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ABSTRACT

Although it is traditionally believed that lossy image compression, such as JPEG com-
pression, has a negative impact on the performance of deep neural networks (DNNs),
it is shown by recent works that well-crafted JPEG compression can actually improve
the performance of deep learning (DL). Inspired by this, we propose JPEG-DL, a novel
DL framework that prepends any underlying DNN architecture with a trainable JPEG
compression layer. To make the quantization operation in JPEG compression trainable, a
new differentiable soft quantizer is employed at the JPEG layer, and then the quantization
operation and underlying DNN are jointly trained. Extensive experiments show that in
comparison with the standard DL, JPEG-DL delivers significant accuracy improvements
across various datasets and model architectures while enhancing robustness against ad-
versarial attacks. Particularly, on some fine-grained image classification datasets, JPEG-
DL can increase prediction accuracy by as much as 20.9%. Our code is available on
https://github.com/JpegInspiredDl/JPEG-Inspired-DL.git.

1 INTRODUCTION

JPEG compression (Pennebaker & Mitchell, 1992) is the defacto lossy image compression technique with
ubiquitous presence in real-world applications. With the development of deep learning, more and more
images, potentially compressed by JPEG, are consumed by deep neural networks (DNNs). Naturally, it’s
of interest to study how JPEG compression will impact DNN performance for computer vision tasks, and
extensive research has been conducted along this line such as Dodge & Karam (2016); Liu et al. (2018)
and Xie & Kim (2019). These initial explorations establish a widely accepted view that the information
loss caused by JPEG obscures important features in the input image, thereby negatively impacting DNN
performance.

However, it was shown by Yang et al. (2021) that the above conventional wisdom does not hold anymore if
JPEG compression is applied intelligently and adaptively on a per image basis. Indeed, Yang et al. (2021)
showed that if applied appropriately, JPEG compression can actually improve DNN performance at least in
theory. They further proposed to train a DNN based on images with various JPEG quality levels. While they
managed to demonstrate improved performance with a specially designed DNN topology, the model is too
cumbersome to be fully trained, leading to suboptimal performance. Moreover, the adherence to the default
JPEG quantization also limits the effectiveness of this method. On the other hand, given a fixed DNN model,
Zheng et al. (2023) and Salamah et al. (2024b) found that its performance could be slightly improved if the
input images got compressed by JPEG with optimized quantization parameters. However, the performance
gain is not significant due to the frozen DNN model. Although these existing works provide promising
insights to improve DNN performance with JPEG compression, a solid solution that can fully unleash the
potential of this idea has yet to be found.

To address the above issue, in this paper, we propose jointly optimizing both JPEG quantization operation
and a DNN to achieve greater effectiveness. To this end, we first introduce a trainable JPEG compression
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Figure 1: (a) The JPEG-DL framework is illustrated, with both standard DNN’s operations and the forward/
inverse processes of the standard JPEG pipeline are shown in white boxes as non-trainable components.
The JPEG pipeline receives a conventionally preprocessed input image x ∈ R3×W×H sampled from the
underlying task’s dataset. The differentiable soft quantizer (Qd) and the underlying DNN architecture (fθ),
shown in blue, formed a unified new architecture f̂(x; θ,Q,α) parametrized with these being the only
trainable components. (b) As an example, we show z1,:,:, i.e., the DCT representation of the Y channel
of an image, by a tensor consisting of B blocks of DCT coefficients. Each 8×8 block contains M = 64
DCT frequencies, ordered from low to high in a zigzag manner. Then, we show how z1,1,: and z1,M,: are
quantized by Qd(· ; q = 1, α = 10) and Qd(· ; q = 0.5, α = 16), respectively.

layer, structure of which is illustrated in Fig. 1a. This layer follows the standard JPEG pipeline to con-
vert a preprocessed input image, after passing through after the input layer, into blockwise Discrete Cosine
Transform (DCT) coefficients in the YCbCr color space. A novel differentiable soft quantizer (Qd) is then
applied to quantize the DCT coefficients at each frequency position, followed by the standard JPEG inverse
process to reconstruct the RGB image. We then present JPEG-DL, a novel deep learning (DL) framework
that that introduces a new DNN architecture by inserting a JPEG layer directly after the original input layer
of any underlying DNN architecture. This layer can be considered an integral part of any underlying DNN
architecture, forming a new unified DNN architecture, whose parameters get optimized jointly with DNN
model weights during training. The core of JPEG-DL is Qd as it substitutes the non-differentiable, hard
quantization in JPEG with a differentiable, soft quantization operation defined by a neat analytical formula,
which not only facilitates gradient-based optimization for quantization parameters but also introduces addi-
tional trainable non-linearity to the overall image understanding pipeline. To validate the effectiveness of
JPEG-DL, we conducted extensive experiments for image classification on six datasets including four fine-
grained classification datasets (Wah et al., 2011; Khosla et al., 2011; Nilsback & Zisserman, 2008; Parkhi
et al., 2012), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). Results show that
JPEG-DL significantly and consistently outperforms the standard DL across various DNN architectures,
with a negligible increase in model complexity. Specifically, JPEG-DL improves classification accuracy by
up to 20.9% on some fine-grained classification dataset, while adding only 128 trainable parameters to the
DL pipeline. Moreover, the superiority of JPEG-DL over the standard DL is further demonstrated by the
enhanced adversarial robustness of the learned unified architecture.

The main contributions of this paper can be summarized as follows:

• We introduce a novel trainable JPEG layer leveraging differentiable soft quantizers with nice ana-
lytical formulas.
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• Based on the new JPEG layer, we propose a new DL framework dubbed JPEG-DL, which jointly
optimizes the JPEG layer and the DNN model during training.

• The outstanding performance of JPEG-DL over the standard DL is verified by comprehensive ex-
perimental results on various image classification datasets across multiple DNN architectures and
for a variety of tasks including adversarial defense.

2 BACKGROUND AND RELATED WORK

JPEG applications. JPEG was originally developed as a lossy image compression technique based on
transform coding, which reduces image file sizes by generating their compact representations. Beyond its
traditional use, JPEG has found numerous applications in deep learning: (1) it has been utilized as a data
augmentation technique to improve robustness of DNNs against image compression (Benbarrad et al., 2022);
(2) it has been employed as an empirical defense method against adversarial attacks, effectively reducing
adversarial perturbations and enhancing the adversarial robustness of DNNs (Dziugaite et al., 2016; Das
et al., 2017; Guo et al., 2018); and (3) it has been integrated into the knowledge distillation (Hinton et al.,
2015) framework by Salamah et al. (2024a), where it helps the teacher model transfer knowledge to the
student model in a more effective way. In contrast, this paper focuses on leveraging JPEG to enhance the
natural performance, instead of the robust performance, of DNNs without relying on any teacher model.

