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Abstract

We propose MultiViewPano, a training-free framework for
360° panorama generation from one or more arbitrarily
posed input images. Our approach leverages a pretrained
multi-view diffusion model to synthesize novel views along
a virtual camera trajectory, which are then fused using a
custom pose-aware stitcher. Unlike prior methods that re-
quire fixed field-of-view inputs or task-specific fine-tuning,
MultiViewPano supports flexible camera poses and gener-
alizes across diverse scenes. Our experiments demonstrate
that our method achieves competitive visual fidelity com-
pared to state-of-the-art approaches, while offering greater
flexibility and simplicity.

1. Introduction

360° panorama generation aims to create a coherent
panorama from one or more input views. This task overlaps
with Novel View Synthesis (NVS), which generates images
from novel viewpoints. Imagining regions beyond the input
image requires inferring scene geometry, occluded content,
and preserving geometric consistency.

360° panoramic images play a crucial role in applica-
tions such as virtual reality, realistic material design, and
scene reconstruction [7]. Unlike standard rectilinear im-
ages, panoramas capture a full horizontal Field of View
(FoV) from a specific vantage point, providing rich geomet-
ric and contextual information about the surrounding envi-
ronment. Existing panoramic datasets are small and lack
scene diversity compared to standard vision datasets.

Existing techniques rely on fine-tuning diffusion mod-
els on these datasets, to learn a specific panorama projec-
tion format (e.g., cubemap or equirectangular). This train-
ing limits generalization. For example, CubeDiff produces
high quality cubemap panoramas but requires inputs at ex-
actly 90° FoV [17].

Outpainting approaches such as PanoDiffusion [29] can
extend to multiple inputs, but assume all crops originate
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Figure 1. Existing methods focus on generating panoramas from a
single image, assumed to have a 90° FoV. Our method extends to
multiple arbitrarily posed inputs and FoV. In example A, the input
images are from the ScanNet++ dataset [31]. Example B uses a
perspective crop from the SUN360 dataset [30]. Both panoramas
shown here were generated using our method.

from a single camera location. This is an impractical re-
quirement for real-world captures.

Multi-view diffusion models, trained on video and view-
consistent image datasets, naturally inherit spatial and tem-
poral priors. These models learn to respect viewpoint co-



herence, parallax, and object permanence, properties that
are critical for panorama stitching but absent in single-view
models.

We present a training-free framework for 360° panorama
generation that leverages a pretrained multi-view diffusion
model. Our method samples virtual camera trajectories to
densely cover the scene from overlapping viewpoints, and
fuses the generated views via a custom pose-aware stitching
pipeline. This design avoids task-specific fine-tuning and
supports single or multi-image inputs with arbitrary FoV
and camera poses. Panoramas can be synthesized from any
desired position within the scene, as illustrated in Figure 1.

Our key contributions are:

1. We analyze the limitations of existing panorama-
generation approaches and motivate a training-free al-
ternative.

2. We introduce MultiViewPano, a novel pipeline that ac-
cepts one or more input views, generates additional
frames, and stitches them into a 360° panorama, using
our novel pose-aware stitcher.

3. We achieve competitive visual quality and robustness
across diverse datasets, on par with state-of-the-art meth-
ods.

2. Related Work

2.1. Panorama Generation

Panorama synthesis can be broadly divided into Text-to-
Panorama [5, 9, 27, 32] and Image-to-Panorama [8, 17, 29,
33]. Most existing methods fine-tune Stable Diffusion to
predict an equirectangular panorama via progressive out-
painting or multi-view generation, but this strategy often
produces noticeable geometric distortions [33]. CubeD-
iff [17] alleviates these artifacts by generating the six per-
spective faces of a cubemap, better matching the inductive
biases of the pretrained model. Likewise, MVDiffusion [26]
generates eight perspective views using a correspondence-
aware attention architecture. The views can then be stitched
into a full 360° panorama, albeit with a restricted vertical
FoV.

