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ABSTRACT

We study the problem of learning to generate an answer (or completion) to a ques-
tion (or prompt), where there could be multiple correct answers, any one of which
is acceptable at test time. Learning is based on demonstrations of some correct an-
swer to each training question, as in Supervised Fine Tuning (SFT). We formalize
the problem as offline imitation learning in contextual bandits, with demonstra-
tions from some optimal policy, without explicitly observed rewards. Prior work
assumes that the demonstrator belongs to a low-complexity policy class, which
motivates maximum likelihood estimation (i.e., log-loss minimization). In con-
trast, we propose relying only on the reward model (specifying which answers are
correct) being in a low-cardinality class, which we argue is a weaker assumption.
We show that likelihood maximization methods can fail in this case, and instead
devise an alternative novel approach that learns with sample complexity logarith-
mic in the cardinality of the reward class. Our approach and guarantees are robust
and apply even when learning from arbitrary demonstrators and to the relaxed
pass@Fk error setting. Our work motivates looking beyond likelihood maximiza-
tion when learning from demonstrations.

1 INTRODUCTION

Many real-world problems involve generating answers to a question, where there may be many
equally good responses. A math question can have millions of equally valid but differently written
solutions, a coding task can admit many different perfectly working implementations, and a recom-
mendation query can be satisfied by multiple items. The learner’s challenge is not to reproduce all
correct responses, but to generate a single good answer.

This recurring structure can be formalized as contextual bandits. Each question corresponds to a
context x € X, each candidate response corresponds to an action y € ), and there is an unknown
reward function 7, (z, y) (which we assume is binary for simplicity)!, indicating whether a response
is good (equivalently correct when binary rewards). We consider the problem of learning from
demonstrations given by some optimal demonstrator T, i.e., training set of z; ~ D, y; ~ 7. (- | z;),
where 7, (- | x) is supported on the set of optimal actions for the context x, given by
ox(x):={y eV :riz,y)=1}.

Note that |0, (z)| can be huge and there may be many (non-unique) optimal demonstrators. Our
goal is to learn a predictor policy 7 that produces a good action (response) to an unseen context
(question) sampled from D, i.e., it has low error of outputting actions that are incorrect, as captured
by the following loss function.

Lo, (T) = B grale) Y € 04(2)} = Bonp gog(lo) L7« (2,9) # 1}] . (D
This is offline imitation learning (Rajaraman et al., 2020; Rashidinejad et al., 2021) in contextual
bandits with an optimal demonstrator. In modern large language models (LLMs), this is exactly the
problem addressed during the supervised fine-tuning (SFT) phase,” where the model is trained on

"We will return to the more general bounded reward functions later in the presentation.

In LLMs, the actual response y consists of a sequence of tokens, and so it is a general Markov Decision
Process (MDP). However, the transitions of this MDP are deterministic and rewards are generally sparse, and
hence, contextual bandits provide with a useful abstraction for the purpose of our study. Indeed, this setup ex-
actly corresponds to the prompt-completion formulation for LLMs (Ouyang et al., 2022; Rafailov et al., 2023;
Huang et al., 2025; Wu et al., 2025).
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curated datasets of prompt—completion pairs. Importantly, these demonstrations are high-quality but
not exhaustive.

An important remark about our objective (Eq. (1)) is that it is entirely reward-driven, focus-
ing solely on validity, which aligns with the reward maximization view of LLMs. We do
not require matching the distribution of 7, (see Appendix A for more discussion on this is-
sue). The typical situation we consider in our setup is during SFT, where the goal is to im-
prove the model’s performance on a specific task, and there are many ways to achieve good
performance—for example, producing gold-winning IMO solutions (reward = 1, i.e., c(question) =
{all completely correct solution texts to the problem}). This set is unfathomably large, due both to
variation in solution approaches and details, and to differences in the text itself, down to word
choices, spacing, and punctuation. Rather than matching how a distribution over experts 7., would
write their solution, producing any single correct solution is sufficient to win a gold medal at the
IMO.

Policy Class Assumption and Likelihood Maximization. A common approach when learning
from demonstrations is to assume that the demonstrator 7, belongs to a low-capacity policy class
II. This motivates maximum likelihood estimation (MLE), or equivalently log-loss minimization,
as a natural learning rule; see, e.g., Foster et al. (2024).3 Indeed, in SFT for LLMs, one fits a model
by minimizing log-loss on prompt—completion pairs. Theoretically, prior work shows that under

the assumption 7, € II, MLE enjoys sharp O(logT‘m) convergence guarantees with m samples—
both in terms of the loss in Eq.(1) and in matching the distribution of the demonstrator 7, under
a certain notion of distance, ensuring both validity and coverage at the same time (Cohen et al.,
2024; Foster et al., 2024). However, for this guarantee to be meaningful, log |TI| must be small. But
in learning from demonstrations, there may be many equally good demonstrations, and the policy
class modeling them can be extremely large (e.g., modeling the generative process of all optimal
demonstrators, such as graduate students producing solutions to math problems).

1.1 OUR CONTRIBUTIONS

In this work, departing from prior work, we instead propose an alternative to the above—we only
assume that the underlying reward model class has low cardinality (Section 2), i.e., the set-valued
function o, : X — 2Y defining correct answers, comes from a low-cardinality model class S C
(2Y)* and the demonstrator 7, is supported on o,. This is a strictly weaker and more realistic
assumption: when creating QA datasets, often high-quality responses to prompts are hand-picked,
without any attempt to enumerate all valid responses or generate from them according to a fixed
specified apriori distribution. Thus, imposing any further assumptions on this generative sampling
may be overly restrictive, as done in the low-capacity policy class assumption.

¢ Simple Failures of MLE Under the Low-Cardinality Reward Class (Section 3). We
demonstrate that MLE, which is minimax optimal under the low-cardinality policy class
assumption and also enjoys convergence in distribution (Foster et al., 2024; Cohen et al.,
2024), can fail to generalize for low-cardinality reward model classes even in simple situ-
ations (Theorems 1 and 7).

* New Learning Algorithms (Section 4). We first present a simple voting-based learner that
ensures learnability for finite S (Theorem 2). This already goes beyond MLE, though its
sample complexity can be as large as Q(|S|) (Theorem 11). We then present a simple and
novel learner that succeeds with only O(log |S|) samples (Theorem 4), and thus optimal,
showing that exponential improvement in sample complexity is achievable with the right
inductive bias. This sample complexity has no dependence on |Y| or |o(«)| which can be
huge.

» Extensions (Section 5). (1) We generalize our optimal learner for general bounded (not
necessarily binary) reward model classes as long as the demonstrator is optimal (Sec-
tion 5.1). (2) We then also see how this algorithm is robust and can be generalized to
situations when the demonstrator 7, is not necessarily optimal, i.e., not supported on

3Even beyond imitation learning, where other forms of feedback may be available, it is routine to take the
view that 7, € II for some low-capacity II (Yun et al., 2025; Zhan et al., 2023; Xie et al., 2024; Zhang et al.,
2025; Agarwal et al., 2025; Huang et al., 2024).
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Rule Assump. low-cardinality IT | low-cardinality S
MLE  log |IT May not learn
Our Learner o log |IT x log |S]

Table 1: Comparison of MLE and our learner under the low-cardinality assumptions on II and S.
See Section 5 for the extensions of our optimal learner, for (1) general bounded reward classes (2)
non-optimal demonstrator (3) pass@Qk error.

0« (Theorem 5). In this case, one can still compete with the loss of the demonstrator
Lp . (7.) up to a small constant blowup (e.g., 1.5 Lp », (7+)). (3) Given recent interest
in the relaxed notion of pass@k error (a relaxation of the objective in Eq. (1)), we show
that ©(log|S|/log k) samples are both sufficient for our learner and, in the worst case,
necessary for any learner, yielding at most a log k improvement in sample complexity from
an information-theoretic perspective (Theorem 6).

We defer a broader discussion of our results in the context of other recent works to Section 6.

2 SETTING AND PROBLEM DEFINITION

We now formalize our setup. Let X and ) respectively be countable sets of all plausible contexts
and actions. Recall the terminology introduced in Section 1 of a ground-truth support function
o+ X — 2, amarginal distribution D € A(X) and the expert demonstrator 7, : X — A()). We
use (x,y) ~ D x 7 to denote a joint distribution where z ~ D and y ~ 7(- | x).

Two Function Approximations. Note that our setup makes a distinction between the support of
optimal answers o, and the demonstrator’s policy 7.. Keeping the distinction in mind, there are
two natural types of function approximations even in the realizable case:

 Model class approximation. There is a class of support functions S C (2¥)¥ modeling
optimal actions under different contexts. The demonstrator 7, is optimal and supported on
some o, € S (i.e., supp 7. (- | ) C o4 (x)).

* Policy class approximation. There is a policy class II C (A()))? such that the un-
known 7, € IL* Note that this does not directly specify . It is natural to consider

o«(x) = or, () = supp (- | ) as the ground-truth support function for evaluating the
loss (Eq.(1)).

We note that while the two views are closely related, they differ significantly under cardinality-based
capacity control on Il and S. In particular, assuming small |S| is much weaker, since the class of all
optimal policies supported on it (defined below) can be huge, especially when |o(z)| are large.

Is := U II, , where I, := {Any 7 : X — A(Y) s.t. supp7(- | z) Co(z), Ve € X}. (2)
o€S

On the other hand, for any policy class II, the associated model class S := U c{or | ox(z) =
supp (- | «),Vz € X'} has cardinality no larger than II (i.e., | Sp| < |II)).

In either cases, the goal is to find an e-suboptimal policy 7(S) : X — A(}), for the loss in Eq.(1)
from i.i.d. samples S = {(z;, y;) ~iia (D X m,) : i € [m]}, as formalized below.

