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Abstract

As a well-known machine learning algorithm,
sparse Bayesian learning (SBL) can find sparse
representations in linearly probabilistic models
by imposing a sparsity-promoting prior on model
coefficients. However, classical SBL algorithms
lack the essential theoretical guarantees of global
convergence. To address this issue, we propose an
iterative Min-Min optimization method to solve
the marginal likelihood function (MLF) of SBL
based on the concave-convex procedure. The
method can optimize the hyperparameters related
to both the prior and noise level analytically at
each iteration by re-expressing MLF using auxil-
iary functions. Particularly, we demonstrate that
the method globally converges to a local mini-
mum or saddle point of MLF. With rigorous theo-
retical guarantees, the proposed novel SBL algo-
rithm outperforms classical ones in finding sparse
representations on simulation and real-world ex-
amples, ranging from sparse signal recovery to
system identification and kernel regression.

1. Introduction
Sparse Bayesian learning (SBL) originally addresses the is-
sue of obtaining sparse representations over the input space
to the corresponding target in supervised learning (Tipping,
2001). Mathematically, we can formalize the problem as
finding a sparse solution to the following linearly probabilis-
tic model:

y = Φ(x)w + ε, (1)
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where y ∈ Rn is the output vector, Φ(x) ∈ Rn×m is the
overcomplete dictionary matrix composed of basis func-
tions on the input vector x, w ∈ Rm is the unknown weight
vector, and ε is the uncorrelated Gaussian noise distributed
as N (0, λIn) with the unknown variance λ. Notably, re-
alizing sparse recovery for w is a fundamental problem
in machine learning communities with applications to var-
ious science and engineering disciplines, such as signal
processing (Donoho, 2006; Kümmerle et al., 2021; Ament
& Gomes, 2021a), system identification (Yuan et al., 2019;
Sun et al., 2021; 2022; Wang et al., 2023), and regression
and classification tasks (Figueiredo, 2003; Ren et al., 2020).
Consequently, it is particularly important to design an op-
timization method with rigorous theoretical guarantees for
solving (1) given the sparse constraint on w.

To encourage the sparsity of representations, SBL imposes
a sparsity-promoting prior p(w | γ) on w to balance model
complexity and modeling error (Tipping, 2001; Ament &
Gomes, 2021b), where γ is the hyperparameter vector. In-
corporating the sparsity-promoting prior, the automatic rel-
evance determination framework is naturally implemented
to remove irrelevant basis functions (MacKay, 1992; 1995).
Following Bayes’ rule, combining the prior distribution
p(w | γ) and likelihood function p(y | w, λ) can derive the
posterior distribution of w as follows:

p(w | γ, λ) ∝ p(w | γ)p(y | w, λ). (2)

Furthermore, the unknown hyperparameters coupled in the
posterior distribution can be estimated by maximizing the
marginal likelihood function (MLF) as follows:∫

p(y | w, λ)p(w | γ)p(γ)p(λ)dw, (3)

where p(γ) and p(λ) are non-informative priors imposed
on γ and λ, respectively. It is also referred to as evidence
maximization or type-II maximum likelihood (Neal, 2012;
Magris & Iosifidis, 2023). However, current optimization
methods used for maximizing the MLF of SBL lack the
essential theoretical guarantees of global convergence.

In this paper, we propose a novel optimization method to
maximize the MLF of SBL. To this end, we first demonstrate
that MLF is the sum of a concave function and a convex
function. For such optimization problems, the concave-
convex procedure (CCCP) provides an iterative method to
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update unknown variables by introducing a latent variable
to linearize the concave part (Yuille & Rangarajan, 2001).
However, leveraging CCCP to directly solve the MLF of
SBL still remains a difficult challenge because the derived
subproblem lacks a closed-form solution. To address this is-
sue, we introduce an additional latent variable to re-express
the data-dependent term in the subproblem. As such, we
propose an iteratively Min-Min optimization method to an-
alytically update the unknown hyperparameters and latent
variables in turn conditioned on the current value of the other.
In summary, the contributions of this paper are threefold:

1. We propose a novel method to maximize the MLF of
SBL, which can optimize the hyperparameters related
to both the prior and noise level analytically at each iter-
ation. Additionally, we demonstrate that the proposed
optimization method is equivalent to the iteratively
reweighted ℓ2 minimization in the SBL framework.
Particularly, the proposed optimization method pro-
vides a principled rule to update the regularization and
weighting parameters at each iteration, which remains
unclear how to obtain such insights to update their
values in current ℓ2 reweighting schemes.

2. Leveraging the Global Convergence Theorem (Luen-
berger & Ye, 1984), we demonstrate that the proposed
optimization method is globally convergent, indicating
that the generated series of points converges to a lo-
cal minimum or saddle point of MLF for any starting
point. To the best of our knowledge, we are the first to
propose a globally convergent SBL algorithm without
fixing the noise level.

3. We demonstrate the proposed novel SBL algorithm
on simulation and real-world problems to validate its
capability for sparse recovery from overcomplete dic-
tionaries, including sparse signal recovery, system iden-
tification, and sparse kernel regression. Benchmarked
against classical SBL algorithms, experimental results
illustrate its superior performance in finding sparse
solutions.

1.1. Related Work

Generally, it is difficult to obtain an estimate of the hyperpa-
rameters related to both the prior and noise level by directly
maximizing the MLF of SBL (Tipping, 2001). Hence, cur-
rent studies mainly focus on using iterative optimization
methods to address this issue. Here, we briefly review the
related work to this paper.

MacKay Updates: In the pioneering work, Tipping (2001)
employs the MacKay updates to iteratively estimate the
hyperparameters. The basic idea of the MacKay updates
is to set the gradient of MLF to zero, and then form the

fixed-point updates. While empirically faster to converge,
the MacKay updates are unable to guarantee the global
convergence (Wipf & Nagarajan, 2007). Additionally, the
MacKay updates cannot even ensure an increase in MLF at
each iteration.

