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Abstract

We study class-imbalanced linear classification in a high-dimensional Gaussian mixture
model. We develop a tight, closed form approximation for the test error of several practical
learning methods, including logit adjustment and class dependent temperature. Our approx-
imation allows us to analytically tune and compare these methods, highlighting how and
when they overcome the pitfalls of standard cross-entropy minimization. We test our the-
oretical findings on simulated data and imbalanced CIFAR10, MNIST and FashionMNIST
datasets.

1 Introduction

Learning from class-imbalanced data is a longstanding and central challenge in machine learning (He &
Garcia, 2009; Van Horn & Perona, 2017; Buda et al., 2018; Huang et al., 2019). Its importance stems from
the fact that in many applications some classes are under-represented in the training data, yet we still desire
classifiers that perform well on these minority classes. Examples include face recognition (Merler et al., 2019;
Wang et al., 2018; Deng et al., 2019), wildlife conservation (Tuia et al., 2022; Sullivan et al., 2009; Van Horn
et al., 2018), medical diagnosis (Mac Namee et al., 2002), and fraud detection (Singh et al., 2022).

Standard machine learning methods are particularly sensitive to class imbalance in the overparameterized
regime1, in which the model is capable of perfectly fitting the entire training data. The predominant approach
for multi-class classification, namely minimizing an empirical cross-entropy loss, often generalizes very poorly
to minority classes. One may intuitively explain this fact by viewing empirical cross-entropy as a surrogate
for the population classification error, which discounts minority classes. It is therefore natural to seek a loss
that approximates a class-balanced population error, leading to classical techniques such as re-weighting the
losses or re-sampling of the training data (He & Garcia, 2009). However, this intuition and the resulting
techniques both fail in the overparameterized setting, where the training cross-entropy loss becomes zero
(and hence does not approximate the population error) (Rosset et al., 2003; Soudry et al., 2018; Lyu & Li,
2020) and re-weighting or re-sampling the data has little effect on the resulting classifier (Byrd & Lipton,
2019; Fang et al., 2020; Xu et al., 2021; Zhai et al., 2023).

These observations have led to extensive work on methods that modify the cross-entropy objective to improve
the performance of overparameterized models on minority classes (Cao et al., 2019; Menon et al., 2021; Ye
et al., 2020; Lu et al., 2022; Nguyen et al., 2021; Kini et al., 2021; Lin et al., 2017; Cui et al., 2019; Hong
et al., 2021; Ren et al., 2020; Samuel & Chechik, 2021; Li et al., 2021; Behnia et al., 2023). We focus on

1The "overparameterized regime" characterizes a setting where the number of parameters in a model significantly exceeds
the size of the training set, allowing the model to interpolate the training set.
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Figure 1. Illustration of our main findings. We plot the test error of the worst-performing class as
a function of model dimension, for the different learning methods we consider. The shaded areas indicate
empirical measurements and the solid lines show our analytical approximation prediction. Each panel shows
a different set of model parameters; see Appendix G.1 for detailed description.

three leading approaches: logit adjustment (LA) (Menon et al., 2021), class-dependent temperature (CDT)
Ye et al. (2020), and margin adjustment2 (MA) (Behnia et al., 2023; Lu et al., 2022; Nguyen et al., 2021)
(see Section 6 for discussion of additional pertinent methods). While LA, MA and CDT are effective in
the overparameterized class-imbalanced setting, they each introduce additional hyperparameters, and it is
unclear whether one method is fundamentally preferable to the other.

Our contribution. In this work, we shed light on the failure mechanism of class-imbalanced overparame-
terized cross-entropy minimization, and on the relative merits of LA, MA, and CDT. To do so, we consider
high-dimensional (overparameterized) linear classification in a simple class-imbalanced Gaussian mixture
data model with varying signal strengths between classes. We focus on learning by applying (stochastic)
gradient descent on the empirical risk until reaching loss zero, which is equivalent to solving a (modified)
margin maximization problem (Soudry et al., 2018; Behnia et al., 2023; Kini et al., 2021). In this setting,
we develop a tractable analytical approximation for the test error as a function of the model parameters
and balancing hyperparameters. Figure 1 illustrates the tightness of our approximation, as well as our key
findings:

1. Our model clearly exhibits the failure of cross-entropy—i.e., the maximum margin (MM) classifier—on
minority classes. Moreover, our approximation quantitatively shows how class imbalance affects test
error, and reveals the failure mechanism of cross-entropy minimization: minority classifier vectors become
dominated by noise from majority examples.

2. Our approximations allow us to derive closed form expressions for near-optimal hyperparameter tuning
for MA and LA, and shows that both methods successfully mitigate class imbalance.

3. While CDT is sometimes helpful, there exist problem instances where MA and LA perform well and CDT
performs arbitrarily badly, for any choice of its hyperparameters. Moreover, CDT sometimes fails to reach
zero training error even for linearly separable training data.

4. Our analysis delineates the combined effect of class imbalance and class signal strength on test error
across different losses. Notably, even in our simplified setting, no method universally dominates the
other: carefully-tuned LA performs better when the signal strength is either identical across classes or
positively correlated with per-class sample size, while MA may perform better in other settings.

Overall, we believe that our work provides a helpful perspective on the challenges of overparameterized
learning of imbalanced data, as well as a useful theoretical proving ground for new techniques.
Going beyond linear classification on Gaussian mixtures. To test whether our conclusions hold
beyond the stylized setting that we analyze, we experiment with non-linear classifiers and a standard class-
imbalanced benchmark. More specifically, we study an imbalanced version of the CIFAR10 (Krizhevsky

2MA does not have a standard name in the literature: Behnia et al. (2023) call it “label dependent temperature,” Lu et al.
(2022) call it “importance tempering” and Nguyen et al. (2021) call it “margin scaling.”
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et al., 2009), MNIST (Deng, 2012) and FashionMNIST (Xiao et al., 2017) datasets using either a radial
basis function (RBF) kernel or fine-tuning a pre-trained CLIP model (Radford et al., 2021). In the kernel
experiments, our conclusions hold fairly well: cross-entropy generalizes poorly, CDT fails in certain settings,
and our theoretically-derived tuning of MA and LA performs well. In the CLIP experiments, CDT performs
about as well as MA but seems more sensitive to parameter-tuning, and our theoretically-derived tuning for
LA performs comparably to standard tuning.

Paper organization. In Section 2 we present the problem setting, our data model, and the methods we
consider. In Section 3 we describe our analytical approximation for the classifiers learned by the different
methods and their test performance. In Section 4 we apply our approximation on MA, MM, LA and CDT,
providing expressions for near-optimal hyperparameter tuning and comparing the different methods. In
Section 5 we report on experiments within our model and beyond. Finally, in Section 6, we present an
extended discussion covering additional related work, limitations of our study, and directions for future
research.

2 Preliminaries

Notation. We denote matrices by capital letters, and vectors and scalars by lowercase letters. We denote
the i’th column of A by ai, and we use brackets to refer to specific matrix or vectors entries, i.e., A[i,j] = ai[j].
We write ‖v‖ for the Euclidean norm of v, while ‖A‖F and ‖A‖op denote the Frobenius and `2 operator
norm of A, respectively. We let 1{E} denote the indicator of event E.

2.1 Hypothesis class and error metrics

We consider linear predictors that classify d-dimensional features to one of c classes. A predictor is parameter-
ized by weights W ∈ Rd×c and biases b ∈ Rc. Given input x ∈ Rd, it predicts ŷ = arg maxy∈[c]

{
w>y x+ b[y]

}
.

The prediction error for examples of class y is

Erry (W, b) := Ex|y[`0-1(z; y)], (1)

where z = W>x + b and `0-1(z, y) = 1{y/∈arg maxi z[i]} is the 0-1 loss. We also define the worst class error
as

Errwc (W, b) := max
y∈[c]

Erry (W, b) . (2)

Finally, we write the probability of class k obtaining larger score than the true class y as

Erry→k(W, b) := Px|y
(
〈wk, x〉+ b[k] > 〈wy, x〉+ b[y]

)
, (3)

and note that

max
k 6=y

Erry→k(W, b) ≤ Errwc (W, b) ≤ max
y

∑
k 6=y

Erry→k(W, b) ≤ c ·max
k 6=y

Erry→k(W, b). (4)

2.2 Learning methods

We now formally define the methods that our work analyzes and compares. Given a training set {xi, yi}i∈[N ],
we consider minimizing empirical risks of the form

L (W, b) := 1
N

N∑
i=1

`
(
W>xi + b; yi

)
,

over W, b, where ` : R× [c]→ R+ is a classification loss function.
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Cross-entropy, MA and CDT. Perhaps the most common multiclass classification loss, cross-entropy is
given by

`ce (z; y) := log
(∑
i∈[c]

ez[i]−z[y]

)
.

We analyze two modified versions of the cross-entropy loss that aim to improve overparameterized learning
over imbalanced data: margin adjustment (MA) (Behnia et al., 2023; Wang et al., 2022) and class-dependent
temperature (CDT) (Ye et al., 2020; Kini et al., 2021), given by

`ma(z; y) := log
(∑
i∈[c]

e
z[i]−z[y]

δy

)
and `cdt(z; y) := log

(∑
i∈[c]

e
z[i]
δi
−
z[y]
δy

)
,

respectively. Both losses have per-class hyperparameters {δi}i∈[c] for which increasing δi pushes the model
to prefer class i. The standard approach for selecting these hyperparameters is setting δi = N−γi and tuning
γ ≥ 0 (Lu et al., 2022; Kini et al., 2021; Ye et al., 2020; Behnia et al., 2023), where for γ = 0 we recover
cross-entropy.

Equivalent margin problems. For linearly separable training data and for each of the empirical loss
functions we consider, gradient descent converges to zero loss, and its implicit bias is given by the solution
to a constrained optimization problem. More specifically, consider gradient descent steps of the form

Wt+1 = Wt − η∇WL (Wt, bt) and bt+1 = bt − η′∇bL (Wt, bt) , where
(
η

η′

)2
=: ρ.

Then, for any ρ and sufficiently small η, if ` = `ma we have Erry(Wt, bt)
t→∞−→ Erry(Wma, bma) for all y ∈ [c],

where

Wma, bma := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to (wyi − wk)>xi + b[yi] − b[k] ≥ δyi for all i ≤ N and k 6= yi. (5)

When ` = `cdt we instead have Erry(Wt, bt)
t→∞−→ Erry(W cdt, bcdt) for all y ∈ [c], where

W cdt, bcdt := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to 1
δyi

(
w>yixi + b[yi]

)
− 1
δk

(
w>k xi + b[k]

)
≥ 1 for all i ≤ N and k 6= yi. (6)

Substituting δi = 1 for all i ∈ [c] into either eq. (5) or eq. (6) yields the standard maximum margin separator,
which is the implicit bias of gradient descent for ` = `ce. See Appendix B for a more formal statement of
these claims, and a proof based on the prior work (Soudry et al., 2018; Ji et al., 2020; Kini et al., 2021).
Remark 2.1 (Limitations of CDT). The MA constraint eq. (5) guarantees zero training error, i.e.,
arg maxy∈[c]

{
w>y xi + b[y]

}
= yi for all training points (x1, y1), . . . , (xn, yn). By contrast, the CDT con-

straint eq. (6) generally does not offer such a guarantee. Consequently, for three or more classes, optimizing
the CDT loss does not always fit all the training data. Furthermore, for two classes, the choice of δ1 and δ2
has no effect on the solution to eq. (6). See more details in Appendix F.3.

Logit adjustment. The LA method finds W and b by minimizing the empirical cross-entropy risk, and
adjusts the bias vector by subtracting ι ∈ Rc, i.e., replacing b with b− ι. In the terminology of the original
proposal (Menon et al., 2021), this is the “post-hoc” correction variant of logit adjustment. Menon et al.
(2021) also propose an “LA loss” for empirical risk minimization. However, we note that the implicit bias
of the LA loss is identical to that of normal cross-entropy; i.e., after long enough gradient descent training,
it also converges in direction to the standard max margin separator. See Appendix B and Kini et al. (2021,
Theorem 4) for a more formal statement of these claims. The standard approach for selecting ι is setting
ι[i] = τ logNi and tuning τ ≥ 0.
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2.3 Data model

Inspired by Sagawa et al. (2020b); Wald et al. (2022); Kini et al. (2021); Wang et al. (2021); Glasgow
et al. (2023); Carmon et al. (2019) we model our data as a high-dimensional Gaussian mixture. Specifically,
conditional on the label y, the input x ∈ Rd has the following Gaussian distribution

x|y ∼ N (µy;σ2Id) (7)

for some µ1, . . . , µc ∈ Rd and σ > 0, where Id denotes the unit matrix.

Scaling with dimension. To ensure that the problem we study becomes neither trivial nor impossible to
learn as the dimension d grows, we must carefully set its parameters as a function of d. To that end, we
choose

σ2 = 1
d

and ‖µi‖2 = si√
d

and 〈µi, µj〉 = 0 ∀ i 6= j. (8)

The scaling of ‖µi‖2/σ2 �
√
d is essential for obtaining non-trivial error as d → ∞ with the training set

size fixed, while the choice σ2d = 1 is without loss of generality. Assuming orthogonal µ1, . . . , µc facilitates
interpretable analytical expression, though potentially at some loss of generality.

3 Analytical approximation

This section describes the two key steps in deriving our analytical approximation for the error of different
learning methods in our data model: replacing the empirical kernel with its expectation and replacing the
score statistics (defined below) with their expectation.

3.1 Expected kernel approximation

The MA and CDT problems we consider (eqs. (5) and (6) respectively) are quadratic in W, b and therefore
their solutions are of the form wy =

∑
i∈[N ] βy[i]xi, where the optimal β1, . . . , βc ∈ RN , and b ∈ Rc depend

on the data only through the N ×N kernel matrix (see substitution of wy in eq. (5) at eq. (10))

K[i,j] := 〈xi, xj〉, (9)

βma, bma := arg min
β1,...,β1∈RN ,b∈Rc

(
c∑
i=1

βi
>Kβi + ρb2[i]

)
subject to (βyi − βk)>ki + b[yi] − b[k] ≥ δyi for all i ≤ N and k 6= yi. (10)

The first step in our approximation is to replace K by its expectation EK[i,j] = ‖µyi‖21{yi=yj} + σ2d1{i=j}.
We justify this approximation by observing that, under our dimension scaling, eq. (8), the empirical kernel
concentrates to its expectation as ‖K−EK‖op = O

(√
N√
d

+ 1√
d

(
1 +Nd−1/4 maxi si

)√
log 1

δ

)
with probability

at least 1− δ; see Appendix A.2 for proof.

Let {β̃i, b̃[i]} be the (deterministic) values of {βi, b[i]} under the expected kernel approximation. By symmetry
of EK, the entries of β̃i are identical for examples of the same class. That is, for every j ∈ N , we have
β̃i[j] = α̃i[yj ] for some α̃i ∈ Rc. The approximate predictor W̃ is of the form

w̃y =
c∑
i=1

α̃y[i]x̄i where x̄i :=
∑
j∈Si

xj (11)

is the sum of all feature vectors from the i’th class. That is, under the expected kernel approximation, all
the data points become support vectors, whose weight depends only on their class identity. To find {α̃i, b̃[i]}
in closed form (as we do in the next section) it is convenient to express them in terms of the reduced c× c
expected kernel:

K̄[i,j] := E[〈x̄i, x̄j〉] = N2
i ξi1{i=j} where ξi := ‖µi‖2 + σ2d

Ni
. (12)
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3.2 Expected score statistics approximation

For x|y ∼ N (µy;σ2Id) and a classifier (W, b), the prediction errors are

Erry(W, b) = 1− P
(
N (ν(y); Σ(y)) ≥ 0

)
and Erry→k(W, b) = Q

 ν
(y)
[k]√

Σ(y)
[k,k]

, (13)

where Erry and Erry→k are defined in eqs. (1) and (3), respectively, Q(t) = P(N (0, 1) > t) is the Gaussian
error function, and, for every i, j ∈ [c]

ν
(y)
[j] =

(wy − wj)>µy + b[y] − b[j]
σ

and Σ(y)
[i,j] = (wy − wi)>(wy − wj). (14)

We refer to {ν(y),Σ(y)} as the score statistics. See derivation in Appendix A.4.

Applying the expected kernel approximation described above, we substitute (W, b) with (W̃, b̃), where w̃y =∑
i∈[c] α̃y[i]x̄i and {α̃i, b̃[i]} are deterministic. This yields the following approximate score statistics

ν̃(y) =
Ã(y)X̄>µy + b̃[y]1− b̃

σ
and Σ̃(y) = Ã(y)X̄>X̄

(
Ã(y)

)>
,

where X̄ = [x̄1, . . . , x̄c] ∈ Rd×c and Ã(y) ∈ Rc×c is a matrix whose i’th row is α̃y − α̃i.

The second and final step in our approximation is to replace the score statistics ν̃(y) and Σ̃(y) by their
expectation with respect to the training data X̄, given by

ν̂(y) := Eν̃(y) =
Ny‖µy‖2ã(y)

y + b̃[y]1− b̃
σ

and Σ̂(y) := EΣ̃(y) = Ã(y)K̄
(
Ã(y)

)>
, (15)

with K̄ as in eq. (12) and ã(y)
y denoting the y’th column of Ã(y). Again we justify this approximation using

concentration of measure under parameter scaling eq. (8); see Appendix A.

The expected score statistics ν̂(y) and Σ̂(y) are deterministic quantities which we obtain in closed form for
MA, CDT and LA (see summary in Appendix E). By substituting them into the expressions eq. (13) we
obtain tight analytical approximations for the generalization performance of these methods.

4 Analysis of class balancing interventions

We now apply our approximation strategy to MA (and MM as a special case), LA, and CDT. For MA and
LA we obtain near-optimal parameter values with which these methods successfully mitigate class imbalance.
In contrast, our analysis shows that MM and CDT may fail catastrophically.

4.1 Margin adjustment and maximum margin

We begin by applying the expected kernel approximation (Section 3.1) to MA, and finding the resulting
coefficients in closed form (see Appendix C.1 for proof).
Theorem 4.1. Let W̃ma, b̃ma be the expected kernel approximation for the MA predictor eq. (5) with any δ
that satisfies δi > 0 for all i ∈ [c]. Then, for all y ∈ [c] we have w̃ma

y =
∑c
i=1 α̃

ma
y[i]x̄i, where,

α̃ma
y[i] = δi

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

[
δj
ξj
− δy

ξy

]
cNiξi (M + ρ) and b̃ma

[y] =

∑c
j=y

[
δy
ξy
− δj

ξj

]
c (M + ρ) ,

using ξi := ‖µi‖2 + σ2d
Ni

and M :=
∑c
i=1

1
ξi
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Substituting {α̃ma
i }ci=1, {b̃ma

[i] }
c
i=1 into eq. (15), we complete our approximation for the error of MA. We defer

the full expressions to Appendix D.1 and here we highlight key consequences, focusing on the limit d→∞
with the scaling eq. (8). To that end, we define for every ρ and δ (with the latter possibly depending on d)

Ẽrr
ma
wc (δ, ρ) := max

k 6=y
lim
d→∞

Erry→k
(
W̃ma(δ, ρ), b̃ma(δ, ρ)

)
. (16)

By eq. (4) we have that limd→∞ Errwc(W̃ma,b̃ma)
Ẽrr

ma
wc (δ,ρ)

is between 1 and c.

Performance of maximum margin (MM). In the special case δi = 1 for all i ∈ [c], we obtain a simple
approximation for the worse-class error of the implicit bias of gradient descent on the standard cross-entropy
loss, i.e., the MM separator:3

Ẽrr
mm
wc (ρ) := Ẽrr

ma
wc (1, ρ) =


maxk 6=y Q

 sy
√
Ny√

1+Nk
Ny

 ρ =∞, i.e., b fixed to 0

1 ρ <∞

(17)

eq. (17) highlights a significant limitation of cross-entropy under class imbalance. Specifically, for any set
of signal strengths {si} we can bring the worst-class error arbitrarily close to 1/2 simply by increasing the
sample size of some class k so that NkNy � s2

yNy for some class y. Moreover, and perhaps surprisingly, learning
a bias parameter (i.e., setting ρ < ∞) using cross-entropy results in catastrophic failure (worst class error
of 1) in the limit d → ∞; we validate this observation empirically (and explore behavior for finite d) in
Appendix G.2.

The failure mechanism of MM. To gain further insight for why MM can generalize poorly in our
overparameterized linear model, consider the expected kernel approximation coefficients α̃mm in the limit
d → ∞ and without bias learning (ρ = ∞). Theorem 4.1 shows that in this case we have limd→∞ α̃mm

y[k] =
1{y=k} − 1

c . Therefore, the classifier for class y tends to w̃mm
y = x̄y − 1

c

∑
k∈[c] x̄k, where x̄i =

∑
j∈Si xj is

the sum of feature vectors with label i. When y is a minority class, i.e., Ny � Nk for some class k, we have
‖x̄y‖ � ‖x̄k‖ and the classifier w̃mm

y is dominated by training examples from majority classes, impairing
its ability to generalize to new data. In contrast, with MA parameters {δi}, we obtain (for ρ = ∞ and
d → ∞) that w̃ma

y = δyx̄y − 1
c

∑
k∈[c] δkx̄k. Thus, increasing δ for minority classes lets us compensate for

class imbalance.

