
Zero-Shot Mathematical Problem Solving with Large Language Models via
Multi-Agent Conversation Programming

Vivian Keating
GotIt! Education

vivian@gotitapp.co

Abstract

This research explores the application of conversation pro-
gramming and multi-agent collaboration techniques to en-
hance the zero-shot, mathematical problem solving of Large
Language Models (LLMs), with a specific focus on GPT-4.
We compare various math solver strategies: a straightforward
system prompt (Raw), a single-agent with Python access, and
a multi-agent solution (Aurek), vs a single agent solution
explored in prior work. Here two agents, ’Aurek’ and
’Besh’, work together through conversation programming
and the social dynamics between them is central to achieving
accurate final results. In the context of using the GPT-4
and without providing additional mathematical knowledge,
we achieve a state-of-the-art 62.69% accuracy for zero-shot
solution generation on a representative subset of the MATH
dataset.

Introduction
Large language models (LLMs) and GPT-4 specifically
are powerful for solving mathematical problems (Lightman
et al. 2023; OpenAI 2023; Bubeck et al. 2023), but
suffer from both arithmetical and conceptual errors. Recent
advances have successfully augmented GPT-4’s capabilities
through prompt engineering, Python code execution (Wu
et al. 2023b; Gou et al. 2023; Gao et al. 2023; Zhou et al.
2023), and chain-of-thought reasoning (Kojima et al. 2023;
Wei et al. 2023).

However, in the new paradigm of conversation program-
ming as proposed by (Wu et al. 2023a) in their work on
AutoGen, we view Python code execution through the lens
of a conversation with a REPL. This paradigm is also
leveraged to create a multi-agent strategy, in this case two
agents, Aurek and a debate partner Besh, to help encourage
divergent thinking (Liang et al. 2023). We find that optimal
performance of these methods depends heavily on the ’social
dynamics’ between the agents in our system.

Conversational Problem Solving
An example of a dialog between the two agents is presented
here:

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Compute

1000∑
n=1

1

n2 + n
.

Aurek: Hey Besh, I’m trying to solve the sum of
1

n2+n from n=1 to 1000. I remember that these
kinds of problems sometimes have a trick to them,
like partial fraction decomposition or something. I’m
thinking of starting by factoring the denominator.
What do you think?
Besh: Yeah, Aurek. You are on the right track. That
sounds good! We can try to factor the denominator
n2 + n. This gives us n(n + 1). The next step would
be to express the 1

n(n+1) as the difference of two
fractions where one is in terms of n and the other is in
terms of (n+1). Why don’t you give that a shot?
Code Execution...
Aurek: I did the partial fraction decomposition and
found that 1

n(n+1) =
1
n − 1

n+1 . This should help with
the sum because the terms are going to cancel out a
lot when I add them up, right?
Besh: Precisely, Aurek! That’s the beauty of the
Telescoping Series. Given that 1

n(n+1) = 1
n − 1

n+1 ,
when you do the sum, most of the terms will indeed
cancel out. The first few terms, for example, would
look like: 1− 1

2 +
1
2 −

1
3 +

1
3 −

1
4 +

1
4 − . . . Notice how

most terms are getting subtracted right after being
added? They ’telescope’ down each time. So how can
we apply this concept to the sum from n = 1 to 1000?
Code Execution...
Aurek: Besh, it looks like after applying the concept
of Telescoping Series to the sum, all terms except the
last term of each fraction cancel out. The sum from
n=1 to 1000 simplifies to just the first term of the first
fraction minus the last term of the last fraction, which
is 1000

1001 . Does that seem right to you?
Code Execution...
Besh: ”That’s correct, Aurek! After simplifying the
series, we just need to calculate 1 − 1

1001 , and this
gives 0.999, which is the answer to your sum. This
telescoping trick can make solving sums like this



a lot easier—it’s a good tool to have in your math
toolbox!”
Solution To compute

∑1000
n=1

1
n2+n , we can factor the

denominator as n(n+1). We then use partial fraction
decomposition to write 1

n(n+1) as the difference of
two fractions: 1

n − 1
n+1 . When we apply this to the

sum, we get a telescoping series where all terms
cancel except for the first term of the first fraction
and the last term of the last fraction. Therefore, the
sum simplifies to:

∑1000
n=1

(
1
n − 1

n+1

)
= 1

1 − 1
1001 .

Evaluating this, we have 1 − 1
1001 = 1000

1001 . So,∑1000
n=1

1
n2+n = 1000

1001 . This result has been verified
by both calculation and by consulting with my friend
Besh, who agrees with the solution.
Grader Great job! Your solution is correct and your
use of the partial fraction decomposition method to
simplify the sum was perfectly implemented. You
understood that it simplifies to a telescoping series
where most of the terms cancel out. Keep up the good
work!

Methodology
Solver Strategies
• Raw - A bare-bones agent with a simple system prompt,

”Solve the problem. Show all steps.”
• Python - A single-agent solution that includes a conver-

sation programming interface with the IPython REPL.
• Aurek - A multi-agent solution with two Agents named

’Aurek’ and ’Besh’. Each agent has access to the IPython
REPL. Aurek can ask Besh for help by passing messages,
however, Aurek alone decides when to submit the final
answer.

Conversation Programming
The benefits of multi-agent solutions are highly dependent
on the ’social structure’ of the initial system prompts. The
Aurek strategy works best when the agents are encouraged
to disagree and debate as they work through the solution.
Our early iterations modeled the multi-agent relationship as
a student and teacher, but we found that the teacher had an
outsized influence on the final answer. Therefore our system
prompts were modeled on a peer relationship.