Expectation-Maximization Algorithm: Except for the
MacKay updates, Tipping (2001) also uses the expectation-
maximization (EM) algorithm to maximize the MLF of SBL.
The EM algorithm is a classical iterative method to find max-
imum likelihood estimate of MLF, where the probabilistic
model typically involves latent variables in addition to un-
known hyperparameters. In SBL, the weight vector w is
regarded as the latent variable to facilitate the optimization
of MLF (Wipf & Rao, 2004b; Zhao et al., 2020). More
specifically, in the expectation step, we can conveniently
derive the expected log-likelihood with respect to w, as it
has a closed-form posterior distribution. Accordingly, in
the maximization step, we can maximize the expected log-
likelihood to find the optimal hyperparameters at the current
iteration. Leveraging the EM algorithm, Liu & Rao (2019)
further develop a concise SBL method to solve robust prin-
cipal component analysis problems. Recently, to reduce
computational complexity, approximate message passing
(AMP) methods are employed to approximate the posterior
distribution of w to implement the expectation step (Fang
et al., 2016; Al-Shoukairi et al., 2017; Zhang et al., 2023).

Following the discussion in Wipf & Nagarajan (2007);
Ament & Gomes (2021b), the EM updates cannot ensure
global convergence because they can get trapped in a fixed
point instead of a stationary point or local minimum of MLF.
Additionally, the EM algorithm has an inherently slow nu-
merical convergence (Wu, 1983).

Variational Inference: In variational inference (VI), the log
marginal distribution is decomposed into a lower bound and
a Kullback–Leibler (KL) divergence by introducing a varia-
tional distribution (Jacobs et al., 2015). Subsequently, VI
utilizes the mean-field theory to maximize the lower bound
to perform the optimal approximation of the marginal distri-
bution (Blei et al., 2017). Based on VI, Jacobs et al. (2018)
develop a computationally efficient SBL algorithm to learn
nonlinear autoregressive with exogenous input (NARX)
models. Combining VI and Gaussian processes, Jin et al.
(2020) present a high precision SBL algorithm to infer the
topology of sparse linear networks. Recently, Ray & Szabó
(2022) apply VI with Laplace prior slabs to solve high-
dimensional sparse linear regression problems. Because the
mean-field theory imposes independence assumptions on
unknown variables, VI only obtains a distribution close to
the joint posterior distribution and thus lacks rigorous theo-
retical guarantees of global convergence for SBL currently.

Iteratively Reweighted ℓ1 & ℓ2 Minimization: Re-
expressing the MLF of SBL via auxiliary functions, Wipf &
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Nagarajan (2007); Pan et al. (2015) develop an iteratively
reweighted ℓ1 minimization method to optimize the corre-
sponding upper bounding auxiliary cost function. While
they demonstrate that the iteratively reweighted ℓ1 mini-
mization method converges to a local maximum or saddle
point of MLF, only a sketch is available for the proof. Ad-
ditionally, such method needs to set the noise level to be
known in theoretical analysis and algorithm design. How-
ever, a priori knowledge of the noise level is not available in
many cases, and it is application-dependent and potentially
sensitive. Using a different upper-bounding auxiliary func-
tion, Wipf & Nagarajan (2010) further present an iteratively
reweighted ℓ2 minimization method to optimize the refor-
mulated objective function. The method can either reduce
the reformulated objective function or leave it unchanged,
but does not fulfill all the technical conditions required to
ensure global convergence.

2. Methodology
2.1. Framework of SBL

Basically, SBL infers the weight vector w via its posterior
distribution composed of the likelihood and prior functions.
In addition, the hyperparameters related to both the prior and
noise level, which are coupled in the posterior distribution,
are estimated by maximizing the corresponding MLF.

The likelihood function1 corresponds to (1) is

p(y | w, λ) = (2πλ)−
n
2 exp

(
−∥y −Φw∥22

2λ

)
. (4)

Note that SBL adopts a hierarchical interpretation of the Stu-
dent’s t-distribution prior to enforce the sparsity of w, which
is beneficial for the implementation of optimization proce-
dures (MacKay, 1999; Tipping, 2001; Figueiredo, 2003).
First, it imposes the Gaussian prior on w as follows:

p(w | γ) =
m∏
i=1

1√
2πγi

exp

(
−w2

i

2γi

)
, (5)

where wi is the ith component of w, and γ = [γ1, . . . , γm]′

is the hyperparameter vector with γi controlling the variance
of wi. To complete the hierarchy, it subsequently defines
the Inverse-Gamma distribution over each hyperparameter
γi as follows:

p(γ) =

m∏
i=1

ab00
Γ(a0)

γ−a0−1
i exp

(
−b0
γi

)
, (6)

where Γ(·) is the gamma function, a0 is the shape parameter,
and b0 is the scale parameter. As p(w) =

∫
p(w|γ)p(γ)dγ

follows the Student’s t-distribution, it is equivalent to a

1For the simplicity of notation, Φ(x) is recorded as Φ.

two-level hierarchical Bayesian model. Finally, the Inverse-
Gamma distribution is also imposed on the remaining hyper-
parameter λ, severing as a conjugate prior of the likelihood
function:

p(λ) =
ab00

Γ(a0)
λ−a0−1 exp

(
−b0

λ

)
. (7)

Generally, a0 and b0 are set to small values to generate
non-informative priors for γ and λ.2

For fixed γ and λ, combining the likelihood function in (4)
and prior distribution in (5) gives the posterior distribution
of w as follows:

p(w | γ, λ) = N
(
µ,Σ−1

)
, (8)

where

µ = λ−1Σ−1ΦTy, (9)

Σ = λ−1ΦTΦ+ Γ−1, (10)

and Γ = diag[γ]. Based on the maximum a posteriori
(MAP) principle, the mean µ is regarded as the estimate of
w. To estimate γ and λ coupled in µ, an essential procedure
is to maximize the MLF in (3). Mathematically, this is
equivalent to minimizing the negative logarithm of MLF
with the form:

L(γ, λ) = log |Π|+ yTΠ−1y +

m∑
i=1

(2a0 + 2) log γi

+

m∑
i=1

2b0
γi

+ (2a0 + 2) log λ+
2b0
λ

, (11)

where Π = λIn +ΦΓΦT .