Definition 1 (Learning from Correct Demonstrations). We say that the reward model class S is
learnable from correct demonstrations by an estimator © : (X x V)* — (A(Y))* with sample

“We note that Foster et al. (2024) considered a more general setting than ours, aiming to compete with 7.
(not necessarily optimal) under arbitrary bounded rewards, while assuming |IT| < co. To relax this assumption,
we instead rely on the reward model class, focusing first on the special case where 7. is guaranteed to be
optimal. We will return to the case when this may not happen in Section 5.
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complexity ms 7 : (0,1) x (0,1) — N, iffor any €, 6 € (0, 1), for any sample size m > mg =(e, ),
forany D, oy, ., we have

]P)SN('DXTF*)W’ [LD,U* (%(S)) < 5] >1-— 0.

The learnability for 11 follows exactly the same definition after replacing o.(x) = supp m«(- | x)
for measuring the loss.

3 WHY MLE 1S GOOD FOR LOW-CARDINALITY II BUT FAILS FOR S?

Given a policy class IT C (A(Y))¥, the (conditional) Maximum Likelihood Estimator (MLE) (or
the log-loss minimizer) is defined as

m

MLEn(S) = argr71r1€ar)1<1_[17r(yi | ;) = argffneiﬁl— 2 log 7(yi | x;) . (MLE)
1= 1=

Low-cardinality II. We first discuss the case when we assume II has a low cardinality. In this case,

MLE is actually minimax optimal with respect to |II|. The proposition below formalizes O(%)
convergence rate (in similar spirit to Cohen et al. (2024); Foster et al. (2021)) for our setup.

Proposition 1. For any finite I1 C (A(Y))¥, for any D and 7. € 11, with probability at least 1 — §
over S ~ (D x )™, any Tmie(S) € MLE(S) enjoys the following guarantee:
~ ~ 6 log(2|I1|/6
LD,U,,* (ﬂ.mle(S» S Da(ﬂmle(s)zﬂ*) S # .
Thus 11 is learnable with e (cf: Definition 1) with sample complexity: miy =, (€,0) =
2 log(2|11]/5) .

In the above, D3 (P, Q) := >, ~(v/P(2) — v/Q(2))? is the squared Hellinger distance between
distributions P and Q over a discrete domain Z. The proof (in Appendix C) uses the ideas from
Foster et al. (2024); one can first use the standard guarantees in density estimation to establish the
convergence in the squared Hellinger distance for D3 (Tm1e(S), 7+ ), followed by controlling the loss
(Eq. (1)) in terms of D (Tmie(S), 7). However, this guarantee is only meaningful when log |II| is
small. In the context of LLMs, this assumption may be somewhat unrealistic, since post-SFT models
are not as perfect as this guarantee suggests—namely, matching the distribution of the demonstrator
(see Section 6 for further discussion).

Low-Cardinality S: Simple Failures of MLE over Natural Policy Classes. We now ask what
can we say about the performance of MLE when only S is finite. It is important to note that our
problem (cf. Definition 1) is only specified in terms of the model class S. To use likelihood maxi-
mization, we need to consider a policy class modeling the underlying generative process. In what
follows, we describe two natural ways of defining the policy class based on the model class S.

First, given the promise that 7, is supported on some o, € S, one natural choice is to consider
the class of IIs from Eq. (2) of all policies supported on S. Note that |IIs| may be infinite now
making the guarantee in Proposition 1 vacuous. We shall see that MLE fails to produce even correct
responses. It is simple to observe that, for any = observed in the training set, MLEy (S) always
outputs an action according to the empirical distribution of observed y;’s for x; = x. However,
on unseen contexts, it may output any action y € o(z) for some consistent o. Thus, this MLE on
unseen contexts is exactly identical to consistency-based learner:

Teon(S)(z) =7y for some y € o(z) whereo € V(S) :={oc €S :y; € o(x;),V(zi,y:) € S}

3)
While such a consistency-based learner is known to be optimal (for finite classes) in supervised
learning problems like binary or multiclass classification, it fails for our problem and thus, MLE
over IIs also fails. Consider S = {00, 001}, where oo(x) = {0} and o¢1 (z) = {0, 1} for all . If
the true hypothesis is 0. = 09, then all observed labels are 0. However, 0 also remains consistent,
and thus MLE[y, (S) may output 1 at test time—failing to generalize and go beyond memorization.
Thus, for an input distribution D such that the missing mass (i.e., unobserved contexts) is arbitrarily
close to 1, we get the following failure.
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Theorem 1 (Failure of MLE over Ils). There exists S C (2Y)* with |S| = |Y| = 2and X = N
and a choice of (0., 7.) such that for every sample size m and v € (0, 1), there exists a marginal
distribution D such that for S ~ (D x 7)™, some Tmie(S) € MLEn,(S) has the following
guarantee:

IP)S'N('D><7T,f)m (LD,U* (%mle(s)) Z 1- 7) =1.

In the above example, MLE over Ils essentially overfits: it achieves zero error on the training data
but fails to generalize to unseen data. A simple cause of it is just the fact that the induced policy
class Il is too rich. As a remedy, we may consider a restricted policy class Ilyyr,s with size |S|:

unit,s := {Muif,oc : 0 € S} where it (- | ©) = Unif(o(x)).
This is a natural candidate for a class with restricted capacity, where the learner only knows .,
is supported on some o, € S. However, the optimal demonstrator’s policy 7, need not coincide
with the canonical choice mynit, o, , although it is perfectly supported on o,. So Ilif,s is actually

misspecified, i.e., it may not contain 7,. This mismatch suffices to make the MLE fail again on the
restricted capacity class 11t s; see Theorem 7 and its proof in Appendix D.

Remark 3.1 (MLE achieves overlap). An interesting property of MLE over the restricted class
ILunit,s = {wu,,iﬁc, : 0 € S} is that it still achieves an overlap with ground-truth correct answers for
any sample size m > 1 (log |S| + log(1/6)). For any Tmie(S) € MLEq,,, < (S), we have

PSN(DXW*)"’/ (]P)xND[ SUPP%mle(S)(' | CC) N O’*('I) = @} < E) >1- 0.

Thus, its predictions overlap with the ground-truth responses on all but an e-fraction of inputs,
though it may still generate answers outside the support with some non-trivial probability. See
Appendix D.1 for further discussion on this.

4 LEARNING ALGORITHMS

In this section, we present our main result: a sample-efficient learner (Section 4.2). En route to this,
we first see how natural approaches, though sufficient to ensure learnability under finite S, may have
a disappointing linear dependence on |S| in the sample complexity (Section 4.1).

4.1 WARM-UP

Our rule is simple: output from the common intersection of consistent hypotheses if it is non-empty,
and otherwise output an arbitrary y within the support of some consistent o. This suffices to ensure
learnability.

Input: Sample S = {(z;,v;) : i € [m]} and a finite model class S C (2¥)*.
e LetV(S):={oceS:y €o(z;),¥(zi,y;) € S}
* Return the predictor COMMON-INTERSECTION(SS) = 7ci(S) : X — ) as follows:

7cr(9)(z) = {y € Noevsyo@) s if Noey(syol(@) #0;

arbitrary y otherwise.

Theorem 2. Any finite S C (2Y)% is learnable (cf. Definition 1) using the rule Tcy with sample
complexity ms z.,(¢,0) = e~ |S| (log |S| + log(1/4)) .

The proof is in Appendix E.2. The dependence on |S| in Theorem 2 is O(|S|log|S]), in contrast to
the logarithmic dependence in standard supervised learning. We show this dependence is tight in the
worst case (up to a log factor) for this rule, and even for a seemingly stronger variant that outputs by
majority vote over consistent hypotheses: Traj(S)(z) = argmaxyecy |[{c € V(S) : y € o(x)}|.
See Theorem 11 in Appendix E.3.

4.2 SAMPLE EFFICIENT LEARNER

We now design a sample-efficient learner that achieves optimal logarithmic dependence on |S|—
even under the finite cardinality assumption on S and without assuming anything further about the
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S

{o: §,€a(x)} {o:yreolx)}

Figure 1: A visualization of the update rule of Algorithm 1 during t*» round. The weight of the
hypotheses in the red, green, and blue regions are respectively set to zero, unchanged, and doubled.

optimal demonstrator’s policy, we obtain sample complexity o log|S|, independent of |X|, ||, or
sup,, , |o(x)|. To achieve this, we first turn our attention to the even more challenging online version
of the problem. The statistical estimator will be designed by doing online-to-batch conversion.

>

Online Version. The adversary chooses o, € S. In each round ¢:

 The adversary chooses x; € X. The learner predicts 3, € V.

* The adversary shows some y; € 0. (x).
(Importantly, the feedback does not inform the learner whether 7, was a mistake or not.)

The algorithm maintains weight function w*) : S — R in each round.

Algorithm 1 MISTAKE-UNAWARE-WEIGHT-UPDATE
Input: A finite support class S C (2Y)¥.
+ Initialize w(!) (o) = 1 forall o € S.
¢ In every round, receiving x;:

1. Output §; = argmaxyecy ., s w'(0) 1{y € o(z)}.
2. On receiving y;, update the weights

0 forall o € S with y; ¢ o(2¢);
wt Y (o) « {w® (o)  forall o € S withboth y;, J; € o(x);
2w (o) forall o € S withy, € o(x;) and §; ¢ o(xy);

The key distinction from the standard Majority is in the final step of upweighting certain hypotheses:
even without knowing whether 7; was a mistake, the algorithm doubles the weight of all hypotheses
that exclude ¥, but include the observed response y; (see also Figure 1).

