
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT ALGORITHMS FOR ADVERSARIALLY RO-
BUST APPROXIMATE NEAREST NEIGHBOR SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the Approximate Nearest Neighbor (ANN) problem under a powerful
adaptive adversary that controls both the dataset and a sequence of Q queries.
Primarily, for the high-dimensional regime of d = ω(

√
Q), we introduce a se-

quence of algorithms with progressively stronger guarantees. We first establish
a novel connection between adaptive security and fairness, leveraging fair ANN
search (Aumüller et al., 2022) to hide internal randomness from the adversary
with information-theoretic guarantees. To achieve data-independent performance,
we then reduce the search problem to a robust decision primitive, solved using a
differentially private mechanism (Hassidim et al., 2022) on a Locality-Sensitive
Hashing (LSH) data structure. This approach, however, faces an inherent

√
n

query time barrier. To break this barrier, we propose a novel concentric-annuli
LSH construction that synthesizes these fairness and differential privacy tech-
niques. The analysis introduces a new method for robustly releasing timing infor-
mation from the underlying algorithm instances and, as a corollary, also improves
existing results for fair ANN.
In addition, for the low-dimensional regime d = O(

√
Q), we propose specialized

algorithms that provide a strong “for-all” guarantee: correctness on every possible
query with high probability. We introduce novel metric covering constructions
that simplify and improve prior approaches for ANN in Hamming and ℓp spaces.

1 INTRODUCTION

Randomness is a crucial tool in algorithm design, enabling resource-efficient solutions by circum-
venting the worst-case scenarios that plague deterministic approaches (Motwani & Raghavan, 1996).
The classical analysis of such algorithms assumes an oblivious setting, where data updates and
queries are fixed beforehand. However, this assumption breaks down in the face of an adaptive
adversary, who can issue queries based on the algorithm’s previous outputs. These outputs can leak
information about the algorithm’s internal randomness, allowing an adversary to construct query
sequences that maliciously break the algorithm’s performance guarantees (Hardt & Woodruff, 2013;
Gribelyuk et al., 2024).

Significant progress has been made in designing adversarially robust algorithms for estimation
problems, where the output is a single value (Lai & Bayraktar, 2020; Hassidim et al., 2022;
Chakrabarti et al., 2021; Attias et al., 2024; Ben-Eliezer et al., 2022a; Woodruff & Zhou, 2022;
Cherapanamjeri et al., 2023). A common defense involves sanitizing the output, for example, by
rounding or adding noise, often borrowing techniques from differential privacy to ensure the output
reveals little about the algorithm’s internal state (Hassidim et al., 2022; Attias et al., 2024; Beimel
et al., 2022). However, these techniques do not directly apply to search problems. In a search prob-
lem, the algorithm must return a specific element from a given dataset. Outputting a raw data point
can leak substantial information, and there is no obvious way to add noise or otherwise obscure the
output without violating the problem’s core constraint of returning a valid dataset element.

Perhaps the most fundamental search problem is Approximate Nearest Neighbor (ANN) Search,
which has numerous applications ranging from data compression and robotics to DNA sequenc-
ing and anomaly detection to Retrieval-Augmented Generation (SantaLucia et al., 1996; Kalan-
tidis & Avrithis, 2014; Ichnowski & Alterovitz, 2015; Verstrepen & Goethals, 2014; Tagami, 2017;
Bergman et al., 2020; Han et al., 2024; Kitaev et al., 2020). Given a dataset S of n points in a metric

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

space (M, || · ||) and a radius r > 0, let BS(q, r) := {p ∈ S : ||p − q|| ≤ r}. Given a query point
q ∈ M and approximation parameter c ≥ 1, the goal is to build a data structure which finds a point
in BS(q, cr) if BS(q, r) ̸= ∅. If BS(q, cr) = ∅, the algorithm is required to answer ⊥.