2.2. Analysis of L(γ, λ)

The difficulty in minimizing (11) is that it is a non-convex
function and λ and γ are highly coupled in log |Π| and
yTΠ−1y. To develop an efficient algorithm for estimating
γ and λ, we first demonstrate that L(γ, λ) is the sum of a
concave function and a convex function. As such, we then
design an iterative Min-Min method to optimize (11) based
on the CCCP framework.

To start we divide L(γ, λ) into the following two parts:

L(γ, λ) = L1(γ, λ) + L2(γ, λ), (12)

where

L1(γ, λ) = log |Π|+
m∑
i=1

(2a0 + 2) log γi

+ (2a0 + 2) log λ, (13)

2Without the prior knowledge of γ and λ, their shape and scale
parameters need to be set very small to generate non-informative
priors. Hence, we use the same shape and scale parameters for γ
and λ to simplify notations.
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L2(γ, λ) =yTΠ−1y +

m∑
i=1

2b0
γi

+
2b0
λ

. (14)

Lemma 2.1. L1(γ, λ) is strictly concave.

Proof. As log γi and log λ are strictly concave functions,
we only need to prove that log |Π| is concave with respect to
γ and λ. Additionally, log | · | is concave (see Section 3.1.5
in Boyd & Vandenberghe (2004)). Consequently, we can
easily derive the concavity of log |Π| based on the definition
of concave functions.

Lemma 2.2. L2(γ, λ) is strictly convex.

Proof. It is straightforward to verify the concavity of
yTΠ−1y using Example 3.4 and Section 3.2.2 in Boyd &
Vandenberghe (2004) and the strict concavity of

∑m
i=1

2b0
γi

and 2b0
λ directly. Hence, we can draw the corresponding

conclusion.

2.3. Iterative Min-Min Optimization Method

Based on Lemmas 2.1 and 2.2, we know that L(γ, λ) is
the sum of a concave function L1(γ, λ) and a convex func-
tion L2(γ, λ). Generally, CCCP is a well-known iterative
method for solving such optimization problems by lineariz-
ing the concave part. For the concave function L1(γ, λ),
we can re-express it as a minimum over upper-bounding
hyperplanes as follows:

L1(γ, λ) = min
z

⟨z, (γ, λ)⟩ − h∗(z), (15)

where h∗(z) is the concave conjugate of L1(γ, λ) with the
form:

h∗(z) = min
γ,λ

⟨z, (γ, λ)⟩ − L1(γ, λ). (16)

Consequently, leveraging CCCP to minimize (11) gives the
following optimization problem:

min
γ,λ,z

yTΠ−1y +

m∑
i=1

2b0
γi

+
2b0
λ

+ ⟨z, (γ, λ)⟩ − h∗(z).

(17)

Subsequently, CCCP updates z and (γ, λ) in turn condi-
tioned on the current value of the other. Given (γk, λk) at
the kth iteration, the optimal value of zk equals the slope
at the current (γk, λk) of L1(γ, λ) (Boyd & Vandenberghe,
2004; Wipf & Nagarajan, 2007), resulting in

zk =∇γk,λkL1(γ, λ)

=

(
diag

[
ΦT (Πk)−1Φ

]
+ (2a0 + 2)diag

[
(Γk)−1

]
,

Tr
(
(Πk)−1

)
+

2a0 + 2

λk

)
, (18)

where Πk = λkIn +ΦΓkΦT and Γk = diag[γk]. Given
zk, CCCP needs to solve the following problem to update
(γk+1, λk+1):

min
γ,λ

yTΠ−1y +

m∑
i=1

2b0
γi

+
2b0
λ

+
〈
zk, (γ, λ)

〉
. (19)

Because γ and λ are highly coupled in yTΠ−1y, it is dif-
ficult to derive a closed-form solution of (γk+1, λk+1) by
directly minimizing (19). For the Gaussian prior with fixed
noise level λ, Wipf & Nagarajan (2007); Pan et al. (2015);
Yuan et al. (2023) present an iteratively reweighted ℓ1 mini-
mization method to estimate γ following the CCCP frame-
work. However, obtaining a closed-form solution of γ at
each iteration still remains challenging in algorithm im-
plementation due to its non-differentiability at the origin.
Additionally, λ is not available in many cases, and it is
generally application-dependent.

To address such issues, we further re-express yTΠ−1y by
introducing the latent variable θ, which yields

yTΠ−1y =
1

λ
∥y −Φµ∥22 + µTΓ−1µ

= min
θ

1

λ
∥y −Φθ∥22 + θTΓ−1θ. (20)

Detailed derivations of (20) can be found in Appendix
of Tipping (2001); Pan et al. (2015). Hence, we can re-
express (19) as follows:

min
γ,λ

(
min
θ

(
1

λ
∥y −Φθ∥22 + θTΓ−1θ

)
+
〈
zk, (γ, λ)

〉
+

m∑
i=1

2b0
γi

+
2b0
λ

)
. (21)

To facilitate the optimization process, we first consider min-
imizing the term related to θ given (γk, λk):

min
θ

1

λk
∥y −Φθ∥22 + θT

(
Γk

)−1
θ, (22)

resulting in the optimal value

θk = (λk)−1
(
(λk)−1ΦTΦ+

(
Γk

)−1
)−1

ΦTy. (23)

Given (zk,θk), we can obtain the optimal value of
(γk+1, λk+1) by minimizing

Lzk,θk(γ, λ) =
〈
zk, (γ, λ)

〉
+

1

λ
∥y −Φθk∥22

+
(
θk

)T
Γ−1θk +

m∑
i=1

2b0
γi

+
2b0
λ

. (24)

Because Lzk,θk(γ, λ) is a convex function in (γ, λ), the
optimal value of (γk+1, λk+1) can be obtained by letting
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its gradient be zero:

γk+1
i =

√(
θki
)2

+ 2b0

zki
, (25)

λk+1 =

√
∥y −Φθk∥22 + 2b0

zkm+1

, (26)

where θki and zki are the ith components of θk and zk, re-
spectively. Repeating the above update procedures until
convergence, we present an iterative Min-Min optimization
method to analytically update (γ, λ) and (z,θ) in turn con-
ditioned on the current value of the other. Finally, we sum-
marize the proposed novel SBL algorithm in Algorithm 1
below.