Optimizing JPEG Compression for DNN vision. As a lossy image compression technique, JPEG is de-
veloped specifically for the human visual system. As a result, while the information loss introduced by
JPEG is often imperceptible to humans, it can significantly degrade the performance of DNNs. This issue
gives rise to a line of research which optimizes JPEG compression based on DNN perception. For instance,
given a pretrained DNN, Xie & Kim (2019), Zheng et al. (2023) and Salamah et al. (2024b) first derive
its sensitivity to different DCT frequencies, based on which they customize JPEG quantization tables for
this DNN to reach the optimal rate-accuracy tradeoff. Another popular direction is to make JPEG trainable,
which integrates the JPEG encoder and DNN into an end-to-end differentiable training framework (Luo
et al., 2020; Xie et al., 2022). These methods create differentiable proxies for image quantization and bitrate
calculation, so that JPEG compression can be optimized via backpropagation in order to minimize a total
loss considering both DNN performance and bitrate. However, all the above works focus on mitigating DNN
performance degradation in the presence of JPEG compressed images, but offer little to no improvement on
DNN performance when raw images are given as input. On the contrary, this paper leverages JPEG purely
as a tool to improve DNN performance on raw images, regardless of its compression capability.

Improving DNN performance with JPEG. Due to the aforementioned reason, JPEG compression gener-
ally hurts DNN performance. However, it’s recently demonstrated by Yang et al. (2021) that, with an oracle
guiding the compression process, one can select an optimal quality level to compress each image, enabling
the DNN to make its best possible prediction for it. By applying this adaptive JPEG compression across a set
of images, one can actually improve the DNN prediction accuracy considerably. This phenomenon, termed
“compression helps” in the original paper, is justified by the fact that compression can remove noise and
disturbing background features, thereby highlighting the main object in an image, which helps DNNs make
better prediction. Due to the need of ground truth labels in the compression stage, the above adaptive com-
pression scheme is not realizable in most real world applications; however, the discovery of “compression
helps” at least show the potential of using JPEG to improve DNN performance. Thus motivated, the authors
in turn proposed an implementable way to improve DNN performance with JPEG. They built a new DNN
topology that incorporates 11 parallel branches of an underlying pretrained model, with each branch obtain-
ing as input either the raw image or its compressed version at a varying quality level. The penultimate layer
representations from all branches are concatenated and fed into a classification head, which is then trained
together with those 11 model backbones as a unified DNN structure. This new DNN topology is clearly too
complex to train, so the authors opted for partial training to mitigate the training complexity, therefore result-
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ing in a suboptimal performance. In contrast, our proposed method introduces only 128 additional trainable
parameters to the existing DL pipeline, causing negligible complexity increase. Moreover, it’s noteworthy
that our method is orthogonal to theirs, as our trainable JPEG quantization tables can be embedded into their
framework to replace the default JPEG quantization tables, thereby further improving the performance.

Trainable Activation Functions. Relentless efforts have been made to search for activation functions that
can improve DNN performance. Among all the directions, trainable activation functions have gained partic-
ular interest for their flexibility, expressive power, and adaptability during training. Chen & Chang (1996)
propose the adjustable generalized hyperbolic tangent function, which extends the classic hyperbolic tangent
function by introducing parameters to control the saturation level and slope of the function. He et al. (2015)
introduce the parametric ReLU (PReLU), a variant of ReLU with a trainable parameter that adjusts the nega-
tive part of ReLU. More recently, Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024) employ trainable
activation functions on edges, with nodes simply summing all the incoming activations. Interestingly, the
differentiable soft quantizers in our JPEG layer can be interpreted as trainable activation functions whose
input is the DCT representations of images. These trainable soft quantizers effectively introduce additional
nonlinearity to DNN models, thus improving their expressive power.

3 JPEG-DL: JPEG INSPIRED DL

3.1 PROBLEM FORMULATION

In the JPEG pipeline, an RGB image x ∈ R3×W×H is first converted to the YCbCr color space and then
partitioned into B non-overlapping 8 × 8 blocks, where DCT is applied to each of these blocks to obtain
the corresponding DCT coefficients. For each color channel, the DCT coefficients in each block are then
flattened following the zigzag order, resulting in M = 64 frequency positions ordered from low frequency
to high frequency. Therefore, we denote the DCT coefficients of the image x as z = [zl,m,n], where
l = 1, 2, 3 corresponds to the color channel Y, Cb and Cr respectively, 1 ≤ m ≤ M is the index for
frequency position, and 1 ≤ n ≤ B is the index for block. Up to this point, all operations involved are
differentiable. Next, quantization tables QY = [q1, q2, . . . , qM ] and QC = [qM+1, qM+2, . . . , q2M ] are used
for the luminance (Y) and chrominance (CbCr) channels respectively to quantize their DCT coefficients.
Following uniform quantization, we obtain quantized DCT coefficients ẑl,m,n = ⌊zl,m,n/qm⌉ ·qm for l = 1,
and ẑl,m,n = ⌊zl,m,n/qM+m⌉ · qM+m for l = 2, 3. Note that quantization is non-differentiable due to
the use of the rounding operation. Finally, inverse operations including blockwise inverse DCT (IDCT)
transform, blocks merging and YCbCr-to-RGB color space conversion are conducted over ẑ sequentially to
obtain the reconstructed RGB image x̂. Similar to their forward counterparts, all these inverse operations
are differentiable. Denoting the composition of all the above operations as J , we then have x̂ = J (x;Q),
where Q = (QY , QC). Hereafter, the mapping J stands for the JPEG encoding-decoding operation.

In supervised learning, each x ∈ X corresponds to a ground truth label y ∈ Y . Let fθ represent a DNN
model with trainable weights θ, and let L denote the loss function used to train this DNN. In standard DL,
the primary objective is to solve the following minimization problem:

min
θ

E[L(fθ(x), y)]. (1)

In contrast, JPEG-DL tries to improve the performance of DNN by jointly training it with the JPEG opera-
tion. As a result, the formulation should be instead:

min
θ,Q

E[L(fθ(J (x;Q)), y)]. (2)

However, in order to solve (2) with gradient descent, the key challenge is caused by the non-differentiable
quantization operation, which makes the gradients w.r.t. Q almost zero everywhere. To address this issue,
we will introduce a differentiable soft quantizer (Qd) in the next subsection, replacing the uniform quantizer
(Qu) used in J .
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3.2 DIFFERENTIABLE SOFT QUANTIZER

Denote the index set of uniform quantization as

A = {−L,−L+ 1, . . . , 0, . . . , L− 1, L}. (3)

For convenience, A is also regarded as a vector of length 2L + 1. Multiplying A with a quantization step
size q, we get the corresponding reconstruction space

Â = q × [−L,−L+ 1, . . . , 0, . . . , L− 1, L]. (4)

Again, we will regard Â as both a vector and a set.