Achieving the desired trade-off of sublinear query time and near-linear space has largely been pos-
sible only through randomization. Indeed, one of the most prominent family of algorithms for ANN
is based on Locality-Sensitive Hashing (LSH), which has been the subject of a long and fruitful line
of research in the oblivious setting (Gionis et al., 1999; Jafari et al., 2021; Andoni, 2009; Andoni
et al., 2018; 2017b; 2016; Andoni & Indyk, 2017; Andoni et al., 2017a; Indyk & Motwani, 1998;
Broder et al., 1998). ANN Algorithms that rely on LSH achieve query time complexity of Õ(dnρ)1

and space complexity Õ(n1+ρ), where d is the dimension ofM and ρ = ρ(c) ∈ (0, 1) is a fixed
constant depending on c and the LSH construction2.

The vulnerability of these classical randomized structures was recently highlighted by Kapralov
et al. (2024), who demonstrated an attack on standard LSH data structures. They showed that an
adaptive adversary can use a polylogarithmic number of queries to learn enough about the internal
hash functions to force the algorithm to fail. Inspired by their work, which relies on certain struc-
tural properties of the dataset (e.g., an “isolated” point), we consider a powerful adversarial model
where the adversary chooses both the dataset and the sequence of queries. We study the following
question:

Can search problems like ANN be solved efficiently in the face of adversarial queries?

1.1 OUR RESULTS AND TECHNIQUES

We propose adversarially robust algorithms answering the above questions in two regimes:

1.1.1 d = ω(
√
Q)

When the metric space dimension is very large in the sense that d = ω(
√
Q), we tackle the search

problem by employing a suite of different strategies.

Table 1: Algorithms for (c, r)-ANN problem {0, 1}d under the Hamming distance, where ρ = 1
2c−1

Metric Query Time Space

Theorem 1.1 (Fairness) Õ(d · (D + nρ)) Õ(n1+ρ)

Theorem 1.2 (Bucketing) Õ(dn
1

2−ρ) Õ(
√
Q · n

2
2−ρ)

Theorem 1.3 (Concentric Annuli)
β = Θ(log log c

log c)
Õ(dnβ) O(

√
Q · n1+β)

(Feng et al., 2025)3 O(d · s · nρ) O(
√
Q · s · n1+ρ)

Robustness and Fairness We first recognize a connection between robustness and fairness. Fair
ANN algorithms output a point uniformly at random from a set of valid near neighbor candidates.
Such algorithms have already been rigorously studied in the context of LSH by Aumüller et al.
(2022), who also studied notions of approximate fairness. We show that the robust ANN problem
can be solved simply by invoking an algorithm for the exact fair ANN problem.
Theorem 1.1. Let n(q, r) := |BS(q, r)| be the S-density of the r-ball centered at q ∈ M. There
exists an adversarially robust (c, r)-ANN algorithm that uses O(n1+ρ(c) log2(n) log(Q)) bits of
space and O(d · (nρ(c) + n(q,cr)

n(q,r)+1) log
2(n) log(Q)) time per query.

1We use the Õ notation to hide polylogarithmic factors.
2For example, when M = {0, 1}k and c ≥ 1 is the approximation parameter, the state-of-the-art construc-

tion of Andoni & Razenshteyn (2015) yields ρ = 1
2c−1

. We shall use ρ and ρ(c) interchangeably.
3The work of Feng et al. (2025) concurrently studies the robust ANN problem. We present a comparison of

our results with their algorithm, as well as a more extended discussion of related work, in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Note that the space complexity of this algorithm does not scale with
√
Q, unlike our other approaches

and also the algorithm of Feng et al. (2025). However, the query complexity depends on the density
ratio D of points between the cr-ball and the r-ball for a query q. An adversary can craft a dataset
where this ratio is large, severely degrading performance. This drawback is also shared by the
algorithm of (Feng et al., 2025), though they exhibit a dependency on the density s = n(q, cr),
which is strictly greater than D (see Table 1).
Remark. The link between fairness and robustness is not limited to ANN. Any algorithm that is
required to select from a discrete set of candidate values as response to adaptively generated queries
can be made secure if it selects fairly. The distribution does not even have to be uniform, as long
as it is consistent and independent from other queries. From this perspective, fairness is not just a
“nice to have” property, but is inextricably linked with security.

