
Under review as a conference paper at ICLR 2023

A Theory of Equivalence-Preserving
Program Embeddings

Anonymous authors
Paper under double-blind review

Abstract

Program embeddings are used to solve tasks such as code clone detection and
semantic labeling. Solutions to these semantic tasks should be invariant to
semantics-preserving program transformations. When a program embedding
function satisfies this invariance, we call it an equivalence-preserving program
embedding function. We say a programming language can be tractably em-
bedded when we can construct an equivalence-preserving program embedding
function that executes in polynomial time in program/input length and
produces program embeddings that are proportional to the input length.
Determining whether a programming language can be tractably embedded
is the equivalence-preserving program embedding problem. We formalize this
problem and theoretically characterize when programming languages can be
tractably embedded. To validate our theoretical results, we use the BERT-
Tiny model to learn an equivalence-preserving program embedding function
for a programming language that can be tractably embedded and show
the model fails to construct an equivalence-preserving program embedding
function for a similar language that is intractable to embed.

1 Introduction

Emerging research demonstrates that powerful new techniques can solve challenging program
reasoning tasks, such as code clone detection and semantic labeling (Hu et al., 2017; Mou et al.,
2016). At the core of many techniques lie program embeddings, fixed-size representations
produced from program text that model a program property. For example, a program
embedding may be a vector of floating-point numbers that models a program’s input-output
behavior. A common and effective method for producing program embeddings is to use a
neural network (Yu et al., 2019; Ben-Nun et al., 2018). While the empirical results of these
techniques have been demonstrated, there has been, to date, little theoretical understanding
of the capabilities of program embedding techniques.

Semantic Tasks. A key first step towards understanding program embeddings is under-
standing the tasks they are designed to solve. In this work, we focus on semantic tasks, tasks
that depend only on the input-output behavior of a program. Equivalently, the solution to a
semantic task is invariant to all semantics-preserving transformations on the input program.

A Theory of Equivalence-Preserving Program Embeddings. When a program
embedding technique is invariant to semantics-preserving transformations, two programs’
embeddings are identical exactly when the programs are semantically equivalent. We call such
a technique an equivalence-preserving program embedding function. We say a programming
language can be tractably embedded when we can construct an equivalence-preserving program
embedding function that runs in time polynomial in program/input length and the embedding
size is proportional to input length. The problem of determining whether a programming
language can be tractably embedded is the equivalence-preserving program embedding problem.
To date, this problem has not been identified in the literature, and it has been unknown
under what conditions it can be solved. We provide the first theoretical characterization
of this problem by proving necessary and sufficient conditions for when a programming
language can be tractably embedded.

1

Under review as a conference paper at ICLR 2023

Empirical Study. We apply our theory to programming languages for modular addition
and bitvector arithmetic (Bosselaers et al., 1994; Barrett et al., 1998). We prove the modular
addition language can be tractably embedded, while the bitvector arithmetic language cannot.
We find that a BERT-Tiny model can learn an equivalence-preserving embedding function
for the modular addition language, but not the bitwise arithmetic language (Bhargava et al.,
2021; Turc et al., 2019). We also validate that as the number of possible inputs increases for
these languages, the model maintains 100% train and test accuracy for the modular addition
language, but accuracy degrades quickly for the bitvector arithmetic language.

Our contributions are as follows:

1. We define the equivalence-preserving program embedding problem and identify
applications of equivalence-preserving program embeddings.

2. We prove necessary and sufficient conditions for when a programming language can
be tractably embedded.

3. We hypothesize that programming languages that can be tractably embedded are
easier to learn than those that are intractable to embed and provide evidence with
an empirical study of languages for modular addition and bitvector arithmetic.

We present definitions and results constituting the first steps in a theory of equivalence-
preserving program embeddings. Building on these foundations, future work can better
analyze existing programming languages, design new programming languages that can be
tractably embedded, and develop principled approximations for programming languages that
cannot be tractably embedded.

2 Equivalence-Preserving Program Embeddings In Practice

Semantic tasks are those where only a program’s input-output behavior must be modeled.
We show how equivalence-preserving program embeddings can solve these tasks and briefly
explain how researchers solve them.

Code Clone Detection. Code clone detection is the task of identifying whether a pair of
programs are equivalent and is often used to find duplicate code in a codebase or identify
software vulnerabilities in programs (Hu et al., 2017). Given an equivalence-preserving
program embedding function, one can solve this problem by embedding both programs and
checking equivalence. Researchers produce program embeddings that solve this problem via
neural networks (Yu et al., 2019), execution of programs at a fixed set of inputs (Hu et al.,
2017), and locality-sensitive hashing of such executions (Pewny et al., 2015).

Semantic Labeling. In semantic labeling, the goal is to label a program as having a
particular semantic property among a fixed-size collection of possible properties. Examples
include determining the algorithm a program implements and identifying whether a program
exhibits a particular error. An equivalence-preserving program embedding function maps
each program to its label, which identifies the program’s functionality. Note that the labels
come from a fixed set representing all program functionalities of interest. Researchers solve
this problem using neural program embeddings (Mou et al., 2016; Ben-Nun et al., 2018; Puri
et al., 2021; Wang et al., 2018).

3 A Theory of Equivalence-Preserving Program Embeddings

In this section, we formalize the equivalence-preserving program embedding problem and
prove conditions under which it can be solved.