2.2. Novel View Synthesis

Stable Virtual Camera (SEVA) stands apart as a general-
ist diffusion model; it accepts any number of input images
with unrestricted camera intrinsics and extrinsics, and di-
rectly samples novel views at user-specified poses. SEVA
achieves state-of-the-art consistency and fidelity across di-
verse benchmarks [16]. Other notable contributions are
GEN3C [23] and CAT3D [11]. In this paper we use SEVA,
but this component of the proposed pipeline is interchange-
able with any multi-view conditioned model.

2.3. Image stitching

Image stitching refers to the process of combining multi-
ple overlapping images into a single seamless representa-
tion. Brown and Lowe’s seminal work [3] established the
foundation for modern image-stitching techniques by intro-
ducing an algorithm for the automatic alignment and blend-
ing of overlapping images. The proposed pipeline relies on
Scale-Invariant Feature Transform (SIFT) [20] for matching
keypoints between images and Random Sample Consensus
(RANSACQC) [10] for estimating homographies.

Once image positions on the stitching canvas are deter-
mined, subsequent processing involves gain compensation
to equalize exposure and color discrepancies, followed by
blending. A widely adopted technique is multi-band blend-
ing [4], in which each input image is decomposed into mul-
tiple spatial-frequency bands and then recombined using
spatially varying weights.

Recent approaches have proposed neural image stitching
methods [18, 24], which train end-to-end networks to align
and blend image pairs. However, their pairwise training
paradigm limits scalability to large image sets, making them
unsuitable for constructing full equirectangular panoramas.

2.4. Neural Radiance methods

NeRF [21] introduces a neural radiance field approach that
learns a continuous 3D scene representation via a neu-
ral network. From this representation, full equirectangu-
lar panoramas can be rendered directly. When camera
poses are known, NeRF-style methods offer an alternative
to classic stitching, acting as interpolators to create seam-
less equirectangular projections.

Building on classical light field approaches [13, 19] and
recent advances in neural light field representations [1, 25],
Neural Light Spheres (NLS) [6] propose a compact spher-
ical representation that implicitly stitches and re-renders
panoramic frame sequences. The NLS can re-render a se-
quence of frames and also generate higher FoV images of
the scene. As the authors denote in their paper, this method
constitutes an implicit image-stitching approach.

3. MultiViewPano

We propose MultiViewPano, a training-free and flexible
pipeline for 360° panorama generation from one or more
arbitrarily posed input images. As shown in Figure 2, the
method comprises two stages: (1) frame synthesis using
SEVA, and (2) a pose-aware image stitching module.

3.1. Stable virtual Camera

To generate a full 360° panorama with SEVA, we must first
specify a set of camera poses that cover the 360 scene. We
consider two simple pose sets:
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Figure 2. MultiViewPano overview: from a 90°—cropped input image, we generate a virtual camera trajectory around the scene center,
synthesize multiple views with SEVA, and stitch them into a complete 360-degree panorama.

1. Pure panoramic rotation: A ring of poses at a fixed
spatial location, each differing only in latitudinal angle,
spanning 360°. No translational offset is applied.

2. Panorama circle: Similar to 1. but camera poses are
placed radially outward on a small circle.

These two pose sets yield complete 360° horizontal cov-
erage, although with a restricted vertical FoV.

SEVA exhibits two key limitations when sampling poses:

1. Multi-View Consistency. When only a single input im-
age is provided, the synthesized frames often exhibit vi-
sual discontinuities. While additional input views im-
prove consistency, residual artifacts may persist.

2. Pose Consistency. If the requested poses are spatially
distant from one another, results can look visually con-
sistent, yet the poses themselves do not align on a single
viewing sphere.

Consequently, to minimize multi-view and pose incon-
sistencies, we restrict our evaluation to those two pose sets.

3.2. Spherical Mapping

Each rectilinear frame is first converted to unit-sphere polar
coordinates using the pinhole camera model centered at the
origin.

K[z, y, 1T
K [z, g, 1Tl
where K is the intrinsics matrix containing the focal lengths

and principal point and R is the camera rotation from frame
metadata. Longitude 6 and latitude ¢ are then

0 = atan2(d,, d.),

dcam =

dworld =R dcama (1 )

¢ = arcsin(d,), )
which map to equirectangular pixel coordinates
u=(m+6)/@OW, v=(p+1/2)/rH O

Forward bilinear splatting accumulates each source pixel
into its four neighbouring (u, v) bins.