Assumption-Free Searching via Bucketing To mitigate data dependencies, we propose a meta-
algorithm that reduces a search problem to a weak decision problem. In this problem, positive
instances correspond to the existence of r-close neighbors to a query q, while negative instances
showcase the absence of cr-close neighbors. Such a weak decision problem can be solved obliv-
iously simply be using a classic LSH data structure D. Unlike the search problem, an oblivious
decider can be robustified by applying the well-known Differential Privacy (DP) obfuscation tech-
nique of (Hassidim et al., 2022): we maintain

√
Q copies of D and combine their responses in a

private manner with respect to the random bits of each copy.

To perform the search, we then partition S ∈ Mn into buckets of size roughly
√
n and instantiate

a copy of the robust weak decider in each bucket. We can use these copies to identify a bucket
that contains a suitable point to output and then exhaustively search that bucket to produce the final
answer:
Theorem 1.2. There exists an adversarially robust algorithm for the (c, r)-ANN problem, suc-
cessfully answering up to Q queries with probability at least 1 − Θ(δ). The algorithm uses
Õ(n1+ρ/(2−ρ)√Q) space and Õ(dn1/(2−ρ)) time per-query, where ρ = ρ(c) ∈ (0, 1).

Breaking the
√
n Barrier via Concentric LSH Annuli Finally, the bucketing method yields

a query time complexity that is always at least O(
√
n), which is not ideal considering that LSH

methods can induce the exponent of n to be arbitrarily close to 0. To go beyond this barrier, we
introduce a concentric annuli construction.

We partition the (r, cr)-annulus into several smaller, concentric sub-annuli and apply the fair ANN
algorithm Afair within each one. A simple counting argument guarantees that at least one of these
sub-annuli must have a low point-density ratio, allowing Afair to terminate efficiently. For each
annulus that does not exceed the runtime threshold, we obtain an estimate to the probability that
the corresponding Afair copy terminates quickly. This allows us to pick a favorable annulus to run
a held-out testing copy of Afair. To maintain robustness however, we must also be careful not to
release information regarding which annulus was used at each query. To do this we apply the DP
robustification framework on the “timestamp” probabilities of each annulus-based, fair algorithm.

This algorithm is both assumption-free and enjoys a better runtime than O(
√
n). Our result holds for

any metric space equipped with a family of LSH functions, though its runtime and space guarantees
depend on the structure of that family.
Theorem 1.3. There exists a robust algorithm for solving the fair (c, r)-ANN problem that that uses
space Õ(

√
Q ·n1+β), where β = mink∈Z≥1

max{ρ(c1/k), 1/k}. Any query takes Õ(dnβ) time with
probability at least 0.998.

For many metric spaces, the value of β resolves nicely. For the hypercube {0, 1}d under the Ham-
ming distance we have ρ(c) = 1

2c−1 , which yields β = Θ(log c
log log c) → 0 as c → ∞, which is not

the case with the exponent 1
2−ρ(c) of Theorem 1.2. As a corollary, this technique also allows us to

achieve purely sublinear time for a class of “relaxed” fair ANN problems.

1.1.2 d = O(
√
Q): For-all ALGORITHMS

For low-dimensional metric spaces, we develop algorithms for ANN that provide a powerful for-all
guarantee: with high probability, the data structure correctly answers every possible query q ∈ M.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Our approach builds on a discretization technique applied to an LSH data structure, a paradigm
explored in prior work (Cherapanamjeri & Nelson, 2020; 2024; Bateni et al., 2024). We refine this
line of research by introducing a novel, simpler metric covering construction, improving the space
complexity by a logarithmic factor, and using sampling to improve the time complexity by a factor
of d. We present our result for the Hamming hypercube below, including results for ℓp spaces in
Appendix F.