Near-optimal δ values. In Appendix D.1 we derive a set of margin adjustment parameters that minimize
Ẽrr

ma
wc (δ, ρ):

δ?i := ξi

‖µi‖2 + 2
(∑c

j=1
1
ξj

+ ρ
)−1 ∈ arg min

δ
Ẽrr

ma
wc (δ, ρ), (18)

where we recall that ξi = ‖µi‖2 + σ2d
Ni

and note that the minimization above is over δ as a function of d given
the scaling eq. (8). In the limit d→∞, the value of δ?i tends to 1

Ni
for ρ <∞, and becomes proportional to

1
siNi

at ρ =∞ (Multiplication of δ by a scalar has no effect on the resulting model).

The optimal value of Ẽrr
ma
wc is 

maxk 6=y Q
(

1√
(s2
yNy)−1+(s2

k
Nk)−1

)
ρ =∞

maxk 6=y Q
(

sy+sk
2
√
N−1
y +N−1

k

)
ρ <∞.

(19)

We observe a discontinuity in ρ that is due to taking d→∞; in Appendix G.3 we illustrate how in finite d
the transition between the two error values occurs for ρ around

√
d. However, in contrast to MM, learning

a bias with carefully-tuned MA is sometimes helpful (see proof in Appendix F.1).
3In eq. (17), the case ρ < ∞ assumes that Nj 6= Nk for some j, k ∈ [c].
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Proposition 4.2. Let N1 ≤ N2 ≤ · · · ≤ Nc and let ρ < ∞. If s1 ≤ s2 ≤ · · · ≤ sc then Ẽrr
ma
wc (δ?, ρ) ≤

Ẽrr
ma
wc (δ?,∞), with equality when s1 = s2 = · · · = sc. When s1 > s2 > · · · > sc then either Ẽrr

ma
wc (δ?, ρ) >

Ẽrr
ma
wc (δ?,∞) or Ẽrr

ma
wc (δ?, ρ) < Ẽrr

ma
wc (δ?,∞) is possible.

4.2 Logit adjustment

Recall that LA consists of performing standard cross-entropy training, followed by shifting the bias vector
by −ι for some ι ∈ Rc. We analyze LA in our approximation framework by taking the expected score
statistics eq. (15) for the MM expected kernel approximation W̃mm, b̃mm and replacing b̃mm with b̃mm − ι.
We defer the full expression for the resulting approximation to Appendix D.2 and, as in the previous section,
focus on approximating the worst-class error in the limit d → ∞ with the scaling eq. (8). To that end, we
define

Ẽrr
la
wc(ι, ρ) := max

k 6=y
lim
d→∞

Erry→k
(
W̃mm(ρ), b̃mm(ρ)− ι

)
. (20)

Near-optimal ι for equal signals. Let ξi = ‖µi‖2 + σ2d
Ni

, let M =
∑
i∈[c]

1
ξi
, and let M\y = M − 1

ξy
. We

show that taking

ι∗y =
2 + ‖µy‖2

[
M\y + ρ

]
2ξy[M + ρ] , (21)

minimizes Ẽrr
la
wc(ι, ρ) over ι for instances where s1 = s2 = · · · = sc (we use ∗ instead of ? as a superscript to

denote this condition).
Remark 4.3. Prior work (Menon et al., 2021; Kini et al., 2021) recommend setting ιi ∝ logNi. In contrast,
for ρ < ∞ (i.e., a bias is learned) and at the limit d → ∞, we have that ι∗ ∝ Ni. We empirically compare
these different recommendations in the next section.

Substituting back the ι∗y above into our error approximation yields (for general signal strengths),

Ẽrr
la
wc(ι∗, ρ) = max

k 6=y
Q

 syNyT(k\y) + skNkT(y\k) − |sy − sk|NyNk
2
√

(Nk −Ny)2
N\y,k +NyT 2

(k\y) +NkT 2
(y\k)

 (22)

where N\y,k =
∑c
i6=y,kNi and T(i\j) = 2Ni +N\i,j + ρ.

For equal-strength signals, LA dominates MA (see proof in Appendix F.2).

Proposition 4.4. If s1 = s2 = · · · = sc then Ẽrr
la
wc(ι∗, ρ) is monotonic decreasing in ρ and, for all values of

ρ, we have Ẽrr
la
wc(ι∗, ρ) ≤ Ẽrr

ma
wc (δ?, ρ).

Discussion Although Proposition 4.4 is limited to the case of equal strength due to technical reasons,
we remain interested in understanding whether the LA predictor (using near-optimal parameters for equal
strength signals) is superior to the MA predictor (using near-optimal parameters), when the signal strengths
are reversed or aligned. We investigate this question in depth in Appendix G.9. Our findings in Figure 18
show that for aligned signals, it appears that LA (tuned for equal signals) is still uniformly better than
MA without bias, but on rare occasions MA with bias outperforms it. For reversed signals, LA is mostly
worse than MA with bias, but there are rare exceptions to this. These findings strongly suggest that LA
is uniformly better than MA without bias for aligned signals, in line with our additional experiments in
Section 5. Moreover, we see that the converse is not true. For reversed signals MA is not always superior to
LA, even when the latter is sub-optimally tuned.

4.3 Class dependent temperature

Finally, we consider CDT, where for simplicity we focus on the bias-free setting (ρ =∞). First, we apply the
expected kernel approximation and find the CDT coefficients in closed form (See Appendix C.3 for proof).
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Theorem 4.5. Let W̃ cdt be the expected kernel approximation for the CDT predictor eq. (6) with any δ that
satisfies δi > 0 for all i ∈ [c], using ρ = ∞. Then, for all y ∈ [c] we have w̃cdt

y =
∑c
i=1 α̃

cdt
y[i]x̄i, where (for

ξi = ‖µi‖2 + σ2d
Ni

),

α̃cdt
y[i] = δi

Niξi

(
1{i=y} −

δyδi∑c
j=1 δ

2
j

)
.

Comparing Theorem 4.5 to Theorem 4.1 (with ρ = 0), we see that the only difference between α̃ma
y and α̃cdt

y

is a factor of 1
c1 that turns into δy∑c

j=1
δ2
j

δ. Unfortunately, following through our approximation procedure

reveals that CDT, with any δi > 0, may fail to mitigate class imbalance, which we formalize in the following
(see proof in Appendix F.4).
Proposition 4.6. For any ε > 0 and c ≥ 3 classes, there exists an instance {si, Ni}ci=1 for which

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ 1

2 − ε while lim
d→∞

Errwc
(
W̃ma(δ?,∞), 0

)
≤ ε.

The proof of Proposition 4.6 relies on instances with very strong class imbalance; in the next section we
empirically show that CDT fails in such settings.

5 Empirical validation

To test our observations both within and beyond the scope of our model, we compare CDT, MA, and LA
in three different setups. First, we test linear classification on data generated from our Gaussian model
(Section 2.3). Second, we consider classification with an RBF kernel over artificially imbalanced CIFAR10
data (Krizhevsky et al., 2009; Cao et al., 2019; Cui et al., 2019) using features extracted from a CLIP
model (Radford et al., 2021). Finally, using the same data, we compare MA, CDT and (post-hoc) LA when
fine-tuning the CLIP model. We report full experimental details and provide results on additional problem
instances in Appendix G.

Loss hyperparameter tuning. We tune each method by sweeping over a scalar hyperparameter. In the
first experiment, we tune MA and LA using our theoretical expressions from Section 4, setting δi = (δ?i )γ
and ιi = τι∗i , respectively, and sweeping over γ and τ such that value 1 recovers the theoretical tuning and
value 0 reduces to standard maximum margin. In the second and third experiments we assume equal signals
and, following our theory, set δi = N−γi for MA and ιi = τNi/N for LA; in the third experiment we also
test the standard setting ιi = τ logNi. For CDT (where our theory does not find good hyperparameters) we
set δi = N−γi as is standard.
Linear classification with Gaussian model. We begin by simulating three instances of our theoretical
model (for d = 105), with signal strengths that are either (a) aligned with class sample size, (b) the same
for all classes, or (c) inversely aligned with class sample size. Figure 2 shows excellent agreement between
theory and practice, with our approximation tightly matching empirical performance and our key predictions
upheld. Namely, our theoretically-derived tuning parameters (γ, τ = 1) are optimal; for aligned signals, LA
is better than MA with bias, which is in turn better than MA; for reversed signals, the opposite is true.
Additionally, both CDT and MM (corresponding to γ, τ = 0) can fail badly, with MM and ρ <∞ obtaining
worst class error 1 as predicted. In addition to the worst-class error studied so far, Figure 2 also displays our
analytical approximation and empirical measurements for class-balanced error and the macro F1 score. Here
too we see excellent agreement between the approximation and measurements. Moreover, the best tuning
parameters for worst-class perform well under balanced error and macro F1 score as well. See Appendix G.6
for more details.
Classification with RBF kernel. To test our predictions beyond the setting of our model, we perform
RBF kernel classification on imbalanced CIFAR10 data featurized using the ViT-B/32 CLIP model (Radford
et al., 2021). We consider two class size profiles. The first is a standard “long-tailed” exponential profile (Cui
et al., 2019; Cao et al., 2019) with 500 examples for the majority class and 5 examples for the minority class.
The second has the same majority and minority sizes, but we increase the sample size of other classes to
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Figure 2. Worst class error, balanced error, and macro F1 score vs. loss tuning hyperparameter for the
different methods we consider and linear classification on synthetic data from our model. The shaded
region shows empirical results (two standard deviations over 5 random seeds), and the solid lines show our
analytical approximation.
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Figure 3. Empirical worst class test error vs. loss tuning hyperparameter for the different methods we consider
and kernel classification on two imbalanced versions of CIFAR10. The markers show the minimum error
for each instance.

make the theoretically-predicted CDT worse. Figure 3 shows that many of our predictions continue to hold
for this setting, most notably the high errors of CDT and MM (particularly with bias) and optimal tuning
around γ, τ = 1. Similar experiments on MNIST and FashionMNIST datasets yield results that are mostly
aligning with our observations on CIFAR10, see in Appendix G.4.
CLIP fine-tuning. Taking a step further, we experiment with end-to-end fine-tuning of the ViT-B/32
CLIP model (with a zero-shot initialization), on imbalanced subsets of CIFAR10 with different numbers
of classes, where a smaller number of classes allows sharper class imbalance. Figure 4 shows only partial
agreement with our theory, as CDT performs comparably to MA, and our theoretical setting of LA is slightly
better at the 10 class instance but worse at the other two. Nevertheless we note that CDT is much more
sensitive to the tuning of γ than MA, which is opposite to the conclusions of Behnia et al. (2023). We also
observe that CDT does not converge to zero training error (see Appendix G.5), corroborating Remark 2.1.

6 Discussion

In this section, we provide an extended discussion of prior work on the implicit bias of gradient methods,
loss functions for class imbalance, and robustness to spurious correlations. We conclude by reviewing the
limitations of our study and outlining directions for future work to extend our model.
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Figure 4. Empirical worst class test error vs. loss tuning hyperparameter for the different methods we
consider and neural network fine-tuning on class-imbalanced subsets of CIFAR10.

The implicit bias of gradient methods on separable training data. The implicit bias of gradient
descent when applied to certain loss functions and separable training data plays a central role in our study.
Rosset et al. (2003) show that the regularization path of a family of loss functions (including cross-entropy)
converges in direction to maximum margin separator in the limit of vanishing regularization. Later, Soudry
et al. (2018) show that the same limit holds for gradient descent without any regularization, characterizing
its implicit bias. Subsequent work generalizes these results to stochastic gradient methods (Nacson et al.,
2019) and shows that the equivalence between regularization path limit and implicit bias holds to a high
degree of generality (Ji et al., 2020). We build on these results, as well as an analysis of CDT by Kini
et al. (2021), to tie the different loss functions we consider to margin maximization problems, as explained
in Section 2.2. We note that the connection between gradient descent and margin regularization extends to
neural network models (Lyu & Li, 2020), though there it is more involved (Vardi et al., 2022).

Properties of margin maximizers in high dimension. Our expected kernel approximation (Section 3.1)
effectively assumes that all data-points are support vectors, with weight determined only by their labels.
While this assumption may seem strong, the resulting approximate test error provides a tight fit to ex-
periments even at moderate dimension (see Figure 1). Moreover, the realization that in high-dimensional
Gaussian models all data points become support vectors is more or less apparent in a number of prior works.
Sagawa et al. (2020b) and Wald et al. (2022) implicitly use this property in order to outline a robustness lim-
itation of learned data separators. Glasgow et al. (2023) leverage a similar property to analyze generalization
error of different data separators. Frei et al. (2023a;b) generalize this property to nonlinear classification of
linearly separable training data. Finally, Wang et al. (2021) give explicit conditions under which all exam-
ples are support vectors, instantiating them for a Gaussian mixture model very similar to the one we study,
except that the model they consider is class-balanced and has uniform signal strengths.

Losses for imbalanced data. There is extensive literature proposing and analyzing loss functions for
class-imbalanced data, which we now briefly review. There are also many additional approaches to counter
class-imbalance such as specialized model architectures, data augmentation, and ensembling, but they fall
outside our scope; see (Zhang et al., 2023) for a recent survey.

As previously mentioned, techniques based on upweighting or oversampling minority classes (He & Garcia,
2009; Cui et al., 2019) often have limited success when combined with overparameterized models since the
implicit bias of gradient descent on the cross-entropy loss is insensitive to these operations (Soudry et al.,
2018; Byrd & Lipton, 2019; Lyu & Li, 2020; Zhai et al., 2023; Xu et al., 2021). The focal loss (Lin et al., 2017)
attempts to down-weight easy examples and focus the model on challenging instances. However, it admits
the same implicit bias as cross-entropy since it is not class-dependent and has an exponential tail. SMOTE by
Chawla et al. (2002) can potentially get around this limitation by oversampling synthetic minority examples,
though in separable linear classification the augmentation proposed in (Chawla et al., 2002) will not affect
the implicit bias of gradient descent on cross-entropy.

In contrast to oversampling minority classes, undersampling majority classes (He & Garcia, 2009; Buda et al.,
2018) is an effective class balancing intervention even in the overparameterized setting (Byrd & Lipton, 2019),
but has the obvious disadvantage of ignoring part of the training data. Our analysis clearly demonstrates
the benefits and costs of undersampling: for maximum margin classification (i.e., the implicit bias of cross-
entropy minimized with gradient descent), the approximation equation 17 for the worst class error decreases
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when decreasing the sample size of the majority class. In contrast, for well-tuned margin adjustment, our
approximation equation 19 suggests that decreasing the sample size never helps.

Several prior works design losses to directly address classification margins. The label distribution aware
margin (LDAM) loss (Cao et al., 2019) adds a class-dependent offset to the logit of the correct label, while
Menon et al. (2021) propose the LA loss that offsets the logits of all labels and is Fisher consistent, i.e., given
infinite data, minimizing it also minimizes the class-balanced error. However, when model weights grow to
infinity (as they typically do in unconstrained overparameterized classification), either type of logit offset
becomes negligible and the learned model again degenerates to a maximum margin separator. Therefore,
in our work, we study a post-hoc variant of LA. In the face detection literature, losses that combine logit
normalization and margin adjustment have proven successful (Wang et al., 2018; Deng et al., 2019); we
believe exploring the connection between such losses and margin adjustment (MA) (Behnia et al., 2023;
Wang et al., 2022; Nguyen et al., 2021) is an interesting topic for future work.

Ye et al. (2020) propose the class dependent temperature (CDT) loss to compensate for a minority feature
deviation phenomenon, also observed in (Kang et al., 2020). Our analysis suggests that while CDT is
sometimes effective at mitigating class imbalance, it also has significant limitations. Kini et al. (2021)
propose combining the LA and CDT losses into a single loss called vector scaling (VS) loss and provides a
theoretical analysis for the binary case. However, the binary classification loss they analyze is a two-class
version of MA, whereas two-class CDT is always equivalent to maximum margin (Behnia et al., 2023). Li
et al. (2021) suggest learning the parameters of VS-loss via bi-level optimization.

Finally, Kang et al. (2020) show that losses that yield good classifiers under class imbalance do not necessarily
learn good representations, and (Samuel & Chechik, 2021; Jitkrittum et al., 2022) propose losses that directly
target representation learning. Our analysis deals with linear classification and therefore has no direct
implications for representation learning. Nevertheless, Kang et al. (2020) show that separately learning the
representation and classifier is often effective, and our result can provide guidance for the latter part.

Neural and minority collapse. Building on the notion of neural collapse (Papyan et al., 2020), Fang
et al. (2021) and Ji et al. (2021) introduce a “layer peeled model” for neural network training where they
identify a “minority collapse” phenomenon, which potentially explains the tendency of neural networks to
generalize poorly to minority classes. Lu et al. (2022); Behnia et al. (2023) show that MA and CDT can
prevent minority collapse.

There are three differences between our results and (Fang et al., 2021; Lu et al., 2022; Behnia et al., 2023).
First, our analysis focuses on a linear setting where the representation is fixed rather than part of the
optimization objective. Second, we consider multi-class classification under general class size distribution
whereas (Fang et al., 2021; Lu et al., 2022; Behnia et al., 2023) consider a special case where there are
only two class sizes. Finally—and most importantly—we directly analyze the test performance of different
balanced losses, while finding a direct link between neural collapse and generalization is an open problem.

Robustness to spurious correlations. The problem of learning under spurious correlations (i.e., signals
that appear in part of the training data but not in the test data) has several parallels to class-imbalanced
learning. In particular, cross-entropy minimization tends to rely on spurious features, and re-weighting
techniques are not effective in the overparameterized setting (Sagawa et al., 2020a). Furthermore, loss
functions proposed for addressing class imbalance are typically also relevant for balancing different sub-
populations in the training data (Kini et al., 2021; Lu et al., 2022) and vice versa (Wang et al., 2022; Nguyen
et al., 2021). Finally, a number of works use Gaussian models similar to the one we study in order to shed
light on how spurious correlations affects generalization (Sagawa et al., 2020a; Nagarajan et al., 2021; Wald
et al., 2022).

However, class imbalance is also fundamentally different from spurious correlation. The former is ubiquitous
in practice while the latter is often challenging to define, identify and address (Hendrycks et al., 2021;
Gulrajani & Lopez-Paz, 2021). Moreover, for overparameterized Gaussian mixture models there exists
an information-theoretic barrier that prevents any interpolating method (such as MA) from generalizing
well (Wald et al., 2022); our results indicate such a barrier does not exist in the class-imbalanced setting.
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Limitations and future work. The main limitations of our work is the assumption of a very specific data
distribution and (to a lesser extent) the focus on linear classification. Our preliminary experiments suggest
that our theoretical predictions translate well to some non-linear, real-data kernel classification problems,
but may be less directly applicable to neural network training.

We identify two potential reasons for this discrepancy. First, our neural network experiments do not involve
very long training, while our analysis pertains to solutions obtain after infinitely many steps. Even in our
simple Gaussian model, understanding the impact of shorter training, early stopping, and regularization is
a fascinating topic for future work. Second, prior work observes that losses leading to good classifiers for
imbalanced data do not necessarily induce good neural representations, and suggest approaching each task
separately (Kang et al., 2020), while Behnia et al. (2023) argues that some losses can produce both good
representations and good classifiers in the context of class imbalance. Consequently, future work can apply
our approximation method for analyzing classifier-learning methods, or extend our model in order to also
capture representation learning.
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Appendix
A Approximation method

A.1 Notation

Training set distribution. We let
Pd ({si, Ni}ci=1)

denote the distribution of a training set of size N =
∑
i∈[c]Ni containing (for each y ∈ [c]) Ny examples

from class y drawn i.i.d. from eq. (7), with model parameters given by eq. (8). For dataset {(xi, yi)}i∈[N ] ∼
Pd ({si, Ni}ci=1), we let Sk := {i | yi = k} be the set of indices for training examples belonging to class k.

A.2 Expected kernel approximation

In this section we justify the use of EK instead of K at the limit of d → ∞. Recall the maximum margin
predictor problem defined by:

βmm, bmm := arg min
β1,...,β1∈RN ,b∈Rc

(
c∑
i=1

βi
>Kβi + ρb2[i]

)
subject to (βyi − βk)>ki + b[yi] − b[k] ≥ 1 for all i ≤ N and k 6= yi. (23)

Lemma A.1. Given a dataset D = {(xi, yi)}Ni=1, let X ∈ RN×d be the matrix of the features X =
[x1, . . . , xN ]>, M = [µyi , . . . , µyN ]> be the matrix of the corresponding signal vectors of each data point
in X, and G = X −M . Then for every t > 0 with probability at least 1− 4 (c+ 1) exp(−t2/8) it holds that

1−
√
N

d
− t√

d
≤ smin

(
G>
)
≤ smax

(
G>
)
≤ 1 +

√
N

d
+ t√

d
(24)

∀i ∈ [c] ‖Gµi‖ ≤ t
√
N

d
‖µi‖ (25)

Lemma A.1 was largely derived from Wald et al. (2022), but in our case we obtain a different probability
factor for the event to occur due to the union bound over c+ 1 events. For the reader’s convenience, we have
included the proof again here.

Proof. G is a random Gaussian matrix with G[i,j] ∼ N
(
0, d−1), hence from Roman (2012, Cor 5.35) it holds

that with probability at least 1 − 2 exp(−t2/2) eq. (24) holds. In addition, since G is random Gaussian
matrix, it holds that Gµi ∼ N

(
0, d−1‖µi‖2IN

)
. We use a bound on a norm of Gaussian vectors (Ledoux &

Talagrand, 2013, eq 3.5) and get that for any ti > 0,

P[‖Gµi‖ > ti] ≤ 4 exp
(
− dt2i

8N‖µi‖2

)
.