To randomly quantize a DCT coefficient z to an element in Â, we invoke from Yang & Hamidi (2024) a train-
able conditional probability mass function (CPMF) Pα(·|z) over the reconstruction space Â or equivalently
the index set A given z, where α > 0 is a trainable parameter:

Pα(iq|z) =
e−α(z−iq)2∑

j∈A e−α(z−jq)2
, ∀i ∈ A. (5)

Extend z to a vector of length 2L+ 1, i.e., [z]2L+1 = [

2L + 1 times︷ ︸︸ ︷
z, . . . , z ]. Then, the CPMF Pα(·|z), regarded as a

vector of length 2L+ 1, can be easily computed via the softmax operation σ(·):[
Pα(·|z)

]
2L+1

= σ
(
− α×

([
z
]
2L+1

− Â
)2 )

. (6)

With the CPMF Pα(·|z), z is now quantized to each iq ∈ Â with probability Pα(iq|z). Note that as
α → ∞, Pα(·|z) approaches an one-hot vector with probability 1 at the nearest point to z in Â and 0
elsewhere. Therefore, the resulting random quantizer effectively functions as the deterministic uniform
quantizer Qu(z) = ⌊z/q⌉ · q.

Based on the CPMF Pα(·|z), we can now define a differentiable soft quantizer Qd as the conditional expec-
tation of iq given z, i.e.,

Qd(z) = E[iq|z] =
∑
i∈A

Pα(iq|z) · iq. (7)

Similarly, as α → ∞, Qd also goes to Qu. Fig. 2 shows how the shape of Qd varies w.r.t α, given a fixed q.

This soft quantizer Qd serves as an analytical proxy for Qu. It’s differentiable everywhere, allowing gra-
dients to flow through it smoothly. More importantly, compared to Qu, Qd involves a trainable parameter
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Figure 2: Illustration of Qu vs. Qd with α = 1, 3, 5, 10, where L and q are set to 3 and 1, respectively.
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α which can adjust the softness of the quantizer, thereby introducing more flexibility. In view of these nice
properties, Qd is the ideal candidate in place of Qu used in J .

As a side note, for the reader who is not familiar with quantization, but familiar with the attention operation
used in transformer models (Vaswani, 2017), Qd can be regarded as an attention operation in broad sense,
with the query being z, the key and value being Â, and the similarity metric between the query and key
being negative squared distance instead of dot product.

3.3 OVERALL FRAMEWORK OF JPEG-DL

Substituting Qu in J with Qd, we get a differentiable JPEG layer Ĵ parameterized by Q and α, where α =
(αY ,αC). αY = [α1, α2, . . . , αM ] and αC = [αM+1, αM+2, . . . , α2M ] are α tables for the luminance and
chrominance channels respectively, used in conjunction with QY and QC to quantize DCT coefficients. Fol-
lowing the proposed soft quantization, we obtain quantized DCT coefficients ẑl,m,n = Qd(zl,m,n; qm, αm)
for l = 1, and ẑl,m,n = Qd(zl,m,n; qM+m, αM+m) for l = 2, 3, where Qd(z; q, α) denotes a differentiable
soft quantizer defined in (7) parameterized by a quantization step q and a scaling factor α. Overall, for an
input image x, we have x̂ = Ĵ (x;Q,α). Therefore, we can rewrite (2), the JPEG-DL formulation, as

min
θ,Q,α

E[L(fθ(Ĵ (x;Q,α)), y)], (8)

where the expectation can be approximated by the empirical mean over a mini-batch in actual training.
Thanks to the use of Qd, (8) can now be solved by gradient descent with ease (see Appendix A.1 for the
derivative analytical formulas).

After training with JPEG-DL, we get the optimized parameters θ∗, Q∗ and α∗. Then, we consider the
composition of the JPEG layer and the underlying DNN as a unified DNN model f̂(x; θ∗, Q∗,α∗) =

fθ∗(Ĵ (x;Q∗,α∗)) to do validation. Concretely, any raw input x should be fed into Ĵ , instead of directly
to fθ∗ , thus allowing the reconstructed image x̂ to be fed into the underlying DNN fθ∗ . In other words, the
JPEG layer is prepended as the first layer of any underlying DNN.

To conclude this section, we refer readers to Fig. 1a and Fig. 1b for an illustration of the inner workings of
the JPEG-DL framework.

4 EXPERIMENTS

CIFAR-100. We evaluate our proposed method using a transformer-based architecture and four state-of-the-
art convolutional neural networks (CNNs): EfficientFormer-L1 (Li et al., 2022), ResNet (He et al., 2016),
VGG (Simonyan & Zisserman, 2014), MobileNet (Sandler et al., 2018), and ShuffleNet (Ma et al., 2018).
For ResNet, we employ CIFAR-specific versions: ResNet32, ResNet56, and ResNet110. For VGG, we
utilize VGG8 and VGG13. All CNN architectures follow the training recipe from CRD (Tian et al., 2020)
(see Appendix A.3), while for the transformer-based architecture, EfficientFormer-L1, we adhere to the setup
proposed by Xu et al. (2023) (see Appendix A.5).

Fine-grained Tasks. These tasks involve visually similar classes and typically feature fewer training sam-
ples per class compared to conventional classification tasks. We evaluate our method on four datasets:
CUB-200-2011 (Wah et al., 2011), Stanford Dogs (Khosla et al., 2011), Flowers (Nilsback & Zisserman,
2008), and Pets (Parkhi et al., 2012). For CNN architectures, we employ PreAct ResNet-18 (He et al., 2016)
and DenseNet-BC (Huang et al., 2017), following the experimental setup and architecture modifications of
Zhang et al. (2017). For the transformer-based architecture, we use EfficientFormer-L1, adopting the setup
outlined by Xu et al. (2023) (see Appendices A.4 and A.5).
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JPEG-layer settings for CIFAR-100 and fine-grained tasks. To train our JPEG layer, we first study the
gradient nature of Qd with respect to q and α in (5) by changing one parameter and fixing the other. Both q
and α are sharable parameters among different numbers of blocks per image. During the calculation of the
gradient of Qd with respect to α, our analysis shows that when α is sufficiently large, such that Qd is not
too far from Qu, the gradient magnitude for α is almost zero, as shown in Appendix A.1. This indicates that
α will not be updated effectively if initialized within a reasonable range. Experiments also confirmed that
making α trainable does not significantly impact model performance. As a result, we choose not to train α
in our framework. However, when we explore the calculation of the gradient of Qd with respect to q, the
accumulated gradient received from different blocks per image during backpropagation results in unstable
gradient magnitudes at a fixed value of α, as shown in our analysis in Appendix A.1. To address this, we
use the ADAM optimizer, which adapts the learning rate for each trainable parameter q in our JPEG layer,
enabling more efficient training and better convergence. For CIFAR-100, we set the learning rate to 0.003
across all tested models. For the fine-grained datasets, we set the JPEG learning rate to 0.005. Across these
datasets, we fix αm = 5 for all 1 ≤ m ≤ 2M , and set L = 2b−1 in (3), where b is a tunable hyperparameter
set to 8.

ImageNet-1K. For all experiments on this dataset, we utilize the standard training recipes shown by Paszke
et al. (2019) without any modifications. We use SqueezeNet (Iandola, 2016), ResNet-18 and ResNet-34 as
our testing underlying models.

