition of our secret shares, we have for any
worker j,

xj(dj)
(1) is independent of xj(dj)

⇒Pr[xj(dj)
(1) = y] = Pr[xj(dj)

(1) = ỹ] ,∀y, ỹ
⇒Pr[xj(dj)

(1) = y] = Pr[xj(d̃j)
(1) = y] ,∀dj , d̃j ∈ D .

A similar statement holds for the second share. This proves that the values computed/seen by the
workers or servers satisfy ε-LDP.

B NOTES ON SECURITY

B.1 BEAVER’S MPC PROTOCOL

In this section, we briefly introduce Beaver (1991)’s classic implementations of addition 〈x+ y〉 and
multplication 〈xy〉 given additive secret-shared values 〈x〉 and 〈y〉 where each party i holding xi and
yi. The algorithm for multiplication is given in Algorithm 3.

13

Under review as a conference paper at ICLR 2021

Algorithm 3 Beaver (1991)’s MPC Protocol

input: 〈x〉; 〈y〉; Beaver’s triple (〈a〉, 〈b〉, 〈c〉) s.t. c = ab

output: 〈z〉 s.t. z = xy
for all party i do

locally compute xi − ai and yi − bi and then broadcast them to all parties
collect all shares and reveal x− a = Σi(xi − ai), y − b = Σi(yi − bi)
compute zi := ci + (x− a)bi + (y − b)ai

end for
The first party 1 updates z1 := z1 + (x− a)(y − b)

Addition. The secret-shared values form of sum, 〈x+ y〉, is obtained by simply each party i locally
compute xi + yi.

Multiplication. Assume we already have three secret-shared values called a triple, 〈a〉, 〈b〉, and 〈c〉
such that c = ab.

Then note that if each party broadcasts xi − ai and yi − bi, then each party i can compute x− a and
y − b (so these values are publicly known), and hence compute

zi := ci + (x− a)bi + (y − b)ai

Additionally, one party (chosen arbitrarily) adds on the public value (x− a)(y − b) to their share so
that summing all the shares up, the parties get

Σizi = c+ (x− a)b+ (y − b)a+ (x− a)(y − b) = xy

and so they have a secret sharing 〈z〉 of xy.

The generation of Beaver’s triples. There are many different implementations of the offline phase
of the MPC multiplication. For example, semi-homomorphic encryption based implementations
(Keller et al., 2018) or oblivious transfer-based implementations (Keller et al., 2016). Since their
security and performance have been demonstrated, we may assume the Beaver’s triples are ready for
use at the initial step of our protocol.

B.2 NOTES ON OBTAINING A SECRET SHARE

Suppose that we want to secret share a bounded real vector x ∈ (−B,B]d for some B ≥ 0. Then, we
sample a random vector ξ uniformly from (−B,B]d. This is easily done by sampling each coordinate
independently from (−B,B]. Then the secret shares become (ξ,x − ξ). Since ξ is drawn from a
uniform distribution from [−B,B]d, the distribution of x− ξ conditioned on x is still uniform over
(−B,B]d and (importantly) independent of x. All arithmetic operations are then carried out modulo
[−B,B] i.e. B + 1 ≡ −B + 1 and −B − 1 ≡ B − 1. This simple scheme ensures information
theoretic input-privacy for continuous vectors.

The scheme described above requires access to true randomness i.e. the ability to sample uniformly
from (−B,B]. We make this assumption to simplify the proofs and the presentation. We note that
differential privacy techniques such as (Abadi et al., 2016) also assume access to a similar source
of true randomness. In practice, however, this would be replaced with a pseudo-random-generator
(PRG) (Blum & Micali, 1984; Yao, 1982).

B.3 COMPUTATIONAL INDISTINGUISHABILITY

Let {Xn}, {Yn} be sequences of distributions indexed by a security parameter n (like the length of
the input). {Xn} and {Yn} are computationally indistinguishable if for every polynomial-time A and
polynomially-bounded ε, and sufficiently large n∣∣Pr[A(Xn) = 1]− Pr[A(Yn) = 1]

∣∣ ≤ ε(n) (9)

If a pseudorandom generator, instead of true randomness, is used in Appendix B.2 , then the shares
are indistinguishable from a uniform distribution over a field of same length. Thus in Theorem I
and Theorem II, the secret shares can be replaced by an independent random variable of uniform
distribution with negligible change in probability.

14

Under review as a conference paper at ICLR 2021

B.4 NOTES ON THE SECURITY OF S2

Theorem II proves that S2 does not learn anything besides the pairwise distances between the various
models. While this does leak some information about the models, S2 cannot use this information to
reconstruct any xi. This is because the pair-wise distances are invariant to translations, rotations, and
shuffling of the coordinates of {xi}.
This remains true even if S2 additionally learns the global model too.