Specifically, for ti = t
√

Ni
d ‖µi‖ it holds that with probability at least 1−4 exp(−t2/8) eq. (25) holds. Taking

the union bound over c + 1 events and using the fact that 2 exp(−t
2

2 ) < 4 exp(−t
2

8 ) for any t > 0 results in
proving the desired lemma.
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Lemma A.2. (Concentration of features kernel) Given a dataset D ∼ Pd ({si, Ni}ci=1), let X ∈ RN×d be
the matrix of the features X = [x1, . . . , xN ]> and K = XX> be the features kernel of X. Then for any
t > 0, with probability at least 1− 4 (c+ 1) exp(−t2/8), it holds that

‖K − E [K]‖op ≤ 2
(√

N + t√
d

+ (
√
N + t)2

d
+ tN

d3/4 max
i∈[c]

si

)
.

Therefore for any dataset D ∼ Pd ({si, Ni}ci=1), let K bet the kernel matrix of the feature vectors in D then,
limd→∞ P[‖K − E [K]‖op = 0] = 1.

Proof. Similarly to Lemma A.1 we can view X = G + M where G is a random Gaussian matrix with
G[i,j] ∼ N

(
0, d−1). Since GG> ∼ W (d−1I, d

)
it holds that E

[
GG>

]
= I, then from eq. (24) it holds that

‖GG> − E
[
GG>

]
‖op ≤

(
1 +

√
N

d
+ t√

d

)2

− 1 (26)

Combining this and eq. (25) we get

‖K − E [K]‖op ≤ ‖GG> − E
[
GG>

]
‖op + 2‖GM>‖op

(a)
≤

(
1 +

√
N

d
+ t√

d

)2

− 1 + 2 max
x:‖x‖=1

‖GMTx‖

=
(

2
√
N + t√
d

+ (
√
N + t)2

d

)
+ 2 max

x:‖x‖=1
‖GMTx‖

=
(

2
√
N + t√
d

+ (
√
N + t)2

d

)
+ 2 max

x:‖x‖=1

√
x>MG>GM>x

=
(

2
√
N + t√
d

+ (
√
N + t)2

d

)
+ 2 max

x:‖x‖=1

√
x>
∑
i,j

(
Gµ>yi

)> (
Gµ>yj

)
x

≤

(
2
√
N + t√
d

+ (
√
N + t)2

d

)
+ 2 max

x:‖x‖=1

√
max
i∈[c]
‖Gµ>i ‖2‖x‖2

=
(

2
√
N + t√
d

+ (
√
N + t)2

d

)
+ 2 max

i∈[c]
‖Gµ>i ‖

√
N

(b)
≤ 2

(√
N + t√
d

+ (
√
N + t)2

d
+ tN√

d
max
i∈[c]
‖µi‖

)

where transitions (a) and (b) are justified by Lemma A.1, which leads us to conclude the desired bound.

Essentially Lemma A.2 show that under our data assumption, Section 2.3, at the limit of d→∞ K, converge
to EK. This motivates us to substitute K by EK and derive the margin problem in the overparameterized
regime. Specifically the approximated maximum margin predictor problem is defined by

βmm, bmm := arg min
β1,...,βc∈RN ,b∈Rc

(
c∑
i=1

βi
>E[K]βi + ρb2[i]

)
subject to (βyi − βk)>E[ki] + b[yi] − b[k] ≥ 1 for all i ≤ N and k 6= yi. (27)

We continue by explaining why this substitution helps to simplify the optimization in eq. (23).
Proposition A.3. For any pair of coefficients βmm

y[z] , β
mm
y[k] associated with points belonging to the same class,

the optimal solution of Equation 27 guarantees that βmm
y[z] is equal to βmm

y[k].
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Proof. Let D1 = {(xi, yi)}Ni=1 be a linearly separable dataset in Rd such that for any i ∈ [N ]

xi = µyi + ni where n[i] ∼ N
(
0, σ2Id

)
.

Let D2 be a dataset that is composed of the data points in D1 with a different permutation of the data
points (within the same class). Additionaly, denote by K(i) be the kernel matrix of Di and notice that:

E
[
K(1)

]
= E

[
K(2)

]
.

Which means that the optimal solutions of eq. (27) under D1 and D2 are identical. Hence, for any pair of
coefficients k 6= z of the same class, it holds that βmm

y[k] = βmm
y[z] .

Proposition A.3 shows that eq. (27) actually involve only c× (c+ 1) parameters (including the bias) under
c×(c− 1) constraints instead of c×N+c parameters with N×(c− 1) constraints. This allows us to simplify
the optimization in eq. (27) and conclude our final optimization problem:

α̃mm, b̃mm := arg min
α̃1,...,α̃c∈Rc,b∈Rc

(
c∑
i=1

α̃>i K̄α̃i + ρb2[i]

)

subject to (α̃y − α̃k)> K̄y

Ny
+ b[y] − b[k] ≥ 1 for all y ∈ [c] and k 6= y (28)

where K̄ is the expectation of the features sum vectors kernel.

K̄[i,j] =
{
N2
i ξi i = j

0 i 6= j

Specifically, denote x̄i :=
∑
j∈Si xj and ξi = ‖µi‖2 + σ2d

Ni
then,

K̄[i,i] = E[〈x̄i, x̄i〉] = E

〈∑
j1∈Si

xj1 ,
∑
j2∈Si

xj2

〉
= E

∑
j1∈Si

∑
j2∈Si

‖µi‖2 +
∑
j1∈Si

Ni〈nj1 , µy〉+
∑
j2∈Si

Ni〈nj2 , µy〉+
∑
j1∈Si

∑
j2∈Si

〈nj1 , nj2〉


(1)= N2

i ‖µi‖2 + E

∑
j1∈Si

∑
j2∈Si

〈nj1 , nj2〉

 (2)= N2
i ‖µi‖2 +Niσ

2d = N2
i ξi

were (1) and (2) are justified by linearity of expectation and i.i.d random samples of gaussian noise. In
addition K̄[i,j] = 0 where i 6= j as the product of two i.i.d random variables with orthogonal signal component.

A.3 Prediction error parameter approximation

Lemma A.4. Let x and y be two independent vectors drawn from N (0, Id). Then, for any d ≥ 2, fixed
u ∈ Rd and δ ∈

(
0, 1

e

)
we have

P

(
|〈x, u〉| > ‖u‖

√
2 log 1

δ

)
≤ δ,

P
(∣∣‖x‖2 − d∣∣ > 4

√
d log 2

δ

)
≤ δ, and

P
(
|〈x, y〉| >

√
d log 4

δ

)
≤ δ.
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Note that the last two inequalities sacrifice mid-tail dependence (i.e., depending on log 1
δ instead of

√
log 1

δ

for values of δ above e−
√
d) in favor of cleaner expressions.

Proof. For the first bound we note that 〈x, u〉 ∼ N
(

0, ‖u‖2
)
and therefore P (|〈x, u〉| > t) = 2Q

(
t
‖u‖

)
≤

e
− t2

2‖u‖2 . The second bound follows from substituting ai = 1 and x = log 2
δ in Lemma 1 of Laurent & Massart

(2000), which yields

P

(∣∣∣‖x‖2 − d > 2
∣∣∣√d log 2

δ
+ 2 log 2

δ

)
≤ δ,

and we note that, since d and log 1
δ are both larger than 1, we have

2
√
d log 1

δ
+ 2 log 1

δ
≤ 2
√
d log 1

δ
+ 2
√
d log 1

δ
= 4
√
d log 1

δ
.

Let us briefly derive the final bound from first principles. First, let k and z be independent standard
Gaussians. Then, for all |λ| < 1,

Eeλkz = E
[
E
(
eλkz

)
| z
]

= Ee
λ2
2 z =

∫ ∞
−∞

1√
2π
e−

z2
2 (1−λ2)dz =

√
1

1− λ2 .

Applying a Chernoff bound, we have that for all λ ∈ (0, 1),

P (〈x, y〉 > t) ≤ eλ(〈x,y〉−t) = e−λt
(
Eeλkz

)d = e−
d
2 log(1−λ2)−λt.

Now pick λ = 1√
d
, and note that −d log

(
1− 1

d

)
is decreasing in d, and therefore

−d2 log
(

1− 1
d

2)
≤ log 2.

for every d ≥ 2. Therefore, taking t =
√
d log 4

δ = 1
λ log 4

δ we obtain

P
(
〈x, y〉 >

√
d log 4

δ

)
≤ elog 2−log 4

δ = δ

2 .

Since 〈x, y〉 and −〈x, y〉 are identically distributed, we also have P
(
〈x, y〉 <

√
d log 4

δ

)
≤ δ

2 , yielding the
claimed bound on |〈x, y〉|.

Lemma A.5. (Concentration of ν̃(y) and Σ̃(y)) Let W̃, b̃ be an approximate predictor of the form eq. (11)
under data assumptions (Section 2.3). Then for any δ ∈ (0, 1

e ) w.p 1− δ it holds that

∣∣∣ν̃(y)
[i] − ν̂

(y)
[i]

∣∣∣ < 1
4
√
d

∣∣∣∣∣∣
c∑
j=1

u
(y)
[i,j]

∣∣∣∣∣∣
√

2Njsy log
(

1.5c(c+ 1)
δ

)
,

and ∣∣∣Σ̃(y)
[i,j] − Σ̂(y)

[i,j]

∣∣∣ ≤ 4
N

3/2
max
(√
smax + 1

)
√
d

c∑
z=1

c∑
k=1

∣∣∣u(y)
[i,z]u

(y)
[j,k]

∣∣∣ log
(

6c(c+ 1)
δ

)
where

ν̂
(y)
[i] =

u
(y)
[i,y]Ny‖µy‖

2 + b[y] − b[i]
σ

, Σ̂(y)
[i,j] =

c∑
z=1

u
(y)
[i,z]u

(y)
[j,z]N

2
z ξz and u

(y)
[i,j] := αy[j] − αi[j] (29)
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Proof. We start by showing that E
[
ν̃(y)] = ν̂(y) and E

[
Σ̃(y)] = Σ̂(y) then we continue by deriving the

concentration bound for each parameter and use the union bound the get the desired result.

Recall in the define of ν̃(y)
[i] :∑c

j=1
[
αy[j] − αi[j]

]
〈x̄j , µy〉+ b[y] − b[i]
σ

=
∑c
j=1 u

(y)
[i,j]〈x̄j , µy〉+ b[y] − b[i]

σ
.

Hence,

E
[
ν̃

(y)
[i]

]
= E

∑c
j=1 u

(y)
[i,j]〈x̄j , µy〉+ b[y] − b[i]

σ


(1)= 1

σ

c∑
j=1

u
(y)
[i,j]E[〈Njµj + n̄j , µy〉] +

b[y] − b[i]
σ

(2)=
u

(y)
[i,y]Ny‖µy‖

2 + b[y] − b[i]
σ

= ν̂
(y)
[i]

where (1) holds by definition of x̄i and since the biases are fixed, (2) holds since 〈µi, µj〉 = 1{i=j} and since
the expectation of the noise vectors is zero.

Similarly we calculate the expectation of Σ̃(y)
[i,j]. Recall in the definition of Σ̃(y)

[i,j]

Σ̃([i,j]) =
c∑

z=1

c∑
k=1

[
αy[z] − αi[z]

][
αy[k] − αj[k]

]
〈x̄i, x̄j〉

=
c∑

z=1

c∑
k=1

u
(y)
[i,z]u

(y)
[j,k]〈x̄i, x̄j〉.

and the expectation is

E
[
Σ̃([i,j])

]
= E

[
c∑

z=1

c∑
k=1

u
(y)
[i,z]u

(y)
[j,k]〈x̄z, x̄k〉

]

=
c∑

z=1

c∑
k=1

u
(y)
[i,z]u

(y)
[j,k]E[〈x̄z, x̄k〉]

(1)=
c∑

z=1
u

(y)
[i,z]u

(y)
[j,z]E[〈x̄z, x̄z〉]

=
c∑

z=1
u

(y)
[i,z]u

(y)
[j,z]N

2
z ξz = Σ̂(y)

[i]

where (1) is justified by that x̄z and x̄k are random variables with orthogonal mean vectors (when k 6= z).
We are now ready to prove the concentration bounds.

ν̃
(y)
[i] − ν̂

(y)
[i] =

∑c
j=1 u

(y)
[i,j]〈x̄j , µy〉+ b[y] − b[i]

σ
−
u

(y)
[i,y]Ny‖µy‖

2 + b[y] − b[i]
σ

(1)=
∑c
j=1 u

(y)
[i,j]〈Nyµj + n̄j , µy〉+ b[y] − b[i]

σ
−
u

(y)
[i,y]Ny‖µy‖

2 + b[y] − b[i]
σ

(2)=
∑c
j=1 u

(y)
[i,j]〈n̄j , µy〉
σ

(3)=
c∑
j=1

u
(y)
[i,j]
√
Nj〈n, µy〉
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(1) holds by definition of x̄i, (2) by 〈µi, µj ,=〉‖µ[i]‖1{i=j} and (3) since n̄j ∼ N
(
0, Njσ2Id

)
with n ∼

N (0, Id).

Hence we can use Lemma A.4 to bound
∣∣∣ν̃(y)

[i] − ν̂
(y)
[i]

∣∣∣ with probability 1− δ̃ as follows:

∣∣∣ν̃(y)
[i] − ν̂

(y)
[i]

∣∣∣ ≤ 1
4
√
d

∣∣∣∣∣∣
c∑
j=1

u
(y)
[i,j]

∣∣∣∣∣∣
√

2Njsy log
(

1
δ̃

)
. (30)

Moving on to bound
∣∣∣Σ̃(y)

[i] − Σ̂(y)
[i]

∣∣∣:
Σ̃(y)

[i,j] − Σ̂(y)
[i,j] =

c∑
z=1

c∑
k=1

u
(y)
[i,z]u

(y)
[j,k]〈x̄z, x̄k〉 −

c∑
z=1

u
(y)
[i,z]u

(y)
[j,z]N

2
z ξz

=
c∑

z=1

c∑
k 6=z

u
(y)
[i,z]u

(y)
[j,k]〈x̄z, x̄k〉+

c∑
z=1

u
(y)
[i,z]u

(y)
[j,z]〈x̄z, x̄z〉 −

c∑
z=1

u
(y)
[i,z]u

(y)
[j,z]N

2
z ξz. (31)

Looking at left sum of z 6= k:
c∑

z=1

c∑
k 6=z

u
(y)
[i,z]u

(y)
[j,k]〈x̄z, x̄k〉 =

c∑
z=1

c∑
k 6=z

u
(y)
[i,z]u

(y)
[j,k]〈Nzµz + n̄z, Nkµk + n̄k〉

(1)=
c∑

z=1

c∑
k 6=z

u
(y)
[i,z]u

(y)
[j,k](〈Nzµz, n̄k〉+ 〈Nkµk, n̄z〉+ 〈n̄z, n̄k〉). (32)

where (1) holds since 〈µi, µj〉 = ‖µi‖21{i=j}.

Using Lemma A.4 we can bound each term in eq. (32) such that w.p 1− 3δ̃ the following holds:

〈Nzµz, n̄k〉+ 〈Nkµk, n̄z〉+ 〈n̄z, n̄k〉 ≤
√
NzNk
3/4
√
d

(√
Nzsz +

√
Nksk

)√
2 log

(
1
δ̃

)
+
√
NzNk√
d

log
(

4
δ̃

)

≤ 2
N

3/2
max
√
smax

3/4
√
d

√
2 log

(
1
δ̃

)
+ Nmax√

d
log
(

4
δ̃

)
.

Moving on to bound the residual terms in eq. (31):
c∑

z=1
u

(y)
[i,z]u

(y)
[j,z]
(
〈x̄z, x̄z〉 −N2

z ξz
)

=
c∑

z=1
u

(y)
[i,z]u

(y)
[j,z]
(
2Nz〈µz, n̄z〉+ ‖n̄z‖2 −Nzσ2d

)
. (33)

Again using Lemma A.4 we can bound each term in eq. (33) such that w.p 1− 2δ̃ the following holds:

2Nz〈µz, n̄z〉+ ‖n̄z‖2 −Nzσ2d ≤ 2
N

3/2
z
√
sz

3/4
√
d

√
2 log

(
1
δ̃

)
+ 4Nz√

d
log
(

2
δ̃

)

≤ 2
N

3/2
max
√
smax

3/4
√
d

√
2 log

(
1
δ̃

)
+ 4Nmax√

d
log
(

2
δ̃

)
Hence we get that w.p 1−

(
2c+ 3 c

2−c
2

)
δ̃ for any i, j ∈ [c] it holds that:

∣∣∣Σ̃(y)
[i,j] − Σ̂(y)

[i,j]

∣∣∣ ≤ c∑
z=1

c∑
k=1

∣∣∣u(y)
[i,z]u

(y)
[j,k]

∣∣∣(2
N

3/2
max
√
smax

3/4
√
d

√
2 log

(
1
δ̃

)
+ 4Nmax√

d
log
(

2
δ̃

))

≤ 4
N

3/2
max
(√
smax + 1

)
√
d

c∑
z=1

c∑
k=1

∣∣∣u(y)
[i,z]u

(y)
[j,k]

∣∣∣ log
(

2
δ̃

)
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and ∣∣∣ν̃(y)
[i] − ν̂

(y)
[i]

∣∣∣ ≤ 1
4
√
d

∣∣∣∣∣∣
c∑
j=1

u
(y)
[i,j]

∣∣∣∣∣∣
√

2Njsy log
(

1
δ̃

)

where we used 3 c
2−c
2 concentration bounds for the case of z 6= k and additional 2c concatenation bounds

for the case of k = z (notice that these bounds also hold for the concentration of ν̂(y)). Finally we set
δ̃ = δ

1.5c(c+1) since 2c+ 3 c
2−c
2 = 1.5c(c+ 1) and get the desired result.

A.4 The error of the approximate model

We now show the correctness of the expression for Erry→k(W, b) were W , b is a predictor that is learned
under our data assumption (Section 2.3). Then we continue by showing that given a predictor of the form
of eq. (11) the error of the predictor at the limit of d → ∞ can be expressed as a multivariate Gaussian
distribution in Rc that is defined by the predictor’s coefficients {α̃i}ci=1 and the problem parameters.
Fact 1. Let x|y ∼ N (µy;σ2Id). Then, for any predictor (W, b) that is learned under our data assumption
(Section 2.3) and any k 6= y, we have

Erry(W, b) = 1− P
(
N (ν(y); Σ(y)) ≥ 0

)
and Erry→k(W, b) = Q

 ν
(y)
[k]√

Σ(y)
[k,k]

,
where Erry and Erry→k are defined in eqs. (1) and (3), respectively, Q(t) = P(N (0, 1) > t) is the Gaussian
error function, and, for every i, j ∈ [c]

ν
(y)
[j] =

(wy − wj)>µi + b[y] − b[j]
σ

and Σ(y)
[i,j] = (wy − wi)>(wy − wj).

where
{
ν(y),Σ(y)} are defined as the score statistics of the predictor W , b.

Proof.

P [〈wk, x〉+ bk > 〈wy, x〉+ by] = P [〈wk, µy + n〉+ bk > 〈wy, µy + n〉+ by]
= P [〈wk − wy, n〉 > 〈wy − wk, µy〉+ by − bk]
= P

[
N
(
0, ‖wy − wk‖2σ2Id

)
> 〈wy − wk, µy〉+ by − bk

]
= P

[
N (0, Id) >

〈wy − wk, µy〉+ by − bk
σ‖wy − wk‖

]
= Q

(
〈wy − wk, µy〉+ by − bk

σ‖wy − wk‖

)
(34)

Theorem A.6. Let D ∼ Pd ({si, Ni}ci=1) be a dataset from Pd ({si, Ni}ci=1) as defined in Section 2.3 and
W̃, b̃ be a predictor over D of the form of eq. (11). Then,

lim
d→∞

Erry
(
W̃, b̃

)
= 1− P

[
N
(
ν̂(y), Σ̂(y)

)
≥ 0
]
,

where,

ν̂
(y)
[i] =

[
α̃y[y] − α̃i[y]

]
Ny‖µy‖2 + b̃[y] − b̃[i]
σ

and Σ̂(y)
[i,j] =

c∑
z=1

[
α̃y[z] − α̃i[z]

][
α̃y[z] − α̃j[z]

]
N2
z ξz.

In addition, the worst class error of W̃, b̃ at the limit of d→∞ is lower bounded by:

max
k 6=y

lim
d→∞

Q

[α̃y[y] − α̃k[y]
]
Ny‖µy‖2 + b̃[y] − b̃[k]

σ

√∑c
i=1
(
α̃y[i] − α̃k[i]

)2
N2
i ξi

 = max
y,n6=y

lim
d→∞

Erry→k
(
W̃, b̃

)
≤ lim
d→∞

Errwc
(
W̃, b̃

)
. (35)
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Proof. Recall that the test error of a given predictor W̃, b̃ of the form of eq. (11) is defined by the probability
of misclassifying a new test sample (x, y).

Ex|y
[
`0−1

(
W̃, b̃; (x, y)

)]︸ ︷︷ ︸
error

= P
[
∃k 6= y : 〈w̃k, x〉+ b̃[k] > 〈w̃y, x〉+ b̃[y]

]
. (36)

eq. (36) can be rewritten by its complementary event,

Ex|y
[
`0−1

(
W̃, b̃; (x, y)

)]︸ ︷︷ ︸
error

= 1− P
[
∀k ∈ [c] : 〈w̃y, x〉+ b̃[y] ≥ 〈w̃k, x〉+ b̃[k]

]︸ ︷︷ ︸
accuracy

= 1− P
[
∀k ∈ [c] : 〈w̃y − w̃k, µy〉+ 〈w̃y − w̃k, n〉+ b̃[y] − b̃[k] ≥ 0

]
= 1− P

[
N
(
ν̃(y), Σ̃(y)

)
≥ 0
]
,

where ν̃(y) and Σ̃(y) are defined as follows:

ν̃
(y)
[k] =

〈w̃y − w̃k, µy〉+ b̃[y] − b̃[k]

σ
and Σ̃(y)

[i,j] = 〈w̃y − w̃i, ỹ − w̃j〉.