JPEG-layer settings for ImageNet-1K. We will utilize specific settings to control the gradient magnitude to
ensure more stable updates for Q. We define the Gradient Scaling Constants ℏm = αmq2m, 1 ≤ m ≤ 2M ,
which allows us to control the magnitude of gradients w.r.t Q. Specifically, we fix ℏm = 0.7 for all 1 ≤
m ≤ 2M . During training, we update the value of αm to be ℏm/q2m before calculating the gradients w.r.t
Q. As a result of controlling the maximum gradient magnitude, we can optimize Q using an SGD optimizer
with 0.5 learning rate, instead of an ADAM optimizer. This approach ensures stable and efficient training
for quantization table updates (see Appendix A.2 for more details). For this dataset, b is equal to 11 across
all tested models.

Quantization Table Initialization. For CIFAR-100 and fine-grained tasks, we initialize the quantization
table Q based on the reciprocal of sensitivity for each DCT frequency, given a pre-trained model of the un-
derlying DNN architecture, following the approach described by Zheng et al. (2023); Salamah et al. (2024b).
Broadly speaking, the sensitivity of a frequency indicates the rate of change of the loss function w.r.t. the
perturbation on this frequency, so we favor a smaller quantization step for a more sensitive frequency to
limit the distortion amount on it. For ImageNet-1K, we adopt the strategy from Esser et al. (2019), where
the initialization of qm is based on the average of absolute values of DCT coefficients across all blocks in all
training images that will be quantized by qm. Specifically, qm = 2

∑N
k=1

∑B
n=1 |z

(k)
1,m,n|/(NB

√
2b−1) for

1 ≤ m ≤ M , i.e. QY , and qm =
∑N

k=1

∑3
l=2

∑B
n=1 |z

(k)
l,m,n|/(NB

√
2b−1) for M + 1 ≤ m ≤ 2M , i.e.,

QC , where k is the index for image and N is the number of training images.

Table 1: Top-1 validation accuracy (%) for Baseline and JPEG-DL on CIFAR-100. The Baseline results are
from Tian et al. (2020). For JPEG-DL, we report the mean and standard deviation of experimental results
over three runs.

Method Res32 Res56 Res110 VGG8 VGG13 MobileNetV2 ShuffleNetV2

Baseline 71.14 72.34 73.79 70.36 73.77 64.6 71.82
JPEG-DL 71.92±0.31 (+0.78) 73.39±0.19 (+1.05) 74.46±+0.11 (+0.67) 71.10±+0.41 (+0.74) 75.32±0.10 (+1.55) 65.91±0.11 (+1.31) 73.04±0.16 (+1.22)

CIFAR-100 and Fine-grained tasks Results. The performance of JPEG-DL is shown in Tables 1 and 2.
Across all seven tested models for CIFAR-100, JPEG-DL consistently provides improvements, with gains of
up to 1.53% in top-1 accuracy. In the fine-grained tasks, JPEG-DL offers a substantial performance increase,
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Table 2: Top-1 validation accuracy (%) on various fine-grained image classification tasks and model archi-
tectures. We report the mean and standard deviation of experimental results over three runs.

Model Method CUB-200 Dogs Flowers Pets

ResNet-18 Baseline 54.00±1.43 63.71±0.32 57.13±1.28 70.37±0.84

JPEG-DL 58.81±0.12 (+4.81) 65.57±0.37 (+1.86) 68.76±0.57 (+11.63) 74.84±0.66 (+4.47)

DenseNet-121 Baseline 57.70±0.44 66.61±0.17 51.32±0.57 70.26±0.79

JPEG-DL 61.32±0.43 (+3.62) 69.67±0.58 (+3.06) 72.22±1.05 (+20.90) 75.90±0.68 (+5.64)

Table 3: Top-1 validation accuracy (%) on ImageNet with different model architectures.

Method SqueezeNetV1.1 Resnet18 Resnet34

Baseline 57.95 69.75 73.31
JPEG-DL 58.26 (+0.31) 70.13 (+0.38) 73.54 (+0.23)

with improvements of up to 20.90% across all datasets using two different models. Additional results for
CIFAR-100 and fine-grained tasks using a transformer-based model are shown in Appendices A.5. On
fine-grained tasks, we have extended our results to include a comparison with more baselines that address
the non-differentiability and zero derivative problems of JPEG quantization. Additionally, we provide a
comprehensive comparison with non-learnable and learnable preprocessing methods. For a detailed analysis
of these comparisons, please refer to Appendices A.6 and A.7.

ImageNet-1K Results. The performance of JPEG-DL is shown in Table 3. With a trivial increase in com-
plexity (adding 128 parameters), JPEG-DL achieves a gain of 0.31% in top-1 accuracy for SqueezeNetV1.1
compared to the baseline using a single round of Qd quantization operation. By increasing the number of
quantization rounds to five, we observe an additional improvement of 0.20%, leading to a total gain of 0.51%
over the baseline. The best results are indicated in bold, and values in parentheses indicate relative accuracy
gains over the baseline.

5 ANALYSIS AND DISCUSSION

Robustness. JPEG has generally been used as an empirical defense mechanism against adversarial attacks
by mitigating adversarial perturbations and enhancing the robustness of DNNs, as discussed in Section 2.
To evaluate the adversarial robustness of JPEG-DL models in comparison to standard DNN, we conduct
experiments using two attack methods, FGSM and PGD, on CIFAR-100 with two different models from
Table 1. The perturbation budget, Epsilon, ranged from 1 to 4 for both attack methods. For PGD, we applied
5 steps with a perturbation step size of (2.5 × Epsilon)/steps, following the setup used by Madry (2017).
As shown in Fig. 3, the JPEG-DL models significantly improve the adversarial robustness compared to the
standard DNN models, with improvements of up to 15% for FGSM and 6% for PGD. We will show some
examples of the quantization tables used in this study in the next subsection.

Designed Quantization Tables. Fig. 4 presents the Y and CbCr quantization tables, both at initialization
and after convergence, for VGG13 trained on CIFAR-100 and ResNet-18 trained on the CUB200 dataset.
The estimated sensitivity values used to initialize these quantization tables are provided in Appendix A.9.

Feature maps visualization. Fig. 5 presents the feature maps extracted after the first dense block in
DenseNet-121 for both the JPEG-DL model and the baseline model, trained on the CUB200 dataset us-
ing the model from Table 2. The output of the feature maps at this stage is of size 56×56, and both sets
are shown in the same sequence using the same original image. The shown example was incorrectly clas-
sified by the baseline model, while the JPEG-DL model correctly classified it. In this figure, it is evident
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Figure 3: Evaluate the adversarial robustness of JPEG-DL models in comparison to standard DNN on
VGG13 and Res56 for CIFAR-100 against FGSM and PGD attacks.