3.3. Camera-Pose based Stitcher

Given the mapped frames, our camera-pose based stitcher
proceeds in two steps:

Seam finding. For every overlapping frame pair we com-
pute an Lo colour cost in the overlap and extract the min-
imum cost vertical seam per connected component via dy-
namic programming.

Feather blending. Seams partition the canvas into dis-
joint regions. For each seam we linearly blend a symmetric
+w-pixel band,

I(u,v) = aIi(uvv) + (1 - a) Ij(uvv) “)

where,

di—d;
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after a simple per-channel gain match in the overlaps. This
pose-aware blending removes visible discontinuities while
remaining fast and robust to parallax.

4. Experiments

In this section, we present our experimental findings.

4.1. Experimental setup

Datasets: We evaluate on two standard panorama bench-
marks, Laval Indoor [12] and SUN360 [30]. For each, we
randomly select 1000 equirectangular images as our test
size.

Evaluation metrics. We use Fréchet Inception Distance
(FID) [14] and Kernel Inception Distance (KID) [2] to eval-
uate generation quality. FID measures the distance between
feature distributions of generated and real images. KID
computes the squared MMD using a polynomial kernel.
Baselines: We compare against CubeDiff, PanoDiffusion,
and OmniDreamer. Following CubeDiff’s protocol, we ex-
tract 10 random 90° FOV perspective crops from both gen-
erated and ground-truth panoramas, evaluating on 1000 im-
ages per dataset to ensure a fair comparison.

Stitching algorithms: We first run two off-the-shelf stitch-
ers (Hugin and OpenCV’s Stitcher [15], [22], [28]),
which do not take camera poses, then our custom, pose-
based stitcher.

4.2. Ablation Study

Full results are provided in the supplementary material. In
brief, we varied SEVA’s key hyperparameters and found the
following optimal configuration: using our custom stitcher,
classifier-free guidance weight of 5, camera-scale of 0.1,
with a panorama circle trajectory on Laval Indoor and a
pure panoramic rotation on SUN360.
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Figure 3. Qualitative comparison on two example scenes. For each scene, we show the full generated panorama (the central 90° region
denotes the input image) followed by two 90° rectilinear views of synthesized areas. Results for baseline methods are taken directly from

the CubeDiff paper [17].

4.3. Quantitative evaluation

In Table | the results of our quantitative evaluation on Laval
indoor and SUN360 bechmarks can be seen. Our method
outperforms previous outpainting approaches and has com-
parable results with the current SOTA CubeDiff, despite be-
ing training-free.

4.4. Qualitative evaluation

In Figure 3 the qualitative results of our method in com-
parison to the other methods can be seen. Similar to the
quantitative, the qualitative results surpass PanoDiffusion
and OmniDreamer and are on par with CubeDiff.

LAVAL Indoor SUN360
FID| KID(x10%)] FID] KID(x10%)|
OmniDreamer 71.0 5.17 92.3 8.89
PanoDiffusion 58.6 4.08 52.9 3.51
CubeDiff 117 0.47 27.4 135
MultiViewPano 17.5 0.83 28.2 1.25

Table 1. Comparison of FID and KID on Laval Indoor and
SUN360 in the single image to panorama setting. Baseline re-
sults are taken directly from the CubeDiff paper [17].

5. Conclusion

We have presented MultiViewPano, a training-free frame-
work that combines SEVA view synthesis with a novel
camera-pose based stitcher to produce 360° panoramas
from one or more arbitrarily posed inputs. By sampling
simple pose sets and mapping each rectilinear frame onto
the unit sphere, we generate consistent overlapping views.
Our custom lightweight stitcher then finds optimal seams
and applies feathered blending to remove discontinuities.
Future work will focus on:

1. Exploring full coverage camera trajectories to extend
vertical FoV and mitigate the inconsistencies that arise
with it.

2. Developing a learning based approach for stitching, in-
spired by NeRF.

3. Establishing a benchmark for evaluating multi-view to
panorama generation.

Overall, this work demonstrates how pretrained multi-view

diffusion models with a camera-aware stitcher, can form a

general, flexible foundation for panorama generation.
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