Hence,

lim
d→∞

Ex|y [`0−1 (W ; (x, y))] = 1− lim
d→∞

P
[
N
(
ν̃(y), Σ̃(y)

)
≥ 0
]
.

From Lemma A.5 it holds that at the limit of d → ∞, ν(y) p→ E
[
ν(y)] and Σ(y) p→ E

[
Σ(y)]. Additionally,

since the multivariate-Gaussian distribution is continuous in its parameters we get that:

lim
d→∞

P
[
N
(
ν̂(y), Σ̂(y)

)
≥ 0
]

= P
[
N
(
E
[
ν̃(y)

]
,E
[
Σ̃(y)

])
≥ 0
]
.

Which leads us to the desired results,

E
[
ν̃

(y)
[k]

]
=
[
α̃y[y] − α̃k[y]

]
Ny‖µy‖2 + b̃[y] − b̃[k]

σ
and E

[
Σ̃(y)

[i,j]

]
=

c∑
z=1

[
α̃y[z] − α̃i[z]

][
α̃y[z] − α̃j[z]

]
N2
z ξz.

See explicit calculation for these expressions in Appendix A.3. Additionally, this means that the test error
(at the limit of d → ∞) of a given class y can be lower bounded by the score limd→∞ Erry→k of a single
k 6= y as follows:

lim
d→∞

Ex|y [`0−1 (W ; (x, y))] = 1− lim
d→∞

P
[
N
(
ν̃(y), Σ̃(y)

)
≥ 0
]

= lim
d→∞

P
[
∃i 6= y : N

(
ν̃

(y)
[i] , Σ̃

(y)
[i,i]

)
≥ 2ν̃(y)

[i]

]
≥ max

i 6=y
lim
d→∞

P
[
N
(
ν̃

(y)
[i] , Σ̃

(y)
[i,i]

)
≥ 2ν̃(y)

[i]

]
= max

i 6=y
lim
d→∞

P

N (0, 1) ≥
ν̃

(y)
[i]√
Σ̃(y)

[i,i]

 .
Therefore we conclude that the worst class error at the limit of d→∞ is lower bounded as follows:

max
k 6=y

lim
d→∞

Q

‖µy‖2Ny[α̃y − α̃k][y] + b̃[y] − b̃[k]

σ

√∑c
z=1
[
α̃y[z] − α̃k[z]

]2
N2
z ξz

 ≤ lim
d→∞

Errwc
(
W̃, b̃

)
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B Implicit bias of gradient descent

In this section, we provide a straightforward extensions of prior work on the implicit bias of gradient descent
(GD) to account training the bias parameter (with a separate learning rate), and the MA and CDT losses.
We empirically validate these implicit biases in Appendix G.8.

B.1 Implicit bias of cross entropy

Recall the standard definition for the maximum margin predictor.

Wmm := arg min
W∈Rd×c

‖W‖2F

subject to (wyi − wk)>xi ≥ 1 for all i ≤ N and k 6= yi. (37)

In addition recall the definition of the log-loss objective for multiclass classification.

Lce(W ; b) = 1
N

N∑
i=1

`ce(W>xi + byi ; yi
)

where `ce (z; y) := log
(∑
i∈[c]

ez[i]−z[y]

)
. (38)

Soudry et al. (2018) show that minimizing the log-loss eq. (38) on a separable dataset using unregularized
gradient descent with a small enough learning rate η converges in direction to the maximum margin classifier
eq. (37). Where gradient descent minimizes L(W ) with iterates of the form:

W (t+ 1) = W (t)− η∇WL(W (t))

Proposition B.1 (Soudry et al. (2018), Theorem 7). For almost all multiclass datasets which are linearly
separable (i.e. the constraints in eq. (37) are feasible), any starting point W0 and a small enough stepsize
η ≤ 1

maxi∈[N]‖xi‖2 we have

lim
t→∞

W (t)
‖W (t)‖F

= Wmm

‖Wmm‖F
,

where limt→∞‖W (t)‖F =∞.
Remark B.2. To extend the result of Proposition B.1 to non-homogenous linear predictors, all input vectors
xi need to be extended with an additional 1 component.

We extend the implicit bias of gradient descent for the case where the weights and biases are learned with
different learning rates η and η′. Specifically, we show that for any ρ > 0 such that ρ =

(
η
η′

)2
gradient

decent converges in the direction of:

Wmm, bmm := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to (wyi − wk)>xi + b[y] − b[k] ≥ 1 for all i ≤ N and k 6= yi,

where gradient descent iterates are defined by:

W (t+ 1) = W (t)− η∇WL(W (t), b(t)) and b(t+ 1) = b(t)− η′∇bL(W (t), b(t)), (39)

and L is defined as in eq. (38). In addition we denote the concatenation of the weights and biases i.e., adding
the bias vector as the last row of W by [W |b].
Lemma B.3. Let ρ > 0 and D = {(xi, yi)}Ni=1 be a linearly separable dataset ,W (t) and b(t) be the iterates
of gradient descent 39 with L as defined in 38 with learning rate η ≤ 1

maxi‖xi‖2+ 1
ρ

and η′ = η√
ρ for the weights

and biases respectively. Then,

lim
t→∞

[W (t)|b(t)]
‖[W (t)|b(t)]‖F

= [Wmm|bmm]
‖[Wmm|bmm]‖F
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Proof. The proof of Lemma B.3 is a direct result of Proposition B.1. Specifically, we extend each point in
the training set by 1√

ρ and run gradient descent with η <
(

maxi‖xi‖2 + 1
ρ

)−1
. From Lemma B.9 it holds

that L is maxi∈[N ]‖xi‖2 + 1
ρ -smooth. Therefore, according to the implicit bias the iterates of GD converge

in the direction of

Wmm, bmm := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ‖b‖2

subject to (wyi − wk)>xi + 1
√
ρ
b[yi] −

1
√
ρ
b[k] ≥ 1 for all i ≤ N and k 6= yi.

Rearranging the bias terms as b̃i = 1√
ρbi, we get

Wmm, bmm := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b̃‖2

subject to (wyi − wk)>xi + b̃yi − b̃k ≥ 1 for all i ≤ N and k 6= yi,

which results in the desired margin problem. Furthermore, notice that setting the bias feature to 1√
ρ (instead

of 1) is equivalent to adjusting the learning rate of the biases to η√
ρ = η′. This equivalence arises due to

the effect of applying a factor of 1√
ρ to the bias terms, resulting in the same factor in the gradient. Thus

η√
ρ = η′ =⇒ ρ =

(
η
η′

)2
.

B.2 Implicit bias of margin adjustment

Recall the definition of the MA predictor:

Wma, bma := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to (wyi − wk)>xi + b[yi] − b[k] ≥ δyi for all i ≤ N and k 6= yi. (40)

In addition the margin adjustment loss is

`ma(z; y) := log
(∑
i∈[c]

e
z[i]
δy
−
z[y]
δy

)
. (41)

To obtain the convergence of GD with the MA loss in the direction of the MA predictor eq. (40) we reduce
the problem to standard cross-entropy training / margin maximization with rescaled features. Specifically
notice that for any dataset {(xi, yi)}Ni=1 it holds that

N∑
i=1

`ma(W>xi; y) =
N∑
i=1

log
(∑
j∈[c]

e
w>
j
xi

δy
−
w>y xi
δy

)
=

N∑
i=1

`ce(W>x′i; y) (42)

where x′i = xi
δyi

.

Lemma B.4. Let ρ > 0 and D = {(xi, yi)}Ni=1 be a linearly separable dataset ,W (t) and b(t) be the iterates
of gradient descent eq. (39) on L(W, b) = 1

N

∑N
i=1 `

ma(zi; yi) eq. (41), with {δi}ci=1 > 0, learning rates

η ≤ mini∈[N ]
δ2
yi

‖xi‖2+ 1
ρ

and η′ ≤ η√
ρ for the weights and biases respectively. Then,

lim
t→∞

[W (t)|b(t)]
‖[W (t)|b(t)]‖F

= [Wma|bma]
‖[Wma|bma]‖F

Proof. We prove this by demonstrating that the iterates of gradient descent with the log-loss on the scaled
features of D converge in the direction of the MA predictor. From eq. (42), we conclude the desired result.
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First, we extend the data points by a factor of 1√
ρ and scale each point by a factor of 1

δyi
, i.e.,

x′i =

[
xi| 1√

ρ

]
δyi

It should be noted that this augmentation alters the upper bound of smoothness for the log-loss to
maxi∈[N ]

‖xi‖2+ 1
ρ

δ2
yi

. Consequently, based on eq. (42), Proposition B.10, and Lemma B.3 it is guaranteed

that running GD with η ≤ mini∈[N ]
δ2
yi

‖xi‖2+ 1
ρ

will converge in the direction of the max margin.

Wmm, bmm := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to (wyi − wk)> xi
δyi

+ 1
δyi

b[yi] −
1
δyi

b[k] ≥ 1 for all i ≤ N and k 6= yi. (43)

Notice that eq. (43) is equivalent to the MA predictor margin problem, eq. (40) as for any i ∈ [N ] and k 6= y:

1
δyi

(wyi − wk)>xi + 1
δyi

b[yi] −
1
δyi

b[k] ≥ 1⇐⇒ (wyi − wk)>xi + b[yi] − b[k] ≥ δyi

Finally, the convergence of GD using different learning rates for the weights and biases is derived from
Lemma B.3. In this case, scaling

[
xi| 1√

ρ

]
by 1/δyi does not affect the ratio of the weights and biases learning

rates, yielding ρ =
(
η
η′

)2
.

B.3 Implicit bias of class dependent temperature

To show the implicit bias of gradient descent when using the CDT loss (eq. (45) below), we establish a
connection between two findings from previous studies by Ji et al. (2020) and Kini et al. (2021). Ji et al.
(2020) show that when running unregularized gradient descent on a convex, strictly decreasing loss function
f that is bounded below by zero and has an unattainable infimum, it converges in direction to the limit
of the minimizer of f in a ball of radius R, as R → ∞. Additionally, Kini et al. (2021) show that the
regularized CDT loss minimizer converges in the direction of the CDT predictor (Equation (6)). We proceed
by presenting the relevant theorems from Ji et al. (2020) and Kini et al. (2021), followed by an explanation
why the CDT loss satisfies the necessary conditions for the implicit bias of unregularized gradient descent.

W cdt := arg min
W∈Rd×c

‖W‖2F

subject to
(
wyi
δyi
− wk
δk

)>
xi ≥ 1 for all i ≤ N and k 6= yi. (44)

The CDT loss is defined by:

`cdt(z; y) := log
(∑
i∈[c]

e
z[i]
δi
−
z[y]
δy

)
. (45)

In addition,

`cdt(W>x; y) = log
(∑
i∈[c]

e
w>
i
x

δi
−
w>y x
δy

)
= `ce(diag

(
1
δ1
, . . . , δc

)
W>x; y). (46)

Proposition B.5 (Ji et al. (2020), Theorem 4). Suppose f is convex, β-smooth, bounded below by 0, and
has an unattained infimum, step size η satisfies η ≤ min

{
1

2f(w0) ,
1
β

}
. Consider the gradient descent iterates
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(W (t))t≥0 given by W (t+ 1) := W (t)− η∇f(W (t)), and the regularized solution given by

w̄(R) := arg min
‖w‖F≤R

f(w).

If limt→∞
W (t)
‖W (t)‖ = ū for some unit vector ū, then also limR→∞

w̄(R)
‖w̄(R)‖ = ū.

Proposition B.6 (Kini et al. (2021), Theorem 4). Consider a c-classes classification problem as in eq. (44)
and define the norm-constrained optimal classifier

W (R) := arg min
‖W‖F≤R

N∑
i=1

`cdt(W>xi; yi) (47)

for positive parameters {δi}ci=1 > 0. Assume that the training dataset is linearly separable and that W cdt is
the solution of Equation (44). Then it holds that,

lim
R→∞

W (R)
‖W (R)‖F

= W cdt

‖W cdt‖F

Corollary B.7. Running gradient descent with the CDT loss, using step size η < minj∈[c] δ
2
j

maxi‖xi‖2 and {δi}ci=1 > 0
converges in the direction of the CDT predictor, eq. (44), if the limit of the gradient descending iterates
limt→∞

W (t)
‖W (t)‖ exists.

Proof. The CDT loss, is convex, differentiable, maxi‖xi‖2

minj∈[c] δ
2
j
-smooth (eq. (46) and Proposition B.11), bounded

below by 0, as scaling the weights by δ does not affect these properties of the log-loss. Consequently, based
on Proposition B.5, it holds that the unregularized gradient descent iterates converge in the direction of
the regularized solution of the CDT loss. Furthermore, by applying Proposition B.6, we conclude that this
solution converges to the direction of the CDT predictor.

To generalize the implicit bias of gradient descent with the CDT loss to eq. (6) (with ρ and bias), we can
use the argument previously described for the maximum margin classifier.

B.4 Implicit bias of logit adjustment

We explain why applying gradient descent on the logit adjustment loss eventually results in the maximum
margin predictor with a bias adjustment. The logit adjustment (LA) loss is defined by

`la(z; y) := log
(∑
i∈[c]

exp
(
z[i] + ι[i] − z[y] − ι[y]

))
. (48)

Lemma B.8. Let D be a linearly separable dataset and denote by Wmm and bmm the maximum margin
predictor on D. In addition let W la(t) and bla(t) be the weights and biases of the iterates of gradient descent
with logit adjustment loss eq. (39) with L(W, b) =

∑N
i=1 `

la(zi, yi) on D with hyperparameter ι ∈ Rc and
η < 1

maxi∈[N]‖xi‖2 . Then,

lim
t→∞

[
W la(t)|bla(t)

]
‖[W la|bla](t)‖F

= [Wmm|bmm]
‖[Wmm|bmm]‖F

Proof. The key observation is that running GD on the LA loss is equivalent to running it on CE with offset
biases, i.e.,

`la(W>x+ b; y) = log
(∑
i∈[c]

exp
(
w>i x+ b[i] + ι[i] − w>y x− b[y] − ι[y]

))
= `ce(W>x+ b+ ι; y).
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Hence from Proposition B.1 it holds that,

lim
t→∞

[
W la(t)|bla(t) + ι

]
‖[W la(t)|bla(t) + ι]‖F

= lim
t→∞

[W ce(t)|bce(t)]
‖[W ce(t)|bce(t)]‖ = [Wmm|bmm]

‖[Wmm|bmm]‖F
. (49)

where W ce(t) and bce(t) are the iterates of gradient descent, eq. (39), with the log loss. Additional, notice
that

lim
t→∞

[
W la(t)|bla(t) + ι

]
‖[W la(t)|bla(t) + ι]‖F

= lim
t→∞

( [
W la(t)|bla(t)

]
‖[W la(t)|bla(t) + ι]‖F

+ [0|ι]
‖[W la(t)|bla(t) + ι]‖F

)
(1)= lim

t→∞

[
W la(t)|bla(t)

]
‖[W la(t)|bla(t) + ι]‖F

where (1) hold by Proposition B.1 as limt→∞ = ‖[W ce(t)|bce(t)]‖f =∞.

We continue by showing that limt→∞
‖[W la(t)|bla(t)+ι]‖2

F

‖[W la(t)|bla(t)]‖2
F

exists. This allows us to conclude the desired result
using limit arithmetics.

lim
t→∞

‖
[
W la(t)|bla(t) + ι

]
‖2F

‖[W la(t)|bla(t)]‖2F
= lim
t→∞

∑c
i=1‖wla

i (t)‖2 +
(
blai (t) + ιi

)2∑c
i=1‖wla

i (t)‖2 +
(
blai (t)

)2
= lim
t→∞

∑c
i=1‖wla

i (t)‖2 +
(
blai (t) + ιi

)2∑c
i=1‖wla

i (t)‖2 +
(
blai (t)

)2
= 1 + lim

t→∞

∑c
i=1 2blai (t)ι[i] + ι2[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2
(2)= 1 + lim

t→∞

∑c
i=1 2blai (t)ι[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2
(3)= 1.

Where (2) holds since ι is fixed and the numerator goes to infinity. We show that (3) holds by bounding∑c

i=1
2bla
i (t)ι[i]∑c

i=1
‖wla

i
(t)‖2+(bla

i
(t))2 :

Upper bound. ∑c
i=1 2blai (t)ι[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2 ≤ ∑c
i=1 2blai (t)ι[i]∑c
i=1
(
blai (t)

)2
and at t→∞

lim
t→∞

∑c
i=1 2blai (t)ι[i]∑c
i=1
(
blai (t)

)2 = 0

Lower bound.

c ·mini∈[c] b
la
i (t)ι[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2 ≤ ∑c
i=1 2blai (t)ι[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2
and at t→∞

lim
t→∞

c ·mini∈[c] b
la
i (t)ι[i]∑c

i=1‖wla
i (t)‖2 +

(
blai (t)

)2 = 0
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Therefore, by limit arithmetics, if the limit of a two series limt→∞A(t) and limt→∞B(t) exist then,

lim
t→∞

A(t) ·B(t) = lim
t→∞

(A ·B)(t).

Thus,

lim
t→∞

[
W la(t)|bla(t)

]
‖[W la(t)|bla(t)]‖F

= lim
t→∞

[
W la(t)|bla(t) + ι

]
‖[W la(t)|bla(t) + ι]‖F

= lim
t→∞

[W ce(t)|bce(t)]
‖[W ce(t)|bce(t)]‖ = [Wmm|bmm]

‖[Wmm|bmm]‖F

as needed.

B.5 Helper lemmas for smoothness of analyzed losses

In this subsection we present helper lemmas for bounding the smoothness of cross entropy, margin adjustment
and cross dependent temperature losses.
Lemma B.9. Let D = {(xi, yi)}Ni=1 in Rd and let D′ be a dataset in Rd+1 that contains all data points from
D extended by a single coordinate with a fixed value r ≥ 0. Then, Lce(W ; b) over D′ is maxi∈[N ]‖xi‖2 + r2

smooth.

Proof. We show this by bounding the Hessian of Lce(W ; b)

Lce(W ; b) = 1
N

N∑
i=1

`ce(W>xi + rbyi ; yi
)

= 1
N

N∑
i=1

log
(∑
i∈[c]

ez[i]−z[y]

)
= 1
N

N∑
i=1

log
(∑
i∈[c]

ez[i]

)
− z[y]


Hence,

∇2Lce(W ; b) = ∇2 1
N

N∑
i=1

log
(∑
i∈[c]

ez[i]

)

as z[y] is linear in W and b.

∂Lce

∂Wk[j]
= 1
N

N∑
i=1

xi[j]e
z[k]∑

i∈[c] e
z[i]

and ∂Lce

∂bk
= 1
N

N∑
i=1

rez[k]∑
i∈[c] e

z[i]

In addition,

∂2Lce

∂Wl[m]∂Wk[j]
= 1
N

N∑
i=1

xi[m]xi[j]e
z[k]
∑
i∈[c] e

z[i]1{l=k} − xi[m]xi[j]e
z[k]ez[l](∑

i∈[c] e
z[i]

)2

∂2Lce

∂b[l]∂b[k]
= 1
N

N∑
i=1

r2ez[k]
∑
i∈[c] e

z[i]1{l=k} − r2ez[k]ez[l](∑
i∈[c] e

z[i]

)2

∂2Lce

∂b[l]∂Wk[j]
= 1
N

N∑
i=1

rxi[j]e
z[k]
∑
i∈[c] e

z[i]1{l=k} − rxi[j]ez[k]ez[l](∑
i∈[c] e

z[i]

)2

∂2Lce

∂Wl[m]∂b[k]
= 1
N

N∑
i=1

rxi[m]e
z[k]
∑
i∈[c] e

z[i]1{l=k} − rxi[m]e
z[k]ez[l](∑

i∈[c] e
z[i]

)2

Which means

∇2Lce(W ; b) = 1
N

N∑
i=1

(
σ(yi) diag

(
x2

1, . . . , x
2
d, r

2)− P>P )
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where P (i) ∈ Rd×1 and σ(xi) ∈ Rc defined as

P
(i)
[k] =


xi[k]

e
z[k]∑

i∈[c]
e
z[i] k < d

r e
z[k]∑

i∈[c]
e
z[i] k = d

and σ(xi, yi) = ew
>
yi
xi+b[yi]∑

j∈[c] e
w>
j
xi+b[j]

. (50)

Therefore,

‖∇2Lce(W ; b)‖op = ‖ 1
N

N∑
i=1

(
σ(yi) diag

(
x2

1, . . . , x
2
d, r

2)− P>P )‖op ≤ max
i∈[N ]
‖xi‖2 + r2

as needed.

Proposition B.10. Let D = {(xi, yi)}Ni=1 in Rd and let D′ be a dataset in Rd+1 that contains all data points
from D extended by a single coordinate with a fixed value r ≥ 0. Further, each data point xi ∈ D′ is scaled
by a factor qi > 0. Then, Lce(W ; b) over D′ is maxi∈[N ] qi

(
‖xi‖2 + r2) smooth.