1 16 31 46 61
Frequency Index

0

2

4

6

8

10

Q 
St

ep
s

Trained
Initial

(a) VGG13 (Y Channel)

1 16 31 46 61
Frequency Index

0

5

10

15

20

Q 
St

ep
s

Trained
Initial

(b) VGG13 (CbCr Channel)

1 16 31 46 61
Frequency Index

0

2

4

6

8

10

Q 
St

ep
s

Initial
Trained

(c) ResNet-18(Y Channel)

1 16 31 46 61
Frequency Index

0

2

4

6

8

10

Q 
St

ep
s

Initial
Trained

(d) ResNet-18 (CbCr Channel)
Figure 4: Initial and final quantization tables for VGG13 trained on CIFAR-100 and ResNet18 trained on
CUB200, with frequency indices arranged in the default zigzag order.

that the feature maps from the JPEG-DL model show significantly better contrast between the foreground
information (the bird) and the background compared to the feature maps generated by the baseline model.
Specifically, the foreground object in the JPEG-DL feature maps is enclosed within a well-defined contour,
making it visually distinguishable from the background. In contrast, the baseline model’s feature maps show
a more blended structure, where the foreground contains higher energy in low frequencies, causing it to
blend more smoothly with the background. Additionally, another example in Appendix A.10 shows a simi-
lar phenomenon in addition to background information being more effectively removed, following the same
setup as the first example. These discrepancies in feature map clarity and contrast are propagated through
subsequent blocks of DenseNet-121, eventually contributing to the misclassification problem observed in
the baseline model.

Interpretability using CAM. Fig. 6 illustrates GradCAM++ visualizations (Chattopadhay et al., 2018) for
two examples from the CUB-200 dataset, comparing the baseline model with JPEG-DL using ResNet-18
as our underlying model. In both instances, the baseline model incorrectly classifies the input, while the
JPEG-DL model correctly classifies it. The visualizations highlight how JPEG-DL focuses more precisely
on the main object in the image, demonstrating the model’s improved attention to key regions that contribute
to correct classification. This highlights the effectiveness of JPEG-DL in enhancing model interpretability
and performance, and it also supports the case for background removal discussed in the previous subsection.

6 CONCLUSION

In contrast to the conventional understanding that JPEG compression negatively impacts the DL perfor-
mance, this paper introduces a novel trainable JPEG compression layer into the DL pipeline to improve
DL performance, termed JPEG-DL. This layer enables gradient-based optimization for quantization pa-
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(a) Baseline (b) Input (c) JPEG-DL
Figure 5: Feature maps of size 56×56 are shown after the first dense block in DenseNet-121 for both JPEG-
DL and baseline models Figs. in 5a and 5c, respectively, using an original input shown in Fig.5b. The JPEG-
DL model highlights the foreground (bird) more distinctly, while the baseline model shows less contrast,
contributing to its misclassification.

(a) Baseline (b) JPEG-DL (c) Baseline (d) JPEG-DL

Figure 6: GradCAM++ visualization for baseline and JPEG-DL models on CUB200 using two examples,
where the baseline model incorrectly classified them and the JPEG-DL model correctly classified them.

rameters and can be integrated seamlessly with any underlying DNN to be trained jointly. To validate the
effectiveness of JPEG-DL, we conduct extensive experiments on six image classification datasets and show
significant gains over the standard DL. Additionally, we demonstrate that JPEG-DL improves the adversarial
robustness of the learned model.
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A APPENDIX

A.1 PARTIAL DERIVATIVES OF Qd

With the CPMF Pα(·|z) shown in (6), z is now quantized to each ẑ ∈ Â with probability Pα(ẑ|z). Denote
this random mapping by

ẑ = Qp(z). (9)

Note that given z, ẑ is a random variable taking values in Â with distribution Pα(·|z).

A.1.1 QUANTIZATION STEP AND INPUT

The partial derivatives of Qd(z) w.r.t. q and z are obtained as

∂Qd(z)

∂z
= 2αVar

{
Qp(z)

}
, (10a)

∂Qd(z)

∂q
=

1

q

(
E
{
Qp(z)

}
+ (2αz)Var

{
Qp(z)

}
− (2α)Skewu

{
Qp(z)

})
, (10b)

where for any random variable V ,

Skewu(V )
∆
=
∑
v

v3PV (v)−
(∑

v

vPV (v)
)(∑

v

v2PV (v)
)
.

A.1.2 SCALING FACTOR α

The partial derivatives of Qd(Z) w.r.t. α obtained as

∂Qd(z)

∂α
=

∂
∑

i∈A iqPα(iq|z)
∂α

=
∑
i∈A

iq
∂Pα(iq|z)

∂α
(11)

∂Pα(iq|z)
∂α

=
−(z − iq)2e−α(z−iq)2∑

j∈A e−α(z−jq)2
+

e−α(z−iq)2
∑

j∈A(z−jq)2e−α(z−jq)2

(
∑

j∈A e−α(z−jq)2)2

= Pα(iq|z)
∑
j∈A

(z − jq)2Pα(jq|z)− (z − iq)2Pα(iq|z) (12)

Plugging (2) in (1) yields

∂Qd(z)

∂α
=

∑
i∈A

iqPα(iq|z)
∑
j∈A

(z − jq)2Pα(jq|z)−
∑
i∈A

iq(z − iq)2Pα(iq|z)

= E{Qp(z)}E{(z −Qp(z))
2} − E{Qp(z)(z −Qp(z))

2}
= −Cov{Qp(z), (z −Qp(z))

2} (13)
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To gain a better understanding, we fix q and b, and analyzed how ∂Qd(z)
∂α behaves for different values of

α. From Fig. 7, it is evident that the gradient magnitude decreases as α increases. This indicates that Qd

approaches the shape of the uniform quantizer Qu, as shown previously in Fig. 2, leading to a reduction in
the gradient magnitude for α. As a result, when α becomes sufficiently large, the gradient approaches zero,
effectively preventing further updates to α, making it act as a non-trainable parameter at a certain point of
the training process. Based on this observation and verified experimental results, we opt not to train α for
simple image classification tasks like CIFAR-100 and fine-grained datasets, as it does not impact the overall
performance.
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Figure 7: This Figure illustrates the partial derivatives of Qd(z) w.r.t. the scaling factor α, where b = 3 and
q = 1.

A.2 GRADIENT SCALING

Figures 8a and 8b demonstrate the impact of varying α and q on the gradient magnitude of Qd(z) with respect
to q. As observed, decreasing the value of q while keeping α constant leads to a decrease in the gradient
magnitude. Similarly, decreasing the value of α while maintaining a fixed q also results in a reduction of the
gradient magnitude. To address the instability in updating the trainable parameters Q, we propose utilizing
α to regulate the magnitude of ∂Qd(z)

∂q , as illustrated in Figure 8b. By leveraging this control mechanism
of adjusting α, we can stabilize the magnitude of the gradients that update q. This behavior suggests a
relationship between q and α in controlling the gradient magnitude of Qd(z).