Theorem 3 (Online Guarantee). On any sequence ((x¢,y:))ien realizable by some o, € S, Algo-
rithm 1 makes at most log,, |S| mistakes.

Proof. Letting Wiy1 = 3 s w(t“)(a) be the total weight in the system after completion of ¢
rounds, we first note that the sequence {W;}; is non-increasing. This is because of the property
of the algorithm that, during every round ¢, the weight added to the system is at most the weight
eliminated from it. Formally,

W= > 200+ Y W) < 3 wle) < W

yt€o(x) and e Eo () Yt,Jt €0 (1) yt€o(zt) or Ge o (xe)
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where the first inequality follows from the property of the algorithm that it always chooses 7; =
argmax,cy Y ,cs w®(0)1{y € o(x¢)} (see also Figure 1). Now if the algorithm made M mis-
take on a realizable sequence for some o, € S at the end some ¢ number of rounds, then it must be
that
wt Y (o,) =2 < W, < W) =S|, which implies M < log, |S]|.
O

We use the online-to-batch conversion of outputting a randomized predictor based on a random
stopping time (for every test context).

Input: Sample S = {(z;,v;) : i € [m]} and a finite model class S C (2¥)*
* Run Algorithm 1 once over S, and record w® before each round. Define

mi(z) = arg T Z w® (o) 1{y € o(x)}. “4)
O'ES
* On atest z € X, sample I ~ Unif{l,...,m}, and return 7o (S)(z) := 7s(x),
ie., | @
Moz (5) (@) = — z:: o)

Theorem 4 (Statistical Guarantee). For any finite S C (2Y)%, the estimator Toy, in Eq. (5) achieves
the following guarantee for any joint distribution (D X 7,) supported on o, € S:

. log, |S
Es~pm[Lp o, (Tow(S5))] < g2T||7
and, for any 6 € (0,1), with probability at least 1 — 6,

1+ 2log|S|+ 12log (lc’%m)
Lp o, (Tow(S)) < — .

This implies that S is learnable (cf. Definition 1) using the estimator T, with sample complexity
M 7 (€,0) = O (671 (log |S] + log(1/€6)) .

See Appendix E for the proof. It follows from concentration for martingale difference sequences.
To obtain a sharper dependence on 1/¢ than in standard analyses (Cesa-Bianchi et al., 2004;
Tewari & Kakade, 2008), we need a tighter control on the sum of martingale difference sequence,
for which we apply Freedman’s inequality (Lemma 2) with some algebraic manipulations.

5 EXTENSIONS
We now provide generalization of our optimal learner to important variants of our main setting.

5.1 GENERAL BOUNDED REWARD CLASSES

Consider a finite reward class R, consisting of functions r : (X x Y) — [0, 1]. The demonstrator
7, is still optimal with respect to some unknown r, € R, and is supported on

ox(x) := argmaxr.(z,y).
(@) = argmacr. (z,)

Both our optimal learner (and its pass@Qk variant, discussed in Section 5.3) can be implemented on
the corresponding support class

Sr = {ar | o (x) = argglea)%(r(x,y), Vo € X}.

Since 7, is optimal, the reward sub-optimality of our learner can be directly controlled by the loss
function in Eq. (1). In particular, we obtain the guarantee that the value of our predictor policy
V(7) > V(m.) — ¢ with high probability, at a sample complexity determined by the size of Sg,
which satisfies |Sg| < |R].
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5.2 LEARNING FROM ARBITRARY DEMONSTRATOR

We now discuss what happens if 7, is not necessarily optimal (again consider only binary rewards
for simplicity). Note that in our Algorithm 1, we assign zero weight to all hypotheses that do not
contain y,—here we critically relied on the promise that the demonstrator is optimal. However, this
strategy may be detrimental when it is not the case. In order to find an estimator, one needs to
minimize a certain notion of regret of outputting bad responses with respect to any potential o € S
in the online case, simply from demonstrations. To do so, we again output 7; that is most voted, but
upon receiving y, do a “softer” update:

w(t+1)(0) — w(t)(g) catliege@ol . g=1lyido@)l for some v, B> 1.
Then («, () are set so that, it ensures a certain regret minimization in the online case. Applying the
standard online-to-batch conversion yields the following guarantee:

Theorem 5 (Learning from arbitrary demonstrator). For any finite class S C (23} )X , there is an
estimator T such that for any unknown joint distribution D X , (where T, is not necessarily optimal)
and reference o, € S, with probability 1 — § over S ~ (D X 7)™, we have

1+ 6log, |S| + 401log (%)

LDJ* (%(S)) S 1.41 LDJ* (71'*) + m

See Appendix F for the proof and details of the algorithm.

5.3 pass@k ERROR MINIMIZATION

In modern practice, pass@k accuracy is often used as a benchmark (e.g., Chen et al. (2021);
Orlanski et al. (2022); Dalal et al. (2025)). This relaxes the original goal by allowing a (stochas-
tic) policy i : X — A(Y*) to output k answers. The pass@k loss is defined as

Lp,, () = EafN'DaEy:(y(l),...7y(k))~ﬁ(-|x) []l{y(i) ¢ o.(x);Vi € [k]}} . (6)

The policy /i allows for any joint distribution over the set of k responses, which also includes adap-
tive sampling and need not be a product distribution (i.e., repeated independent sampling from a
policy 7 : X — A(Y)).

Our goal is to understand how the parameter £ impacts sample complexity. We show that, under this
relaxation, the worst-case improvement is only a log k factor in terms of the cardinality parameter.
Again we return to the case where the demonstrator 7, is optimal. We extend our Algorithm 1 to

this setting: the learner outputs a greedily picked set of responses {yAt(l), cee yAt(k )} that covers most
“uncovered mass” each time. Upon receiving y;, the update is

w ) (0)  (k+ 1) w® (o),
for all hypotheses that contain y; but neither of {@(1)7 . ,yAt(k)}. (The other updates are same.)

This leads to a sharp mistake bound of log;_, , |S| in the online case, which then translates to a
sample complexity in the statistical case, by the same online-to-batch conversion. See Appendix G
for the details and formalization of the following informal result.

Theorem 6 (Informal: passQFk error). The minimax mistake bound in the online case as well as
sample complexity bound in the statistical case are O(log,, |S|) for the family of finite classes of
fixed size, when learning from optimal demonstrator.

6 DISCUSSION, BROADER CONCLUSIONS, AND FUTURE WORK

We studied the problem of learning to answer from correct demonstrations (aka imitation learning
in contextual bandits from optimal demonstrator). Our goal was to move away from the common
assumption that the demonstrator lies in a low-cardinality policy class II, where MLE guarantees
strong convergence to distribution of the demonstrator, under a certain notion of distance, thereby
it can match the demonstrator also in performance. However, supervised fine-tuned models trained
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via log-loss are not perfect (Ji et al., 2023; OpenAl, 2023)—they often fail to produce even correct
responses. Even theoretically, the above results are in contrast to the alternative perspective of
(Kalai & Vempala, 2024; Kalai et al., 2025), which argues that calibrated models (a coverage related
notion) must necessarily hallucinate (i.e., incur high loss under our objective). The conclusion is that
these guarantees, under the assumption 7, € IT with a low-capacity II can be considered too crude
to capture the current situations with LLMs (see also Section 6.2 of Foster et al. (2024)). Instead,
we proposed a low-cardinality reward model class, which we argued is strictly weaker and more
realistic assumption for current LLMs. This shift lets us expose simple failure cases of likelihood
maximization and motivates new estimators that go beyond it in order to learn.

Broader Implications. Our new learner highlights that demonstrations available in SFT can carry
much more information about the reward structure than what likelihood maximization—the standard
approach for LLM fine-tuning—can extract. Another implication of our analysis concerns halluci-
nations. Our explanation is new: they arise naturally in the prompted question—answering scenario
when learning is carried out via likelihood maximization. This departs from other recent theoretical
perspectives (Kalai & Vempala, 2024; Kalavasis et al., 2025; Kalai et al., 2025). The closest to our
work is (Kalai et al., 2025, Section 3.2), which matches our contextual bandit setting and similarly
shows that hallucinations arise for statistical reasons. However, our failure cases are simpler and
tied directly to MLE.

While their work attempts to bound hallucination rates in terms of a certain notion of “calibration”—
encouraged by log-loss objective—our work goes further and asks: if validity and coverage are in
tension, can we at least ensure correctness (reward maximization), when coverage may not be the
primary goal anyway. We show that indeed it can be possible within our framework. There may,
of course, be limited situations where coverage is important for fairness-related reasons, but even in
such cases, the model should perhaps give a more comprehensive response indicating its uncertainty
(e.g., (Kirchhof et al., 2025)). Thus the focus should perhaps be on validity/goodness/usefulness,
with appropriate notion of utility, rather than attempting to learn the more difficult task of matching
the distribution, cf. the quote from Vladimir Vapnik:

“When solving a problem of interest, do not solve a more general problem as an intermediate step.”
—Vladimir Vapnik

Continuous Classes. This motivates the question what classes S should we use. In practice, we
generally use parametric function classes, and thus a natural question is whether we can handle
natural parametric continuous classes. For example, given a parameterized function class h,, :
(X x Y) — R assigning real-valued scores, we can consider the associated support function o, :
x > {y : hy(z,y) > 0}. Natural choices for h,, include linear classes h,,(z,y) = (w, ¢(z,y)),
low-rank score matrices W € RI¥IXIY| with hy, (x,y) = W, ,, or even transformers f,,(z,y) € R
assigning scores to (x,y). Do the gaps we observed also manifest in these natural classes? What is
the sample complexity of offline imitation learning for them? Can we characterize the complexity
of the support class Sr = {o; : z — {y : f(z,y) > 0} | f € F} in terms of abstract properties
of F, both for general classes and for simple parametric ones? What algorithms achieve this? One
option is discretization and running our algorithm, yielding a log-cardinality bound statistically, but
the algorithm’s memory is exponential in the number of parameters and thus impractical. It is an
important question to see if there are exact, approximate, or heuristic methods for learning with
continuous classes that scale more favorably with the number of parameters (i.e., model size), and
whether the inductive biases about the reward structure can be directly incorporated when learning
from demonstrations, without modeling the policy of the demonstrator.