We also found that GPT-4 by default is often too polite
and would not adequately challenge the assumptions of
the other agent. Therefore our prompts for the multi-agent
solution differed slightly. Aurek was encouraged to submit
a solution as a tiebreaker, while Besh was encouraged to
challenge assumptions and confirm important details.

Grading Strategy
We leveraged GPT-4 to grade the correctness of the gen-
erated answers, which we believe has better accounted for
equivalent mathematical representations than other methods.
The grading agent has unique access to the ground truth
solution. All answers are judged as best-of-one.

Raw Python Aurek

GPT-4 50.41% 56.74% 62.69%
GPT-3.5 33.33% 34.83% 43.65%

Table 1: Best-of-one accuracy on a subset of the MATH
(Hendrycks et al. 2021) dataset.

Results
The results from our study, shown in Table 1, indicate a
clear advantage of the multi-agent solution, Aurek, over the
Raw and Python strategies. Specifically, in the case of GPT-
4, the accuracy of solutions was measured at 62.69% for
Aurek, compared to 56.74% for Python and 50.41% for
Raw. For GPT-3.5, the performance gains were even more
pronounced.

Related Work
Our evaluation here used the ’gpt-4-0613’ model snapshot
to achieve state-of-the-art performance with that architecture
in a best-of-one, zero-shot, no-retrieval augmentation envi-
ronment. However we are aware that more recent OpenAI
models, not widely available during our experimentation,
have demonstrated even better performance. For GPT-
4 ’with Code Interpreter’ state-of-the-art accuracy results
on MATH are 84.3% (Zhou et al. 2023), a significant
improvement over our findings.

In a conversation programming framework where the
agent has access to a vector database with retrieval augmen-
tation we note that an accuracy of 69.48% is possible (Wu
et al. 2023a). We decided to first baseline just the multi-
agent approach in conversation programming with zero-
shot, no-retrieval, and in future work we will add retrieval
augmentation with access to a vector database to observe the
incremental performance improvement, and whether it will
exceed AutoGen’s 69.48% results.

Finally, 78.2% accuracy has been shown if we allow
model retraining and determine the final answer as the best-
of-1860 (Lightman et al. 2023). Again, in future work we
will be able to observe the improvement of results achieved
in multi-agent conversation programming with ”best-of” and
model retraining techniques applied.

Conclusion
This study illustrates the potential of multi-agent con-
versation programming with specific social dynamics in
enhancing the mathematical problem-solving abilities of
Large Language Models like GPT-4. The introduction of
a multi-agent system, characterized by both collaborative
and conflicting interactions between agents, is often more
effective than single-agent prompt strategies.

Our findings offer additional evidence for a paradigm shift
in the approach to LLMs, where conversation programming
and multi-agent collaboration become central to problem-
solving strategies. The success of the Aurek strategy, charac-
terized by peer-to-peer interaction and debate, underscores
the importance of social dynamics in artificial intelligence.



Acknowledgements
We would like to recognize the review of and comments to
this paper by Dr. Gokhan Tur, Dr. Dilek Haqqani-Tur, and
Peter Relan.

References
Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; Nori, H.; Palangi, H.; Ribeiro, M. T.; and Zhang, Y. 2023.
Sparks of Artificial General Intelligence: Early experiments
with GPT-4. arXiv:2303.12712.
Gao, L.; Madaan, A.; Zhou, S.; Alon, U.; Liu, P.; Yang,
Y.; Callan, J.; and Neubig, G. 2023. PAL: Program-aided
Language Models. arXiv:2211.10435.
Gou, Z.; Shao, Z.; Gong, Y.; Shen, Y.; Yang, Y.; Duan, N.; and
Chen, W. 2023. CRITIC: Large Language Models Can Self-
Correct with Tool-Interactive Critiquing. arXiv:2305.11738.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021. Measuring
Mathematical Problem Solving With the MATH Dataset.
arXiv:2103.03874.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2023. Large Language Models are Zero-Shot Reasoners.
arXiv:2205.11916.
Liang, T.; He, Z.; Jiao, W.; Wang, X.; Wang, Y.; Wang, R.;
Yang, Y.; Tu, Z.; and Shi, S. 2023. Encouraging Divergent
Thinking in Large Language Models through Multi-Agent
Debate. arXiv:2305.19118.
Lightman, H.; Kosaraju, V.; Burda, Y.; Edwards, H.; Baker,
B.; Lee, T.; Leike, J.; Schulman, J.; Sutskever, I.; and Cobbe,
K. 2023. Let’s Verify Step by Step. arXiv:2305.20050.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang,
L.; Zhang, X.; Zhang, S.; Liu, J.; Awadallah, A. H.; White,
R. W.; Burger, D.; and Wang, C. 2023a. AutoGen: Enabling
Next-Gen LLM Applications via Multi-Agent Conversation.
arXiv:2308.08155.
Wu, Y.; Jia, F.; Zhang, S.; Li, H.; Zhu, E.; Wang, Y.; Lee,
Y. T.; Peng, R.; Wu, Q.; and Wang, C. 2023b. An Empirical
Study on Challenging Math Problem Solving with GPT-4.
arXiv:2306.01337.
Zhou, A.; Wang, K.; Lu, Z.; Shi, W.; Luo, S.; Qin, Z.; Lu, S.;
Jia, A.; Song, L.; Zhan, M.; and Li, H. 2023. Solving Chal-
lenging Math Word Problems Using GPT-4 Code Interpreter
with Code-based Self-Verification. arXiv:2308.07921.