Algorithm 1 Iterative Min-Min optimization method
Input: Input vector x, output vector y, dictionary matrix
Φ
Initialize γ0 and λ0

repeat
Update zk via (18) conditioned on γk and λk

Update θk via (23) conditioned on γk and λk

Update γk+1 via (25) conditioned on zk and θk

Update λk+1 via (26) conditioned on zk and θk

until the algorithm converges
Compute µ via (9) conditioned on the final (γ, λ), and
adopt it as the estimate of w

3. Theoretical Analysis
In this section, we demonstrate that the proposed optimiza-
tion method is globally convergent, indicating that the gener-
ated series of points converges to a local minimum or saddle
point of L(γ, λ) for any starting point. As the proposed
algorithm presents analytical update procedures to optimize
(γ, λ), we can take it as a point-to-point mapping A(·) that
is denoted explicitly by simple mathematical expressions
given in Algorithm 1.

Theorem 3.1. For any starting point (γ0, λ0) ∈
Rn+1

+ , the sequence {(γk, λk) ∈ Rn+1
+ } generated via

(γk+1, λk+1) = A(γk, λk) converges monotonically to a
local minimum (or saddle point) of L(γ, λ).

The detailed proof of Theorem 3.1 can be found in Ap-
pendix A. To the best of our knowledge, this paper for
the first time proposes a globally convergent optimization
method to estimate γ and λ. Particularly, The proposed
novel SBL algorithm provides an analytical update rule at
each iteration, making it straightforward to be implemented
and used.

4. Connection to Iteratively Reweighted ℓ2
Minimization

In this section, we explore the connection between the pro-
posed iterative optimization method and MAP estimation
in w space. We find that the proposed optimization method
is equivalent to minimizing the MLF of SBL via iteratively
reweighted ℓ2 minimization method. However, the pro-
posed optimization method is superior to traditional iterative
reweighting schemes because it provides an update proce-
dure for both the regularization and weighting parameters
at each iteration.

4.1. MAP Estimation in w Space

The canonical form of the MAP estimation for finding maxi-
mally sparse representations from overcomplete dictionaries
involves solving

min
w

∥y −Φw∥22 + r∥w∥ℓ0 , (27)

where r is the regularization parameter. However, it is a
well-known NP-hard problem (Wipf & Rao, 2004a; Wipf
& Nagarajan, 2010; Kümmerle et al., 2021). Hence, it is
necessary to make some tractable approximations to replace
∥w∥ℓ0 . To address this issue, the ℓ1 or ℓ2 norm is com-
monly used as a proxy of the ℓ0 norm, leading to a convex
optimization problem:

min
w

∥y −Φw∥22 + r∥w∥ℓ1/ℓ2 . (28)

However, the ℓ1 minimization requires more measurements
to recover sparse solutions (Chartrand & Staneva, 2008;
Wen et al., 2017) and the ℓ2 minimization cannot gen-
erate exactly sparse solutions (Tibshirani, 1996). Conse-
quently, iteratively reweighted ℓ1 and ℓ2 minimization algo-
rithms are proposed to alleviate the corresponding prob-
lems (Daubechies et al., 2008; Chartrand & Yin, 2008;
Candes et al., 2008). In particular, a series of empirical
experiments demonstrates that the iteratively reweighted ℓ2
minimization is superior to other tractable ones (Chartrand
& Yin, 2008; Wipf & Nagarajan, 2010).

Employing the iteratively reweighted ℓ2 minimization yields
the following tractable form at the kth iteration:

min
w

∥y −Φw∥22 + r

m∑
i=1

w2
i

αk
i

, (29)

where αk
i is the weighting parameter. While several heuris-

tic procedures are given to update αk
i (Chartrand & Yin,

2008; Wipf & Nagarajan, 2010), how to set or update the
value of r remains elusive. In the following subsection,
we will show that the proposed optimization method can
naturally address this issue, as it automatically updates the
regularization and weighting parameters at each iteration.
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Figure 1. Comparison between the ℓ2 minimization (left) and the proposed iteratively reweighted ℓ2 minimization (right) for sparse
recovery. Compared with the ℓ2 minimization, the proposed algorithm will heavily penalize some wi as the number of iterations increases,
compelling them toward zero.

4.2. Iteratively Reweighted ℓ2 Minimization

Based on MAP, the posterior mean µ is adopted as the es-
timate of w. Hence, (23) indicates that the latent variable
θ gives the optimal estimate of w at each iteration. Follow-
ing the optimization procedure of θ, we actually solve a
series of reformulated ℓ2 minimization problems to update
w. This is summarized in the theorem below.

Theorem 4.1. The posterior mean vector µ in (9) derived
from the proposed optimization method can be obtained by
iteratively solving the following MAP problem:

min
w

∥y −Φw∥22 + λk
m∑
i=1

w2
i

γk
i

, (30)

where γk
i and λk represent weighting and regularization

parameters, respectively. Additionally, the proposed opti-
mization method can update γk

i and λk via (25) and (26) at
each iteration, respectively.

Proof. We can draw the conclusion by rearranging (22).

Theorem 4.1 demonstrates that the proposed optimization
method can be interpreted as an iteratively reweighted ℓ2
minimization method, where the regularization and weight-
ing parameters are automatically updated at each iteration.
Such update procedures can be demonstrated to produce a
sequence of (γ, λ) that converges to a local minimum or
saddle point of L(γ, λ). We can also consider an alternative
form of (30) at each iteration as follows:

min
w

∥y −Φw∥22 s.t.
m∑
i=1

w2
i

γk
i

≤ r, (31)

where r is the radius related to λk. Figure 1 provides
an intuitive explanation of how the proposed optimization
method drives some wi towards zero. As the number of
iterations increases, many γk

i empirically tend toward zero.