We define a programming language P as a set of strings with additional structure. For
one, deciding membership of programs in a programming language is often decidable (e.g.,
by parsing and type checking), meaning one can enumerate all programs from shortest to

2

Under review as a conference paper at ICLR 2023

longest12. Furthermore, every programming language can be ascribed a denotation function
J·K that maps each program p to its meaning JpK : I → O as a mathematical function from
inputs to outputs (Scott, 1977). We provide a full definition in Appendix A.

We model embeddings as elements of a finite set, from which a fixed-size bit-vector represen-
tation can be recovered. A program embedding function is a function e : P → E that maps
a program in P to an element of a finite set E . A program embedding is an element e(p)
produced by applying a program embedding function e to a program p ∈ P.
To define equivalence-preserving program embeddings, we need a notion of program equiva-
lence. Because programs denote mathematical functions, we can define program equivalence
in terms of functional equivalence. Programs p, q ∈ P are functionally equivalent (JpK = JqK)
when for every input x ∈ I, JpK(x) = JqK(x), where = is an equivalence relation defined over O.
Definition 3.1. A program embedding function e : P → E is equivalence-preserving if for
every p, q ∈ P,

e(p) = e(q)⇔ JpK = JqK. (1)

In other words, program embeddings should be equivalent precisely when the programs
denote equivalent functions.

We say a programming language can be tractably embedded when there exists a polynomial-
time, equivalence-preserving embedding function (in terms of program length |p| and input
bits log |I|) and the embedding size scales with log |I|. The latter condition prevents encoding
the entire input-output behavior of the program (see Corollary A.6).
Definition 3.2. A programming language P can be tractably embedded when:

1. One can construct an equivalence-preserving embedding function e such that, for
all p ∈ P, the time complexity of e is polynomial in the length of the input pro-
gram |p| and the minimum description length of the input space log |I| (i.e., it
runs in O(poly(|p|, log |I|)) time).

2. The length of the embedding’s bit-level representation |e(p)| is O(log |I|) for all p ∈ P.

We are now ready to define the equivalence-preserving program embedding problem.
Definition 3.3. The equivalence-preserving program embedding problem is, given a program-
ming language, determine whether it can be tractably embedded.

While this problem sits at the core of many techniques to solve semantic tasks, it cannot always
be solved. We can tractably embed a programming language when there are polynomially
many semantic equivalence classes and an efficient canonicalization procedure. A semantic
equivalence class for a program p ∈ P is the set {q | JqK = JpK}. We define a canonicalizer c
as a function from programs to programs such that programs p, q ∈ P canonicalize to the
same program exactly when they are semantically equivalent. That is,

JpK = JqK⇔ c(p) = c(q).

Theorem 3.1. A programming language P can be tractably embedded exactly when there
are O(poly(|I|)) semantic equivalence classes and there is a canonicalizer that runs in
O(poly(|p|, log(|I|))) time for every program p ∈ P.

Proof. ⇒) By condition (2) of Definition 3.2, there are O(log |I|) bits in the embedding
and therefore O(poly(|I|)) distinct semantic equivalence classes. An equivalence-preserving
embedding function gives decidable semantic equality, so we use Lemma A.3 to collect the
shortest representative program for every semantic equivalence class. We then build a mapping
from each program embedding to its corresponding canonical form, taking O(poly |I|) space
and having O(1) time lookup via perfect hashing. To canonicalize a program p, we embed

1To enumerate all programs, enumerate all strings in the set of symbols for the language, then
use the membership decision procedure to determine which strings to output.

2 Note that assuming decidable membership means our results exclude some complex languages
such as dependently typed ones, which only admit semidecidable membership.

3

Under review as a conference paper at ICLR 2023

it (in O(poly(|p|, log |I|)) time), then map it to the appropriate canonical form in constant
time, and output the canonical form in O(|p|) time.

⇐) We build an equivalence-preserving program embedding function by running the canoni-
calizer and then mapping from canonical forms to embeddings. By Lemma A.3, we collect
the shortest representative programs from each semantic equivalence class into a list. We
then create a mapping from each canonical form to a bitstring encoding of its index, giving
O(1) lookup time, similarly to above. The program embedding function satisfies property (1)
of Definition 3.2 because the canonicalizer runs in O(poly(|p|, log |I|)) time and mapping a
canonical form to its embedding takes constant time. It satisfies property (2) since there are
O(poly(|I|)) equivalence classes, meaning there are O(log |I|) bits in the embedding.

Implications. While the equivalence-preserving program embedding problem is undecid-
able in general, our results precisely describe the properties of programming languages for
which the problem is not only decidable, but also tractable. In Appendix A, we provide
an extended theory that describes the properties of programming languages for which the
embedding merely exists or is computable, which are both weaker guarantees than tractability.

4 Empirical Study

Our theory demonstrates the conditions under which a programming language is tractably
embeddable. However, not all programming languages are tractably embeddable and yet
many approaches apply a variety of techniques, including neural networks, to produce
embeddings for programs from languages for which the equivalence-preserving embedding
problem is intractable. Thus, there is a fundamental question: what is the observable
difference between applying a program embedding technique to a tractably embeddable
programming language versus one that is not?

In this section, we construct and study the behavior of a neural program embedding function
applied to programs from two programming languages: one that can be tractably embedded,
while the other cannot. Our results show that the test accuracy of our neural embedding
function on the equivalence-preserving program embedding problem degrades quickly — as
the input space size grows — for the intractable language whereas performance remains at
100% for the tractable language.