15

Under review as a conference paper at ICLR 2021

C DATA OWNERSHIP DIAGRAM

Worker i S1 S2
W

or
ke

rS
S

R
ob

us
tW

ei
gh

tS
el

ec
tio

n
A

gg
A

nd
U

pd
at

e
Pu

ll

xi = x
(1)
i + x

(2)
i

x
(1)
i Collect {〈xi〉(1)}i

x
(2)
i Collect {〈xi〉(2)}i

Get Beaver’s triples: {〈aij , bij , cij〉(1)}i<j

{〈xi − xj − aij〉(1), 〈xi − xj − bij〉(1)}i<j

{〈xi − xj − aij〉(2), 〈xi − xj − bij〉(2)}i<j

Get Beaver’s triples: {〈aij , bij , cij〉(2)}i<j

Compute {〈‖xi − xj‖22〉(1)}i<j Compute {〈‖xi − xj‖22〉(2)}i<j

{〈‖xi − xj‖22〉(1)}i<j

Compute {‖xi − xj‖22}i<j

Call p =Multi-KRUM({‖xi − xj‖22}i<j)

pi = p
(1)
i + p

(2)
i

{〈pi〉(1)}ni=1

Get Beaver’s triples: {〈ap
i , b

p
i , c

p
i 〉

(1)}ni=1 Get Beaver’s triples: {〈ap
i , b

p
i , c

p
i 〉

(2)}ni=1

{〈pi − ap
i 〉

(1), 〈xi − bpi 〉
(1)}ni=1

{〈pi − ap
i 〉

(2), 〈xi − bpi 〉
(2)}ni=1

Compute 〈Σn
i=1pixi〉(1) Compute 〈Σn

i=1pixi〉(2)
〈Σn

i=1pixi〉(2)

Compute z = Σn
i=1pixi

z

Figure 3: Overview of data ownership and Algorithm 1. The underlying Byzantine-robust oracle is
Multi-Krum.

In Figure 3, we show a diagram of data ownership to demonstrate of the data transmitted among
workers and servers. Note that the Beaver’s triples are already local to each server so that no extra
communication is needed.

16

Under review as a conference paper at ICLR 2021

D THREE SERVER MODEL

In this section, we introduce a robust algorithm with information-theoretical privacy guarantee at
the cost of more communication between servers. We avoid exposing pairwise distances to S2 by
adding to the system an additional non-colluding server, the crypto provider(Wagh et al., 2019). A
crypto provider does not receive shares of gradients, but only assists other servers for the multiparty
computation. Now our pipeline for one aggregation becomes: 1) the workers secret share their
gradients into 2 parts; 2) the workers send their shares to S1 and S2 respectively; 3) S1, S2 and the
crypto provider compute the robust aggregation rule using crypto primitives; 4) servers reveal the
output of aggregation and send back to workers.

The (Wagh et al., 2019) use crypto provider to construct efficient protocols for the training and
inference of neural networks. In their setup, workers secret share their samples to the servers and then
servers secure compute a neural network. In contrast, we consider the federated learning setup where
workers compute the gradients and servers perform a multiparty computation of a (robust) aggregation
function. The aggregated neural network is public to all. As the (robust) aggregation function is
much simpler than a neural netwuork, our setup is more computationally efficient. Note that we can
directly plug our secure robust aggregation rule into their pipeline and ensure both robustness and
privacy-preserving in their setting.

The crypto provider enables servers to compute a variety of functions on secret shared values.

• MATMUL: Given 〈x〉 and 〈y〉, return 〈x>y〉. The crypto provider generates and distribute
beaver’s triple for multiplication.
• PRIVATECOMPARE: Given 〈x〉 and a number r, reveal a bit (x > r) to S1 and S2, see

Algorithm 5. This can be directly used to compare 〈x〉 and 〈y〉 by comparing 〈x− y〉 and 0.
• SELECTSHARE: Given 〈x〉 and 〈y〉 and α ∈ {0, 1}, return 〈(1−α)x+αy〉, see Algorithm 6.

This function can be easily extended to select one from more quantities.

The combination of PRIVATECOMPARE and SELECTSHARE enables sorting scalar numbers, like
distances. Thus we can use these primitives to compute Krum on secret-shared values. For other
aggregation rules like RFAPillutla et al. (2019), we need other primitives like division. We refer to
Wagh et al. (2019) for more primitives like division, max pooling, ReLU. We also leave the details of
the three aforementioned primitives in Appendix D.1.