Proof. Following the same calculation as in Lemma B.9 we get that each entree of the Hessian of Lce(W )
has additional factor of q2

i as follows:

∇2Lce(W ; b) = 1
N

N∑
i=1

q2
i

((
σ(yi) diag

(
x2

1, . . . , x
2
d, r

2)− P>P ))
where P (i) ∈ Rd×1 and σ(xi) ∈ Rc are defined as in eq. (50) Therefore,

‖∇2Lce(W ; b)‖op = ‖ 1
N

N∑
i=1

q2
i

(
σ(yi) diag

(
x2

1, . . . , x
2
d, r

2)− P>P )‖op ≤ max
i∈[N ]

q2
i

(
‖xi‖2 + r2)

Proposition B.11. Let D = {(xi, yi)}Ni=1 in Rd and let {δi}ci=1 > 0 then, Lce
(

diag
(

1
δ1
, . . . , 1

δc

)
W ; 0

)
over

D is maxi∈[N]‖xi‖2

mini∈[c] δ
2
i

smooth.

Proof. By the chain rule it holds that

∇2Lce
(

diag
(

1
δ1
, . . . ,

1
δc

)
W

)
= diag

(
1
δ1
, . . . ,

1
δc

)>
∇2Lce

(
diag

(
1
δ1
, . . . ,

1
δc

)
W

)
diag

(
1
δ1
, . . . ,

1
δc

)
Therefore,

‖∇2Lce
(

diag
(

1
δ1
, . . . ,

1
δc

)
W

)
‖op ≤

maxi∈[N ]‖xi‖2

mini∈[c] δ
2
i

C Methods analysis

In this section we show detailed derivations for the α̃ coefficients of each predictor we mention in Section 4.
Then in Appendix D we use these expressions to lower bound the test-error of each predictor and derive
near optimal parameters for the worst class error. The order of predictors we analyze in this section is: MA
(Appendix C.1), LA (Appendix C.2) and CDT (Appendix C.3). Notice that MM coefficients can be easily
recovered from MA’s by setting δ = 1.
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C.1 Margin adjustment

Theorem 4.1. Let W̃ma, b̃ma be the expected kernel approximation for the MA predictor eq. (5) with any δ
that satisfies δi > 0 for all i ∈ [c]. Then, for all y ∈ [c] we have w̃ma

y =
∑c
i=1 α̃

ma
y[i]x̄i, where,

α̃ma
y[i] = δi

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

[
δj
ξj
− δy

ξy

]
cNiξi (M + ρ) and b̃ma

[y] =

∑c
j=y

[
δy
ξy
− δj

ξj

]
c (M + ρ) ,

using ξi := ‖µi‖2 + σ2d
Ni

and M :=
∑c
i=1

1
ξi

Proof. The approximated margin adjustment predictor is

{α̃ma
i }ci=1, {b̃ma

i }ci=1 := arg min
α∈Rc,b∈Rc

(
c∑

y=1
αy
>K̄αy + ρb2[y]

)

subject to (αy − αk)>
K̄[y]

Ny
+ b[y] − b[k] ≥ δy for all y ∈ [c] and k 6= y. (51)

where b[y] represents the bias parameter of the y’th class predictor. Recall that:

K̄[i,j] = 1{i=j}N
2
i ξi.

Hence we can rewrite the optimization in eq. (51) in its explicit form:

{α̃ma
i }ci=1, {b̃ma

i }ci=1 := arg min
α∈Rc,b∈Rc

(
c∑

y=1

c∑
i=1

α2
y[i]N

2
i ξi + ρb2[y]

)
subject to

(
αy[y] − αk[y]

)
Nyξy + b[y] − b[k] ≥ δy for all y ∈ [c] and k 6= y. (52)

Next we isolate αk[y] of each constraint and assume equality holds:

−αk[y] =
δy − αy[y]Nyξy −

[
b[y] − b[k]

]
Nyξy

. (53)

Taking the power of αk[y]:

α2
y[i] =

(
δi −

[
b[i] − b[y]

])2 − 2αi[i]Niξi
(
δi −

[
b[y] − b[i]

])
α2
i[i]N

2
i ξ

2
i

N2
i ξ

2
i

, (54)

for any pair y 6= i.

Let’s plug in eq. (54) in the objective of eq. (52):
c∑

y=1

c∑
i=1

α2
y[i]N

2
i ξi + ρb2[y] =

c∑
y=1

α2
y[y]N

2
y ξy + ρb2[y] +

c∑
y=1

c∑
i 6=y

α2
y[i]N

2
i ξi (55)

=
c∑

y=1
α2
y[y]N

2
y ξy + ρb2[y]

+
c∑

y=1

c∑
i6=y

(
δi −

[
b[y] − b[i]

])2 − 2αi[i]Niξi
(
δi −

[
b[y] − b[i]

])
+ α2

i[i]N
2
i ξ

2
i

ξi
= F.

We continue by calculating the optimality condition for αy[y], i.e. ∂F
∂αy[y]

= 0:

∂F

∂αy[y]
= 2αy[y]N

2
y ξy − 2Ny

[c− 1]δy −

[c− 1]b[y] −
∑
k 6=y

b[k]

+ 2[c− 1]αy[y]N
2
y ξy = 0.
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Which means that,

αy[y] =
[c− 1]δy −

[
[c− 1]b[y] −

∑
k 6=y b[k]

]
cNyξy

.

Lemma C.1. Let α̃ma, b̃ma be optimal for eq. (51) with ρ > 0 then the sum of biases is zero i.e.,

c∑
i=1

b̃ma
i = 0.

Proof. Assume by contradiction that Lemma C.1 does not hold. Then we can use α̃ma, b̃ma to find a better
solution (with lower objective) than α̃ma, b̃ma as follows:

α̂i = α̃ma
i and b̂i = b̃ma

i −
1
c

c∑
j=1

b̃ma
j ,

clearly,

c∑
i

b̂i =
c∑
i=1

b̃ma
i −

c∑
j=1

b̃ma
j = 0.

We’ll now show that α̂, b̂ is feasible and optimal in contradiction to optimality of α̃ma, b̃ma.

Feasibility For any y and k 6= y it holds that

[α̂y − α̂k]> K̄y

Ny
+ b̂y − b̂k =

[
α̃ma
y − αma

k

]> K̄y

Ny
+ b̃ma

y − bma
[k] ≥ δy.

Optimality

c∑
y=1

α̂>y K̄α̂y + ρb̂2y =
c∑

y=1

(
α̃ma
y

)>
K̄α̃ma

y +
c∑

y=1
ρ

b̃ma
y −

1
c

c∑
j=1

b̃ma
j

2

=
c∑

y=1

(
α̃ma
y

)>
K̄α̃ma

y + ρ

c∑
y=1

(
b̃ma
y

)2 − 2b̃ma
y

1
c

c∑
j=1

b̃ma
j + 1

c2

 c∑
j=1

b̃ma
j

 c∑
j=1

b̃ma
j


=

c∑
y=1

(
α̃ma
y

)>
K̄α̃ma

y + ρ

 c∑
y=1

(
b̃ma
y

)2 − 2
c

c∑
y=1

b̃ma
y

c∑
j=1

b̃ma
j + 1

c

 c∑
j=1

b̃ma
j

 c∑
j=1

b̃ma
j


=

c∑
y=1

(
α̃ma
y

)>
K̄α̃ma

y + ρ

c∑
y=1

(
b̃ma
y

)2 − ρ

c

 c∑
j=1

b̃ma
j

2

assumption
<

c∑
y=1

(
α̃ma
y

)>
K̄α̃ma

y + ρ

c∑
y=1

(
b̃ma
y

)2
In contradiction to optimality of α̃ma, b̃ma.

From Lemma C.1 it holds that in case ρ > 0 then b̃ma must satisfy b̃ma
y = −

∑
k 6=y b

ma
[k] . In case ρ = 0 we

can always take the optimal biases b̃ma and normalize them (by subtracting a constant from all the biases)
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similarly to Lemma C.1 and get that b̃ma
y = −

∑
k 6=y b

ma
[k] . Hence, we add this as “implicit” constraint to the

optimization problem and get that eq. (55) can be simplified as follows:

αy[y] =
[c− 1]δy − cb[y]

cNyξy
. (56)

Continue by plugging αy [y] in eq. (53) to conclude αk[y]

−αk[y] =
δy − αy[y]Nyξy −

[
b[y] − b[k]

]
Nyξy

=
δy −

[c−1]δy−cb[y]
cNyξy

Nyξy −
[
b[y] − b[k]

]
Nyξy

=
δy + cb[k]

cNyξy
. (57)

Now all its left is to find a set of biases that satisfy the optimality conditions ( ∂Fb[y]
= 0).

Let’s plug in αk[y] and αy[y] in F :
c∑

y=1
α2
y[y]N

2
y ξy + ρb2[y] +

c∑
y=1

c∑
i 6=y

α2
y[i]N

2
i ξi =

c∑
y=1

(
[c− 1]2δ2

y − 2cb[y][c− 1]δy + c2b2[y]

c2N2
y ξ

2
y

)
N2
y ξy + ρb2[y] +

c∑
y=1

c∑
i 6=y

(
δ2
i + 2cb[y]δi + c2b2[y]

c2N2
i ξ

2
i

)
N2
i ξi =

c∑
y=1

(
[c− 1]2δ2

y − 2cb[y][c− 1]δy + c2b2[y]

c2ξy

)
+ ρb2[y] +

c∑
y=1

c∑
i 6=y

(
δ2
i + 2cb[y]δi + c2b2[y]

c2ξi

)

Moving on to calculate ∂F
b[y]

and find b̃ma
y :

∂F

∂b[y]
=
−2[c− 1]δy + 2cb[y]

cξy
+

2ρcξyb[y]

cξy
+
∑
i 6=y

2δi
cξi

+ 2by
∑
i 6=y

c

cξi
= 0

Denote ξ̄i =
∏
j 6=i ξj then,

∂F

∂b[y]
= −[c− 1]δy ξ̄y + cb[y] [1 + ρξy] ξ̄y +

∑
i6=y

δiξ̄i + b[y]
∑
i 6=y

cξ̄i = 0

which means

b̃ma
y =

[c− 1] δyξy −
∑
i 6=y

δi
ξi

c
(∑c

i=1
1
ξi

+ ρ
) =

∑c
i=1

δy
ξy
− δi

ξi

c(
∑c
i=1M + ρ)

. (58)

Finally, let us plug in eq. (58) in eq. (56) and eq. (57) and conclude

αma
y[y] =

ρ[c− 1]δy +
∑c
i 6=y

1
ξi

[[c− 1]δy + δi]
cNyξy(M + ρ) (59)

and

αma
k[y] = −

ρδy + δy+[c−1]δk
ξk

+
∑c
i=1

δy−δi
ξi

cNyξy(M + ρ) . (60)

Which yields:

αma
y[i] = δi

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

(
δj
ξj
− δy

ξy

)
cNiξi(M + ρ)

where M :=
∑c
i=1

1
ξi
.
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C.2 Logit adjustment

As explained in Appendix B at convergence of gradient descent LA converges to the maximum margin with
bias adjustment of −ι. Therefore its α̃ and b̃ are the same as MM with bias adjustment of −ι. From
Appendix C.1

αmm
y[i] = 1

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

(
1
ξj
− 1

ξy

)
cNiξi(M + ρ) and b̃lay =

∑c
i=1

1
ξy
− 1

ξi

c(
∑c
i=1M + ρ)

− ιy (61)

where M :=
∑c
i=1

1
ξi
.

C.3 CDT

Theorem 4.5. Let W̃ cdt be the expected kernel approximation for the CDT predictor eq. (6) with any δ that
satisfies δi > 0 for all i ∈ [c], using ρ = ∞. Then, for all y ∈ [c] we have w̃cdt

y =
∑c
i=1 α̃

cdt
y[i]x̄i, where (for

ξi = ‖µi‖2 + σ2d
Ni

),

α̃cdt
y[i] = δi

Niξi

(
1{i=y} −

δyδi∑c
j=1 δ

2
j

)
.

Proof. Recall the expected kernel approximation of the CDT predictor at ρ =∞ (learning without bias):

{α̃cdt
i }ci=1 := arg min

α∈Rc

(
c∑

y=1
αy
>K̄αy

)

subject to
(
αy
δy
− αk
δk

)> K̄[y]

Ny
≥ 1 for all y ∈ [c] and k 6= y. (62)

We repeat the same analysis as in (C.1).

First we explicitly write the optimization problem:

{α̃cdt
i }ci=1 := arg min

α∈Rc

(
c∑

y=1

c∑
i=1

α2
y[i]N

2
i ξi

)
(63)

subject to
(
αy[y]

δy
−
αk[y]

δk

)
Nyξy ≥ 1 for all y ∈ [c] and k 6= y.

Next we assume the constraints are tight and get:

−αk[y] =
δyδk − αy[y]Nyξyδk

δyNyξy
. (64)

Plug in eq. (64) in the objective of eq. (63):

min
α

c∑
y=1

c∑
i=1

α2
y[i]N

2
i ξi = min

α

c∑
i=1

α2
i[i]N

2
i ξi +

c∑
i=1

c∑
y 6=i

α2
i[y]N

2
y ξy

= min
α

c∑
i=1

α2
i[i]N

2
i ξi +

c∑
i=1

c∑
y 6=i

(
δ2
i δ

2
y − 2δ2

i δyαy[y]Nyξy + α2
y[y]δ

2
iN

2
y ξ

2
y

δ2
yξy

)
= min

α
F (α).
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Moving on to calculate the optimality condition of F for αy[y]:

∂F

∂αy[y]
= 2αy[y]N

2
y ξyδ

2
y−2

c∑
i 6=y

δ2
i δyNy + 2

c∑
i 6=y

αy[y]δ
2
iN

2
y ξy = 0

⇐⇒

αy[y] =
∑
i 6=y δ

2
i δy

Nyξy
∑c
i=1 δ

2
i

.

Denote

∆\y :=
∑
i6=y

δ2
i and ∆ :=

c∑
i=1

δ2
i

Then

α̃cdt
y[y] = ∆\yδy

∆Nyξy
and α̃cdt

y[i] = − δyδ
2
i

∆Nyξy
(65)

where α̃cdt
i[y] was obtained by plugging α̃cdt

y[y] in eq. (64). Hence

α̃cdt
y[i] = δi

Niξi

(
1{i=y} −

δyδi
∆

)
Which means we find a solution that satisfy the constraints and the optimality condition and due to convexity
this is sufficient to know we find the optimum.

D Error approximation

In this section we show how to use the α̃ and b̃ expressions of each predictor (from Appendix C) to derive
the error score parameters. Then for MA and LA we use the error expressions to derive near optimal
hyper-parameters for the worst class error. The order of predictors in this section is: MA, MM, LA and
CDT.

D.1 Margin adjustment

We show the derivation for ν̂(y) and Σ̂(y) using the optimal solution of the approximated margin problem,
eq. (51).

αma
y[i] = δi

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

[
δj
ξj
− δy

ξy

]
cNiξi (M + ρ) and b̃ma

[y] =

∑c
i=1

[
δy
ξy
− δi

ξi

]
c (M + ρ) .

Therefore,

α̃ma
y[i] − α̃

ma
k[i] = δi

Niξi

(
1{i=y} − 1{i=k}

)
+ ∆k

Niξi (M + ρ) ,

and

b̃ma
y − b̃ma

k = − ∆k

(M + ρ) ,

where

∆k := δk
ξk
− δy
ξy

and M :=
c∑
i=1

1
ξi
.
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Consequently eq. (29)

Σ̂[k,k′] =
∑
i

(
αma
y[i] − α

ma
k[i]

)(
αma
y[i] − α

ma
k′[i]

)
N2
i ξi

= A[k,k′] + 1
M + ρ

(
B[k,k′] +B[k′,k]

)
+ 1

(M + ρ)2C[k,k′],

where

A[k,k′] =
∑
i

δ2
i

ξi

(
1{i=y} − 1{i=k}

) (
1{i=y} − 1{i=k′}

)
=
δ2
y

ξy
+ δ2

k

ξk
1{k=k′}

B[k,k′] =
∑
i

δi
ξi

(
1{i=y} − 1{i=k}

)
∆k′ =

(
δy
ξy
− δk
ξk

)
∆k′ = −∆k∆k′ = B[k′,k]

C[k,k′] =
∑
i

1
ξi

∆k∆k′ = M∆k∆k′ .

Substituting back, we have

Σ̂[k,k′] =
δ2
y

ξy
+ δ2

k

ξk
1{k=k′} −∆k∆k′

(
2

M + ρ
− M

(M + ρ)2

)

=
δ2
y

ξy
+ δ2

k

ξk
1{k=k′} −

M + 2ρ
(M + ρ)2

(
δk
ξk
− δy
ξy

)(
δk′

ξk′
− δy
ξy

)
=
δ2
y

ξy
+ δ2

k

ξk
1{k=k′} + ψk,k′(ρ) (66)

Now look at ν̂(y), from eq. (29):

ν̂
(y)
[i] = 1

σ

((
α̃ma
y[y] − α̃

ma
i[y]

)
Ny‖µy‖2 + b̃ma

y − b̃ma
i

) (1)= sy
δy
ξy

+ φma
i (ρ) (67)

where,

φma
i (ρ) =

(
sy
ξy
−
√
d

)
∆i

(M + ρ) and ψma
k,k′(ρ) = − M + 2ρ

(M + ρ)2

(
δk
ξk
− δy
ξy

)(
δk′

ξk′
− δy
ξy

)
(1) holds since 1

σ =
√
d and ‖µy‖2 = sy√

d
. Therefore,

lim
d→∞

Erry→k(W̃ma, b̃ma) = Q

 syNy δ̃y + φ̃ma
k (ρ)√

δ̃2
yNy + δ̃2

kNk + ψ̃ma
k,k(ρ)


where δ̃i := limd→∞ δi.
Remark D.1. The expressions for the maximum margin predictor are obtained by setting δi = 1.

Recall that the lower bound for the worst class error of MA is defined by:

Ẽrr
ma
wc (δ, ρ) := max

k 6=y
lim
d→∞

Erry→k
(
W̃ma(δ, ρ), b̃ma(δ, ρ)

)
.

We now continue by showing how to find near-optimal margins for promoting fairness by the MA predictor.

Near optimal margins.
Theorem D.2. For any dataset D ∼ P ({si, Ni}ci=1) it holds that

δ?i := ξi

‖µi‖2 + 2(M + ρ)−1 ∈ arg min
δ

Ẽrr
ma
wc (δ, ρ),
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Proof. We would like to find a set of margins that minimizes the worst class error, eq. (2). To do so, we are
looking for a set of margins, {δi}ci=1 that minimizes the lower bound of the worst class error at the limit of
d→∞. To find such margins we would have to analyze Ẽrr

ma
wc (δ, ρ) at a finite dimension, d, since the order

of limits of ρ→∞ and d→∞ matters.

min
δ

max
k 6=y

Q


sy
ξy

[
δk
ξk

+ δy
(
M\y + ρ

)]
+
√
d
[
δy
ξy
− δk

ξk

]
√(

δk
ξk

+δy[M\y+ρ]
)2

ξy
+
(
δy
ξy

+δk[M\k+ρ]
)2

ξk
+
(
δk
ξk
− δy

ξy

)2
M\y,k

.
where M\y :=

∑c
i6=y

1
ξi
.

By the monotonicity of the Q-function this is equivalent to find a set of margins that maximizes:

max
δ

min
y

min
y 6=k

sy
ξy

[
δk
ξk

+ δy
(
M\y + ρ

)]
+
√
d
[
δy
ξy
− δk

ξk

]
√(

δk
ξk

+δy[M\y+ρ]
)2

ξy
+
(
δy
ξy

+δk[M\k+ρ]
)2

ξk
+
(
δk
ξk
− δy

ξy

)2
M\y,k

(68)

We start by explaining why δ? (that satisfy eq. (68)) equalizes each δy, δk dependent pair:

sy
ξy

[
δk
ξk

+ δy

(
M\y + ρ

)]
+
√
d

[
δy
ξy
− δk
ξk

]
= sk
ξk

[
δy
ξy

+ δk

(
M\k + ρ

)]
+
√
d

[
δk
ξk
− δy
ξy

]
. (69)

Remark D.3. Notice that denominator of eq. (68) is symmetric for y and k, hence we can analyze the
numerators.

First we note that there is always a set of positive margins that satisfy eq. (69). Let δ′i = δi
ξi

and plug in
δ′y, δ

′
k in eq. (69).

syδ
′
k

ξy
+ syδ

′
y

(
M\y + ρ

)
+
√
d
[
δ′y − δ′k

]
=
skδ
′
y

ξk
+ skδ

′
k

(
M\k + ρ

)
+
√
d
[
δ′k − δ′y

]
. (70)

Let δk = ξk =⇒ δ′k = 1 and substitute in eq. (70).

sy
ξy

+ syδ
′
y

(
M\y + ρ

)
+
√
d
[
δ′y − 1

]
=
skδ
′
y

ξk
+ sk

(
M\k + ρ

)
+
√
d
[
1− δ′y

]
.

Which yields:

δ′y =
sk(M + ρ) + 2

√
d− sy

ξy
− sk

ξk

sy(M + ρ) + 2
√
d− sy

ξy
− sk

ξk

.