4.1 A Tractable Programming Language of Modular Addition

We first consider a programming language with modular addition in a single variable. This
is a subset of modular arithmetic languages that arise in algorithms for computer algebra,
cryptography, and error-correcting codes (Bosselaers et al., 1994; Giorgi et al., 2009; Hoeven
et al., 2016). The grammar is:

e := 0 | 1 | x | e + e

The denotation function for terms in this language is parameterized by the modulus n ∈ Z+:

J0Kn = 0

J1Kn = 1

JxKn = x

Je + eKn = (JeKn + JeKn) mod n

where x is an integer variable satisfying 0 ≤ x < n.
Theorem 4.1. The modular addition language can be tractably embedded.

Proof. In Appendix B.1.

4.2 An Intractable Programming Language of Bitvector Arithmetic

We extend the tractable language from Section 4.1 to support a subset of bitvector arithmetic,
resulting in a programming language that is intractable to embed. Bitvector arithmetic

4

Under review as a conference paper at ICLR 2023

languages are used for the verification and synthesis of low-level code (Barrett et al., 1998;
Jha et al., 2010; Inala et al., 2016). The grammar for the subset we consider is:

e := 0 | 1 | x | e + e | e & e | e | e | ~e
with additional denotations for logical conjunction ∧, disjunction ∨, and negation ¬:

· · ·
Je & eKn = (JeKn ∧ JeKn) mod n

Je | eKn = (JeKn ∨ JeKn) mod n

J~eKn = (¬JeKn) mod n

where x is an integer variable satisfying 0 ≤ x < n.
Theorem 4.2. If P 6= NP, the bitvector arithmetic language cannot be tractably embedded.

Proof. In Appendix B.2.

4.3 Methodology

We use the BERT-Tiny architecture to learn a program embedding function by phrasing the
embedding problem as a supervised classification problem: given the syntax of a program
p ∈ P , predict its semantic equivalence class (Bhargava et al., 2021; Turc et al., 2019). When
the network achieves 100% train and test accuracy, we say it has learned an equivalence-
preserving program embedding function. See Appendix C.1 for details.

Because BERT-Tiny is a feedforward model, it can perform a fixed amount of computation.
As we vary the input space size, both languages will reach a point where the required amount
of computation for an equivalence-preserving program embedding function will exceed that
available to the architecture. Thus, beyond some point, the network must approximate and
we hypothesize that accuracy for the intractable language will diminish more quickly than
for the tractable language.

4.3.1 Varying Input Space Size

To vary the input space size, we first note that the tractable and intractable programming
languages have denotations parametric in the modulus n. Increasing n increases the number of
values the variable x ranges over, meaning it increases the input space size |I|. Consequently,
increasing n increases the number of semantically distinct program denotations. For example,
in the tractable language JxK2 = J1 + 1 + xK2, but JxK3 6= J1 + 1 + xK3, and as a result,
there are more semantic equivalence classes modulo 3.

4.3.2 Unifying Syntax

We first considered constructing the dataset by generating programs from the grammar
of each programming language. However, using different grammars for the two languages
introduces a methodological concern: there are fewer operators in the tractable language
than in the intractable language, so low accuracy could be explained by the need to learn
embeddings for more operators.

To address this concern, we use the same program syntax for both the tractable and
intractable language but interpret the two differently. For the tractable language, all unary
operators in the intractable language are treated as no-ops and all binary operators are
treated as addition. For example, x ∨ y is interpreted as a bitwise OR for the intractable
language and as x+ y in the tractable language.

4.3.3 Dataset Generation

To generate a dataset, we sample 500,000 abstract syntax trees (ASTs) with a fixed number of
nodes, then select a subset with a balanced number of examples for each semantic equivalence
class. For example, the expression ((~0 + x) | x) has 6 nodes. In our empirical study, we
use ASTs with 11 nodes (see Appendix C.2 for justification).

5

Under review as a conference paper at ICLR 2023

0 100 200 300
Epoch

10−5

10−2
T

ra
in

L
os

s

0 100 200 300
Epoch

0%

50%

100%

T
ra

in
A

cc
u

ra
cy

0 100 200 300
Epoch

10−5

10−2

T
es

t
L

os
s

0 100 200 300
Epoch

0%

50%

100%

T
es

t
A

cc
u

ra
cy

Input Space Size

2 3 4 5 7 11

Figure 1: Average loss and accuracy graphs for the tractable language. Shaded ar-
eas show the minimum and maximum values across trials. Almost every configuration
achieves 100% test accuracy in ≤ 133 epochs, demonstrating that BERT-Tiny can learn an
equivalence-preserving program embedding function for the tractable language on the input
space sizes we evaluated on.

In the generated dataset, the label for a program is a label corresponding to a semantic
equivalence class. We identify the semantic equivalence class by enumerating all inputs
x ∈ Zm, where m is the modulus, and recording the outputs. See Appendix C.3 for details.

4.4 Experiments

We sweep over input space sizes in the set {2, 3, 4, 5, 7, 11} for both the tractable and
intractable languages and train BERT-Tiny to learn an equivalence-preserving program
embedding function. We chose this set of input space sizes because it forms a sequence where
the number of semantic equivalence classes is monotonically increasing for both languages.
See Appendix C.4 for details.