Hence, 1/γk
i will heavily penalize the corresponding wi,

compelling it to approach zero as well.

4.3. Additional Constraints on w

Expect for the sparsity constraint, we often need to con-
sider additional constraints on w in many cases. For exam-
ple, nonzero coefficients should be positive in non-negative
sparse coding. However, many classical SBL algorithms
cannot integrate additional constraints into optimization
frameworks (e.g., non-negativity). For the proposed opti-
mization framework, Theorem 4.1 implies that we minimize
a convex function at each iteration to update w. Conse-
quently, we can easily incorporate the following constraints
into the problem formulation:

fi(w) ≤ 0, i = 1, . . . , p, (32)
hi(w) = 0, i = 1, . . . , q, (33)

where fi(w) : Rm → R is the convex function and hi(w) :
Rm → R is the affine function. With such constraints, we
finally derive a convex optimization problem, which can be
optimized efficiently (Boyd & Vandenberghe, 2004). Note
that while we cannot still guarantee the global convergence
of the corresponding algorithm, we provide an efficient
method for handling the additional constraints (32) and
(33).

5. Experiments
In this section, we demonstrate the performance of the pro-
posed SBL algorithm on a number of examples in vari-
ous fields, including sparse signal reconstruction, system
identification, and sparse kernel regression.3 Additionally,
we compare the proposed novel SBL algorithm with the
classical SBL algorithms mentioned previously, including

3Source codes are available on GitHub at
https://github.com/ArthinYS/MinMinSBL.
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Table 1. Probability of successfully recovering sparse signals on the Gaussian-distributed matrix at different SNR levels.

Sparse signal Method SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

±1 spike signal

Ours 22% 74% 82% 83% 83% 80% 91% 100%
MacKay SBL 0 0 0 0 0 0 2% 48%

EM SBL 0 0 0 0 0 0 0 7%
IR SBL 0 0 0 0 0 0 0 1%
VI SBL 0 0 0 0 0 0 0 0

Gaussian signal

Ours 3% 14% 39% 56% 63% 72% 84% 94%
MacKay SBL 0 0 0 0 0 0 15% 48%

EM SBL 0 0 0 0 0 0 8% 37%
IR SBL 0 0 0 0 0 0 2% 3%
VI SBL 0 0 0 0 0 0 0 0

Uniformly distributed signal

Ours 9% 34% 50% 63% 61% 71% 87% 90%
MacKay SBL 0 0 0 0 0 7% 44% 82%

EM SBL 0 0 0 0 0 4% 25% 84%
IR SBL 0 0 0 0 0 0 0 7%
VI SBL 0 0 0 0 0 0 0 0

MacKay SBL (MacKay updates), EM SBL (EM updates),
VI SBL (VI updates), and IR SBL (iteratively reweighted ℓ1
minimization updates). To keep a fair comparison, the ini-
tial values of γ and λ are set to be the same for all the SBL
algorithms in all experiments. Overall, experimental results
illustrate that the proposed SBL algorithm outperforms the
classical ones in finding sparse solutions. As AMP provides
an alternative Bayesian approach for sparse recovery, we
also compare the proposed SBL algorithm with AMP to
demonstrate its superior performance in Appendix B. The
experiments are conducted using MATLAB 2022b on the
PC with an Apple M1 Pro chip with 10-core CPU and 32
GB RAM.

5.1. Sparse Signal Recovery

Recovering sparse signals with random dictionaries is an
important benchmark to evaluate the performance of SBL
algorithms (Wipf & Rao, 2004b; Babacan et al., 2009; Zhou
et al., 2021). To this end, we generate an n × m random
matrix Φ and an m-dimensional sparse signal w with k
nonzero coefficients at random locations. Particularly, we
consider that the nonzero coefficients in w are drawn from
three different probability density functions (PDFs): the uni-
form ±1 random spike, standardized Gaussian distribution,
and uniform distribution on [-1,1]. Finally, we use the Mat-
lab function awgn to add Additive White Gaussian Noise on
Φw to get a resultant signal y with a given signal-to-noise
ratio (SNR). In the experiments, we set n = 60, m = 100,
and k = 4, and conduct simulation trials with SNR values
ranging from 0 to 35 dB in steps of 5 dB. In all cases, we
run 100 independent trials to test the performance of all the

SBL algorithms. Additionally, a successful trial is recorded
if the indices of nonzero elements in the estimated vector w
are the same as true indices.

Gaussian-distributed matrix Φ: First, we consider that each
component of the matrix Φ is drawn from a standardized
Gaussian distribution. Table 1 records the probability of
successfully recovering sparse signals for all the SBL al-
gorithms across different SNR values over 100 runs. For
each SNR, the proposed SBL algorithm realizes the highest
success probability in recovering sparse signals. When SNR
is below 25 dB, only the proposed SBL algorithm has the
potential to recover sparse signals. Particularly, the pro-
posed SBL algorithm achieves a 100% recovery rate for the
±1 spike signal with high SNR (35 dB), while the success
probabilities of the others are below 50%. Remarkably, this
example demonstrates that the proposed SBL algorithm sig-
nificantly outperforms the others on sparse signal recovery.

Low-rank matrix Φ: Further, we consider the random matrix
Φ to be a low-rank matrix to test the robustness of all the
SBL algorithms. Initially, we generate a random matrix Φ
with each component drawn from a uniform distribution
on [0,1]. Subsequently, we utilize the truncated singular
value decomposition (SVD) to generate a low-rank matrix
with rank r (Falini, 2022). Here, we set r to be 40. Table 2
records the probability of successfully recovering sparse
signals for all the SBL algorithms across different SNR
values over 100 runs. Similarly, the experimental results
validate that the proposed SBL algorithm outperforms the
classical ones on the low-rank matrix Φ. In all cases, the
success probabilities of the classical SBL algorithms are

7
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Table 2. Probability of successfully recovering sparse signals on the low-rank matrix at different SNR levels.