Three server MultiKrum. In Algorithm 4 we present a three-server MULTIKRUM algorithm. First,
S1, S2, and S3 compute the pairwise distances {〈dij〉}ij , but do not reveal it like Algorithm 2. For
each i, we use PRIVATECOMPARE and SELECTSHARE to sort {〈dij〉}j by their magnitude. Then we
compute 〈scorei〉 using SELECTSHARE. Similarly we sort {〈scorei〉}i and get a selection vector α
for workers with lowest scores. Finally, we open 〈α ·X〉 and reveal

∑
i∈I αixi to everyone.

We remark that sorting the {〈dij〉}j does not leak anything about their absolute or relative magnitude.
This is because: 1) S3 picks i, j from π1, π2 which is unknown to S1 and S2; 2) S3 encodes i, j into
a selection vector αij and secret shares it to S1 and S2; 3) For S1 and S2, they only observe secret-
shared selection vectors which is computationally indistinguishable from a random string. Thus S1
and S2 learn nothing more than the outcome of MultiKrum. On the other hand, PRIVATECOMPARE
guarantees the crypto provider S3 does not know the results of comparison. So S3 also knows nothing
more than the output of MultiKrum. Thus Algorithm 4 enjoys information-theoretical security.

D.1 THREE SERVER MODEL IN SECURENN

Changes in the notations. The Algorithm 6 and Algorithm 5 from SecureNN use different notations.
For example they use 〈w〉pj to represent the share j of w in a ring of Zp. Morever, the Algorithm 5
secret shares each bit of a number x of length ` which writes {〈x[i]〉p}i∈[`]. The ⊕ means xor sum.

17

Under review as a conference paper at ICLR 2021

Algorithm 4 Three Server MULTIKRUM

Input: S1 and S2 hold {〈xi〉(0)}i and {〈xi〉(1)}i resp. f , m
Output:

∑
i∈I αixi where I is the set selected by MULTIKRUM

On S1 and S2 and S3:
For i in 1 . . . n do

For j 6= i in 1 . . . n do
Compute 〈xi − xj〉 locally on S1 and S2
Call FMATMUL({S1, S2}, S3) with (〈xi−xj〉, 〈xi−xj〉) and get 〈dij〉 = 〈‖xi−xj‖2〉

End for
End for
Denote d = [dij]i<j be a vector of the distances and X = [x1; . . . ;xn]

On S3:
Let π1 and π2 be 2 random permutation function.
For i in π1(1 . . . n) do

For j 6= i in π2(1 . . . n) do
Let αij be the selection vector of d whose entry for dij is 1 and all others are 0.
Compute 〈αij〉 and send 〈αij〉0 to S1 and send 〈αij〉1 to S2.
Call Algorithm 6 with input (〈αij〉, {〈dij〉}i<j) and get 〈d′ij〉. (dij = 〈d′ij〉(0)+〈d′ij〉(1))

End for
Sort {〈d′ij〉}j using Algorithm 5 to compute 〈scorei〉 =

∑
i→j〈d′ij〉

End for
Sort {〈scorei〉}i using Algorithm 5 and record the m indicies I with lowset scores.
Let α be a selection vector of length n so that for all entry i ∈ I are 1 and all others are 0.
Compute 〈α〉 and send 〈α〉(0) to S1 and send 〈α〉(1) to S2.
Compute 〈α ·X〉 using FMATMUL.

On S1 and S2:
Let k = 0 for S1 and k = 1 for S2
For ĩ in 1 . . . n do

For j̃ in 1 . . . (n− 1) do
Receive 〈α∗∗〉(k) from S3
Call Algorithm 6 with input (〈α∗∗〉, {〈dij〉}i<j) and get 〈d′∗j̃〉.

End for
Sort {〈d′∗j̃〉}j̃ using Algorithm 5 to compute 〈scoreĩ〉 =

∑
ĩ→j̃〈d′∗j̃〉

End for
Sort {〈scoreĩ〉}ĩ using Algorithm 5.
Receive 〈α〉k
Compute 〈α ·X〉 using FMATMUL.
S1 and S2: Open 〈α ·X〉 to reveal

∑
i∈I αixi

18

Under review as a conference paper at ICLR 2021

Algorithm 5 PRIVATECOMPARE ΠPC({S1, S2}, S3) (Wagh et al., 2019, Algo. 3)

Input: S1 and S2 hold {〈x[i]〉p0}i∈[`] and {〈x[i]〉p1}i∈[`], respectively, a common input r (an l bit
integer) and a common random bit β. The superscript p is a small prime number like 67.
Output: S3 gets a bit β ⊕ (x > r)
Common Randomness: S1, S2 hold ` common random value si ∈ Z∗p for all i ∈ [`] and a random
permutation π for ` elements. S1 and S2 additionally hold ` common random values ui ∈ Z∗p.