4.5 Results

Figures 1 and 2 present the losses and accuracies from training BERT-Tiny to learn an
equivalence-preserving program embedding function for the tractable and intractable lan-
guages, respectively. Figure 3 distills these results into plots showing average accuracy vs.
input space size for both languages.

Tractable. Figure 1 shows BERT-Tiny learns an equivalence-preserving embedding func-
tion for the tractable language at every input space size we evaluated on. That is, BERT-Tiny
achieves 100% train and test accuracy on every configuration, and moreover, the two track
strongly throughout training.

Interestingly, as |I| increases, the network learns an equivalence-preserving embedding
function in fewer epochs. For example, when |I| = 2, the network requires ≈ 100 epochs to
reach 100% test accuracy, but when |I| = 11, it requires 5 epochs.

6

Under review as a conference paper at ICLR 2023

0 200 400 600
Epoch

10−2

10−1

100

101

T
ra

in
L

os
s

0 200 400 600
Epoch

0%

25%

50%

75%

100%

T
ra

in
A

cc
u

ra
cy

0 200 400 600
Epoch

100

101

T
es

t
L

os
s

0 200 400 600
Epoch

0%

20%

40%

60%

T
es

t
A

cc
u

ra
cy

0 200 400 600
Epoch

100

2× 100

3× 100

4× 100

6× 100

V
al

id
at

io
n

L
os

s

0 200 400 600
Epoch

0%

20%

40%

V
al

id
at

io
n

A
cc

u
ra

cy

Input Space Size

2 3 4 5 7 11

Figure 2: Average loss and accuracy graphs for the intractable language. Shaded areas
show the minimum and maximum values across trials. After 600 epochs, no configuration
achieves 100% train and test accuracy, demonstrating that BERT-Tiny is unable to learn
an equivalence-preserving program embedding function for the intractable language on the
input space sizes we evaluated on.

Intractable. Figure 2 shows BERT-Tiny was unable to learn an equivalence-preserving
program embedding function for the intractable language on any input space size we evaluated
on. While some configurations with input space size |I| ≤ 4 achieve near-100% train accuracy,
no configuration achieves greater than 55% test accuracy, and average test accuracy decreases
monotonically in the input space size. For |I| > 4, average train accuracy trends downward,
reaching ≈ 65% at |I| = 11.

For |I| ∈ {2, 3, 4}, we observe that the loss and accuracy begin to rapidly oscillate between
nearly 100% and as low as 73%, while validation and test remain relatively stable.

Analysis. Figure 3 shows the tractable language achieves 100% train and test accuracy on
all input space sizes we evaluated on, while test accuracy is never 100% for the intractable
language and it trends downward as the input space size increases. Thus, as expected, test
accuracy deteriorates more quickly for the intractable language as we increase the input
space size, compared to the tractable language.

7

Under review as a conference paper at ICLR 2023

2 4 6 8 10
Input Space Size

60%

80%

100%

T
ra

in
A

cc
u

ra
cy

2 4 6 8 10
Input Space Size

25%

50%

75%

100%

T
es

t
A

cc
u

ra
cy

Language

Tractable Intractable

Figure 3: Average train and test accuracy vs. input space size for the tractable and
intractable languages. We collect the accuracy for each trial at the epoch with the highest
validation accuracy. These results show BERT-Tiny is able to learn an equivalence-preserving
program embedding function for the tractable language at every input space size we evaluated
on, while it was unable to learn an equivalence-preserving program embedding function for
the intractable language at any input space size we evaluated on.

5 Discussion

In this section, we identify opportunities for future work including relaxations of the
equivalence-preserving program embedding problem, program embeddings for modeling
performance, and distance-preserving program embeddings.

5.1 Approximate Equivalence-Preserving Program Embeddings

Our results show that even commonly used subsets of basic-block assembly code (Section 4.2)
cannot be tractably embedded. We discuss approaches that approximate equivalence-
preserving program embeddings by either approximating programming language semantics
or approximating equivalence preservation.

Subsetting the Language. A programming language that is intractable to embed may
contain a subset that can be tractably embedded, in which case, we can restrict our
consideration to this subset. For example, the modular addition programming language in
Section 4.1 is a subset of the bitvector arithmetic programming language in Section 4.2; the
former can be tractably embedded, while the latter cannot.

Approximating Semantics. When a programming language cannot be tractably em-
bedded, we may approximate its semantics. For example, the language of Turing machine
descriptions that denote 1 if the Turing machine halts on all inputs and 0 otherwise is not
computable and therefore not tractable to embed. If we change the denotation function to be
1 if every input halts after a fixed number of iterations and 0 otherwise, then there is a com-
putable, equivalence-preserving program embedding function for this programming language.
Similarly, a programming language with unbounded loops is not tractably embeddable, so
we may approximate its semantics by modeling only a fixed number of iterations.