To explore the relationship between α and q, we refer to the exponent in (5), α(z − iq)2, which can be
rewritten by expressing z = cq, resulting in the form αq2(c−i)2. From this, we define a new term, ℏ = αq2,
referred to as the Gradient Scaling Constant. To further illustrate this relationship, in Fig. 9, we set ℏ = 2,
and by selecting different pairs of α and q values, we demonstrate that the maximum magnitude of ∂Qd(z)

∂q

remains invariant. This confirms that the gradient magnitude can be effectively controlled by adjusting α
based on the last updated value of q, according to the specified ℏ value. This adjustment allows for controlled
quantization updates, reducing the potential instability during training. Moreover, by controlling the gradient
magnitude, we simplify the optimization process, enabling the use of a single learning rate for all q values
by using the SGD optimizer, instead of the ADAM optimizer. This gradient scaling mechanism is analogous
to the ADAM optimizer, which adapts different learning rates for individual trainable parameters based on
momentum and recent gradient magnitudes.
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Figure 8: Figures 8a and 8b illustrate the partial derivatives of Qd(z) w.r.t. the parameter q for cases where
α = 8 and q varies, and α varies and q = 2, respectively. For both figures, we set b = 6.
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Figure 9: Demonstrating impact of ℏ on gradient magnitude for various combinations of q and α. We fixed
ℏ=2 and b=6.

A.3 CNN-BASED ARCHITECTURES SETTING

For CIFAR100, we deploy a stochastic gradient descent (SGD) optimizer with a momentum of 0.9, a weight
decay of 0.0005, and a batch size of 64. We initialize the learning rate as 0.05, and decay it by 0.1 every
30 epochs after the first 150 epochs until the last 240 epoch. For MobileNetV2, ShuffleNetV1 and Shuf-
fleNetV2, we use a learning rate of 0.01 as this learning rate is optimal for these models in a grid search,
while 0.05 is optimal for other models.

For fine-grained classification tasks, all networks are trained from scratch and optimized by SGD with a
momentum of 0.9, weight decay of 0.0001, and an initial learning rate of 0.1,. The learning rate is divided
by 10 after epochs 100 and 150 for all datasets, and the total epochs are 200. We set batch size 32 for these
fine-grained classification tasks. We use the standard data augmentation technique for ImageNet (Deng et al.,
2009), i.e., flipping and random cropping. This experimental setup is also outlined by Yun et al. (2020).
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A.4 FINE-GRAINED MODEL ARCHITECTURES

We use standard ResNet-18 with 64 filters and DenseNet-121 with a growth rate of 32 for image size 224×
224. For fine-grained classification tasks, we use PreAct ResNet-18 (He et al., 2016), which modifies the
first convolutional layer with kernel size 3 × 3, strides 1 and padding 1, instead of the kernel size 7 × 7,
strides 2 and padding 3, for image size 32 × 32 by following Zhang et al. (2017). We use DenseNet-BC
structure (Huang et al., 2017), and the first convolution layer of the network is also modified in the same
way as in PreAct ResNet-18 for image size 32× 32.

A.5 TRANSFORMER-BASED SETTINGS AND RESULTS

In this section, we compare the performance of JPEG-DL compared to its baseline using the EfficientFormer-
L1 model (Li et al., 2022) on CIFAR-100, as well as two fine-grained datasets, Flowers and Pets. We fol-
lowed the experimental setup described by Xu et al. (2023), adhering to the same configurations mentioned
in Table 4. The learning rate was set to 0.003 for CIFAR-100 and 0.005 for the fine-grained tasks, aligning
with our standard settings in Section 4.

Interestingly, we found that the best performance for transformer-based architectures was achieved when the
quantization tables were initialized with all ones, effectively representing the highest quality factor quanti-
zation table for JPEG. The top-1 validation accuracy performance is presented in Table 5, demonstrating the
significant improvements achieved by JPEG-DL over the baseline.

Table 4: Hyper-parameter setting on EfficientFormer-L1.

Settings CIFAR-100 Pets Flowers

batch size 512 512 512
warmup epochs 50 100 100
training epochs 300 600 600

Table 5: Top-1 accuracy (%) on CIFAR-100 and two fine-grained image classification tasks using
EfficientFormer-L1. We report the mean and standard deviation of the experimental results over three runs
with different random seeds. The best results are indicated in bold, and values in parentheses indicate relative
accuracy gains over the baseline.

Model Method Accuracy (%)

CIFAR-100 Baseline 80.27±0.33

JPEG-DL 80.49±0.23 (+0.22)

Flowers Baseline 69.78±0.33

JPEG-DL 73.05±0.12 (+3.27)

Pets Baseline 65.52±1.23

JPEG-DL 69.28±0.42 (+3.76)

A.6 COMPARISON WITH MORE BASELINES

In Table 6, we have included comparisons against other baselines that employed JPEG quantization in the
pipeline, but with heuristic approaches to handle the non-differentiability and zero derivative problems of
JPEG quantization. For example, Ballé et al. (2016) allow optimization via stochastic gradient descent by
replacing the quantizer with an additive i.i.d. uniform noise, which has the same width as the quantization
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bins, where ĉ = c + q ∗ U(−0.5, 0.5). However, during validation, they employed Qu using the trained
quantization tables. Shin & Song (2017) employ a third-order polynomial approximation of the rounding
function to make JPEG differentiable. The gradient approximation through the round function is a key aspect
of certain neural network approaches. Esser et al. (2019)1 employ a straight-through estimator, originally
proposed by Bengio et al. (2013), to achieve this approximation. This method treats the round function as a
pass-through operation during backpropagation, allowing for effective gradient estimation. Our experimen-
tal results demonstrate that we consistently outperform all tested baselines. Even though these methods find
a way to make the quantization differentiable, they still hurt the performance. This is consistent with the
well-known wisdom in the literature, which also shows that they did not take advantage of the higher level
of non-linearity introduced into DNN architectures, as proposed by our JPEG-DL framework.

Table 6: Top-1 validation accuracy (%) on various fine-grained image classification tasks and model archi-
tectures. We report the mean and standard deviation of experimental results over three runs.

Model Method CUB-200 Dogs Flowers Pets

ResNet-18

Baseline 54.00±1.43 63.71±0.32 57.13±1.28 70.37±0.84

Ballé et al. (2016) 50.78±2.21 (-3.22) 53.47±7.37 (-10.24) 55.46±0.59 (-1.67) 56.14±17.16 (-14.23)
Shin & Song (2017) 55.34±0.14 (+1.34) 63.03±0.56 (-0.68) 55.78±1.44 (-1.35) 71.45±1.01 (+1.08)
Esser et al. (2019) 51.58±0.18 (-2.42) 60.45±0.23 (-3.26) 58.04±0.58 (+0.91) 68.81±0.55 (-1.56)

JPEG-DL 58.81±0.12 (+4.81) 65.57±0.37 (+1.86) 68.76±0.57 (+11.63) 74.84±0.66 (+4.47)

DenseNet-121

Baseline 57.70±0.44 66.61±0.17 51.32±0.57 70.26±0.79

Ballé et al. (2016) 52.00±1.41 (-5.70) 60.07±6.41 (-6.54) 46.60±2.87 (-4.72) 61.91±1.88 (-8.35)
Shin & Song (2017) 57.19±0.78 (-0.51) 66.90±0.13 (+0.29) 51.04±0.87 (-0.28) 69.95±1.21 (-0.31)
Esser et al. (2019) 56.46±0.30 (-1.24) 64.89±0.12 (-1.72) 55.98±0.24 (+4.60) 69.58±0.59 (-0.68)

JPEG-DL 61.32±0.43 (+3.62) 69.67±0.58 (+3.06) 72.22±1.05 (+20.90) 75.90±0.68 (+5.64)

A.7 COMPARISON WITH JPEG-BASED DATA AUGMENTATION AND OTHER PREPROCESSING
METHODS

JPEG-based Data Augmentation. We have compared and implemented JPEG-based data augmentation
across three different sets, each with varying ranges of quantity factor (QF). For each tested range, we ran-
domly select a QF for each image within the mini-batch. These sets have been tested on fine-grained datasets
for all the models evaluated. Table 7 shows corresponding results for these tested sets. Consistent with the
common knowledge in the literature, JPEG-based data augmentation in general degrades the accuracy per-
formance.