Technical Open Questions. Even for finite classes, important technical and conceptual gaps re-
main in our understanding. Our main learning rule in Section 4.2 is randomized and improper
(see definition in Appendix A), whereas the simpler rule COMMON-INTERSECTION in Section 4.1,
which is deterministic and proper, faces an €)(|S]) barrier. Is this gap fundamental? Can we design
simpler rules even for finite classes that achieves O(log |S|) sample complexity? Moreover, when
the demonstrator is suboptimal, can we compete with the demonstrator’s loss Lp ,, (7.) without
incurring blow-up, either with our rule or any other?
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A MISCELLANEOUS DEFERRED DISCUSSIONS

Validity vs Coverage. For LLMs, we discuss several important reasons why our objective in
Eq. (1) is important and worth studying in its own right, despite not demanding coverage or math-
cing the distribution of the demonstrator. (1) First, it mirrors real-world usage of deployed LLMs
(OpenAl, 2023; Anthropic, 2024; DeepMind, 2023; Al, 2025; Touvron et al., 2023), where the feed-
back signal is based solely on the quality of the single output shown to the user. The models are
never directly evaluated using distributional distances, nor do we believe such evaluation is even fea-
sible. (2) The objective may tolerate mode collapse, which might seem limiting to those who view
coverage as important for fairness-related reasons. Even in such situations, the model should per-
haps indicate its uncertainty (Kirchhof et al., 2025). And there are many other situations—typically
during SFT—where coverage is not the primary goal. (3) Achieving both “validity” (precision) and
“coverage” (roughly recall or calibration) is challenging and often in tension; we have both empir-
ical (Bronnec et al., 2024) and theoretical (Kalai & Vempala, 2024; Kalai et al., 2025) evidence of
this. In such situations, it is important to at least target the validity. (4) Finally, given the extensive
alignment and post-training that modern LLMs undergo, which are completely reward-driven, it is
unclear whether they preserve any coverage guarantees over correct responses (Song et al., 2025;
Dang et al., 2025; Yue et al., 2025; Wu et al., 2025).

Proper vs Improper Learning. The model class S consists of set-valued functions o, whereas
the prediction is a single label. Thus, we define a notion of proper learning that is natural for our
problem.

Definition 2 (Proper Learning). We call a learning rule 7 : (X x Y)* — (A(Y))* proper if for any
S € (X x YV)*, the policy 7(S) is supported on o for some o € S, i.e. supp(7(S)(- | z)) C o(x)
forallz € X.
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Our optimal learner is randomized and improper. On the other hand, the rule
COMMON-INTERSECTION is deterministic and also proper, after making a choice when outputting
an arbitrary y—in the case where the common intersection is empty, we output a y that always be-
longs to o(x) for some fixed o € V(S). The proofs of Theorems 2 and 9 still hold because we
always treat an arbitrary y as a mistake anyway.

Related Work in Learning in contextual bandits. Contextual bandits have a long history in
statistics. Early work includes Woodroofe (1979); Yang & Zhu (2002). The term contextual ban-
dits was popularized by the paper Langford & Zhang (2007). A major line of work focuses on-
line learning in contextual bandits (Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agarwal et al.,
2014); we refer interested readers to the recent book Lattimore & Szepesvari (2020) for more de-
tails. A parallel line of work focuses on the offline setting, where one learns from logged bandit
feedback without active exploration. Influential contributions in this direction include Dudik et al.
(2011); Bottou et al. (2012); Swaminathan & Joachims (2015). Most related to our work is imita-
tion learning in contextual bandits, where the learner has access only to demonstrations from an
expert. This perspective has been explored in recent theoretical studies (Rajaraman et al., 2020;
Rashidinejad et al., 2021; Foster et al., 2024). They predominantly work under the low-capacity
policy class assumption, which is different from our low-capacity reward class assumption.

B TECHNICAL PRELIMINARY LEMMAS

We start by a technical lemma about the one-sided change of measure bound on an expectation of
a bounded function in terms of the Hellinger distance (e.g. Lemma A.11 from Foster et al. (2021)).
We will use the exact variant from (Foster et al., 2024, Lemma 3.11).

Lemma 1 (Change-of-measure bound via Hellinger distance,Foster et al. (2024)). Let (Z,F) be
a measurable space and let P,Q be probability measures on it. For every measurable function
h:Z->R:

[Ee[l] — Eqlh]] < \/w Du(P.Q). @

In particular for h : Z — [0, R],

Ep[h] < 2Eglh] + RDE(P,Q). (8)

We now specify Freedman’s inequality that provides us with a non-asymptotic bound on the sum of
martingale difference sequence.

Lemma 2 (Freedman’s inequality, Theorem 3 from Li et al. (2021)). Consider a filtration Fy C
F1 C Fo C -+, and write B;[-] := E[- | F;]. Let

where (X;) is a real-valued scalar sequence satisfying:
|X1| S R, Ezfl[XZ} =0 foralli 2 17
for some constant R < co. Define the predictable variance process

Wm = Z ]Ei,1 [X,LQ],
1=1

and assume deterministically that W,,, < o2 for some constant o>

n > 1, with probability at least 1 — 0,

2 9 4 9
V| < \/8 max { Wy, %} log (:) + gRlog <(5n)
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Maximum Likelihood Estimation for Distribution Learning. We now state guarantee for the
maximum likelihood estimator (MLE) for density estimation, exactly similar to (Foster et al., 2024,
Section B.4). Given a class of candidate densities G and i.i.d. samples 21, ..., 2y ~ g« (possibly
not in G), we define the empirical negative log-likelihood (log-loss) of g € G as

Llog(g) = - Z logg(zz)

The maximum likelihood estimator is then

Jmle € argmin L. (g). 9)
geg

Definition 3 (Log-loss covering number). For a class G C A(Z), we say that a subset G' C
A(Z) is an e-cover with respect to the log-loss if for all g € G there exists ¢’ € G’ such that
sup,cz log(g(z)/g'(z)) < e. We denote the size of the smallest such cover by Niog(G, €).

We have the following property of MLE’s convergence in the squared Hellinger distance with high
probability.

Proposition 2. With probability 1 — § over m i.i.d. samples from any g, € G,

{ 610g(2/\/‘10g(g7 5)/5)

m

Da (9*7 gmle) < inf

inf + 45} + 2 guelg log(1+ Dy2(g+ 11 9)) + 2€opt-

In particular, if G is finite and €,y = 0, the maximum likelihood estimator satisfies

. 61og(21G]/6)
2

< eANTVFV
DH(g*agmle) ~ m

+ 2 inf log(1+ Dy (g- 1 9)) -
Note that the term inf jeg log(l + D,z (g« || g)) corresponds to the misspecification error, and is
zero if g« € G.

We note that the proof of (Foster et al., 2024, Proposition B.1) contains a couple of minor typograph-
ical errors. Namely, in Eq.(20) therein, the authors aim to compare g and g, but ended up comparing
g and g,. A similar mistake is repeated a couple of more times later in the proof without affecting
the correctness of the argument.

C PROOF OF PROPOSITION 1: MLE 1S GOOD FOR LOW-CARDINALITY Il

In this, we present the proof of Proposition 1. As discussed in Section 3, the argument builds on a
result from density estimation (Proposition 1) showing that MLE achieves convergence in squared
Hellinger distance. We begin by providing intuition for why, even in this setting, MLE can obtain
a guarantee expressed explicitly in terms of log |II|, without any dependence on |X|, ||, or the
support size sup, , [o(z)|, in a special case of the problem.

Intuition with the special cases of II: We provide a more transparent and direct proof for the spe-
cial case when for every 7 € II, 2 € X, the conditional density 7(- | ) puts a uniform distribution
over exactly s members of ) for some large but finite integer s. First, observe that in this special
case we have a dichotomy; any hypothesis that does not contradict the data has the same likelihood
as any other, so any 7 € II that does not contradict with the data is MLE. For the unknown D x m,,
we now consider any 7 such that

LD,U* (7‘(’) = IP)91:~D,1’J~7r(-\z) (@\ ¢ Or, (m)) > €.

Then, due to the symmetry of the loss in the special case where each 7 € II puts a uniform distribu-
tion on exactly s responses, we have

PxND,gw(m(@ Zor, (50)) = PmND,yw*(‘m(y ¢ UW(I)> > e,

where the key fact used is the ability to change the order of randomness between § ~ 7 (- | ) and
y~ (| x).
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This shows that when we sample (z,y) ~ D X m,, the probability that (z,y) does not fall in the
support o (x) exceeds . Hence, for any fixed 7 € II, after m i.i.d. draws

Pg(m survives) < (1 —e)™ < e ™.
Therefore, by a standard union bound,

Ps (3 bad 7 € II that survives) < [II|e ™.