Almost Equivalence Preserving Program Embeddings. If we have a metric on
denotations of programs, we can relax equivalence preservation by enforcing that when two
programs have equivalent embeddings, they are semantically similar (i.e., e(p) = e(q) ⇒
d(JpK, JqK) < ε), and furthermore, e is the embedding function with the smallest image

8

Under review as a conference paper at ICLR 2023

among all other feasible embedding functions.3 For example, a programming language with
rational constants in the unit interval [0, 1] has no equivalence-preserving program embedding
function because there are infinitely many semantic equivalence classes. However, we can
build an almost equivalence-preserving with absolute error bounded by 1/2k−1. It maps
a given program to an index corresponding to the nearest of k uniformly spaced rationals
between 0 and 1 (inclusive). To use the original denotation, we can modify the specification
to encode preferences for some programs (e.g., smaller constants) by defining a distribution
over programs, then improving the approximation for more important programs.4

Probably Approximately Equivalence-Preserving Program Embeddings. A prob-
ably approximately equivalence-preserving program embedding function maps similar programs
to the same embedding with some probability. Locality-sensitive hashing can be used to
satisfy this specification, because it guarantees that, for some c > 1, R > 0, and proba-
bilities P1, P2, if d(JpK, JqK) ≤ R, then Pr[e(p) = e(q)] ≥ P1, and if d(JpK, JqK) ≥ cR, then
Pr[e(p) = e(q)] ≤ P2. For example, Pewny et al. (2015) solve cross-architecture bug search
(a form of code clone detection) using an embedding comprised of many input-output pairs
that are compressed using locality-sensitive hashing, for faster comparisons.

5.2 Distance-Preserving Program Embeddings

An even stronger condition than equivalence preservation is distance preservation (i.e.,
isometry). This corresponds to the desideratum that the embeddings of similar programs are
close (Wang et al., 2020; Peng et al., 2021; Alon et al., 2019). Expressing this condition requires
a metric on denotations of programs and program embeddings. A distance-preserving program
embedding function could be useful for variants of semantic code search, where the task is
not only to find semantically identical programs, but also semantically similar programs.

5.3 Modeling Non-Standard Semantics

One can model intensional behavior of a program (on its own or in addition to semantic
behavior), such as its size, its control flow structure, or its execution cost. For example,
embeddings that capture the performance of a program could be formalized by supplying a
denotation function that, instead of modeling functional equivalence, counts the number of
steps the program executes, averaged over all inputs. Such an embedding would distinguish
between, for example, quicksort and bubblesort. One can interpret Mendis et al. (2019) as
building a program embedding function that models performance of basic block assembly
code to predict throughput, a metric of performance.

6 Conclusions

In this paper, we develop the first steps towards a theory of program embeddings by narrowing
our focus to programming embeddings that are used in semantic tasks, tasks that depend
only on the input-output behavior of the program. For such tasks, an ideal embedding
technique is equivalence-preserving: two programs’ embeddings are identical exactly when
the programs are semantically equivalent.

Our results define the equivalence-preserving program embedding problem and provide
both necessary and sufficient conditions for when a programming language can be tractably
embedded. Our empirical study shows that neural networks are able to more accurately
embed a tractable language than an intractable language.

Taken together, our work holds out the promise of a future, complete understanding of the
fundamental tension between programming language expressivity and embeddability, along
with new directions for the co-design of languages and embedding techniques.

3 This last condition is to prevent degenerate solutions where every program is mapped to a
distinct embedding.

4 Floating-point numbers can be seen as approximations of rationals in this sense.

9

Under review as a conference paper at ICLR 2023

References
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed

representations of code. In Principles of Programming Languages, 2019.

C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision procedure for bit-vector arithmetic. In
Design and Automation Conference, 1998.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension:
A learnable representation of code semantics. In Neural Information Processing Systems,
2018.

Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers. Generalization in nli: Ways (not)
to go beyond simple heuristics, 2021.

Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of three modular
reduction functions. In Advances in Cryptology, 1994.

Pascal Giorgi, Thomas Izard, and Arnaud Tisserand. Comparison of modular arithmetic al-
gorithms on gpus. In Conference on Parallel Computing and High Performance Computing,
2009.

Joris Van Der Hoeven, Grégoire Lecerf, and Guillaume Quintin. Modular simd arithmetic in
mathemagix. Transactions on Mathematical Software, 2016.

Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. Binary code clone detection across
architectures and compiling configurations. In International Conference on Program
Comprehension, 2017.

Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. Synthesis of domain specific
cnf encoders for bit-vector solvers. In Theory and Applications of Satisfiability Testing,
2016.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided component-
based program synthesis. In International Conference on Software Engineering, 2010.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and
evaluating contextual embedding of source code. In International Conference on Machine
Learning, 2020.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural networks. In
International Conference on Machine Learning, 2019.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree
structures for programming language processing. In Association for the Advancement of
Artificial Intelligence, 2016.

Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke, Di He, and Tie-Yan Liu. How could
neural networks understand programs? In International Conference on Machine Learning,
2021.

Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten Holz.
Cross-architecture bug search in binary executables. In Symposium on Security and
Privacy, 2015.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir
Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Project codenet:
A large-scale ai for code dataset for learning a diversity of coding tasks. arXiv preprint
arXiv:2105.12655, 2021.

Dana Scott. Outline of a mathematical theory of computation. Kiberneticheskij Sbornik.
Novaya Seriya, 1977.

10

Under review as a conference paper at ICLR 2023

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn
better: The impact of student initialization on knowledge distillation. arXiv, 2019.

Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic neural program embedding for
program repair. International Conference on Learning Representations, 2018.

Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. Learning semantic program
embeddings with graph interval neural network. In Object-Oriented Programming, Systems,
Languages, and Applications, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
State-of-the-art natural language processing. In Empirical Methods in Natural Language
Processing: System Demonstrations, 2020.

Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. Neural detection of
semantic code clones via tree-based convolution. In International Conference on Program
Comprehension, 2019.

11

Under review as a conference paper at ICLR 2023

A Extended Theory

We first provide a formal definition of programming language.
Definition A.1. A programming language P = 〈L,L(·), J·K〉 is a tuple of:

• A language L ⊆ Σ∗ over an alphabet of symbols Σ

• An enumeration order L(·) : N→ L satisfying the conditions of computable enumer-
ability (i.e., for every element p ∈ L, there exists a unique n ∈ N such that Ln = p)
and such that |Ln| ≤ |Ln+1| for all n ∈ N.

• A denotation function J·K : L → (I → O) mapping programs to mathematical
functions, where the input space is I and the output space O is also equipped with
an equivalence relation = decidable in O(log |O|) time.

For convenience, we write p ∈ P to mean p ∈ L.

A.1 Existence

In this section, we give necessary and sufficient conditions for an equivalence-preserving
embedding function to exist.
Theorem A.1. An equivalence-preserving embedding function exists for a programming
language P = 〈L,L(−), J·K〉 exactly when there are finitely many semantic equivalence classes.

Proof. ⇒) The contrapositive is that every language with infinitely many semantic equivalence
classes does not have an equivalence-preserving embedding function. Suppose there were such
an equivalence-preserving embedding function into a set with n elements. Then, given n+ 1
semantically distinct programs, two distinct programs must have the same embedding by the
pigeonhole principle, so the embedding function is not equivalence-preserving. Contradiction.

⇐) We show that finitely many semantic equivalence classes implies the existence of an
equivalence-preserving embedding function. Choose J·K as the embedding function. Since
there are finitely many semantic equivalence classes, JLK is a finite set5, meaning it is
indeed an embedding. By definition, programs are functionally equivalent exactly when their
denotations are equal, so this embedding preserves equivalences as well.

The example below is a programming language that cannot be embedded.
Example A.2. The programming language of integers (e.g., -100, 1, 5 are all programs) has
no embedding because each number forms its own semantic equivalence class and there are
infinitely many numbers. More generally, languages with infinite datatypes such as linked
lists and binary trees have no embedding.

A.2 Computability

The embedding given by Theorem A.1 is not always useful because it may not be computable,
so we need a stronger condition to ensure computability.

The equivalence-preserving embedding function we develop in this section requires repre-
sentative programs for each semantic equivalence class in a programming language. The
following lemma provides a procedure to identify them.
Lemma A.3. When a programming language P = 〈L,L(−), J·K〉 has n semantic equivalence
classes and semantic equality is decidable, there is an algorithm that collects representative
programs p1, . . . , pn for each semantic equivalence class in finite time.

Proof. We enumerate through L, maintaining a set of representatives R for each semantic
equivalence class seen so far. For each program p we encounter, we check JpK = JrK for all

5JLK is notation for the image of the programming language under the denotation function (i.e,.
{JpK | p ∈ L})

12

Under review as a conference paper at ICLR 2023

r ∈ R. If p is inequivalent to all such r, then it represents a new semantic equivalence class,
and we add p to R. Once |R| = n, we have a representative for each semantic equivalence
class, so we terminate the procedure.

Now, we show the search for representatives terminates. Let C =
{
JeK−1 | e ∈ JLK

}
be a

partition of L into semantic equivalence classes. Each semantic equivalence class C ∈ C
has a member Li ∈ C that occurs before all other C ′ ∈ C in the enumeration order and
it does so in finite time, by computable enumerability. The algorithm will terminate after
encountering a representative from each class, so it will terminate after encountering the last
representative in the enumeration order. That is, it will terminate after

max

{
arg min
i,JLiK∈C

Li

∣∣∣∣∣ C ∈ C
}

iterations. This quantity is finite, because it is the maximum of a collection of finite values,
so the algorithm terminates in finite time.

Now, with the lemma above, we show decidable semantic equality is the only additional
property required to have necessary and sufficient conditions for a programming language to
be computably embedded.

Theorem A.4. There is a computable, equivalence-preserving embedding for a programming
language P exactly when there are finitely many semantic equivalence classes and semantic
equality is decidable in P (for every p, q ∈ P, JpK = JqK is decidable).

Proof. ⇒) Suppose we have a computable, equivalence-preserving embedding e for P. By
Theorem A.1, P must have finitely many semantic equivalence classes. Given programs
p, q ∈ P , we can decide semantic equality by checking e(p) = e(q), since e is computable and
equality of embeddings is computable.

⇐) Suppose P has n semantic equivalence classes and decidable semantic equality. By
Lemma A.3, we can find representative programs p1, . . . , pn in finite time. Then, we embed
a given program p by identifying the pi such that JpK = JpiK (using decidable equality of
programs), and setting the embedding e(p) to be i.

The following programming language can be embedded, but cannot be computably embedded.

Example A.5. Consider the programming language of Turing machine descriptions that
denote 1 if the Turing machine halts on all inputs and 0 otherwise. There are only two
semantic equivalence classes, so a program embedding function exists. However, it is not
computable because semantic equality is not decidable by a reduction from the Halting
problem.

Corollary A.6. There is a computable equivalence-preserving embedding for programming
languages with finite input and output spaces.