In addition, δ′y > 0 since:

2
√
d− sy

ξy
− sk
ξk

(1)= 2
√
d−

√
d

1 +
√
d

syNy

−
√
d

1 +
√
d

skNk

> 0.

where (1) holds since ξi := ‖µi‖2 + σ2d
Ni

= si√
d

+ 1
Ni

. Note that this set of margins is not necessarily
feasible for the case of c > 2 (multiclass). However, we later show that we can make δi depends only on its
parameters which is asymptotically optimal. We continue by showing that the error term of the y’th class
is monotonically increasing in δ′y and that the error term of the k’th class is monotonically decreasing in δ′y
which means that the optimum of eq. (68) is obtained at the intersection of the error term functions. We
start by rearranging the term inside the Q-function of eq. (68) as follows (for δ′y and δ′k as described above):

syδ
′
y(M + ρ) +

[√
d− sy

ξy

]
[δ′ − 1]√

(1+δ′yξy[M\y+ρ])2

ξy
+ (δ′y+ξk[M\k+ρ])2

ξk
+
(
1− δ′y

)2
M\y,k
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Let f
(
δ′y
)
and g

(
δ′y
)
be defined as the functions of the δy, δk dependent terms as follows:

f
(
δ′y
)

:=
syδ
′
y(M + ρ) +

[√
d− sy

ξy

][
δ′y − 1

]√
(1+δ′yξy[M\y+ρ])2

ξy
+ (δ′y+ξk[M\k+ρ])2

ξk
+
(
1− δ′y

)2
M\y,k

=
f1
(
δ′y
)

h
(
δ′y
) ,

and,

g
(
δ′y
)

:=
sk(M + ρ) +

[√
d− sk

ξk

][
1− δ′y

]√
(1+δ′yξy[M\y+ρ])2

ξy
+ (δ′y+ξk[M\k+ρ])2

ξk
+
(
1− δ′y

)2
M\y,k

=
g1
(
δ′y
)

h
(
δ′y
) .

Starting by looking at the derivative of h(δ′y):

h′(δ′y) =
((

1 + δ′yξy
[
M\y + ρ

])2
ξy

+
(
δ′y + ξk

[
M\k + ρ

])2
ξk

+
(
1− δ′y

)2
M\y,k

)−1/2

×((
1 + δ′yξy

[
M\y + ρ

])[
M\y + ρ

]
+
(
δ′y + ξk

[
M\k + ρ

])
ξk

−
(
1− δ′y

)
M\y,k

)

=
((

1 + δ′yξy
[
M\y + ρ

])2
ξy

+
(
δ′y + ξk

[
M\k + ρ

])2
ξk

+
(
1− δ′y

)2
M\y,k

)−1/2

︸ ︷︷ ︸
≥0

×

((
1 + δ′yξy

[
M\y + ρ

])[
M\y + ρ

]
+
(
δ′y + ξkρ

)
ξk

+ δ′yM
\y,k + 1

ξy

)
︸ ︷︷ ︸

≥0

≥ 0

Therefore h is monotonically increasing in δ′y.

We continue by showing that f1 and g2 are monotonically increasing and decreasing in δ′y respectively.

f ′(δ′y) = sy(M + ρ) +
[√

d− sy
ξy

]
(∗)
> 0

and

g′(δ′y) = −
[√

d− sk
ξk

]
(∗)
< 0

(*) for large enough d, which means that f and g are monotonically increasing and decreasing in δ′y respec-
tively.

Therefore, the optimal δ must satisfy eq. (69) which is obtained by

δ′y =
sk(M + ρ) + 2

√
d− sy

ξy
− sk

ξk

sy(M + ρ) + 2
√
d− sy

ξy
− sk

ξk

and δ′k = 1.

In order to make it symmetric we can multiply both deltas by 1
sk(M+ρ)+2

√
d− syξy −

sk
ξk

and obtain

δ′y = 1
sy(M + ρ) + 2

√
d− sy

ξy
− sk

ξk

and δ′k = 1
sk(M + ρ) + 2

√
d− sy

ξy
− sk

ξk

.
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Which means that:

δ?y = ξy
sy(M+ρ)

2
√
d

+ 1− sy

2
√
dξy
− sk

2
√
dξk

and δ?k = ξk
sk(M+ρ)

2
√
d

+ 1− sy

2
√
dξy
− sk

2
√
dξk

.

Since δ?y can not be dependent on ξk and sk for all the classes k 6= y we neglect the − sy

2
√
dξy
− sk

2
√
dξk

factor.
This is valid since when looking at eq. (68) at the limit of d → ∞ the only term that is affected by this
factor is

√
d
[
δ?y
ξy
− δ?k

ξk

]
(in any other case this factor vanishes). Additionally notice that when we plug in δ?

in
√
d
[
δ?y
ξy
− δ?k

ξk

]
we get:

√
d

[
δ?y
ξy
− δ?k
ξk

]
=
√
d

 1
sy(M+ρ)

2
√
d

+ 1− sy

2
√
dξy
− sk

2
√
dξk

− 1
sk(M+ρ)

2
√
d

+ 1− sy

2
√
dξy
− sk

2
√
dξk


=
√
d

[
sk(M + ρ)

2
√
d

+ 1− sy

2
√
dξy
− sk

2
√
dξk
− sy(M + ρ)

2
√
d

− 1 + sy

2
√
dξy

+ sk

2
√
dξk

]

=
√
d

[
sk(M + ρ)

2
√
d

− sy(M + ρ)
2
√
d

]
Which is essentially the same expression that is obtained for

δ̂y = ξy

‖µy‖2 + 2(M + ρ)−1

Therefore, at d→∞ the error terms of δ? and δ̂ converge to the same value and
ξy

‖µy‖2 + 2(M + ρ)−1 ∈ arg min
δ

Ẽrr
ma
wc (δ, ρ).

Following Theorem D.2 we evaluate the lower bound of the worst class error of MA at δ? when ρ =∞ and
ρ <∞ i.e., a predictor without and with bias respectively. Recall that

lim
d→∞

Erry→k(W̃ma, b̃ma) = Q

 syNy δ̃y + φ̃ma
k (ρ)√

δ̃2
yNy + δ̃2

kNk + ψ̃ma
k,k(ρ)

 ,

where

φma
i (ρ) =

(
sy
ξy
−
√
d

) δi
ξk
− δy

ξy

M + ρ
and ψma

k,k′(ρ) = − M + 2ρ
(M + ρ)2

(
δk
ξk
− δy
ξy

)(
δk′

ξk′
− δy
ξy

)
.

Notice that for ρ =∞ it holds that:

φma
i (∞) = 0 , ψma

k,k′(∞) = 0 and lim
d→∞

Erry→k(W̃ma, b̃ma) = Q

 1√
1

s2
yNy

+ 1
s2
k
Nk

 .

For the case of ρ <∞ we get when looking at the error term at a finite d it hold that:

syNy
ξy

‖µy‖2+2(M+ρ)−1 + φk(ρ)√(
ξy

‖µy‖2+2(M+ρ)−1

)2
Ny +

(
ξk

‖µk‖2+2(M+ρ)−1

)2
Nk + ψy,k(ρ)

=

syNy

sy√
d

+ 1
Ny

sy√
d

+2(M+ρ)−1 −
√
d

[
1

sk√
d

+2(M+ρ)−1 − 1
sy√
d

+2(M+ρ)−1

]
(M + ρ)−1√( sy√

d
+ 1
Ny

sy√
d

+2(M+ρ)−1

)2
Ny +

(
sk√
d

+ 1
Nk

sk√
d

+2(M+ρ)−1

)2
Nk − M+2ρ

(M+ρ)2

(
1

sk√
d

+2(M+ρ)−1 − 1
sy√
d

+2(M+ρ)−1

)2

41



Published in Transactions on Machine Learning Research (02/2025)

which results at the limit of d→∞ in
sy + sk

2
√
N−1
y +N−1

k

.

Corollary D.4. We have

Ẽrr
ma
wc (δ?, ρ) =


maxk 6=y Q

(
1√

(s2
yNy)−1+(s2

k
Nk)−1

)
ρ =∞

maxk 6=y Q
(

sy+sk
2
√
N−1
y +N−1

k

)
ρ <∞.

(71)

As we see in eq. (71) we get a discontinuity in ρ at the limit of d → ∞ we empirically investigate this in
Appendix G.3 by testing the effect of ρ when d is finite.

D.2 Logit adjustment

As we explain in Appendix B running gradient descent with logit adjustment is equivalent to running
gradient descent with cross-entropy and post-hoc update its biases. From Appendix D.1 it holds that the
approximated maximum margin Σ̂(y) is:

Σ̂[k,k′] = 1
ξy

+ 1
ξk
1{k=k′} −

M + 2ρ
(M + ρ)2

(
1
ξk
− 1
ξy

)(
1
ξk′
− 1
ξy

)
,

On the other hand, when adjusting the biases by a factor of −ι we get:

ν̂
(y)
[k] = 1

σ

((
α̃mm
y[y] − α̃

mm
i[y]

)
Ny‖µy‖2 + b̃mm

y − b̃mm
i − ι[y] + ι[k]

)
= syNy

 1
Nyξy

+

(
1
ξk
− 1

ξy

)
Nyξy (M + ρ)

−√d
(

1
ξk
− 1

ξy

)
+
(
ι[y] − ι[k]

)
(M + ρ)

(M + ρ) .

Corollary D.5. Let W̃mm, b̃mm be the maximum margin expected kernel approximation and let ι1, . . . , ιc be
additive factors for the predictor’s biases:

b̃la[i] = b̃mm
[i] − ιi.

Then for every y 6= k ∈ [c],

lim
d→∞

Erry→k(W̃mm, b̃la) = Q

 syNy + φ̃la
k (ρ)√

Ny +Nk + ψ̃mm
k,k (ρ)


where,

φla(ρ) =
( sy
ξy
−
√
d

M + ρ

)(
1
ξk
− 1
ξy

)
−
√
d
(
ι[y] − ι[k]

)
.

ψmm
k,k′(ρ) = − M + 2ρ

(M + ρ)2

(
1
ξk
− 1
ξy

)(
1
ξk′
− 1
ξy

)
.

Recall that the lower bound for the worst class error of the logit adjustment predictor is defined by

Ẽrr
la
wc(ι, ρ) := max

k 6=y
lim
d→∞

Erry→k
(
W̃mm(ρ), b̃mm(ρ)− ι

)
.
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Near optimal hyperparameters.
Theorem D.6. For any dataset D ∼ P ({si, Ni}ci=1) such that the signals are within equals strength ‖µi‖2 =
s√
d
for some positive s ∈ R, then it holds that

ι∗y =
2 + ‖µy‖2

[
M\y + ρ

]
2ξy[M + ρ] ∈ arg min

ι
Ẽrr

la
wc(ι, ρ)

Proof. Similarly to analysis of MA, since the order of limits of ρ → ∞ and d → ∞ matters we investigate
the lower bound of the worst class error at a finite dimension. Recall that:

Erry→k
(
W̃MM, b̃LA

) ∗= Q

 s
ξy

[
1
ξk

+M\y + ρ
]

+
√
d
[

1
ξy
− 1

ξk

]
+
√
d[ιk − ιy][M + ρ]√(

1
ξk

+[M\y+ρ]
)2

ξy
+
(

1
ξy

+[M\k+ρ]
)2

ξk
+
(

1
ξk
− 1

ξy

)2
M\y,k


(*) in case that the signals are within equal strengths.

ι∗ ∈ arg min
ι

max
k 6=y

Q

 s
ξy

[
1
ξk

+M\y + ρ
]

+
√
d
[

1
ξy
− 1

ξk

]
+
√
d[ιk − ιy][M + ρ]√(

1
ξk

+[M\y+ρ]
)2

ξy
+
(

1
ξy

+[M\k+ρ]
)2

ξk
+
(

1
ξk
− 1

ξy

)2
M\y,k

. (72)

By the monotonicity of the Q-function it holds that finding an ι that minimizes eq. (72) is equivalent to find
ι that maximizes:

ι∗ ∈ arg max
ι

min
y,k 6=y

 s
ξy

[
1
ξk

+M\y + ρ
]

+
√
d
[

1
ξy
− 1

ξk

]
+
√
d[ιk − ιy][M + ρ]√(

1
ξk

+[M\y+ρ]
)2

ξy
+
(

1
ξy

+[M\k+ρ]
)2

ξk
+
(

1
ξk
− 1

ξy

)2
M\y,k

 (73)

Similarly to MA analysis we show that the iota that maximizes the minimal term in eq. (73) is the one that
makes each ιy, ιk dependent terms equals.

s

ξy

[
1
ξk

+M\y + ρ

]
+
√
d

[
1
ξy
− 1
ξk

]
+
√
d[ιk − ιy][M + ρ] =

s

ξk

[
1
ξy

+M\k + ρ

]
+
√
d

[
1
ξk
− 1
ξy

]
+
√
d[ιy − ιk][M + ρ] (74)

Remark D.7. By the symmetry of the expression inside the Q-function of eq. (73) it is sufficient to compare
the numerators of it.

First notice that:

ιy =
2 + ‖µy‖2

[
M\y + ρ

]
2ξy[M + ρ]

satisfy eq. (74). In addition we define the functions that control the error score of the class y → k and k → y
as f and g as follows:

f(zyk) = s

ξy

[
1
ξk

+M\y + ρ

]
+
√
d

[
1
ξy
− 1
ξk

]
+
√
dzyk[M + ρ]

and

g(zyk) = s

ξk

[
1
ξy

+M\k + ρ

]
+
√
d

[
1
ξk
− 1
ξy

]
−
√
dzyk[M + ρ]
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where zyk = ιk − ιy. Then it is clear that f and g are monotonically increasing and decreasing in zyk.
Therefore the minimal element is maximized in the intersection of f and g. Which is obtained at

ι∗y =
2 + ‖µy‖2

[
M\y + ρ

]
2ξy[M + ρ]

Discussion. Our analysis for near-optimal ι for the case of equal strength signals show that adjusting
the logits of the maximum margin predictor can help mitigating its catastrophically failure on minorities.
Specifically by removing the negative effect of −

√
d
[

1
ξk
− 1

ξy

]
.

Corollary D.8. In case the signals are withing equal strengths it holds that

Ẽrr
la
wc(ι∗, ρ) = max

k 6=y
Q

 syNyT(k\y) + skNkT(y\k) − |sy − sk|NyNk
2
√

(Nk −Ny)2
N\y,k +NyT 2

(k\y) +NkT 2
(y\k)

 (75)

where N\y,k =
∑c
i 6=y,kNi and T(i\j) = 2Ni +N\i,j + ρ.

D.3 CDT

From Appendix C.3 it holds that for any pair y, i ∈ [c]:

α̃cdt
y[i] = δi

Niξi

(
1{i=y} −

δyδi
∆

)
where ∆ =

c∑
i=1

δ2
i

Substituting into eq. (29), we obtain expressions for ν̂(y) and Σ̂(y) for every y ∈ [c]:

ν̂
(y)
[i] = δysy

∆ξy

(
∆ + δ

(y)
i−y

)
Notice that by definition of α̃cdt

y[i] it holds that:

α̃cdt
y[z] − α̃

cdt
k[z] = δz

Nzξz∆
(
1{z=y}∆− 1{z=k}∆ + δz(δk − δy)

)
.

Substituting this in Σ̂(y)
[k,k′]:

Σ̂(y)
[k,k′] =

c∑
z=1

(
α̃cdt
y[z] − α̃

cdt
k[z]

)(
α̃cdt
y[z] − α̃

cdt
k′[z]

)
N2
z ξz

=
c∑

z=1

δ2
z

ξz∆2

(
1{z=y}∆− 1{z=k}∆ + δz(δk − δy)

)(
1{z=y}∆− 1{z=k′}∆ + δz(δk′ − δy)

)
=

c∑
z=1

δ2
z

ξz∆2A
(y)
[k,k′](z).

Where

A
(y)
[k,k′](y) =

(
∆ + δ

(y)
k−y

)(
∆ + δ

(y)
k′−y

)
,

A
(y)
[k,k′](k) =

(
∆ + δ

(k)
y−k

)(
1{k=k′}∆ + δ

(k)
y−k′

)
,

A
(y)
[k,k′](k

′) =
(

∆ + δ
(k′)
y−k′

)(
1{k=k′}∆ + δ

(k′)
y−k

)
,

44



Published in Transactions on Machine Learning Research (02/2025)

and for all i 6= k, k′, y

A
(y)
[k,k′](i) = δ

(i)
k−yδ

(i)
k′−y.

Which means

Σ̂(y)
[k,k′] =

δ2
y

∆2ξy

(
∆ + δ

(y)
k−y

)(
∆ + δ

(y)
k′−y

)
+ δ2

k

∆2ξk

(
∆ + δ

(k)
y−k

)(
1{k=k′}∆ + δ

(k)
y−k′

)
+ 1{k 6=k′}

δ2
k′δ

(k′)
y−k

∆2ξk′

(∆ + δ
(k′)
y−k′

)
+
ζ

(y)
k,k′

∆2

where

δ
(k)
i−y = δk(δi − δy) and ζ

(y)
i,j =

∑
k 6=y,i,j

δ2
kδ

(k)
i−yδ

(k)
j−y

ξk

Corollary D.9. The CDT expected kernel approximation predictor satisfies, for every y 6= k ∈ [c],

lim
d→∞

Erry→k(W̃ cdt) = Q

 sy
√
Ny√

1 +
(
δ̃k
δ̃y

)2
(

∆̃+δ̃(k)
y−k

∆̃+δ̃(y)
k−y

)2
Nk
Ny

+
(

1
∆̃+δ̃(y)

k−y

)2
ζ̃

(y)
k,k

δ̃2
yNy

 ,

where

∆ =
∑
i∈[c]

δ2
i , δ

(k)
i−y = δk(δi − δy) and ζ

(y)
i,j =

∑
k 6=y,i,j

δ2
kδ

(k)
i−yδ

(k)
j−y

ξk
,

and tilde denotes the limit at infinity, e.g.,

∆̃ := lim
d→∞

∆.

E Analytical approximation summary

In this section we summarize the parameterized that define the error of each predictor we analyze in this
work. Denote by ξi := ‖µi‖2 + σ2d

Ni
, M :=

∑c
i=1

1
ξi

and M\y :=
∑c
i 6=y

1
ξi
.

Max margin. The expected kernel approximation gives

α̃mm
y[i] = 1

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

(
1
ξj
− 1

ξy

)
cNiξi (M + ρ) and b̃mm

[y] =

∑c
i=1

(
1
ξy
− 1

ξi

)
c (M + ρ)

and the expected score statistics approximation gives

ν̂
(y)
[k] = syNy

 1
Nyξy

+

(
1
ξk
− 1

ξy

)
Nyξy (M + ρ)

−√d
(

1
ξk
− 1

ξy

)
(M + ρ) and

Σ̂(y)
[k,k′] = 1

ξy
+ 1
ξk
1{k=k′} −

M + 2ρ
(M + ρ)2

(
1
ξk
− 1
ξy

)(
1
ξk′
− 1
ξy

)
.
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Margin adjustment. The expected kernel approximation gives

α̃ma
y[i] = δi

Niξi

(
1{i=y} −

1
c

)
+

∑c
j=1

(
δj
ξj
− δy

ξy

)
cNiξi (M + ρ) and b̃ma

[y] =

∑c
i=1

(
δy
ξy
− δi

ξi

)
c (M + ρ)

and the expected score statistics approximation gives

ν̂
(y)
[k] = syNy

 δy
Nyξy

+
δk
ξk
− δy

ξy

Nyξy (M + ρ)

−√d
 δk

ξk
− δy

ξy

M + ρ

 and

Σ̂(y)
[k,k′] =

δ2
y

ξy
+ δ2

k

ξk
1{k=k′} −

M + 2ρ
(M + ρ)2

(
δk
ξk
− δy
ξy

)(
δk′

ξk′
− δy
ξy

)
.

Additionally, the expected score statistics at the near-optimal margin, eq. (18), gives

ν̂
(y)
[k] = sy

 ξy
syq+1 (M + ρ) + q

(
sk−sy

(skq+1)(syq+1)

)
ξy (M + ρ)

+ 1
2

(
sk − sy

(skq + 1)(syq + 1)

)
and

Σ̂(y)
[k,k′] = ξy

(syq + 1)2 + ξk

(skq + 1)21{k=k′} −
M + 2ρ

4d

(
sk − sy

(skq + 1)(syq + 1)

)(
sk′ − sy

(sk′q + 1)(syq + 1)

)
,

where q := (M + ρ)
(

2
√
d
)−1

and δ?i = ξi
‖µi‖2(M + ρ)2−1 + 1 .

Notice that we scale δ? in eq. (18) by 1
(M+ρ)2−1 (as scaling all the parameters by a scalar does not change

the solution).

Logit adjustment. The expected kernel approximation is the same as maximum margin, except we offset
the bias by iota. This results in obtaining the same parameters as the maximum margin with bias adjustment
of ι:

α̃la
y[i] = α̃mm

y[i] and b̃la[y] = b̃mm
[y] − ι[y].

The expected score statistics are

ν̂
(y)
[k] = syNy

 1
Nyξy

+

(
1
ξk
− 1

ξy

)
Nyξy (M + ρ)

−√d
(

1
ξk
− 1

ξy

)
+
(
ι[y] − ι[k]

)
(M + ρ)

(M + ρ) and

Σ̂(y)
[k,k′] = 1

ξy
+ 1
ξk
1{k=k′} −

M + 2ρ
(M + ρ)2

(
1
ξk
− 1
ξy

)(
1
ξk′
− 1
ξy

)
.

Class dependent temperature. The expected kernel approximation gives

α̃cdt
y[i] = δi

Niξi

(
1{i=y} −

δyδi
∆

)
where ∆ =

c∑
i=1

δ2
i ,

The expected score statistics are

ν̂
(y)
[k] = δysy

∆ξy

(
∆ + δ

(y)
k−y

)
where δ

(y)
k−y = δy(δk − δy)

and

Σ̂(y)
[k,k′] =

δ2
y

∆2ξy

(
∆ + δ

(y)
k−y

)(
∆ + δ

(y)
k′−y

)
+ δ2

k

∆2ξk

(
∆ + δ

(k)
y−k

)(
1{k=k′}∆ + δ

(k)
y−k′

)
+ 1{k 6=k′}

δ2
k′δ

(k′)
y−k

∆2ξk′

(∆ + δ
(k′)
y−k′

)
+
ζ

(y)
k,k′

∆2 where ζ
(y)
k,k′ =

∑
z 6=y,i,j

δ2
z

ξz
δ

(z)
k−yδ

(z)
k′−y
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F Methods comparison

In this section we present missing proofs from Section 4.