The proposition follows by choosing m > my z_,.(€,9) = w.
Proof for any general II: Consider any unknown but fixed marginal distribution D € A(X'). For
any conditional law 7 : X — A()), let P(p ) denote the joint law over (X' x ))) given by the
marginal distribution D and the conditional law 7 (- | z). First observe that for any S € (X x ))*,
the joint law P(p 7 (s)) is the MLE of among all joint distribution {Pp ) : m € II}. Using
Proposition 2, for S ~ (D x m,)™
6 log(2|11|/6

PS (Da (P(Dvﬂ—*)7PD7ﬁmle(S)) S g<,n,|L|/)) 2 1-9. (10)
Now let o, : X — 2% be the associated support set valued function of valid responses for o, () =
supp(m« (- | z)). Let us define a function err : (X x ) — {0,1} as

1 ify ¢ o.(a),
0 otherwise.

err(x,y) = {

Then using Lemma 1, we have for any conditional law 7 : X — A())
Lpo. (1) = Epyp . [err] < DE(P(p,r.), Pip.m))

where we used the fact that Lp 5, (7.) = Ep,  [err] = 0 and that err is a bounded function in
[0, 1]. Combining this with (10), we obtain that with probability at least 1 — ¢ over S ~ (D X )™,

Loy, (Fue(S)) < S108CTI/0)

D SIMPLE MLE FAILURES FOR LOW-CARDINALITY S

We first show that there is a simple instance of a support class, where some MLE over the entire
class IIs := |, 11, fails.

Proof of Theorem 1. Fix any v € (0,1). Let Y = {0,1} and X = N. Define a support class
S = {0'0,0'01} Q (23))')( by
0'0(,@) = {0} and 0’01(1‘) = {O, 1} Ve e X.

Choose the ground-truth support o, = 0 and let the data-generating conditional be the point mass
(- | @) = do(-) for all x; thus every observed label equals 0. Let ILs be the class of all policies
supported on S (see (2)). Now fix a sample size m € N. Set

o= [2)

and define the marginal D to be the uniform distribution on [¢] = {1,2,...,¢},i.e., D({z}) =1/q
for z € [g] and 0 otherwise.

For any dataset S = {(z;,y;)}72q ~ (D x m,)™, write Sais := {z; : 4 € [m]} for the set of distinct
unlabeled inputs in .S (so Sgis < m). Consider the predictor 7 defined by

~ o 50(')7 US SdiS7
ﬂ'(' ‘ x) B {51()7 z ¢ Sdis- (11)
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We claim that 7 € MLEp (S). Indeed, the log-likelihood is

Elog(ﬂ;S):Zlogw(O\xi): > N.(S) logm(0] ),

L€ Sais

where N, (S) := |{i : ; = x}|. This expression depends only on the values 7(0 | z) for x € Sqis
and is maximized by setting 7(0 | x) = 1 for every x € Sgis. For x ¢ Sgjs the likelihood does not
constrain (- | ), so any choice (for tie-braking) is a valid maximizer; in particular, (11) yields a
valid MLE in I1s.

We next evaluate its population loss against the support o.. Since o, (z) = {0} for all z,

~ ~ Sdis
Lo, (@) =Pyup, gur(lz)(J & 04(x)) = Poup(x ¢ Sais) =1 — |q|
Using |Sqis| < m and ¢ > m/~,

m
q
The bound holds deterministically for every sample .S, hence

Pspxm)ym(Lpo, (7)) >1—7)=1.

L'DTJ*(%) > 1-— > 1—n.

O

We now show that the attempt to restrict the capacity of the class via another natural choice of
considering It s = UU c S{mmif,g} also does not work, when the expert demonstrations 7, does
not necessarily follow the distribution 7yy,if -, While still showing optimal demonstrations.

Theorem 7 (MLE Failure 2). Fix~y € (0,1). There exists S C (2Y)* with |S| = 2,|X| = 1,|Y| =
2[1/~], such that for some choice of D X m, for some w, supported on S such that, for every sample
size m, for S ~ (D x )", there is a unique Tmie(S) € MLEn,, (S) that suffers from the
following loss:
]P)SN(DXW*)m (LD,U* (ﬂ-mlc(S)) >1- 'Y) =1.
Proof of Theorem 7. Fix v € (0,1) and let s := [1/~]. Take X = {«} and
)) = {y*} U {al, .. .,as_l} U {bl,. . .7bs},
$0|Y| =1+ (s—1)+s=2s=2[1/7]. Define 1,05 € (2¥)* by
oi(x) ={y*,a1,...,as_1} (size s), oo(x) ={y*,b1,...,bs} (size s+1),
so o1(x) Nog(x) = {y*} and they are otherwise disjoint. Let S = {01, 02} and

wp Y €ol@),

Hunif,S = {’/Tunif,cr 10 € S}v Wunif,d(y | Cﬂ) = .
0, otherwise.

Set D to be the point mass at x and choose the ground-truth support o, = o2 with data-generating
conditional 7, = d,+ (always emit y*). For any m, every dataset S ~ (D x m,)™ equals {(z, y*) }".

It is simple to see that Tunif,o, € MLER,, <(S) is the unique maximum likelihood estimator. This

is because
Hﬂ—unif,al (yz | l’i) - (g) s Hﬂ-unif,aQ (yz ‘ 331) - <s+1)
i=1 i=1

However, with 0. (z) = o2(z), the estimator Ty1e(S) = Tunit,s, has the error

1 1
LD"T* %mle S :PANﬂ—uni o1 (lz @\ 02(T)) = 177-(-unif,01 y* z)=1-- = 1- > 1*7
(Frnte (8)) = Pgoryicoy (-1o) (T ¢ 02(2)) (y* | 2) S /7]
All bounds are deterministic given S, hence
Ps sy (Lp,o, (Tmie(S)) > 1—7) =1,
for every m, completing the proof. [
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D.1 OVERLAP OF MLE

We now show that MLE over the restricted capacity class Il s attains a non-trivial overlap at
the statistical limit of Theorem 4, though its failure to directly optimize the objective of interest
(cf. Section 3). Note that it is trivial to achieve overlap, by just using a policy which puts mass on one
good response from each support function class. However, this would produce the responses outside
the support with overwhelming probability. Thus, for the purpose for overlap to be meaningful,
we call it a non-trivial one if the output policy is only supported on one of ¢ € S (some notion
properness). The MLE over the class Iluir,s = U, es{unif,o } Will be of this form and achieves a
non-trivial overlap.

Theorem 8. For any finite class S C (23; )X and an unknown joint realizable distribution D X T,
where T, is supported on some 0. € S, for any estimator Tm1o(S) € MLEq,,, < (S), we have the

following guarantee: for any sample size m > =1 (log |S| + log(1/6)) , we have

Ps(pxr.ym (Pend (SUPP(Tmie(S)(- | ) Now(z) =0) <e) >1-4.

Proof of Theorem 8. The proof is simple. First note that 7yt -, has non-zero likelihood. Therefore,
any policy in the set MLEq,, (S) must have non-zero likelihood. Thus, for any o for which
Tunit,o € MLEm,, s(S), we must have that 0 € V(S) := {0 € S : y; € () V(xs,u:) € S}
Therefore, in order to establish

Ps~(pxm)m (Po~p (supp(Tmie(9)(z)) Now(z) =0) <e) > 1 -4,
it suffices to establish
Ps (Vo € V(S) : Ppop (o(z) Now(z) =0) <e)>1-9. (12)

Consider any bad o € S such that P,.p(o(x) N o.(z) = 0) > . With each draw (x;,y;) ~
(D x m), we have that o gets knocked-out of version space with probability at least ¢, i.e.
P2, yi)~(Dxm.) (Wi & 0(x3)) > €. Therefore, for any fixed o, after sample S ~ (D x 7)™

Ps(c e V(S) <(1—¢g)™ <e =M.
Therefore, by a standard union bound,

Pg(3bad o € V(S) that survives) < [S]e™=™ < |S|27°™.
The theorem follows by noting that the |S| 2™ < § for any m > w. O

Remark D.1 (Comparison with multi-class classification). Note that for multiclass classification
when 8 C Y7 (i.e. all |o(x)| = 1, the guarantee captured in (12) is enough to ensure learnability
by just outputting a single predictor from 5 € V(S) (i.e. consistent / ERM). This happens because
the overlap implies that that labels are the same and so no error. However, for our problem despite
this overlap, it is unclear how to output a single label so that it belongs to the support of .. What
would be sufficient for our problem is the following guarantee, where the quantifier Vo € V(S) is
taken inside the randomness of test point sampling x ~ D:

Ps (Pyp (Vo € V(S) i o(z) Now(z) =0) <e)>1-14.

However, we know that this provably requires the sample size where there is Q(|S|) dependence on
cardinality—see the lower bound for COMMON-INTERSECTION estimator (Theorem 11).

It may be possible to turn this into a predictor that directly starts to produce good responses, de-
pending on the overlap among hypotheses and other types of feedback available in post-training
(e.g., whether a generated response is good or not). This overlap can be captured by a parameter that
reflects the need for repeated sampling and the number of feedback that must be queried, which in
turn allows for a more quantitative understanding of how many feedbacks are required to guarantee
performance in terms of this parameter. For example, this parameter would be maximum in the
case of multi-class classification (Remark D.1) and no additional feedback is required. However,
we leave it open to formulate an interesting setup that enables a study of both types of feedbacks
together for our problem, and we do not attempt to investigate this any further.
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E PROOFS FROM SECTION 4.2

We first show our proof of Theorem 4 and then return to the proofs for the rules
COMMON-INTERSECTION and MAJORITY.

E.1 ONLINE-TO-BATCH ANALYSIS VIA FREEDMAN’S INEQUALITY

We have an online learner MISTAKE-UNAWARE-WEIGHT-UPDATE (Algorithm 1) that makes at
most log, |S| mistakes (Theorem 3). We now show, how using online-to-batch conversion via the
estimator oo, (Eq. (5)), we can enjoy a similar sample complexity. The main difference from
standard online-to-batch analysis is the use of Freedman’s inequality (Lemma 2), which yields a
better dependence on 1/e.