Sparse signal Method SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

±1 spike signal

Ours 10% 41% 74% 84% 91% 90% 90% 93%
MacKay SBL 0 0 0 0 0 0 0 33%

EM SBL 0 0 0 0 0 0 0 18%
IR SBL 6% 3% 6% 9% 9% 9% 7% 10%
VI SBL 0 0 0 0 0 0 0 0

Gaussian signal

Ours 2% 8% 30% 50% 55% 66% 77% 80%
MacKay SBL 0 0 0 0 0 2% 7% 30%

EM SBL 0 0 0 0 0 1% 4% 17%
IR SBL 9% 2% 3% 5% 4% 4% 2% 8%
VI SBL 0 0 0 0 0 0 0 0

Uniformly distributed signal

Ours 2% 15% 43% 61% 73% 67% 82% 89%
MacKay SBL 0 0 0 0 0 2% 22% 58%

EM SBL 0 0 0 0 0 0 14% 47%
IR SBL 9% 8% 7% 5% 2% 7% 4% 5%
VI SBL 0 0 0 0 0 0 0 0

below 60%. In contrast, the proposed SBL algorithm can
recover sparse signals with a success probability over 80%
under high SNR conditions.

5.2. Learning the Chaotic Lorenz System

Leveraging machine learning algorithms to discover the
governing equations or physical laws of nonlinear dynam-
ical systems from data is essential to understanding such
systems for prediction, control, and decision-making (Brun-
ton et al., 2016). Recently, SBL algorithms have been ap-
plied to discover linear dynamical systems (Wang et al.,
2024), nonlinear state-space systems (Pan et al., 2015), cy-
ber physical systems (Yuan et al., 2019), partial differential
equations (Yuan et al., 2023), and stochastic differential
equations (Wang et al., 2022). Here, we demonstrate all
the SBL algorithms on the canonical chaotic Lorenz system
with the following form:

ẋ = σ(y − x), (34)
ẏ = x(ρ− z)− y, (35)
ż = xy − βz, (36)

where σ = 10, ρ = 28, and β = 8
3 .

As for the algorithm implementation, we use the MATLAB
function ode45 to solve the system with the initial condition
[x, y, z]T = [−8, 7, 27]T and obtain data with a time step
of 0.001 over the time interval [0, 65]. Then, we uniformly
sub-sample 65 data points from the collected data. We add
the Gaussian noise with mean zero and different variances
to derivatives to generate noisy data. The basis functions are
composed of polynomials in (x, y, z) up to the fourth order

and some sine and cosine functions, including 95 terms
totally. Finally, we apply all the SBL algorithms to discover
the chaotic Lorenz system from the overcomplete dictionary
Φ65×95.

Figure 2 displays the probability of successfully discover-
ing the Lorenz system of all the SBL algorithms across
different noise levels (over 100 runs). Similarly, experi-
mental results imply that the proposed SBL algorithm is
superior to the classical ones. In all cases, IR SBL and
VI SBL fail to discover the Lorenz system from the lim-
ited data. With the lowest level of noise, the proposed
SBL algorithm, MacKay SBL, and EM SBL can perfectly
discover the Lorenz system from 95 basis functions using
only 65 data points. However, the proposed SBL algorithm
exhibits overwhelming performance as the noise level in-
creases, implying that it is more robust to noise. Therefore,
the proposed SBL algorithm is more likely to discover the
underlying mechanisms of physical systems from limited
data compared with the others.

5.3. Sparse Kernel Regression

Finally, we apply all the SBL algorithms to kernel regression
models on the Red Wine Quality dataset, which contains
the information concerning wine quality. It includes 1599
samples totally with 1 target variable and 11 features. In the
experiment, we split 1599 data points into 1000 for train-
ing and 599 for testing. The basis functions include kernel
functions and a constant term. Particularly, we consider
four different kernel functions: linear, Matérn-3/2, expo-
nential, and Gaussian kernels. The hyperparameters in the
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Table 3. Regression result of all the SBL algorithms across the different kernels.

Method Ours MacKay SBL EM SBL IR SBL VI SBL

Exponential kernel 0.0951 0.4329 0.9939 0.1006 0.1270
Matérn-3/2 Kernel 0.0957 0.1341 1.0048 0.1006 0.1270

Linear kernel 0.0970 0.0952 1.0044 0.1058 0.1561
Gaussian kernel 0.0980 0.1123 1.0045 0.1004 0.1270

0.001 0.005 0.01 0.05 0.1 0.5
Noise

0

0.2

0.4

0.6

0.8

1

P
ro
b
ab

ili
ty

Ours
MacKay_SBL
EM_SBL
IR_SBL
VI_SBL

Figure 2. Probability of successfully discovering the Lorenz sys-
tem at different noise levels.

kernels are set to 1 by default. We also conduct additional
experiments to compare all the SBL algorithms on the Gaus-
sian kernel with the different values of hyperparameters in
Appendix C.

Here, we define Sparsity as the ratio of non-zero elements
in the estimated weight vector w, and MRE as the mean
relative error between the ground truth and predictions on
the test set. Because the smaller values of Sparsity and MRE
indicate sparser models and more accurate prediction results,
respectively, the distance between the point (Sparsity, MRE)
and origin (0,0) can assess the ability of an SBL algorithm
regarding balancing model complexity and prediction error
in real-world problems. Hence, we can use the following
metric to evaluate the performance of the SBL algorithm:

d =
√
Sparsity2 +MRE2. (37)

Table 3 summarizes the regression result of all the SBL al-
gorithms on the Red Wine Quality dataset with the different
kernel functions. As observed from the table, the proposed
SBL algorithm almost outperforms the classical ones across
the different kernel functions. Consequently, the experimen-
tal results demonstrate its superior performance to balance
model complexity and prediction error in real-world prob-
lems.