F.1 Margin adjustment

Proposition 4.2. Let N1 ≤ N2 ≤ · · · ≤ Nc and let ρ < ∞. If s1 ≤ s2 ≤ · · · ≤ sc then Ẽrr
ma
wc (δ?, ρ) ≤

Ẽrr
ma
wc (δ?,∞), with equality when s1 = s2 = · · · = sc. When s1 > s2 > · · · > sc then either Ẽrr

ma
wc (δ?, ρ) >

Ẽrr
ma
wc (δ?,∞) or Ẽrr

ma
wc (δ?, ρ) < Ẽrr

ma
wc (δ?,∞) is possible.

Proof. We prove Proposition 4.2 by showing that the relevant equality and inequality hold for any pair k 6= y
which implies that they hold for the worst class error as well.

Recall Ẽrr
ma
wc (δ?,∞) and Ẽrr

ma
wc (δ?, ρ) for ρ <∞:

Ẽrr
ma
wc (δ?,∞) = max

k 6=y
Q

 1√
4

(sy+sk)2

(
N−1
y +N−1

k

)
 and Ẽrr

ma
wc (δ?, ρ) = max

k 6=y
Q

 1√
1

Nys2
y

+ 1
Nks2

k


The expressions are clearly equal when sy = sk, so we focus on the other two cases, assuming without loss
of generality that Ny < Nk. Note that

Q

 1√
4

(sy+sk)2

(
N−1
y +N−1

k

)
 < Q

 1√
1

Nys2
y

+ 1
Nks2

k


if and only if

4
(sy + sk)2

(
N−1
y +N−1

k

)
<
(
s2
yNy

)−1 +
(
s2
kNk

)−1
.

Writing q = Ny
Nk

< 1 and r = sk
sy
, the inequality above is equivalent to

f(r) := (1 + r)2 +
(

1
r

+ 1
)2
q − 4(1 + q) > 0.

Note that

f ′(r) = 2(1 + r)
(

1− q

r3

)
,

and therefore, we have f ′(r) > 0 for r > 1. Since f(1) = 0, this implies that f(r) > 0 for all r =
sk
sy

> 1 and q ≤ 1. Therefore, when signal strengths are aligned with class sizes (i.e., sy < sk) we have

Q

 1√
4

(sy+sk)2 (N−1
y +N−1

k )

 < Q

 1√
1

Nys
2
y

+ 1
Nks

2
k

 and hence lower error for ρ <∞ as claimed.

When the signals are not aligned and so r < 1, the sign of f ′(r) depends on the value of q, and hence both
relative orders are possible, concluding the proof.

F.2 Logit adjustment

Proposition 4.4. If s1 = s2 = · · · = sc then Ẽrr
la
wc(ι∗, ρ) is monotonic decreasing in ρ and, for all values of

ρ, we have Ẽrr
la
wc(ι∗, ρ) ≤ Ẽrr

ma
wc (δ?, ρ).
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Proof. First notice that by the assumption in the lemma it holds that ‖µi‖2 = s√
d
for all i ∈ [c] and for some

s > 0.

Recall the expressions for Ẽrr
la
wc(ι∗, ρ) eq. (75) and Ẽrr

ma
wc (δ?, ρ) eq. (71):

Ẽrr
la
wc(ι∗, ρ) = max

k 6=y
Q

 sNyT(k\y) + sNkT(y\k)

2
√

(Nk −Ny)2
N\y,k +NyT 2

(k\y) +NkT 2
(y\k)


and

Ẽrr
ma
wc (δ?, ρ) = max

y,k 6=y
Q

 s√
N−1
y +N−1

k

.
where N\y,k =

∑c
i6=y,kNi and T(i\j) = 2Ni +N\i,j + ρ.

We show that the inequality Q
(

sNyT(k\y)+sNkT(y\k)

2
√

(Nk−Ny)2N\y,k+NyT 2
(k\y)+NkT 2

(y\k)

)
≤ Q

(
s√

N−1
y +N−1

k

)
holds for any pair

k, y and therefore holds for the maximum over pairs. By the monotonicity of the Q function it is enough to
show that for any pair y 6= k,

Ny
(
2Nk +N\yk + ρ

)
+Nk

(
2Ny +N\yk + ρ

)√
(Nk −Ny)2

N\yk +
(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

≥ 2√
N−1
y +N−1

k

. (76)

We start by showing that the LHS of eq. (76) is minimized when ρ = 0. Let f1(ρ) = g1(ρ)
h1(ρ) where

g1(ρ) := Ny

(
2Nk +N\yk + ρ

)
+Nk

(
2Ny +N\yk + ρ

)
and

h1(ρ) :=
√

(Nk −Ny)2
N\yk +

(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk.

Then,

g′1(ρ) = Ny +Nk

and

h′1(ρ) = 1
2

(
(Nk −Ny)2

N\yk +
(

2Nk +N\yk + ρ
)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

)−1/2
·(

8NyNk + 2N\yk(Ny +Nk) + 2ρ(Ny +Nk)
)
.

Therefore,

f ′1(ρ) =
(Ny +Nk)

(
(Nk −Ny)2

N\yk +
(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

)
(

(Nk −Ny)2
N\yk +

(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

)3/2

−
(
4NyNk +N\yk(Ny +Nk) + ρ(Ny +Nk)

)(
4NyNk +N\yk(Ny +Nk) + ρ(Ny +Nk)

)(
(Nk −Ny)2

N\yk +
(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

)3/2

=
(Ny +Nk)(Nk −Ny)2

N\yk +NyNk
((

2Nk +N\yk + ρ
)

+
(
2Ny +N\yk + ρ

))2(
(Nk −Ny)2

N\yk +
(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

)3/2 > 0,
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which means that f1 is monotonicity increasing in ρ (and the composition of the Q-function on it is mono-
tonicity decreasing) and

f1(ρ) ≥ f1(0) =
Ny
(
2Nk +N\yk

)
+Nk

(
2Ny +N\yk

)√
(Nk −Ny)2

N\yk +
(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

.

Next we define f2 as a function of N\yk as follows:

f2

(
N\yk

)
=

Ny
(
2Nk +N\yk

)
+Nk

(
2Ny +N\yk

)√
(Nk −Ny)2

N\yk +
(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

Similarly to the former step, we look at the derivative of f2(N\yk):

f ′2(N\yk) =
(Ny +Nk)

(
(Nk −Ny)2

N\yk +
(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

)
(

(Nk −Ny)2
N\yk +

(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

)3/2

−

(
(Nk−Ny)2

2 +Ny
(
2Nk +N\yk

)
+Nk

(
2Ny +N\yk

))(
Ny
(
2Nk +N\yk

)
+Nk

(
2Ny +N\yk

))
(

(Nk −Ny)2
N\yk +

(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

)3/2

=
(Nk −Ny)2N\yk

2 (Ny +Nk) + 4NyNk
((
Nk +Ny +N\yk

)2 − 1
2

)
(

(Nk −Ny)2
N\yk +

(
2Nk +N\yk

)2
Ny +

(
2Ny +N\yk

)2
Nk

)3/2 > 0

Where the last inequality holds since Nk +Ny ≥ 2. Therefore it holds that:

f2(N\yk) ≥ f2(0) = 2√
N−1
k +N−1

y

and we get

Ny
(
2Nk +N\yk + ρ

)
+Nk

(
2Ny +N\yk + ρ

)√
(Nk −Ny)2

N\yk +
(
2Nk +N\yk + ρ

)2
Ny +

(
2Ny +N\yk + ρ

)2
Nk

≥ 2√
N−1
y +N−1

k

as required.

F.3 An intuition why CDT attains non-zero training error

Let us consider the optimization problem associated with the CDT predictor:

W cdt, bcdt := arg min
W∈Rd×c,b∈Rc

‖W‖2F + ρ‖b‖2

subject to 1
δyi

(
w>yixi + b[yi]

)
− 1
δk

(
w>k xi + b[k]

)
≥ 1 for all i ≤ N and k 6= yi. (77)

Based on the definition of the CDT predictor optimization, eq. (77), it holds that for any (xi, yi) in the
training set, the CDT predictor satisfies:

1
δyi

(
w>yixi + b[yi]

)
− 1
δk

(
w>k xi + b[k]

)
≥ 1.
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It is worth noting that this condition can be satisfied even in scenarios when the predictor attain non-zero
training error. For example, assume that δyi = 1 and δk = 4 when w>yixi + b[yi] = 2 and w>k xi + b[k] = 3, as
shown below:

1
δyi

(
w>yixi + b[yi]

)
− 1
δk

(
w>k xi + b[k]

)
= 2− 3

4 ≥ 1,

the condition of eq. (77) holds. However, during inference, the learned predictor does not use the δ terms to
compensate for incorrect predictions. This leads to the following scenario:(

w>yixi + b[yi]
)
−
(
w>k xi + b[k]

)
= 2− 3 < 0,

which implies that:

arg max
j∈[c]

(
w>j xi + b[j]

)
6= yi.

Thus the training error of the predictor is greater than zero. We verify this intuition using a simple setting
of synthetic Gaussian data in R2, see in Appendix G.7.

F.4 The limitation of CDT in multiclass classification

Proposition 4.6. For any ε > 0 and c ≥ 3 classes, there exists an instance {si, Ni}ci=1 for which

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ 1

2 − ε while lim
d→∞

Errwc
(
W̃ma(δ?,∞), 0

)
≤ ε.

Proof. Corollary D.9 gives

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ max

k 6=y
Q

 sy
√
Ny√

1 +
(
δ̃k
δ̃y

)2
(

∆̃+δ̃(k)
y−k

∆̃+δ̃(y)
k−y

)2
Nk
Ny

+
(

1
∆̃+δ̃(y)

k−y

)2
ζ̃

(y)
k,k

δ̃2
yNy



(1)
≥ max

k 6=y
Q

 sy
√
Ny√

1 +
(
δ̃k
δ̃y

)2
(

∆̃+δ̃(k)
y−k

∆̃+δ̃(y)
k−y

)2
Nk
Ny

 . (78)

where (1) holds by monotonicity of the Q-function and ζ̃
(y)
k,k

δ̃2
yNy

> 0.

Let ∆̃k,y :=
∑
i 6=k,y δ̃

2
i and denote by ψy,k

ψy,k =
(
δ̃y

δ̃k

)(∆̃ + δ̃
(y)
k−y

∆̃ + δ̃
(k)
y−y

)
=
(
δ̃y

δ̃k

)(
∆̃k,y + δ̃2

k + δ̃k δ̃y

∆̃k,y + δ̃2
y + δ̃k δ̃y

)

=
(

∆̃k,y/δ̃k + δ̃k + δ̃y

∆̃k,y/δ̃y + δ̃y + δ̃k

)
= 1 + ∆̃k,y

1/δ̃k − 1/δ̃y
∆̃k,y/δ̃y + δ̃y + δ̃k

(79)

To establish our result, we define the signal strengths s1 > s2 > · · · > sc and class sizes N1 < N2 < · · · < Nc
as follows. For every y ∈ [c], we set

sy = 2Q−1(ε/c)√
Ny

, (80)
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and we take N1 = 1, and, for every i > 1, set

Ni =
⌈

max
{

1, c
2

4

}
Ni−1

(
2Q−1(ε/c)
Q−1( 1

2 − ε)

)2

+ 1
⌉
. (81)

We now consider two cases.

Case 1: There exists y < k such that δ̃y < δ̃k. Therefore, by eq. (79) we have ψy,k < 1 and, by eq. (78),

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ Q

 sy
√
Ny√

1 + Nk
Ny

 .

By our definitions of Ni and si in eqs. (80) and (81) above, we have Now notice that by our definition for
Ni, eq. (81), it holds that

sy
√
Ny√

1 + Nk
Ny

< Q−1
(

1
2 − ε

)
,

giving the claimed bound.

Case 2: For all y < k it holds that δ̃k < δ̃y. In this case we have

ψ1,2 = 1 + ∆̃1,2
1/δ̃2 − 1/δ̃1

∆̃1,2/δ̃1 + δ̃1 + δ̃2
< 1 + ∆̃1,2

1
δ̃2δ̃1 + δ̃2

2

< 1 + [c− 2]δ̃2
2

δ̃2δ̃1 + δ̃2
2
≤ 1 + c− 2

2 = c

2 .

Which means that

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ Q

 s1
√
N1√

1 + 4
c2
N2
N1

 .

By the same explanation of case 1 it holds that

sy
√
Ny√

1 + 4
c2
Nk
Ny

< Q−1
(

1
2 − ε

)
,

Therefore for any δ:

lim
d→∞

Errwc
(
W̃ cdt, 0

)
≥ 1

2 − ε

as claimed.

To conclude the proof, we show that the worst class error of MA is less than equal to ε. Recall that

lim
d→∞

Errwc
(
W̃ma(δ?,∞), 0

)
≤ c ·max

k 6=y
Ẽrr

ma
wc (δ?,∞),

and note that eq. (19) and our choices of si and Ni give

Ẽrr
ma
wc (δ?,∞) = max

k 6=y
Q

 sy
√
Ny

1 + s2
yNy
s2
k
Nk

 = Q

(
2Q−1(ε/c)

2

)
= ε

c
,

completing the proof.
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F.5 The limitation of CDT in binary classification

We show that when using CDT with c = 2, the direction of the classifiers are independent of δ1 and δ2, and
therefore CDT is no better than the MM. We note that while Kini et al. (2021) claim to analyze CDT in
the binary case (and show improved performance on minority classes), the method they analyze is really a
binary version of MA.
Lemma F.1. Let D = {(x1, y1, ..., xn, yn)} be a separable training set such that for any i ∈ [n] yi ∈
{1, 2}, xi ∈ Rd. Assume w1, w2 ∈ Rd comprise the CDT predictor with parameters δ1, δ2 > 0. In addition let
ŵ1, ŵ2 be the maximum margin predictor over D then for any i ∈ {1, 2},

wi
‖wi‖

= ŵi
‖ŵi‖

Proof. From the dual problem it holds that the learned predictor is of the form:

w1 = 1
δ1

n∑
i=1

λiyixi and w2 = − 1
δ2

n∑
i=1

λiyixi,

where λi is the dual variable that correspond the (xi, yi) sample. In addition, notice that since δ1, δ2 > 0
there exists 0 < c ∈ R such that δ1 = c · δ2, which means that:

w1 = 1
cδ2

n∑
i=1

λiyixi = 1
cδ2

w′ and w2 = − 1
δ2

n∑
i=1

λiyixi = − 1
δ2
w′. (82)

Recall that the CDT predictor solve the following optimization problem:

minimize
w1,w2

‖w1‖2 + ‖w2‖2 : ∀i ∈ [N ] yi

(
w1

δ1
− w2

δ2

)>
xi ≥ 1 (83)

plug in eq. (82) in eq. (83):

minimize
w′

1
c2δ2

2
‖w′‖2 + 1

δ2
2
‖w′‖2 : ∀i ∈ [N ] yi

(
1

c2δ2
2
w′ + 1

δ2
2
w′
)>

xi ≥ 1

which is equivalent to:

minimize
w′

‖w′‖2 : ∀i ∈ [N ] yi

(
1

c2δ2
2

+ 1
δ2
2

)
w′>xi ≥ 1. (84)

Recall that the maximum margin predictor satisfies ŵ1 = −ŵ2 (which essentially results in learning a single
predictor ŵ = 2ŵ1). Hence eq. (84) implies that

2ŵ1 =
(

1
c2δ2

2
+ 1
δ2
2

)
w′ =⇒ 2 c2δ2

1 + c2
ŵ1 = w′

we can plug this back in w1 and w2 and get that the CDT predictor is just a scaling of the maximum margin
predictor:

w1 = 2c
1 + c2

ŵ1 and w2 = − 2c2

1 + c2
ŵ1 = 2c2

1 + c2
ŵ2

See empirical validation in Appendix G.7.
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G Experiments

In this section, we provide a detailed presentation of our experiments. We showcase experiments conduct
on multiple seeds and settings, including additional experiments omitted from the main paper due to space
constraints.

How we compute predictors. Unless stated otherwise, we find the MM, MA, CDT and LA predictors we
consider by solving the corresponding margin maximization problems (defined in Section 2.2) using CVXPY
(Diamond & Boyd, 2016) with the MOSEK solver (MOSEK ApS, 2023).

How we compute error approximation. To compute the error approximation, we use the expressions for
α̃ and b̃ (refer to details in Appendix C) to construct the statistics score parameters ν̂(y) and Σ̂(y) as described
in Appendix D. Then, for calculating the error of the y’th class, we employ Monte Carlo simulation. Specifi-
cally, we sample 10,000 random samples from N

(
ν̂(y), Σ̂(y)

)
using numpy.random.multivariate_normal and

record the number of positive vectors as N+. The error approximation of the y’th class is subsequently set
to 1− π+, where π+ = N+

10,000 .

Gaussian mixture model datasets. To generate a Gaussian mixture dataset that aligns with our data
assumptions, we follow the steps outlined below. For a dataset with c classes, we define the first c standard
basis vectors as the directions of µ1, . . . , µc. Specifically, each µi is

µi = ei ·
√

si√
d

such that ‖µi‖2 = si√
d
.

Additionally, for each data point, we sample a noise vector from a multivariate Gaussian distribution with
σ2 = 1

d , resulting in ni ∈ Rd. Then, each data point is constructed as the sum of its signal and noise vectors
as follows:

xi = µyi + ni.

Exponential long-tail profile. Whenever we mention the use of an exponential long-tail profile, we are
referring to the exponential profile proposed by Cui et al. (2019). Specifically, for a desired imbalance ratio
R = Nmax/Nmin and a maximum sample size Nmax, the number of samples for each class is defined as:

Ni = Nmax ×
(

1
R

) c−i+1
c

.

G.1 Evaluating the impact of dimension on the validity of our approximation (Figure 1)

The approximations employed in this study rely on dimension dependent concentration bounds. To evaluate
their effectiveness, we generate three distinct instances of our problem across varying dimensions, aiming
to measure how accurately our approximation predicts the actual error obtained by the exact predictors
(i.e., predictors that are obtained using the true feature kernel rather than the expected kernel). Each
sub-figure in Figure 1 displays the empirical and theoretical worst-class errors eq. (2) for the maximum
margin (MM), class-dependent temperature (CDT), margin adjustment (MA), and logit adjustment (LA)
predictors. Specifically, for MA and LA, we present the worst class error achieved at the near-optimal

parameters discussed in Section 4. For CDT, we employed δi =
(

1
Ni

)γ?
, where γ? represents the γ value

that results in the lowest worst class error based on our theoretical predictions.

Our main goal in conducting experiments with diverse problem instances is to showcase situations where MA
surpasses LA and vice versa, as well as instances where all methods demonstrate comparable performance.
We repeat each experiment with 10 seeds; in the figures, the shaded area corresponds to two standard
deviations from the empirical mean (one standard deviation above and below), providing a measure of
variability. The solid line with markers represents our theoretical approximation for the worst-class error,
enabling a comparison between the empirical and theoretical outcomes. Lastly, in all the experiments we
use 4 classes and a balanced test set with 500 samples per class.

53



Published in Transactions on Machine Learning Research (02/2025)

Common classes have weaker signals (left panel). We used Ni values of 5, 50, 100 and 200, and
corresponding si values of of 0.5, 0.3, 0.2 and 0.1. MA performs better than LA, and CDT performs nearly
as badly as MM, consistent with Proposition 4.4 and Proposition 4.6.

Common classes have stronger signals (middle panel). We used the same Ni values as in the previous
panel, but changed the corresponding si values to 0.5, 0.7, 0.9 and 1.1. LA performs better than MA, and
CDT performs nearly as badly as MM, consistent with Proposition 4.4 and Proposition 4.6.

Less class imbalance (right panel). We used Ni values of 20, 35, 80, 100, and corresponding si values
of of 0.4, 0.3, 0.25 and 0.2. In this less imbalanced instance, CDT performs similarly to MA and LA, while
MM still performs noticeably worse.

G.2 Performance of the MM predictor and norm deviation

In this section, we provide a detailed empirical analysis of the failure of the maximum margin (MM) predictor
under class imbalance.

Recall the approximate error of the MM predictor from Appendix D:

lim
d→∞

Erry→k(W̃mm, b̃mm) = Q

 syNy + φmm
k (ρ)√

Ny +Nk + ψmm
k,k (ρ)

 ,

where,

φmm
k (ρ) = lim

d→∞
−
√
d

1
ξk
− 1

ξy

(M + ρ) and ψmm
k,k (ρ) = lim

d→∞
− M + 2ρ

(M + ρ)2

(
1
ξk
− 1
ξy

)2
.

By examining these equations, we observe that when ρ <∞, i.e., learning with bias, and Nk > Ny, it holds
that:

φmm
k (ρ) = −∞.

This results in a worst-class error lower bound of 1. On the other hand, when ρ =∞ i.e., learning without
bias, we get that:

lim
d→∞

Erry→k(W̃mm, b̃mm) = Q

(
syNy√
Ny +Nk

)
= Q

 sy
√
Ny√

1 + Nk
Ny

 . (85)

This observation indicates that as the imbalance ratio Nk
Ny

increases, the lower bound for the worst-class error
becomes 1

2 , which leads to a high test error. In other words, when there is a significant class imbalance, the
predictor is more likely to misclassify instances from minority classes, resulting in a higher overall error rate.
We validate this observation in the following experiment.