Non-Learnable and Learnable Preprocessing Methods. We have tested the performance of non-learnable
and learnable preprocessing methods during training and validation across all tested models on all tested fine-
grained datasets, as demonstrated in Table 7. For non-learnable preprocessing, we have considered applying
denoising using a Gaussian kernel and histogram equalization for each image within a mini-batch. As for the
learnable one, we have compared it with Tu et al. (2023) as a learnable resize module, which has a bandpass
nature in that it learns to boost details in certain frequency subbands that benefit the downstream recognition
models. We have applied the same setup mentioned in their paper, in which they fine-tuned the model to
achieve some improvement 2

1We followed the experimental setup defined by Esser et al. (2019) using Stochastic Gradient Descent (SGD) with
an initial learning rate of 0.01, adhering to the same learning rate decay schedule as the underlying model. Additionally,
we initialized Q by setting it to 2|Q|/

√
2b − 1 and implemented gradient scaling during training. We also maintained

consistency by using the same number of bits used by JPEG-DL.
2We have verified the correctness of our PyTorch implementation with their TensorFlow implementation shown

https://colab.research.google.com/github/google-research/google-research/blob/
master/muller/muller_demo.ipynb.
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Table 7: JPEG-DL is compared to JPEG-based augmentation (orange), non-learnable (yellow), and learnable
preprocessing (blue) methods. JPEG-DL employs three different chrominance subsampling schemes shown
in green color. Top-1 validation accuracy (%) on various fine-grained image classification tasks and model
architectures. We report the mean and standard deviation of experimental results over three runs. The best
results are indicated in bold, and values in parentheses indicate relative accuracy gains over the baseline.

Dataset Method ResNet-18 DenseNet-121

CUB-200

Baseline 54.00±1.43 57.70±0.44

Rand. QF [1:50] 52.86±0.69 (-1.14) 55.72±0.72 (-1.98)
Rand. QF [50:100] 54.53±0.41 (+0.53) 56.98±0.90 (-0.72)
Rand. QF [1:100] 53.91±0.43 (-0.09) 57.20±0.33 (-0.50)

Denoising 54.82±0.40 (+0.82) 56.02±1.00 (-1.68)
Equalization 49.00±0.31 (-5.00) 54.32±0.57 (-3.38)

Learnable Resize 54.98±0.19 (+0.98) 57.35±0.22 (-0.35)

JPEG-DL (4:2:0) 58.00±0.12 (+4.00) 60.55±0.71 (+2.85)
JPEG-DL (4:2:2) 58.11±0.10 (+4.11) 61.51±0.41 (+3.81)
JPEG-DL (4:4:4) 58.81±0.12 (+4.81) 61.32±0.43 (+3.62)

Dogs

Baseline 63.71±0.32 66.61±0.17

Rand. QF [1:50] 60.61±0.17 (-3.10) 64.93±0.17 (-1.68)
Rand. QF [50:100] 63.14±0.30 (-0.57) 66.97±0.18 (+0.36)
Rand. QF [1:100] 62.12±0.16 (-1.59) 65.59±0.54 (-1.02)

Denoising 62.52±0.41 (-1.19) 66.36±0.34 (-0.25)
Equalization 62.38±0.29 (-1.33) 67.12±0.19 (+0.51)

Learnable Resize 63.10±0.43 (-0.61) 67.90±0.32 (+1.29)

JPEG-DL (4:2:0) 65.57±0.31 (+1.86) 68.90±0.08 (+2.29)
JPEG-DL (4:2:2) 65.64±0.16 (+1.93) 69.85±0.78 (+3.24)
JPEG-DL (4:4:4) 65.57±0.37 (+1.86) 69.67±0.58 (+3.06)

Flowers

Baseline 57.13±1.28 51.32±0.57

Rand. QF [1:50] 58.33±0.48 (+1.20) 51.44±0.79 (+0.12)
Rand. QF [50:100] 55.98±0.89 (-1.15) 51.67±1.10 (+0.35)
Rand. QF [1:100] 57.55±0.66 (+0.42) 52.32±0.73 (+1.00)

Denoising 57.28±1.06 (+0.15) 50.37±0.79 (-0.95)
Equalization 60.56±0.98 (+3.43) 61.72±0.21 (+10.40)

Learnable Resize 57.41±0.48 (+0.28) 51.21±0.82 (-0.11)

JPEG-DL (4:2:0) 67.58±1.50 (+10.45) 68.01±1.17 (+16.69)
JPEG-DL (4:2:2) 67.75±1.19 (+10.62) 68.79±1.08 (+17.47)
JPEG-DL (4:4:4) 68.76±0.57 (+11.63) 72.22±1.05 (+20.90)

Pets

Baseline 70.37±0.84 70.26±0.79

Rand. QF [1:50] 69.71±0.54 (-0.66) 68.93±0.50 (-1.33)
Rand. QF [50:100] 70.00±0.57 (-0.37) 68.63±0.82 (-1.63)
Rand. QF [1:100] 69.52±0.62 (-0.85) 70.60±1.05 (+0.34)

Denoising 69.15±1.07 (-1.22) 69.03±1.13 (-1.23)
Equalization 73.00±0.79 (+2.63) 75.04±1.30 (+4.78)

Learnable Resize 70.04±0.72 (-0.33) 68.83±1.85 (-1.43)

JPEG-DL (4:2:0) 74.64±1.34 (+4.27) 76.21±0.35 (+5.95)
JPEG-DL (4:2:2) 74.81±0.51 (+4.44) 76.17±1.83 (+5.90)
JPEG-DL (4:4:4) 74.84±0.66 (+4.47) 75.90±0.68 (+5.64)
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Impact of Chromance subsampling on JPEG-DL. In Table 7, we evaluate various subsampling schemes
for all tested models across all tested fine-grained datasets. Notably, although there is no clear winner
among different chroma subsampling methods, DNNs indeed respond to color information differently from
human; color information is more important to DNNs than human since chroma subsampling formats 4:4:4
and 4:2:2, in general, give rise to better accuracy performance than the 4:2:0 subsampling format which is
adopted predominantly in the image and video coding.