Proof of Theorem 4. Let £, = 1{m,(x;) ¢ o.(x;)}. Because 7, is a deterministic function of
Sct ={(x;,y:) 1 1 < t}, we have
Elt; | S<t] = Lp.o, (7).

Hence

Es [Lp,o, (To2(S))] = Eg =Egs

1 & ~ 1 log, |S]
- Lp., = 0| < 7

where in the last inequality we used Theorem 3, which guarantees Y, ¢, < log, |S].

For the high-probability statement, define the martingale differences
Zy = Lp o, (7)) — 44, where | Z;| < 1 almost surely.
Then E[Z; | S<¢] = 0, and
E[Z? | S<t] = E[(Lpo. (Fe)—£e)* | S<i] = Var(ly | St) = Lp o (Fe) 1= Lp o (7)) < Lpo. (7).

And taking W,,, = Y"1, Lp . () and 6 = m suffices, thus, using Lemma 2 with n = logm

inequality gives us with probability 1 — ¢

- - 1 4 1
N Zo< |8 (1 +3 Lo, (m) log ( Ogam) + 5 log ( Og(;”)
t=1

IN

t=1

1 - ~ logm 4 logm
|1 E Lp s 41 -1 GM < AM
2<+t_1 D’*(m)>+ 0g< 5 )+3°g( 5 ) (OM =AM
Substituting Z; and rearranging terms,
- ~ “ 32 logm

Lp, () <142 /y + —1lo
> Lo ) <1423+ g (757

Finally noting that Lp ,, (To2n(S)) = £ 37", Lp,,. (7¢) and that }_;" | £, < log, |S| (by Theo-
rem 3), we obtain that with probability 1 — 4,

IN

1+ 2log, |S| + 121og (IO%m>

m

LD,G‘* <;T\02b(S)) é

E.2 UPPER BOUNDS FOR COMMON INTERSECTION AND MAJORITY

We start by analyzing the COMMON-INTERSECTION rule in the more difficult online setting which
helps for the intuition for the statistical setting.

Theorem 9 (Online Guarantee for COMMON-INTERSECTION ). On any sequence ((xt,yt))ten re-
alizable by some o, € S, the rule COMMON-INTERSECTION (applied to the sequence seen so far)
makes at most |S| — 1 mistakes.

19



Under review as a conference paper at ICLR 2026

Proof of Theorem 9. Consider any round ¢ in which there was a mistake made by the rule. It must
be that the set of consistent hypothesis V; in that round, it must be that there was no common
intersection in that round, i.e., (),¢y, o(2:) = 0. That means even though we would not know
whether we made a mistake in that round, observing y; will eliminate at least one hypothesis from
the version space (i.e. |Viy1| < |Vi| — 1). Therefore, the rule cannot make |V;| — 1 = |S| — 1
mistakes on any realizable sequence. O

We now analyze the performance of this rule in the statistical version.

Proof of Theorem 2. Partition the m examples into K := |S| consecutive blocks By, ..., Bg, each
of length n > 1 (log |S| 4 log(1/6)). Let V; denote the version space just before block By begins.
IL.e. define the restricted dataset S; = B U---U B;_1 and

Vi={o€S:yi€o(x) Y(wi,yi) € St}
with V3 = S. Define the region of z, where we do not have a common intersection among V;.
Ay = {IEX: ﬂ J(x):@}.
ceVy

Note that A;1 C A; for all t € [K] because Vi1 C V;. Moreover, we never make an error when
outputting from common-intersection region. Now, using these facts, we have

PS (L'D,U* (%CI(S)) > 6) < PS PmND(AKJ,-l) > E)

(
=Ps (Vi1 #0NPrup(Axi1) >¢) (Vi1 # () always happens)
<Ps(Fte[K], Viq1 =V, N Poup(Aki1) > €)
< Pg (Ht € [K],V;H_l =Vi N IPIND(At) > E)

K
<Y Pp, (3t € [K],Vig1 = Vi | Ponp(Ay) > ¢)

t=1
K

<> (Q-gPl=K@1-e)
t=1

<|S|27=" < IS - S,

- - S|

The above calculation formalizes the following argument. There are two cases to consider:

Case 1. If P,.p(A;) > e, then the probability that no x € A, appears in block B; is at most
(I—¢g)" <e " < 27" < §/|S|. Otherwise, some z € A, appears; since [, .y, o(z) = 0, the
observed label y € 0. (x) excludes at least one o € Vi, s0 |Vi41| < [Vi| — 1.

Case 2. If P, .p(A:) < ¢, then on A the intersection is nonempty, and because o, € V4 it follows
that the COMMON-INTERSECTION prediction is always correct there. Moreover, since V1 C V,
the intersections can only grow and hence A;; C A;. Therefore, once Case 2 holds, the final error
remains below ¢.

Lp . (Tci1(5)) < Pp(At) <e.

Putting these together, with probability at least 1 — K - (§/|S|) > 1 — 4, each block in Case 1
eliminates at least one hypothesis, and there are at most X' = |S| such eliminations are even possible.
Hence either Case 2 occurs in some block (giving final error < €), or Case 1 occurs in all K blocks,
which is not possible in the realizable setting, arriving at a contradiction. O

E.3 LOWER BOUNDS FOR COMMON INTERSECTION AND MAJORITY

For the lower bound, we will show the lower bound on a stronger rule which outputs according to a
majority vote among the consistent hypothesis formalized below.
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Input: Sample S = {(z;,;) : i € [m]} and a finite support hypothesis class S C (2¥)*.
e LetV(S):={oceS:y €o(x;),Y(mi,y;) € S}
* Return the predictor MAJORITY(S) = Tma;i(S) : X — Y defined as follows:

uai(5) () = argmax|{o € V(5) : y € o(2)}|

Corollary 1. Note that T\a; always outputs from the common-intersection whenever it is non-
empty, and thus, it enjoys the same online as well as the statistical guarantees as in Theorem 9 and
Theorem 2 respectively.

The lower bounds will hold for the following instance of the of the class.

Description of the class. Fix d € N. Let
y={0,1}, q¢:=|%|, x:={1,2,...,q¢}
We define a hypothesis class S = {71,032, ...,04} C (2¥)7 as follows.

* Distinguished hypothesis. Set o1(x) = {1} for every x € X. This will serve as the
ground-truth hypothesis.

* Adpversarial hypotheses. For each i > 2, require that 0 € o;(x) for all z € X. Moreover,
foreach t € {1,...,q} we designate a pair of hypotheses, oat, 0a:41, that both exclude

label 1 at coordinate ¢:
1¢0’2t(t), 1¢0’2t+1(t).
For all other coordinates x # t, these hypotheses include both labels, e.g.

oot(x) = o9111(x) = {0,1} forax # t.

If (d — 1 is odd, then there is one remaining index pairing. In that case, define o4(z) =
{0,1} forallz € X.

Thus S has size exactly d, uses 2¢ < d — 1 adversarial hypotheses to plant two “anti—1” voters at
each coordinate ¢ € X, and possibly one additional “neutral” hypothesis if d — 1 is odd. We are now
ready to show the online lower bound.

Theorem 10 (Online Lower Bounds for COMMON-INTERSECTIONand MAJORITY). For every d,
there exists a hypothesis class S C (2¥)* with |S| = d,|X| = [(d — 1)/2] and |Y| = 2 such that
both the rules make | X | mistakes (i.e. a mistake on every round).

Proof of Theorem 10. Note that it suffices to show the lower bound of simply the MAJORITY rule,
which also implies the lower bound on COMMON-INTERSECTION. Consider the hypothesis class S
constructed above, and let the ground truth be o, = o;. Present the sequence of instances x; = ¢
fort =1,...,q = |X|. Then y; = 1 for all ¢ under o..

At each round ¢, the version space V;_; contains o; together with all adversarial hypotheses that
have not yet been eliminated. By construction, every adversarial hypothesis other than o; always
includes 0, while at coordinate ¢ at least two of them exclude 1. Hence

No(z; Vic1) = [Vici| =1 and  Ny(zy; Vier) < |Viea] — 2,

so the majority rule predicts 0 (which is an error according to o, = o) and errs, therefore the rule
makes an error on every round, completing the proof. O

Remark E.1. Note that the rule COMMON-INTERSECTION and MAIJORITY respectively re-
cover the textbook rules Consistent and Halving in the standard realizable online classification
Shalev-Shwartz & Ben-David (2014). However, both the rules have a mistake bound of Q(|S]) in
our setup even when the labels are binary in the worst case (cf. Theorem 10). This is in sharp con-
trast with the standard classification where Halving enjoys logs |H| mistake bound. This failure is
due to the set-valued nature of the support functions.

We now show the statistical lower bound in a similar spirit.
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Theorem 11 (Statistical Lower Bounds for COMMON-INTERSECTION and MAJORITY). For every
d, there exists a problem instance S C (2Y)* with |S| = d,|X| = |(d — 1)/2],|Y| = 2 and some
choice of realizable joint distribution (D X 7,) where m, is supported on o, € S such that for any
sample size m < |X|/2, letting w(S) to be either COMMON-INTERSECTION or MAJORITY have
the following guarantee:

Pspm (Lpo. (7(S)) > 1/2) = 1.

Proof of Theorem 11. 1t suffices to prove the claim for MAJORITY again; the bound for the other
follows since MAJORITY is just a special instantiation of COMMON-INTERSECTION.

Consider the same class S constructed above with |X| = ¢ and ground truth o, = oy (so the
realizable label is always 1). Let D be the uniform distribution on X'. Take . to be the only
conditional distribution supported on o, so the joint (D x ) is realizable.