Proof. Let P be a programming language with finite input and output spaces I,O. There
are |O||I| possible denotations of functions in P . Let Q be a language of encodings of
these functions (e.g., programs in Q could be sets of every input-output pair). Since the
construction of Q is computable and it satisfies the conditions of Theorem A.4, we can
construct a computable equivalence-preserving embedding. We can then embed a program
in P by running it on every input, recording outputs, to write a program in Q that we
embed.

By Corollary A.6, bounded datatypes over bounded data such as all fixed-length lists of
bounded integers have computable equivalence-preserving embedding functions.

13

Under review as a conference paper at ICLR 2023

B Tractability Proofs

B.1 A Tractable Programming Language of Modular Addition

Theorem 4.1 The programming language of modular addition is tractable. In particular,
there are n2 semantic equivalence classes.

Proof. Every expression in the language denotes an expression of the form kx + c, where
0 ≤ k < n and 0 ≤ c < n, and each (k, c) pair indexes into a distinct function signature.
Thus, there are at most n2 semantic equivalence classes.

To show there are at least n2 equiv classes, we show that each pair is unique. All of
the equations below are mod n. When kx + c1 = kx + c2 where c1 6= c2, then c1 = c2,
contradiction. Suppose k1x+ c = k2x+ c where k1 6= k2, then (k2 − k1)x = 0, but at x = 1,
this means that k1 = k2, contradiction. When k1x+c1 = k2x+c2 where k1 6= k2 and c1 6= c2,
then (k2 − k1)x = c1 − c2, but at x = 0, this means c1 = c2, contradiction.

Thus, there are precisely n2 semantic equivalence classes. Evaluating the function at 0 and 1
gives us the coefficients (k, c) and takes time linear in the program size and constant in the
input space.

B.2 An Intractable Programming Language of Modular Addition and
Bitwise Logic

Theorem 4.2 If P 6= NP, the programming language of arithmetic and bitwise logic is
intractable.

Proof. Suppose we have a tractable embedding function e for P. We solve boolean satisfia-
bility by encoding a circuit as a program p and outputting SAT if and only if e(p) 6= e(0).
Therefore, we have a polynomial-time decision procedure for SAT, which is NP-complete,
and P = NP. Contradiction.

C Extended Methodology

C.1 Learning an Embedding Function

To learn an equivalence-preserving embedding function, we train a transformer neural network
to classify program text to a fixed set so that equivalent programs are mapped to the same
element of that set.

Dataset size |D| 18000
Train set size 12000
Test set size 3000

Validation set size 3000
Number of epochs (tractable) 333
Number of epochs (intractable) 600

Learning rate η 1e-4
Batch size |B| 128

AST size 11
Number of AST Samples 500,000
Trials per configuration6 3

Model. Kanade et al. (2020) showed that the BERT (large) is capable of learning program
embeddings that perform well across a number of programming language processing tasks.
Since our dataset is small when compared to the dataset size that BERT is trained on, we
opt for a smaller model: BERT-Tiny (Bhargava et al., 2021; Turc et al., 2019). We use
the BertForSequenceClassification model from the transformers library (Wolf et al.,
2020). We remove all dropout from the model. Table C.1 shows the hyperparameters for our
setup.

14

Under review as a conference paper at ICLR 2023

Training. We train the model on a standard cross-entropy loss using the Adam optimizer
with a learning rate of 1e-4. We shuffle the dataset D before each epoch, and we use a batch
size of 128. For the tractable language, we train for 333 epochs. For the intractable language,
this is not long enough to converge on all configurations, so we train for 600 epochs.

System. We run all Transformer experiments on an NVIDIA Tesla V100 GPU. For the
tractable language, each configuration takes about 20 minutes. For the intractable language,
each configuration takes about 2 hours.

C.2 Choice of AST Size

Since we want a fixed program length (meaning a fixed AST size), we want to show a fixed
AST size does not obscure the relationship between the input space size and the number
of semantic equivalence classes. Figure 7 shows that, for both languages, the relationship
between input space size and number of semantic equivalence classes is preserved as we
vary the AST size. In particular, this means if we included all AST sizes less than a given
bound, we would have the same relationship between the input space size and the number of
semantic equivalence classes. Thus, choosing a fixed AST size of 11 does not threaten our
results in this regard.

C.3 Dataset Generation

We first generate all ASTs of size 11 (Appendix C.3.2) and label them, then extract a
balanced subset (Appendix C.3.1).

For the tractable language, we generate datasets with 15000 examples each, and we use an
80/20 train/test split. For the intractable language, not all runs achieve 100% test accuracy,
so we generate a validation set as well. That is, we generate datasets with 18000 examples
each, and we use a 60/20/20 train/test/validation split. Note that due to the balanced-class
constraint in data generation, we generate a different dataset for each input space size and
language.

C.3.1 Balanced Dataset Generation

The distribution of equivalence classes in a random sample of generated ASTs is far from
uniform. The equivalence classes for functions λx. 0, λx. 1, and λx. x are represented
disproportionately often (≈ 17%, ≈ 7%, and ≈ 7%, respectively, at various moduli m ≥ 4)
and a long tail of infrequently occurring classes.