6. Discussion and Limitation
In this paper, we propose an iterative Min-Min optimiza-
tion method for minimizing the negative logarithm of MLF
L(γ, λ). Because L(γ, λ) is a non-convex function and
γ and λ are highly coupled in the data-dependent term
yTΠ−1y and concave term L1(γ, λ), directly minimiz-
ing such a function is particularly difficult. To develop
an efficient algorithm for estimating γ and λ, we demon-
strate that L(γ, λ) is composed of a concave function and
a convex function. While CCCP is designed to solve such
optimization problems, the resulting subproblem does not
have a closed-form solution in this case. Hence, we use
auxiliary functions to re-express not only the concave func-
tion L1(γ, λ) but also data-dependent term yTΠ−1y by
introducing latent variables. As such, we can decouple the
highly coupled functions and convert the non-convex prob-
lem into a Min-Min problem, leading to efficient updates
based on the CCCP framework. Leveraging the Global
Convergence Theorem, we further demonstrate that the gen-
erated sequence of points converges to a local minimum
or saddle point of the MLF of SBL. With rigorous theo-
retical guarantees, experimental results illustrate that the
proposed novel SBL algorithm outperforms the classical
ones in finding sparse representations in various fields.

We also explore the connection between the proposed op-
timization algorithm and MAP estimation. Theorem 4.1
demonstrates that the proposed optimization method is
equivalent to the iteratively reweighted ℓ2 minimization.
Particularly, the proposed optimization method provides a
principled way to update the regularization and weighting
parameters at each iteration. In MAP estimation, it remains
unclear how to obtain such insights for updating their values.

While we present a simple and analytical update rule for
the hyperparameters γ and λ, the primary limitation lies
in its high computational complexity. At each iteration,
the update rule entails the inversion of Σ ∈ Rm×m and
Π ∈ Rn×n. Given n < m, we can save the computation
cost by re-expressing Σ−1 using Π−1 (Wipf & Rao, 2004b).
However, it is still hard to deal with the problems with large
training sets as computational requirements scale with n3.
Consequently, future work will focus on reducing compu-
tation time to make the proposed algorithm applicable to
large-scale problems.
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A. Proof of Theorem 3.1
Proof. As the Global Convergence Theorem gives technical conditions for convergence (Luenberger & Ye, 1984), we divide
the proof into three parts to demonstrate that the proposed optimization method follows such conditions.
(i) For the set of local minima (or saddle points) and A(·), L(γ, λ) is a descent function. Let Ω be the set of points
(γ, λ) satisfying ∇γ,λL(γ, λ) = 0. First, we show that the slope of Lzk,θk(γ, λ) is equal to that of L(γ, λ) at the point
(γk, λk). Recalling zk = ∇γk,λkL1(γ, λ) and the expression of Lzk,θk(γ, λ) and L(γ, λ), we thus only need to prove

∇γk,λk

(
yTΠ−1y

)
= ∇γk,λk

(
1

λ
∥y −Φθk∥22 +

(
θk

)T
Γ−1θk

)
. (38)

For λ, we can derive

∂
(
yTΠ−1y

)
∂λ

= yT ∂Π−1

∂λ
y = −yTΠ−1 ∂Π

∂λ
Π−1y = −yTΠ−1Π−1y. (39)

Based on the matrix inversion lemma, we can rewrite Π−1y as

Π−1y =
(
λIn +ΦΓΦT

)−1
y =

(
1

λ
In − 1

λ
Φ
(
λΓ−1 +ΦTΦ

)−1
ΦT

)
y. (40)

Consequently, it follows that

∇λk

(
yTΠ−1y

)
= −∥y −Φθk∥22

(λk)2
= ∇λk

(
1

λ
∥y −Φθk∥22 +

(
θk

)T (
Γk

)−1
θk

)
. (41)

For γ, we can derive

∂(yTΠ−1y)

∂γi
= yT ∂Π−1

∂γi
y = −yTΠ−1 ∂Π

∂γi
Π−1y = −yTΠ−1Φ[i]Φ

T
[i]Π

−1y, (42)

where Φ[i] is the ith column of Φ. Hence, we obtain

∂(yTΠ−1y)

∂γ
= −ΦTΠ−1y ⊙ΦTΠ−1y, (43)

where ⊙ is the Hadamard product. Additionally, we can rewrite ΦT as

ΦT = (λIm +ΦTΦΓ)−1
(
λIm +ΦTΦΓ

)
ΦT

= λ−1Γ−1
(
λ−1ΦTΦ+ Γ−1

)−1
ΦT

(
λIn +ΦΓΦT

)
= λ−1Γ−1Σ−1ΦTΠ, (44)

which indicates ΦTΠ−1y = λ−1Γ−1Σ−1ΦTy. Consequently, it follows that

∇γk

(
yTΠ−1y

)
= −

(
Γk

)−1
θk ⊙

(
Γk

)−1
θk = ∇γk

((
λk

)−1 ∥y −Φθk∥22 +
(
θk

)T
Γ−1θk

)
. (45)

Based on the above derivation, we demonstrate that ∇γk,λkL(γ, λ) = ∇γk,λkLzk,θk(γ, λ). Moreover, we know that
∇γk,λkL(γ, λ) is nonzero at the point

(
γk, λk

)
outside Ω. Hence, Lzk,θk(γ, λ) has a minimum elsewhere since it is convex

in (γ, λ). For the point
(
γk, λk

)
outside Ω, let

h1(γ, λ) = λ−1∥y −Φθk∥22 +
(
θk

)T
Γ−1θk − yTΠ−1y, (46)

h2(γ, λ) =
〈
zk, (γ, λ)

〉
− h∗(zk)− L1(γ, λ). (47)

It is notable that h1(γ, λ) ≥ 0, h2(γ, λ) ≥ 0, and h2(γ, λ) is convex in (γ, λ). Additionally, h1(γ, λ) ≥ h1(γ
k, λk) = 0

and ∇γk,λkh2(γ, λ) = 0. Consequently, it follows that

Lzk,θk(γ, λ)− L(γ, λ) = h1(γ, λ) + h2(γ, λ) (48)
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is nonnegative and achieves the global minimum at the point
(
γk, λk

)
. However, Lzk,θk(γ, λ) reaches the global minimum

at the point
(
γk+1, λk+1

)
and the distance between Lzk,θk(γ, λ) and L(γ, λ) will be increased still further at such a point.