Fix any sample size m < ¢/2 and draw S ~ D™. Let Synseen C X be the set of coordinates unseen
in S; then |Synseen| = ¢ — m > q/2. Let V/(S) C S be the version space of hypotheses consistent
with S (with respect to the labels of o, label, which are always 1).

Again, by construction, for each ¢ € Sypseen there are two designated adversarial hypotheses in
V(S). At such a point t € Sypseen:

* Every hypothesis in V' (.9) includes label 0, except o, SO
No(t;V(5)) = [V(S)] - 1.

* Every hypothesis in V(.S) includes label 1, except oa¢, 0211, SO

Ni(&:V(9)) < [V(9)] = 2.

Thus Ny(t; V(S)) > Ni(t; V(S)), and the majority rule outputs 0 (which is an error according to
04). Thus, o, = o7 is y; = 1, MAJORITY errs on every unseen ¢ € Sypseen-

With D uniform on X,

~ Sull 1
LD,U* (W(S)) 2 PmND[m S Sunseen] - @ Z 1-— E Z
q q

DN | =

Since this lower bound holds for every realization of S with m < ¢/2, we have

Psn(pxr.yn(Lp,o. (7(S)) > 3) = 1. This proves the theorem. O

Because d = (2k)?, we have ¢ = log,, d, so the bound implies m = (log; d) under D =
Unif (X).

Remark E.2. Both online (Theorem 15) and statistical lower bounds (Theorem 15) for passQk
essentially demonstrate that one cannot do better than memorization below Q(log,, d) barrier in the

worst-case, even for the special case of the problem of multiclass classification S C Y~ which is
isomorphic to S C (2Y)* with |o(x)| = 1.

F ALGORITHM AND ANALYSIS FOR LEARNING FROM ARBITRARY
DEMONSTRATOR

We will first begin by online learner which makes a softer update, and then show how the online-to-
batch conversion enjoys the guarantee given in Theorem 5.

F.1 ONLINE LEARNER WITH SOFTER UPDATE

Our goal is to bound the regret against the best hypothesis in hindsight in a certain sense. Let’s
define two types of mistakes over I" rounds for any given hypothesis o € S:
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Algorithm 2 Softer MISTAKE-UNAWARE-WEIGHT-UPDATE

Input: A finite support class S C (2¥)* and the penalty parameters o, 3 > 1.
+ Initialize w(!) (o) = 1 forall o € S.
e Ineveryround ¢t = 1,..., T, receiving x;:
1. Output
Y = arg max Z w® (o) 1{y € o ()} .
c€eS
2. On receiving y;, update the weights:

w(t+1)<a-) — w(t)(o-) . al{@:ea(ﬂ“t)} _5—1{%@3‘7(%)} Vo € S.

Here, « > 1 and 8 > 1 are penalty parameters. Note that this update rule ensures that af-
ter 7' rounds, the weight of any hypothesis o is exactly w(”+1 (o) = aMaT]g(")B*MT(").

 Algorithm’s Mistakes relative to o: This is the number of times our algorithm’s prediction
Y was not in o’s valid set absolutely, irrespective of what y; was.

Mp¥(0) ==Y 1[G ¢ o(a1)]

t

=

* Hypothesis o’s Mistakes: This is the number of times the true label y; was not in ¢”’s valid
set.

Mr(o) =Y 1y ¢ o))

=1

~+

The total number of mistakes made by our algorithm with respect to o is M%lg(a), and the number
of mistakes made by o itself is M (o). Note that in some rounds, both types of mistake could occur.
We now analyze the algorithm with the first simple lemma that the total weight of the hypotheses in
the system is again non-increasing under a minor condition on (a, 3).

Lemma 3 (Non-increasing Total Weight). As long as a, 8 > 1 satisfies « < 2 — 1/, the total
weight {W,}; in the system is non-increasing.

Proof of Lemma 3. Let Wy = Y __sw(")(c) be the total weight at the start of round ¢. Define the
following disjoint sets of hypotheses:

S1={ceS |y €a(xs), Y € o)},
Sy={c eS|y €o@), i ¢ o(x)},
Sz ={0 €S|yt ¢ o), Y € o(a1)},
Sy={c eS|y ¢ o), Y & o)}
By the update rule
w(t+1)(0) — w® (o) aHuedo(@)} g—Hygo (@)}
we have:
1, o€ S,
a, o €S,
W@ =wON s ses,
a/B, o €Sy
Therefore:

Wt+1 = Wt(S1) + OLWt(SQ) + %Wt(Sg) + %Wt(54) .

The change in total weight is:

Wi — Wies = (1— a)Wi(Sh) + (1 _ ;) Wi(Ss) + (1 - ‘;) Wi(Sa).
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By the prediction rule:
Wilye) <Wi(@) = Wi(S2) < Wi(S3).

Thus:
1 «Q
Wt — Wt+1 2 (]. — O[)Wt(SQ) + (1 — B) Wt(SQ) + (1 — lB) Wt(S4)
A sufficient condition for W;;; < Wy is:
1 «
l-a+1-—=2>0 and 1—--= >0,
B B
which simplifies to:
1
a<2—— and a<p.
B
Since a < (3 is implied by the first condition in relevant regimes, which completes the proof. O

Note that the realizable case is simply § = oo and o = 2.

Final Regret Bound We are now ready to bound a certain type of regret of the algorithm.

Theorem 12. Let S C (2¥)% be any finite model class, and let {w®) (o)} be the weights generated
by Algorithm 2 when run with «, 8 > 1 satisfying « < 2 — 1/8. Then for any o € S, we have

< 35w 12

Proof. Let Wy, = 3°_ _ 5w (c) be the total weight at round ¢. By the update rule of Algorithm 2,
we have for any o € S:
w(T+1) (J) _ OLM;}g(g)ﬂfMT(U).

Since «, 8 > 1 satisfy & < 2 — 1/, Lemma 3 ensures that {W;} is non-increasing, hence:
WT+1 < W1 = |S|
Therefore,
alg
M) g=Mr (@) — ,(T+D) () < Wiy, < |8,
and taking logarithms yields:
M;'®(0) log(er) — My (o) log(B) < log ],

which rearranges to:

log(3
log(«

~

al 1Og |S|
Mr*(o) < log(a)

+ Mr (o) -

~—

F.2 ONLINE-TO-BATCH CONVERSION AND STATISTICAL GUARANTEE

Our learning rule for the statistical setting is again the same as Eq. (5), but by executing the softer
MISTAKE-UNAWARE-WEIGHT-UPDATE (Algorithm 2) with choice of (o, 8) = (4/3,3/2). We
again denote this predictor by 7o21,. We show that Theorem 5 holds when we use this as an estimator.

Proof of Theorem 5. Let k := log 8/ log < 1.41 and consider any fixed but unknown reference
o and the demonstrator 7, (which may not be optimal). Define

Zy = Lpo, (7)) — H{Te(xr) & 04(x4)} + 6 (Lp,o, (1) — L{ys & 0u(4)})

Because 7 is deterministic given S<; = {(z;,v;) : ¢ < t}, we have

E[Z: | S<t] = Lpo.(7t) = LD o, (T1) + £ (LD o, (M) = LD g, (7)) = 0,
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so {Z;}}~, forms a martingale difference sequence. Moreover, | Z;| < 1 + x < 3 almost surely.
We have
]E[Zt | S<t] = 0, Var(Zt | S<t) < 2L'D,U* (%t) + 2/<62LD70* (’/T*) < QLD,U* (%t) + 4L’D,a* (’/T*)

Applying Freedman’s inequality (Lemma 2) with W,,, = 237" Lp . () + 4> 1oy Lp o (74)
and 02 = 6m yields that with probability 1 — &:

2log 6 4 2log 6
ZZt < \/8(1 + W) log <O§m> + 5(1 + k) log <O§m> .
t=1

By AM-GM inequality:

- 1+ W, 21 21
Nz < % +16log <O§6m> + +4log (‘)‘26’”> .
t=1

Substituting Z,; and rearranging gives us:

D Log. () < KLp,g. (M) +1+2 (Z Rz ¢ ou(z)} —r Y Uy ¢ a*(xt)}> +401log (2IO§6m> ;

t=1 t=1 t=1
Finally, using Theorem 12, and using the fact that

~ 1 & -
L'Dﬁ* (7To2b(s)) = E ZLD,U* (7Tt),
t=1

we obtain that, with probability at least 1 — 9,
1+ 6log, |S| + 401log (@)

m

Lp o, (To2n(S)) < K Lpo, (m) +

G ALGORITHMS AND PROOFS FOR pass@k-ERROR

In this, we provide our guarantees for pass@k error (and formalize Theorem 6). We first start by
describing an online learner.

Algorithm 3 Online pass@k rule with greedy selection and mistake unaware updates
Input: A finite model class S C (2Y)%, and parameter k € N.
+ Initialize V; = S and wM) (¢) = 1 forall o € S.
¢ In every round, receiving x;:
1. Foreachy € Y, form the slice A} = {0 € V; 1 y € o(x1)}.
2. (Greedy top-k selection). Let Yy = 0. Fori = 1,2,...,k set

i earg max wO(a\ (J oA, Rie Vv

YyEV\Vi-1 ey,

(Break ties arbitrarily.) Define U; := Ule AZ(“.
Y

3. Output the k labels 3V, ... 5t
4. (Weight update). Upon receiving label y;:

0, forall o & Atyt;
w D (g) ¢ wd (o) forallo € A NU;

(k+1)w (o), foralloe Al \U.

: . t
So the version space: Vi1 < Ay, .
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Theorem 13 (Online pass@¥k guarantee). On any sequence (¢, yi))ten realizable by some o, € S,
Algorithm 3 makes at most log, | |S| mistakes (i.e., rounds with {ﬂgl), e ,@t(k)} Now(z) =0).