On each j ∈ {0, 1} server Sj+1

Let t = r + 1 mod 2`

for i = {`, `− 1, . . . , 1} do
if β = 0 then

〈wi〉pj = 〈x[i]〉pj + jr[i]− 2r[i]〈x[i]〉pj
〈ci〉pj = jr[i]− 〈x[i]〉pj + j +

∑`
k=i+1〈wk〉pj

else if β = 1 AND r 6= 2` − 1 then
〈wi〉pj = 〈x[i]〉pj + jt[i]− 2t[i]〈x[i]〉pj
〈ci〉pj = −jt[i] + 〈x[i]〉pj + 1− j +

∑`
k=i+1〈wk〉pj

else
If i 6= 1, 〈ci〉pj = (1− j)(ui + 1)− jui, else 〈ci〉pj = (−1)j · ui.

end if
end for
Send {〈di〉pj}i = π({si〈ci〉pj}i) to S3

On server S3

For all i ∈ [`], S3 computes di = Reconstp(〈di〉p0, 〈di〉
p
1) and sets β′ = 1 iff ∃i ∈ [`] such that

di = 0
S3 outputs β′

Algorithm 6 SELECTSHARE ΠSS({S1, S2}, S3) (Wagh et al., 2019, Algo. 2)

Input: S1 and S2 hold (〈α〉L0 , 〈x〉L0 , 〈y〉L0) and (〈α〉L1 , 〈x〉L1 , 〈y〉L1), resp.
Output: S1 and S2 get 〈z〉L0 and 〈z〉L1 resp., where z = (1− α)x+ αy.
Common Randomness: S1, S2 hold shares of 0 over ZL denoted by u0 and u1.
For j ∈ {0, 1}, Sj+1 compute 〈w〉Lj = 〈y〉Lj − 〈x〉Lj .
S1, S2, S3 call FMATMUL({S1, S2}, S3) with Sj+1, j ∈ {0, 1} having input (〈α〉Lj , 〈w〉Lj) and S1,
S2 learn 〈c〉L0 and 〈c〉L1 , resp.
For j ∈ {0, 1}, Sj+1 outputs 〈z〉Lj = 〈x〉Lj + 〈c〉Lj + uj

19

Under review as a conference paper at ICLR 2021

E EXAMPLE: TWO-SERVER PROTOCOL WITH BYZANTINESGD ORACLE

We can replace MultiKrum with ByzantineSGD in (Alistarh et al., 2018). To fit into our protocol, we
make some minor modifications but still guarantee that output is same. The core part of (Alistarh
et al., 2018) is listed in Algorithm 7.

Algorithm 7 ByzantineSGD (Alistarh et al., 2018)

input: I is the set of good workers, {Ai}i∈[m], {‖Bi−Bj‖}i<j {‖∇k,i−∇k,j‖}i<j (i, j ∈ [m]),
thresholds TA,TB > 0
output: Subset good workers S
Amed := median{A1, . . . , Am};
Bmed ← Bi where i ∈ [m] is any machine s.t. |{j ∈ [m] : ‖Bj −Bi‖ ≤ TB}| > m/2;
∇med ← ∇k,i where i ∈ [m] is any machine s.t. |{j ∈ [m] : ‖∇k,j −∇k,i‖ ≤ 2ν}| > m/2;
S ← {i ∈ I : |Ai −Amed| ≤ TA ∧ ‖Bi −Bmed‖ ≤ TB ∧ ‖∇k,j −∇k,i‖ ≤ 4ν};

The main algorithm can be summarized in Algorithm 8, the red lines highlights the changes. Different
from Multi-Krum (Blanchard et al., 2017), Alistarh et al. (2018) uses states in their algorithm. As a
result, the servers need to keep track of such states.

Algorithm 8 Two-Server Secure ByzantineSGD

Setup:
• n workers, at most α percent of which are Byzantine.
• Two non-colluding servers S1 and S2
• ByzantineSGD Oracle: returns an indices set S.