Hence, we can derive L(γk+1, λk+1) < L(γk, λk) for the point
(
γk, λk

)
outside Ω. Additionally, for the point

(
γk, λk

)
in Ω, we have ∇γk,λkLzk,θk(γ, λ) = 0. As such,

(
γk+1, λk+1

)
generated via A

(
γk, λk

)
is equal to

(
γk, λk

)
, implying

L(γk+1, λk+1) = L(γk, λk). This completes the proof.
(ii) The sequence {(γk, λk)} is contained in a compact set. As

log |Π| = log
(
λ
∣∣In + λ−1ΦΓΦT

∣∣) = log λ+ log
∣∣In + λ−1ΦΓΦT

∣∣ ≥ log λ, (49)

we obtain

L(γ, λ) ≥
m∑
i=1

(2a0 + 2) log γi + (2a0 + 3) log λ. (50)

Consequently, if any element of (γ, λ) is unbounded, L(γ, λ) diverges to infinity. Additionally, we know that
L(γk+1, λk+1) ≤ L(γk, λk). This implies that there must exists a compact S ≜ {η ∈ Rn+1

+ | ∥η∥2 ≤ r} such
that the sequence {(γk, λk)} is contained in it, where r is the radius.
(iii) The mapping A(·) is closed at points outside Ω. First, the proposed algorithm can be regarded as a continuous function
as it presents analytical mathematical expressions to update (γk+1, λk+1) from (γk, λk) and all elementary functions are
continuous. Additionally, A(·) is a point-to-point mapping. Consequently, the mapping A(·) is closed at points outside Ω.

Based on the above analyses, the Global Convergence Theorem states that the sequence {(γk, λk)} converges to a local
minimum (or saddle point) of L(γ, λ).

B. Comparison with the Approximate Message Passing Algorithm
Because approximate message passing (AMP) algorithms offer an alternative Bayesian approach to solve sparse recovery
problems, we further compare the proposed SBL algorithm with AMP to showcase its performance. The code for
implementing AMP is available online at https://sourceforge.net/projects/gampmatlab/. Similarly, we generate an n×m
random matrix Φ and an m-dimensional sparse signal w with a sparsity rate r. Particularly, we consider that the nonzero
coefficients in w are drawn from the standardized Gaussian distribution. Finally, we add the Gaussian noise with mean zero
and different variances on Φw to get a resultant signal y with a given SNR. In the experiments, we set n = 64, m = 256,
and r = 0.02, and conduct simulation trials with SNR values ranging from 0 to 40 dB in steps of 5 dB. In all cases, we run
100 independent trials to test the performance of the proposed SBL algorithm and AMP. Additionally, a successful trial is
recorded if the indices of nonzero elements in the estimated vector w are the same as true indices.

Table 4 records the probabilities of the proposed SBL algorithm and AMP in recovering sparse signals across different SNR
levels. Because AMP is more reliable under large i.i.d. Gaussian matrices (Bayati & Montanari, 2011; Rangan, 2011), we
first consider the random matrix Φ to be a Gaussian-distributed matrix with each component drawn from the Gaussian
distribution with mean zero and variance 1

m . Table 4 indicates that the proposed SBL algorithm slightly outperforms AMP
on the Gaussian-distributed matrix under high SNR conditions. Further, we consider the random matrix Φ to be a low-rank
matrix generated using the truncated SVD to test the robustness of the proposed SBL algorithm and AMP. As observed
from Table 4, the experimental results on the low-rank matrix demonstrate that the proposed SBL algorithm is significantly
superior to AMP.

Table 4. Probability of successfully recovering sparse signals at different SNR levels.

Dictionary matrix Method SNR

0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB 40dB

Gaussian-distributed matrix Ours 3% 5 8% 11% 9% 14% 20% 13% 14%
AMP 1% 6% 8% 12% 9% 6% 12% 6% 11%

Low-rank matrix Ours 26% 40% 45% 51% 63% 50% 54% 59% 48%
AMP 1% 0 1% 0 1% 1% 4% 2% 2%
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C. Additional Experimental Result on Sparse Kernel Regression
In Section 5.3, we set the hyperparameters in kernels to 1 by default. Here, we further test all the SBL algorithms on the
Gaussian kernel function k(x,x′) = exp(−α∥x− x′∥2) with the different values of α ranging from 0.05 to 50. Table 5
records the experimental results (i.e., d), which demonstrate that the proposed SBL algorithm outperforms the classical ones
when α > 0.2. Here, please note that each α corresponds to a different sparse regression problem y = Φw + ε, as Φ is
closely related to α. Hence, we cannot compare the performance of all the SBL algorithms across the different values of α,
but should compare their performance on the same value of α. As such, the experimental results indicate that the proposed
SBL algorithm outperforms the classical ones over a wide range (i.e., α > 0.2 ).

Table 5. Regression result of all the SBL algorithms across the different values of α.

Method Ours MacKay SBL EM SBL IR SBL VI SBL

α = 0.05 0.0964 0.0938 1.0044 0.1026 0.1257
α = 0.1 0.0976 0.0943 1.0043 0.9997 0.1295
α = 0.2 0.0950 0.0944 1.0043 0.1009 0.1270
α = 0.4 0.0958 0.0974 1.0044 0.1003 0.1270
α = 0.6 0.0959 0.1050 1.0044 0.1006 0.1270
α = 0.8 0.0967 0.1083 1.0045 0.1004 0.1270
α = 1 0.0980 0.1123 1.0045 0.1004 0.1270
α = 2 0.0981 0.1428 1.0048 0.1053 0.1270
α = 3 0.1008 0.1877 1.0052 0.1147 0.1270
α = 4 0.1027 0.2243 1.0054 0.1279 0.1270
α = 5 0.1071 0.2601 1.0056 0.1468 0.1270
α = 10 0.1185 0.4608 1.0064 0.2323 0.1270
α = 20 0.1255 0.7144 0.9481 0.2531 0.1270
α = 30 0.1255 0.7405 0.8938 0.2689 0.1270
α = 40 0.1256 0.7023 0.7830 0.2778 0.1270
α = 50 0.1254 0.6866 0.7340 0.2782 0.1270
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