Proof. Let V; be the version space at the start of round ¢, and as in the algorithm write AZ ={o e
Vi:yeo(x)ad U, = U, A;f(i)' Define the potential W; = w(V;) = >, w)(0),
then we again have {W, }; is non-increasing.
Wit = (k+ Dw® (AL N\ Ty) + w(AL) = kw® (AL \T,) + w® (AL \Uy) +wP (AL NTy)
O, \ AL) + w0 (AL \ U +wP (AL, NT;)
=wD (U, UAL) <W,,

where in the first inequality arises from the following key relation:

w U\ AL) > kw® (AL \ Uy). (13)
We defer its proof to the end of this section.

Now suppose the algorithm makes M pass@k mistakes by the end of round ¢. On each mistake
round we must have o, € A \ Uy, so its weight is multiplied by (k-+1). Therefore

’LU(tJrl)(O'*) = (k-Fl)M < Wt+1 < W1 = |S‘,
which yields M <log;, |S]. O

Proof of the key inequality (13). To simplify the notation, we remove the time index ¢ and write
Uy as U, and Agt as A,,. Define the uncovered mass in A after selecting first 7 labels greedily as:

a; = w“)(Ayt \ U AZ) sothat ag = w®(4,,), ar=w (A4, \U),
z€Y;
and ag > a3 > --- > ag. Correspondingly, define
S; = Q-1 — a; = w(t)<(A§,(1) n Ayt) \ U Az)
’ z€YVi-1

In addition, we define the uncovered weight for which ﬂtm got picked as

g0 U 4)

By the design of the greedy selections, we have
m; > a1 forall i € [k]. (14)

With these definitions and relations in place, we are ready to prove the desired inequality. Basic set
inclusion / exclusion tells us that

k
QW A,,) = Z ® (Agen \ Ay, U A -+ U Agan)

o\ | Al <f>((A§§mAyt)\ U AZ>

2€Yi—1 2€Yi—1

i

where the last equality uses the definitions of m; and s;. Using (14), we obtain
m; —s; > ai—1— (a1 —a;) = a,

which allows us to further lower bound w® (U \ A) as

(t)U\A Zal > kay.

Here we use the fact that (a;); is non-increasing. Thls proves the claim.
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G.1 STATISTICAL UPPER BOUND

Input: Sample S = {(z;,v;) : i € [m]} and a finite model class S C (2¥)*

* Run Algorithm 3 once over S, recording (V;,w?)) at the start of each round ¢ €
[m].

» Find the deterministic predictor i; : X — )" used by the online algorithm from
the snapshot. Le. for any « € X and any ¢ € [m], define slices (with respect to V;)

Al(z) = {oeV,: yeo(n)}.

And greedily pick top k labels according to the rule described in Algorithm 3.
Let Yo(z) =0. Fori =1,...,k set

ﬁt(z)(x) € arg max w(t)<AZ(x)\ U AZ(x))

yEV\Vi—1(x) 2€Yi—1(z)

Yile) = Yima () U {5 ()},
breaking ties by arbitrary fixed rule.
+ Then the deterministic predictor i; : X — Y*¥ is given by:
& 1 ~(k
(@) = @ (@),....5" @).
* Final batch predictor. On a test input z;, draw I ~ Unif{1,..., m} and output
Hoan (S)(x) = fir(x). (15)

(Equivalently: fioop is the uniform mixture over {fi; }}*, for every test point.)

Below is the statistical guarantee for this estimator in similar spirit to Theorem 4.
Theorem 14 (Statistical Guarantee for passQk). For any finite model class S, the estimator [ioay, in
Eq. (15) achieves the following guarantee for any joint distribution (D X 7,) supported on o, € S:

10gk+1 S|

Es o [Lp,o.(Foan(5))] < 2

and, for any 6 € (0,1), with probability at least 1 — 6,

1+ 2log, S|+ 1210g(1°%m)

Lpo.(floan(S)) < -

This implies that S is learnable (cf. Definition 1) using the estimator [io21, with sample complexity
1
15 0, (216) = O 2 (Togic 8] + 10w (3) ) )

Proof of Theorem 14. The proof is exactly similar to that of Theorem 4 and given for completeness.

Let £ = IL{@@ (21) & oul@),¥ @f) (x¢) € hi(zy)}. Because fi; is a deterministic function of
St = {(xs,ys) : i < t}, we have

E[l; | S<i] = Lp 0. (Ht) -

Hence

m

1 m lo S
23 o —Es[ ze] logy 151,

where in the last inequality we used Theorem 13, which guarantees Y_;" ; ¢; < log;_ |S|.

ES [LD,O'* (ﬁoQb (S))] =

For the high-probability statement, define the martingale differences
Zy = Lp s ([t) — s, where |Z;| < 1 almost surely.
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Then E[Z,; | S<¢] = 0, and
E(Z} | S<i] = E[(Lp.o. (7it)—t:)? | S<t] = Var(ly | S<t) = Lp o, (fit) (1= Lp o, (i) < Lpo, (it) -

Taking W, = >_}", Lp o, (fiz) and 0 = m suffices; thus, using Lemma 2 with n = log m gives,
with probability 1 — 4,

U i - logm 4 logm
ZZt 8 (1 + ZLD,U* (Nt)) log ( %5 ) + 3 log ( i )
t=1

t=1

1 G - logm 4 log m
< — — <
<3 (1 + E Lp,, (ut)> +4log < 5 > + 3 log < 3 > (GM < AM)

t=1

IA

Substituting Z; and rearranging terms,

- N - 32 logm
Lp, <142 ly+ —lo .
; D0, (it) ; t 3 g< s >

Finally, noting that Lp o (Ho2n(S)) = = 31", Lpo. (fiy) and that 3", ¢, < log; ., |S| (by
Theorem 13), we obtain that with probability 1 — §,

1+ 2log;, 1 |S]+ 1210g(10%%>

m

LD,G* (ﬁo2b(5)) <

G.2 LOWER BOUNDS FOR ONLINE AND STATISTICAL SETTINGS FOR k-PASS ERROR

We next provide a lower bound that, information-theoretically, this dependence cannot be improved
and we only gain a factor of 1/log k in sample complexity as well as mistake bound in the worst-
case.

Theorem 15 (Online 2(logy ., |S|) pass@k mistake bound even for multiclass classification). Fix
integers k > 1 and d > 2. There exists a problem instance S C Y~ with |S| < d,|Y| = k+1,|X| =
|log;., d| such that for any deterministic online learning algorithm that outputs at most k labels,

there exists a sequence (T, %)ic( x| realizable by some o, € S such that it makes mistake on every
round.

Note that our instance is an instance of multiclass classification problem ¢ : X — ). This is
isomorphic to an instance S C (2Y)*, where |o(x)| = 1 forallz € X,0 € S.

Proof of Theorem 15. Let m := |log,,d] and take X = {1,...,m}and Y = {1,... k+1}.
Consider the full product class S = V¥ which has size (k+1)™ < d. First of all, observe that in

any round in which y; does not belong to the list of (ﬂt(l), . ,ﬂik)), the mistake is made because

we are in the multiclass classification setting.
For rounds ¢ € [m], present a fresh coordinate x; = ¢. Since |Y| = k+1, there exists a label y; € )

that the learner failed to output in the set; y; # ’yfz) for all ¢ € [k]. Reveal this y;. This forces a
mistake on every round. Moreover, this sequence is realizable since S = J* contains all functions
from X to ). O

Theorem 16 (Statistical lower bound of Q(logy, |S|)). Fix integers k > 1 and g > 1. Let X =
{1,...,q}, Y = {1,...,2k}, and take the hypothesis class S = Y (all multiclass functions), so
its cardinality is d := |S| = (2k)%. Let D be the uniform distribution on X. Then for any estimators
Bs (XX V) o AT

i%f sup Es~(Dxo)m PenDPy(ayniitlo) 0(z) € Ylz)] > %(1 - %)
[eAS
In particular, to ensure expected error at most 0 < € < % forall o € S, one needs
> In(1/(2¢)) > 4 1n(i).
—In(1-1/9) 2
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Proof. Fix any (possibly randomized) estimator . Let S = {(z;,y:)},
drawn i.i.d. from (D x o) for o ~ Unif(S), and let Ug = {z; : 1 < i <
distinct inputs seen in S. Draw = ~ D independently of S and then y(z) ~

e the training sample
m} C X be the set of

b

p(S)(- [ ).

On any z ¢ Ug, under the prior where o is uniform over S, for any (possibly randomized) k-list
y(z) ~ (- [ =),

k 1

‘S,x¢U5]<

E # of distinct labels in y(z)
-2k 2’

Y

soPylo(z) ¢ y(x) | S, x ¢ Us] > 3. (Allowing duplicates in g(z) cannot decrease this probabil-
ity.)

If x € Ug, the learner can always include the observed label and incur zero error on that x. There-
fore, for any estimator i,

P,[o(z) € y(z) | S, z ¢ Us]

—_

Pa,r,@(z)wﬁ(-|m) [O’({IJ) §é ’y((E) ‘ S] > 5 P[QT ¢ US]

[\]

Taking expectation over S and using D = Unif(X) yields

N 1 m
Es Py g(o)~i(-lo) [0(2) € Y(2)] > 5]}315[1 —|Usl/a] = %(1 - %) ;
since E[|Ug]] = ¢(1 — (1 — %)m). Finally, by minimax principle
inf sup Es Py D Pyt o) 0(2) € Y(2)] 2 inf Eounit(s) Es PonpPg(a)macin o(@) ¢ () ]
> 302

For the sample-complexity bound, solve 5(1 — ;)™ < e form anduse —In(1—-1/¢) <1/q. O
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