A.8 FIXING HYPERPARAMTERS ACROSS DIFFERENT DATASETS

In Table 8, we evaluate the difference between the hyperparameters used for CIFAR-100 and the fine-grained
task, where the only difference lies in the learning rate. In the following setup, we present the results when
a learning rate of 0.003 is applied to the fine-grained dataset. We observe that the performance difference is
marginal, and in some cases, we can even achieve higher gains in model performance. This suggests that the
choice of learning rate can have a significant impact on the effectiveness of the model.

Table 8: Top-1 validation accuracy (%) on various fine-grained image classification tasks and model archi-
tectures. We report the mean and standard deviation of experimental results over three runs.

Model Learning Rate CUB-200 Dogs Flowers Pets

ResNet-18 0.005 58.81±0.12 (+4.81) 65.57±0.37 (+1.86) 68.76±0.57 (+11.63) 74.84±0.66 (+4.47)
0.003 58.62±0.50 (+4.61) 65.45±0.17 (+1.74) 69.61±1.16 (+12.48) 74.90±0.82 (+4.53)

DenseNet-121 0.005 61.32±0.43 (+3.62) 69.67±0.58 (+3.06) 72.22±1.05 (+20.90) 75.90±0.68 (+5.64)
0.003 60.92±0.50 (+3.22) 69.53±0.49 (+2.92) 72.45±0.92 (+21.13) 75.83±0.64 (+5.56)

A.9 SENSITIVITY AND Q TABLE INITIALIZATION

Figure 10 presents the estimated sensitivity values for all models considered in the CUB200 dataset and a
subset of models used for CIFAR-100, as proposed by Salamah et al. (2024b); Zheng et al. (2023). These
estimated sensitivity values are used to initialize the quantization table for JPEG-DL. Figure 11 illustrates
the initial and converged values of the quantization table at the end of training.

A.10 FEATURE MAPS VISUALIZATION

Figure 12 presents the feature maps extracted after the first dense block in DenseNet-121 for both the JPEG-
DL and the baseline models, trained on the Flowers dataset using the model from Table 2. The shown
example was incorrectly classified by the baseline model, while the JPEG-DL model correctly classified it.

A.11 MITIGATING THE INFERENCE OVERHEAD OF DIFFERENTIABLE SOFT QUANTIZERS

The reconstruction space Â is configured with a specific size, determined by the parameter L, which is set
to 2b−1, as mentioned in Section 4. For CIFAR-100 and Fine-grained datasets, b is set to 8 bits, resulting
in a reconstruction space length of 513. For ImageNet-1K, b is set to 11 bits, resulting in a length of 2047.
This high dimensionality of the reconstruction space poses a computational challenge during inference when
calculating the conditional probability mass function (CPMF) Pα(·|z). To address this, the support of each
CPMF is restricted to the five closest points in Â to the coefficient z being quantized. This simplification,
referred to as the masked CPMF, significantly reduces computational complexity without compromising the
effectiveness of the quantization scheme Qd.

Figure 13 demonstrates the rapid decay of probability mass in CPMFs as the reconstruction level ẑ deviates
from the quantized value the uniform quantizer Qu(z). The set M, consisting of five reconstruction levels
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Figure 10: The estimated sensitivity is shown for two pre-trained models on the CUB200 (first row) and
three pre-trained models on the CIFAR-100 (second row), with sensitivity indices arranged in the default
zigzag order.

α
Qd(z = 0.5)

Full Space Masked ∆

1 0.5 0.5027 0.0027

3 0.5 0.5 5.96e-08

5 0.5 0.5 5.96e-08

10 0.5 0.5 0

Table 9: Qd(z = 0.5; q = 1, α) values resulting from the full-space CPMF and the masked CPMF at
different α, alongside the absolute difference ∆ between the full-space and masked cases.

centered around Qu(z), captures a significant portion of the total probability mass, even in extreme cases
where the quantization step q and the parameter α are very small. This observation suggests that restricting
the CPMF support to M (masked CPMF) is a valid simplification. Instead of computing the full-space
CPMF with length 2L + 1, we can efficiently calculate the masked CPMF with length 5 using softmax on
M. The impact of this simplification on the quantization scheme Qd is negligible, particularly for high
values of α, as shown in Table 9. Therefore, using the masked CPMF in our implementation is a justified
simplification that significantly reduces computational complexity without compromising accuracy.
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Figure 11: Initial and final quantization tables for Res56 trained on CIFAR-100 and DenseNet-121 trained
on CUB200.

Specifically, Fig. 13 illustrates how fast the probability mass of a reconstruction level ẑ decays in CPMFs
as ẑ deviates from the uniform quantizer Qu(z). It’s clear that the set M = {Qu(z − 2q,Qu(z) −
q,Qu(z),Qu(z) + q,Qu(z) + 2q} of reconstruction levels retain a total probability mass close to 1, even in
an adversarially chosen scenario where both q and α are extremely small3 (i.e., 1) and the coefficient C be-
ing quantized lies exactly at a quantization threshold. Therefore, instead of computing the full-space CPMF
with length 2L + 1 following (6), we only conduct softmax on M to get the masked CPMF with length
5. The error in Qd caused by this masking is negligible as shown in Table 9, especially in the high α case.
Therefore, it’s totally justified to simplify the full-space CPMF to the masked CPMF in our implementation.

Table 10 presents a comparison of inference time and throughput between the standard model and our unified
model, which incorporates the JPEG layer with the underlying model. The inference times for both the full-
space CPMF and the masked CPMF are measured. The reported inference time is averaged across the entire
validation set of ImageNet using Resnet18 from Table 3. These results demonstrate the effectiveness of the
proposed approach in addressing the computational complexity of the JPEG-DL framework.

3As q and α increase, the CPMF becomes even sharper, and as a result, M will capture increasingly higher proba-
bility mass.
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(a) Baseline (b) JPEG-DL

(c) Input

Figure 12: Feature maps of size 56×56 are shown after the first dense block in DenseNet-121 for both JPEG-
DL and baseline models in Figs. 12a and 12b, respectively, using an original input shown in Fig. 12c. The
JPEG-DL model highlights the foreground (flower) more distinctly, while the baseline model shows less
contrast, contributing to its misclassification.

Inference Settings Inference Inference
time (milliseconds) Throughput (img/sec)

Baseline 5.46 180.65
JPEG-DL (Masked CPMFs) 7.43 133.79
JPEG-DL (Full Space) 18.86 52.37

Table 10: Comparison of inference time between different inference settings measured for Resnet18 on
ImageNet, following the experimental setup mentioned in Section 4. Evaluation is conducted on NVIDIA
RTX A5000 GPUs.
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Figure 13: Partial visualization of CPMFs Pα(·|z = 0.5) computed using (6), with L = 1023, q = 1, and α
values of (a) 1, (b) 3, (c) 5, and (d) 10. The reconstruction levels between two red dashed lines represent M.
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