Experiment details. We use four classes, with Nmax = 200, and vary the exponential long tail profiles
from an imbalance ratio of 1 to 100 in Rd where d = 105. The signal strengths are set inversely proportional
to the number of samples in each class, i.e., si = 1.2√

Ni
(which allows us to fix the signal effect in the numerator

of eq. (85) to 1.2). For testing the performance of the learned predictor, we use a balanced test set with
500 samples per class. The results are reported over 5 different seeds, where the shaded area represents two
standard deviations from the empirical mean (one above and one below), and the solid line with markers
represents our theoretical model prediction for the class error.

Discussion. Figure 5 demonstrates that our approximation is tight even at moderate dimension. Specifi-
cally, we observe a catastrophic failure of the MM predictor with bias even in scenarios with extremely small
class imbalance. Furthermore, the error of the predictor without bias on minority classes increases as the
imbalance ratio becomes larger.
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Figure 5. Per-class error vs. imbalance ratio for MM predictors. The x-axis shows the imbalance ratio, i.e.,
the ratio between the largest and smallest per-class sample sizes. The y-axis represents the test error, and we
plot the test error of each class. The left side shows the test error of the maximum margin (MM) predictor
without bias, while the right side shows the test error of the MM predictor with bias. The shaded regions
show empirical results (two standard deviations over 5 random seeds) and the solid lines show our analytical
approximation.
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Figure 6. Worst class error vs. ρ for MM, MA and LA in linear classification on synthetic Gaussian data
at the near-optimal hyperparameters presented in Section 4. The shaded regions show empirical results (two
standard deviations over 5 random seeds) and the solid lines show our analytical approximation.

G.3 Testing discontinuity in ρ

Our analysis of the MA and MM predictors in Section 4 reveals a discontinuity in the lower bound of the
worst class error with respect to ρ as the dimension d approaches infinity. Specifically, for ρ <∞, we observe
a certain value in the lower bound of the worst class error at the near-optimal margins of MA, while for
ρ =∞, we encounter a different lower bound that is independent of ρ eq. (86).

Ẽrr
ma
wc (δ?, ρ) =


maxk 6=y Q

(
1√

(s2
yNy)−1+(s2

k
Nk)−1

)
ρ =∞

maxk 6=y Q
(

sy+sk
2
√
N−1
y +N−1

k

)
ρ <∞.

(86)

This raises an interesting question regarding how ρ affects the transition between learning with bias and
without bias in finite dimension. To investigate this, we conduct experiments where we vary the value of ρ
in a finite-dimensional setting. By sweeping over different ρ values, we observe how the errors of the MM,
MA, and LA predictors change as a function of ρ (at the near-optimal parameters).
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Experiment details. We generate two Gaussian datasets, each containing four classes in Rd with d = 105.
Additionally, both datasets contain 5, 50, 100, and 200 samples per class. In the first dataset, the signal
strengths are aligned with the order of the sample sizes, with values of 0.5, 0.7, 0.9, and 1.1. In the second
dataset, the signal strengths are in reversed order, with values of 0.5, 0.3, 0.2, and 0.1. We utilize this
setup to illustrate several observations. When the signals align with the class frequencies, the LA predictor
outperforms MA, and MA with bias is superior to MA without bias. Conversely, when the signal strengths
are reversed, MA without bias becomes the most effective choice. Moreover, we anticipate that MM with bias
will yield worse performance in both cases. As ρ increases, we expect MA and MM (with bias) to converge
to their corresponding predictors without bias. Furthermore, we employ a balanced test set consisting of 500
samples per class.

Discussion. Our results in Figure 6 demonstrate a smooth convergence between predictors with and without
bias. Specifically, we observe that there is no midpoint of ρ that surpasses ρ = 1 or ρ = ∞. Moreover, as
our theory suggests we observe a catastrophic failure of the MM predictor with bias even in scenarios with
extremely small class imbalance. Additionally, we see the expected behavior of MA when the signals are
aligned and reversed. Moreover, as our approximation eq. (67) suggests, we see that the transition between
the ρ <∞ regime to the ρ =∞ regime starts when ρ is of the order of

√
d.

G.4 Classification with RBF kernel

To test the validity of our predictions beyond the scope of our model, we conduct classification experiments
using the RBF kernel on imbalanced CIFAR10, MNIST and FashionMNIST datasets that were featurized
using ViT-B/32 CLIP model (Radford et al., 2021). Specifically we solve the kernel form of the optimization
problems in Section 2.1 (see Appendix A) when K is the RBF kernel (defined below). We consider two
different class size profiles. The first profile follows a standard “long-tailed” exponential distribution (Cui
et al., 2019; Cao et al., 2019), with 500 examples for the majority class and 5 examples for the minority
class. The second profile maintains the same majority and minority sizes but increases the sample sizes of
the other classes to worsen the theoretical predictions for CDT.

Data generation. For each dataset use in our tests (CIFAR10, MNIST and FashionMNIST), we sample
5, 8, 13, 23, 38, 64, 107, 179, 299, 500 and 5, 100, 120, 140, 160, 180, 200, 220, 300, 500 samples per class
for the exponential and modified profiles, respectively. We use the image encoder of pre-trained ViT-B/32
CLIP model (Radford et al., 2021) to extract features in R512 for each image. In addition, we featurize the
standard test sets of each dataset and use to test the learned predictors.

Hyperparameter sweep. Taking a random feature perspective, using the RBF kernel essentially corre-
sponds to taking d → ∞. Therefore, we use our theoretical tuning that matches this specific setting. For
the CDT and MA predictors, we use δi =

(
1
Ni

)γ
, while for the LA predictor, we use ιi = τ

(
Ni
N

)
(assuming

the signals have equal strengths).

RBF Kernel. The RBF kernel is

KRBF
[i,j] = exp

(
−‖xi − xj‖

2

2ζ2

)
,

where KRBF is an N×N matrix and ζ is the kernel width. It is important to note that as ζ becomes smaller,
the kernel becomes closer to a diagonal matrix, agreeing with our expected kernel approximation with the
scaling ‖µi‖2 = si√

d
and in the limit in the limit d→∞. Conversely, as ζ becomes larger, the kernel widens

and becomes less diagonal. We illustrate this in Figures 7a to 7c.

Distance from theory. To quantify the similarity between KRBF and the expected K kernel (see eq. (9))
used in our theoretical analysis, we define the “distance from theory” as follows:

DT
(
KRBF) = min

α1,α2∈R

∥∥KRBF − α1B − α2I
∥∥

F ,

where I is the N×N identity matrix and B ∈ RN×N has elements B[i, j] = 1{yi=yj}. Thus, the distance from
theory measures the Euclidean (Frobenius) distance between KRBF and the block matrix K ′ = α?1B + α?2I
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Figure 7. Illustration of the RBF kernel on (a) CIFAR10 (b) MNIST and (c) FashionMNIST with varying
widths using 100 samples per class. The “distance from theory” at the widest kernel width indicates that
CIFAR10 has properties that fits the best to our theoretical model.

that best approximates KRBF and is consistent with our data model (see sections 2.3 and 3.1) when the
signals have equal strengths.

Discussion. In Figure 8, we extend Figure 3 (which corresponds to kernel width 6.0) to show results with
additional kernel widths. The figure illustrates that many of our predictions continue to hold in this setting,
particularly the high errors of CDT and MM (especially with bias), which persist across all tested kernel
widths. Additionally, we observe that a kernel width of 6.0 appears to agree most closely with our theory.
As seen in Figure 8, as we approach this kernel width, the optimal tuning parameters tend to be around
γ, τ = 1. Conversely, as we move away from it (e.g., kernel widths of 7.0 and 8.0), the optimal tuning
parameters deviate from γ, τ = 1.

Moreover, Figures 9 and 10 show similar observations for MNIST and FashionMNIST datasets. Specifically,
in both datasets, we observe that the “modified class profile” leads CDT to failure in all kernel widths.
Margin adjustment with bias, on the other hand, has optimal hyperparameters around γ = 1.

For margin adjustment without bias and logit adjustment, our theoretical predictions hold better for CI-
FAR10 than they do for MNIST and FashionMNIST. This is consistent with the higher “distance from
theory” computed for the latter two datasets Figures 7a to 7c. Two likely causes for the higher distance are:
(1) the class signals are non-orthogonal, and (2) the signal strengths are not of equal magnitude. For Fash-
ionMNIST (Figure 7c), both causes seem to be at play, since there are significant kernel magnitudes across
classes (indicating class signals are not orthogonal), and also the classes have unequal signal strengths. For
MNIST (Figure 7b), we see that in a high kernel width, KRBF looks like the signal vectors of different classes
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Figure 8. Empirical worst class test error vs. loss tuning hyperparameter for the different methods we
consider and kernel classification on two imbalanced versions of CIFAR10 with varying kernel widths.

are nearly orthogonal (as there are no bright blocks or cells that are not centered around the diagonal), but
still the classes have unequal strengths, as some class blocks are much brighter than other class blocks.

G.5 CLIP fine-tuning

We conduct experiments to test our theoretical observations beyond the realm of linear classifiers and Gaus-
sian data by fine-tuning zero-shot CLIP (ViT-B/32) (Radford et al., 2021) on three imbalanced CIFAR10
datasets, each varying in the number of classes used.

In the three-class dataset, we include images of airplanes, cats, and horses from CIFAR10, with sample
sizes per class of 1000, 500 and 5, respectively.

The four-class dataset consists of images of airplanes, cats, deer, and horses from CIFAR10, with sample
sizes per class of 1000, 500, 300 and 5, respectively.

The ten-class dataset comprises images from all classes of CIFAR10, with 500, 450, 350, 300, 280, 250,
230, 200, 150, and 5 sample sizes per class, respectively.

We consider a reduced number of classes in an attempt to make it more challenging for CDT to succeed,
as our theory suggests that a significant imbalance between consecutive classes hinders CDT’s performance.
For each model, we use the official CIFAR10 test set and keep only the relevant classes for each experiment.
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Figure 9. Empirical worst class test error vs. loss tuning hyperparameter for the different methods we
consider and kernel classification on two imbalanced versions of MNIST with varying kernel widths.

For each instance, we use PyTorch (Paszke et al., 2019) to fine-tune CLIP by minimizing the CDT and MA
losses using the standard tuning parameter δi =

(
1
Ni

)γ
over the training set. In addition we test the post-hoc

bias adjustment of the MM predictor using both standard τ log
(
Ni
N

)
and theoretical tuning ιi = τ NiN .

Zero-shot initialization. To initialize the zero-shot model, we utilize templates from the official GitHub
repository of CLIP (Radford et al., 2021) for CIFAR10.

Training procedure. Fine-tuning is performed using PyTorch (Paszke et al., 2019) while training is con-
ducted for 1000 epochs, employing the SGD optimizer with a batch size of 128, no momentum, no weight
decay, and gradient clipping with global norm threshold of 1. The learning rate is set to 1e-4 with cosine
learning rate scheduler, and the training is distributed across 4 GPUs.

Discussion. Figure 11 demonstrates partial agreement with our theory. CDT performs comparably to MA,
and our theoretical setting of LA is slightly superior in the ten-class dataset but inferior in the other two
cases. We note that CDT exhibits greater sensitivity to the tuning of γ than MA, which contradicts the
predictions of Behnia et al. (2023). Additionally, we observe that CDT does not converge to zero training
error (Figure 11b), supporting Remark 2.1.
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Figure 10. Empirical worst class test error vs. loss tuning hyperparameter for the different methods we
consider and kernel classification on two imbalanced versions of FashionMNIST with varying kernel widths.

G.6 Linear classification with Gaussian model

To validate the theoretical observations presented in Section 4, we conduct experiments to test the perfor-
mance of the predictors we analyze in this work on various instances of our model. The empirical validation
aims to demonstrate the following key points:

1. The theoretical predictions for the error of all predictors are tight even in a finite dimension.

2. There are instances of data where CDT performs very poorly, while MA and LA can perform
extremely well.

3. When the signals are of equal strength, MA with and without bias achieve the same optimum for
the worst class error. Additionally, LA surpasses MA.

4. There are instances where MA without bias outperforms MA with bias and LA.

5. At least in a one-dimensional hyperparameter sweep, the near-optimal value predicted from our
theory is indeed optimal.

6. In certain scenarios, our theoretical tuning outperforms standard tuning.
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Figure 11. (a) Empirical worst class test error vs. loss tuning hyperparameter and (b) training loss and
error vs. loss tuning hyperparameter for CDT and MA in neural network fine-tuning on class-imbalanced
subsets of CIFAR10.

Data setting. We conduct experiments using five different instances of Gaussian mixture datasets that
conform to our data model described in Section 2.3. Each dataset consists of four classes in Rd, where
d = 105. The test set for each instance is balanced, with 500 samples per class. The instances differ in terms
of the following characteristics:

Instance 1 (equal signals): has 5, 50, 100 and 200 samples per class and signal strengths 0.5 for all classes.

Instance 2 (reversed signals): has 5, 50, 100 and 200 samples per class and signal strengths 0.5, 0.3 0.2
and 0.1, respectively.

Instance 3 (aligned signals): has 5, 6, 100 and 200 samples per class and signal strengths 0.5, 1.0, 1.5
and 2.0.

Instance 4 (weak aligned signals): has 5, 50, 100 and 200 samples per class and signal strengths 0.5,
0.7,0.9 and 1.1.

Instance 5 (strong aligned signals): has 5, 50, 100 and 200 samples per class and signal strengths 0.5,
1.0, 1.5 and 2.0., respectively.

Experiment details. We tune each method by sweeping over a scalar hyperparameter. Specifically we tune
MA and LA using our theoretical expressions from Section 4, setting δi = (δ?i )γ and ιi = τι∗i , respectively,
and sweeping over γ and τ such that value 1 recovers the theoretical tuning and value 0 reduces to standard
maximum margin. For CDT we use standard tuning and set δi = N−γi . Additionally, whenever we mention
that we use standard tuning for MA and LA we use δi = N−γi and ιi = τ logNi respectively.

Balanced error. The balanced error is defined by

Errbal (W, b) := 1
c

c∑
y=1

Erry (W, b)

Where Erry (W, b) is defined in eq. (1).
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Figure 12. Worst class error vs. loss tuning hyperparameter for the different methods we consider in linear
classification on synthetic data from our model. The shaded region show empirical results (two standard
deviations over 5 random seeds) and the solid lines show our analytical approximation. Figure 12a is exactly
the same as the top row (showing worst class error) in Figure 2.

Macro F1 score. The macro F1 score is calculated by averaging the F1 scores for each class. The F1 score
for each class y is given by:

(F1)y =
2 · precisiony · recally
precisiony + recally

where
precisiony = TPy

TPy + FPy
and recally = TPy

TPy + FNy
,

and TPy, FPy, FNy are the true positive, false positive and false negative rates for class y, respectively,
assuming the data comes from the (class imbalanced) training distribution.

The macro F1 score is then computed by averaging the F1 scores across all C classes:

macro F1 = 1
C

C∑
i=1

(F1)i.

Discussion. Our experimental findings, as illustrated in Figures 12 and 13, provide strong support for the
validity of our theory. Specifically, in Figure 12a, we observe that when the signal strengths are equal, both
MA with and without bias exhibit equivalent performance when γ = 1, while LA outperforms MA when
τ = 1. Furthermore, across all test cases, we find no value of γ that improves CDT’s performance on the
worst class. Additionally, Figure 12b demonstrates that CDT can achieve good performance in certain cases.
In Figure 13, we compare the worst class error of standard tuning to theoretical tuning for all methods. The
results indicate that, in all tested scenarios except for instance 5, theoretical tuning consistently outperforms
standard tuning, particularly in the case of LA. Finally, Figures 14 illustrate the tightness of our analytical
expression per class in each tested instance

62



Published in Transactions on Machine Learning Research (02/2025)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

CDT

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
MA

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
MA (with bias)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

in
st

an
ce

 1

LA

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

in
st

an
ce

 2

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

in
st

an
ce

 3

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

in
st

an
ce

 4

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 e
rro

r

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

in
st

an
ce

 5

standard tuning standard tuning wce* theoretical tuning theoretical tuning wce*

Figure 13. Worst class error vs. loss tuning hyperparameter (standard blue and theoretical orange) for the
different methods we consider in linear classification on synthetic data from our model. The shaded regions
show empirical results (two standard deviations over 5 random seeds) and the solid lines show our analytical
approximation.

G.7 Empirical demonstration of the limitations of CDT

We conduct two additional experiments to examine the effect of the δ hyperparameter on the decision
boundary of the CDT and MA predictors (without learning a bias parameter).

Data generation. We generate two synthetic datasets (binary and multiclass) in R2 by following these
steps for each class:

1. Sample Ni random samples from N (0, I2).

2. Generate a random projection matrix Qi from R2 to R2

3. Perform random projection using Qi and add the signal vector µi to the projected points.

Where for the binary experiment we use:

µ1 =
[
2
2

]
and µ2 =

[
−1
2

]
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Figure 14. Per class error vs. loss theoretical tuning hyperparameter for the different methods we consider
in linear classification on synthetic data from our model. The shaded regions show empirical results (two
standard deviations over 5 random seeds) and the solid lines show our analytical approximation.

and for the multiclass experiment we use: Where for the binary experiment we use:

µ1 =
[
3
0

]
, µ2 =

[
0
3

]
and µ2 =

[
3
3

]

Discussion. In Figure 15, we observe that in the binary case, the hyperparameter δ has no effect on the
decision boundary of the CDT predictor (see Figure 15a). However, when used in the MA predictor, it
allows for shifting the decision boundary towards the majority class, which leads to potential improvement
of generalization on minority classes (see Figure 15b). Similarly, in Figure 16, we see that the hyperparameter
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Figure 15. The effect of γ on the decision boundary of (a) CDT and (b) MA predictors in binary
classification. As it can be seen, in binary classification the hyperparameter δ has no affect on the decision
boundary of the CDT predictor while in MA it changes the angle of the margin towards majority.

δ can lead to non-trivial training errors for CDT (see Figure 16a), while for MA, it changes the angle of the
learned predictor towards the majority class (see Figure 16b).

G.8 Implicit bias of gradient descent

To validate the implicit bias of gradient descent on the MA and CDT losses described in Appendix B, we
compare the test error of the classifiers obtained by gradient descent (Figure 17a) with their corresponding
predictors (Figure 17b) on a synthetic Gaussian dataset.

Dataset. We use a Gaussian dataset in Rd for d = 104 with four classes. Each class contains 5, 50, 80, and
100 samples, respectively. The signal strengths for all classes are set to si = 0.5. Additionally, we use a
balanced test set containing 500 samples per class.
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Figure 16. The effect of γ on the decision boundary of the (a) CDT and (b) MA predictors in multiclass
classification. As it can be seen, in multiclass classification the hyperparameter δ can lead CDT to have
non-trivial train error, while in MA it changes the angle of the margin towards majority.

Gradient descent training. We use PyTorch (Paszke et al., 2019) to run gradient descent on the MA and
CDT losses (without learning the bias parameter) bias for 20,000 epochs. To avoid learning rate tuning and
accelerate convergence we employed a variant of the Polyak step size for functions whose minimal value is 0:

ηt := 0.05 · L (Wt)
‖∇L (Wt) ‖2

(87)

In all experiments we initialized W0 = 0 and did not use weight decay.

Hyperparameter sweep. For CDT we use the standard tuning i.e., δi =
(

1
Ny

)γ
and for MA we use our

theoretical tuning from Section 4.
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Figure 17. An illustration of the implicit bias of gradient descent on linear classifiers over Gaussian data.
(a) Per class error vs. loss hyperparameter using gradient descent (b) Per class error vs. loss hyperparameter
using CVXPY (Diamond & Boyd, 2016) to solve the corresponding margin problem. The shaded regions show
empirical results (± one standard deviation over 3 random seeds) and the dashed lines show our analytical
approximation for the error.

Discussion. Figure 17 shows that, as our theory suggests, gradient descent on different losses converges in
the direction of their corresponding predictors, as described in Section 2.1.

G.9 Extended comparison between LA and MA predictors

To validate whether the LA predictor, tuned for near-optimal parameters with equal strength signals, out-
performs the MA predictor under reversed or aligned signal strengths, we compare their worst class error
lower bounds at the near-optimal parameters of MA (with and without bias) eq. (19) and LA eq. (22), and
calculate the histogram of bound differences for these cases.

Use case parameter generation. For each case study, we conduct 500 experiments where, in each exper-
iment, we sample the number of classes uniformly from 3 to 10. Each class size is sampled uniformly from
1 to 200, the dimension d is sampled uniformly from 105 to 107, the signal strengths are sampled uniformly
from 0.01 to 1, and ρ is sampled uniformly from 1 to 1000.

Discussion. Our findings in Figure 18 show that for aligned signals, LA (tuned for equal signals) is consis-
tently better than MA without bias, though in rare cases MA with bias slightly outperforms it. For reversed
signals, LA is generally worse than MA with bias, but there are occasional exceptions. These findings
strongly suggest that LA is consistently better than MA without bias for aligned signals, aligning with our
additional experiments in Section 5. Additionally, the converse does not hold: for reversed signals, MA is
not always superior to LA, even when LA is not optimally tuned.
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(c)
Figure 18. Histogram of the worst-class error lower bound differences between LA at its near-optimal
parameter ι∗ eq. (22) and MA with and without bias at the near-optimal parameter δ? eq. (19). Shown for
cases with (a) equal signal strengths, (b) aligned signal strengths, and (c) reversed signal strengths. Each
case confirms the validity of proposition 4.2. Row (a) also confirms proposition 4.4. Row (b) demonstrates
that, even with near-optimal parameters for the equal-strength signals case, LA is consistently superior to
MA. Row (c) shows that, in most cases, MA outperforms LA for reversed signals, though there are instances
where LA, tuned for equal signal strengths surpasses MA.
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