– With thresholds TA and TB

– Oracle state Aold
i , 〈Bold

i 〉 for each worker i
Workers:

1. (WorkerSecretSharing):
(a) randomly split private xi into additive secret shares 〈xi〉 = {x(1)

i ,x
(2)
i } (such

that xi = x
(1)
i + x

(2)
i)

(b) sends x(1)
i to S1 and x(2)

i to S2
Servers:

1. ∀ i, S1 collects gradient x(1)
i and S2 collects x(2)

i .
(a) Use Beaver’s triple to compute Ai := 〈〈xi〉, 〈w −w0〉〉inner +Aold

i

(b) 〈Bi〉 := 〈xi〉+ 〈Bold
i 〉

2. (RobustSubsetSelection):
(a) For each pair (i, j) of gradients computes their distance (i < j):

• On S1 and S2, compute 〈Bi −Bj〉 = 〈Bi〉 − 〈Bj〉 locally
• Use precomputed Beaver’s triple and Algorithm 3 to compute the

distance ‖Bi −Bj‖2
• On S1 and S2, compute 〈xi − xj〉 = 〈xi〉 − 〈xj〉 locally
• Use precomputed Beaver’s triple and Algorithm 3 to compute the

distance ‖xi − xj‖22
(b) S2 perform Byzantine SGD S=ByzantineSGD({Ai}i, {‖Bi−Bj‖}i<j , {‖xi−

xj‖}i<j ,TA,TB); if |S| < 2, exit; Convert S to a weight vector p of length n
(c) S2 secret-shares 〈p〉 with S1

3. (AggregationAndUpdate):
(a) On S1 and S2, use MPC multiplication to compute 〈

∑n
i=1 pixi〉 locally

(b) S2 sends its share of 〈
∑n

i=1 pixi〉(2) to S1
(c) S1 reveals z =

∑n
i=1 pixi to all workers.

(d) S2 updates Aold
i ← Ai, 〈Bold

i 〉 ← 〈Bi〉
Workers:

1. (WorkerPullModel): Collect z and update model w ← w + z locally

20

Under review as a conference paper at ICLR 2021

5 10 20 50
#Nodes

0

10

20

30

40

50
Ti

m
e

Ra
tio

 (2
5.

6M
 /

1.
2M

) Ideal ratio

#Server
1
2

(a) Scaling with dimension

5 10 20 50
#Nodes

2

5

50

250

1500

Ti
m

e
(s

)

#Server
1
2

(b) Scaling with #workers (large model)

Figure 4: Scaling two-server model and one-server model to 5, 10, 20, 50 nodes.

F ADDITIONAL EXPERIMENTS

We benchmark the performance of our two-server protocol with one-server protocol on the google
kubernetes engine. We create a cluster of 8 nodes (machine-type=e2-standard-2) where 2 servers
are deployed on different nodes and the workers are deployed evenly onto the rest 6 nodes. We run
the experiments with 5, 10, 20, 50 workers and a large model of 25.6 million parameters (similar
to ResNet-56) and a small model of 1.2 million parameters. We only record the time spent on
communication and aggregation (krum). We benchmark each experiment for three times and take
their average. The results are shown in Figure 4.

Scaling with dimensions. In Figure 4a, we compute the ratio of time spent on large model and small
model. We can see that the ratio of two-server model is very close to the ideal ratio which suggests it
scales linearly with dimensions. This is expected because krum scales linearly with dimension. For
aggregation rules based on high-dimensional robust mean estimation, we can remove the dependence
on d. We leave it as a future work to incorporate more efficient robust aggregation functions.

Scaling with number of workers. In Figure 4b, we can see that the time spent on both one-server
and two-server model grow with O(n2). However, we notated that this complexity comes from the
aggregation rule we use, which is krum, not from our core protocol. For other aggregation rules like
ByzantineSGD Alistarh et al. (2018), the complexity of aggregation rule is O(n) and we can observe
better scaling effects. We leave it as a future work to incorporate and benchmark more efficient robust
aggregation rules.

Setups. Note that in our experiments, the worker-to-server communication and server-to-server
communication has same bandwidth of 1Gb/s. In the realistic application, the link between servers
can be infiniband and the bandwidth between worker and server are typically smaller. Thus, this
protocol will be more efficient than we have observed here.

21

	Introduction
	Problem setup, privacy, and robustness
	Secure aggregation protocol: two-server model
	Non-robust secure aggregation
	Robust secure aggregation
	Salient features

	Theoretical guarantees
	Exactness
	Privacy
	Combining with differential privacy

	Empirical analysis of overhead
	Literature review
	Conclusion
	Proofs
	Notes on security
	Beaver's MPC Protocol
	Notes on obtaining a secret share
	Computational indistinguishability
	Notes on the security of S2

	Data ownership diagram
	Three server model
	Three server model in SecureNN

	Example: Two-server protocol with ByzantineSGD oracle
	Additional experiments