If we considered all ASTs, we might find enough examples for most classes to build a balanced
dataset, but at larger AST sizes, the set of all ASTs is quite large. For example, at size 11,
there are 22,240,092 ASTs. Enumerating this set and determining the equivalence class of
each would take prohibitively long. So we need to balance the number of classes c we pick
for the dataset and the number of examples per class x so the following equation is satisfied:
c · x = |D|.
Figure 4 plots equivalence classes, ordered by frequency, on the x axis and the number of
expressions in an equivalence class on the y axis. Navigating the balance of c and x amounts
to finding a rectangle in this plot with area |D|. If we wanted to, for example, have ≥ 5
examples per class (the brown line in the plot), we can see that increasing the number of
samples allows us to include more equivalence classes. Note that the strategy of finding
rectangles means we may underrepresent the true number of classes at a given modulus.

For each dataset we generate, we use the shortest rectangle with at least 6 examples per
class. That is, we want as many classes as possible, but we want at least 6 examples per
class (4 for training, 1 for test, and 1 for validation).

To generate the final dataset, we sample 500,000 ASTs and find a rectangle satisfying the
constraints above. Figure 5 shows that using 500,000 AST samples across all input space
sizes provides datasets with distributions of semantic equivalence classes that match the

15

Under review as a conference paper at ICLR 2023

Figure 4: Semantic equivalence classes sorted by the number of expressions in the equivalence
class.

Table 1: Number of semantic equivalence classes in dataset generated at each input space
size

Input Space Size 2 3 4 5 7 11
Tractable Classes 4 9 16 22 26 26
Intractable Classes 4 27 53 834 2143 3000

distributions of classes encountered during sampling. Table 1 shows the number of semantic
equivalence classes at each input space size in the final dataset.

C.3.2 AST Generation

We define AST size as the number of nodes in an AST. We generate ASTs of a fixed size
exhaustively by dynamic programming. Every generated program is valid (syntactically and
semantically). Our code also caches enumerated expressions of each expression size. To
generate an AST of size n, at the end of execution, all ASTs of size 1 to n are stored in the
cache and each unique expression of size n is generated precisely once.

The base case is a constant or variable of integration. For an AST of size n, the algorithm
generates all ASTs of size n− 1 and feeds each to the unary not function. Similarly, for every
binary operation the algorithm sets the left and right children to every possible AST pair
coming from the partition of n− 1 objects. Figure 6 provides the algoirthm described above
in Python syntax.

C.4 Choice of Input Space Size

The relationship between the input space size and the number of semantic equivalence
classes for the tractable language, meaning we could choose any increasing sequence of
input space sizes to answer our research question for the tractable language. However,
the relation between the input space size and the number of semantic equivalence classes
in the intractable language is complicated. In particular, it is not monotonic, but there

16

Under review as a conference paper at ICLR 2023

500,000 samples

1,000,000 samples

10,000,000 samples

Figure 5: Comparison of the number of semantic equivalence classes encountered during
sampling vs. the number of semantic equivalence classes included in the final dataset. We
make this comparison for sample sizes of 500,000, 1 million, and 10 million ASTs, and we
find that using 500,000 samples gives the number of encountered classes that matches most
closely with the number of classes in the final dataset.

17

Under review as a conference paper at ICLR 2023

def enum_ast(size: int) -> list[Expr]:
if size == 1:

return [i for i in CONSTS] + [Var("x")]

Unary trees
trees = [Not(e) for e in enum_ast(size - 1)]

Binary trees
for i in range(1, size - 1):

for binop in BINOPS:
for left in enum_ast(i):

for right in enum_ast(size - i - 1):
trees.append(binop(left, right))

return trees

Figure 6: The data generation algorithm to enumerate ASTs of a fixed size without caching.

exist monotone subsequences. Figure 7 shows the relationship for both languages. For our
empirical study, we identify {2, 3, 4, 5, 7, 11} as a sequence that provides a monotonically
increasing number of semantic equivalence classes for both languages.

18

Under review as a conference paper at ICLR 2023

Figure 7: Number of semantic equivalence classes encountered in 100,000 AST samples vs.
input space size. We plot this relationship for the tractable language in Section 4.1 (Top)
and the intractable language in Section 4.2 (Bottom) and for AST sizes from 1 through
11. (Top) For the tractable language, we only see new semantic equivalence classes at odd
AST sizes, since every operator is binary. At each AST size, as we increase the input space
size, the number of semantic equivalence classes increases monotonically until plateauing.
(Bottom) For the intractable language, we do not see a monotonic relationship between the
input space size and the number of semantic equivalence classes, for any AST size. However,
we do see that the relative relationship across input space sizes is preserved as we vary the
AST size.

19

	Introduction
	Equivalence-Preserving Program Embeddings In Practice
	A Theory of Equivalence-Preserving Program Embeddings
	Empirical Study
	A Tractable Programming Language of Modular Addition
	An Intractable Programming Language of Bitvector Arithmetic
	Methodology
	Varying Input Space Size
	Unifying Syntax
	Dataset Generation

	Experiments
	Results

	Discussion
	Approximate Equivalence-Preserving Program Embeddings
	Distance-Preserving Program Embeddings
	Modeling Non-Standard Semantics

	Conclusions
	Extended Theory
	Existence
	Computability

	Tractability Proofs
	A Tractable Programming Language of Modular Addition
	An Intractable Programming Language of Modular Addition and Bitwise Logic

	Extended Methodology
	Learning an Embedding Function
	Choice of AST Size
	Dataset Generation
	Balanced Dataset Generation
	AST Generation

	Choice of Input Space Size