Theorem 1.4. For the (c, r)-ANN problem in the d-dimensional Hamming hypercube {0, 1}d, there
exists an algorithm that correctly answers all possible queries with at least 0.99 probability. The
space complexity is Õ(d · n1+ρ+o(1)) and query time is Õ(d · nρ), where ρ = 1

2c−1 .

Remark (The Price of For-All Algorithms). Despite their remarkable guarantees, for-all algo-
rithms have significant drawbacks. Their space complexity scales by a factor of d, making them
intractable for high-dimensional metric spaces.

2 PRELIMINARIES

The Adversarial Robustness Model An algorithm is adversarially robust if it correctly answers a
sequence of adaptively chosen queries with high probability. This is formalized (Ben-Eliezer et al.,
2022b) through the following interactive game:

Definition 2.1. Consider the following game G between an Algorithm (A) and an Adversary (B):

1. Setup Phase: The adversary chooses a dataset S. The algorithm A then uses its private
internal randomness R ∈ {0, 1}∗ to preprocess S and build a data structure D. The
adversary may know the code for A but not the specific instance of R.

2. Query Phase: The game proceeds for Q rounds. In each round i ∈ [Q]:

• The adversary adaptively chooses a query qi. This choice can depend on the
dataset S and the history of all previous queries and their corresponding answers,
(q1, a1), . . . , (qi−1, ai−1).

• The algorithmA uses its data structure D and potentially new private randomness Ri

to compute and return an answer ai.

3. Winning Condition: The algorithm fails if there exists at least one round i ∈ [Q] for which
the answer ai is an incorrect response to the query qi.

We say that an algorithmA is δ-adversarially robust if for any dataset and any strategy the adversary
can employ, the probability that the algorithm fails is at most δ. The probability is taken over the
algorithm’s entire internal randomness (Rsetup, R1, . . . , RQ).

Approximate Nearest Neighbor Search and LSH In the Nearest Neighbors problem, we seek to
find a point in our input dataset that minimizes the distance to some query point.

Definition 2.2 (ANN). Let c > 1 and r > 0 be positive constants. In the (c, r)–Approximate
Nearest-Neighbors Problem (ANN) we are given as input a set S ⊂ M with |S| = n and a
sequence of queries {qi}Qi=1 with qi ∈. For each query qi, if there exists p ∈ BS(qi, r), we are
required to output some point p′ ∈ BS(qi, cr). If BS(qi, cr) = ∅, we are required to output ⊥. In
the case where BS(qi, r) = ∅ ≠ BS(qi, cr) we can either output a point from BS(qi, cr) or ⊥. Our
algorithm should successfully satisfy these requirements with probability at least 2/3.

A prevalent method for solving ANN is Locality Sensitive Hashing (LSH). Intuitively, we seek a
hash function that hashes close points together and far points apart with high probability.

Definition 2.3 (Locality Sensitive Hashing, (Har-Peled et al., 2012)). A hash familyH of functions
mapping M to a set of buckets is called a (c, r, p1, p2)–Locality Sensitive Hash Family (LSH) if
the following two conditions are satisfied:

• If x, y ∈M have ||x− y|| ≤ r, then Prh∈H[h(x) = h(y)] ≥ p1.

• If x, y ∈M have ||x− y|| ≥ cr, then Prh∈H[h(x) = h(y)] ≤ p2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where p1 ≫ p2 are parameters in (0, 1). We often assume that computing h in a d–dimensional
metric space requires O(d) time. We assume that the LSH constructions we consider are monotone,
which means that Pr[h(x) = h(y)] monotonically decreases as ||x− y|| increases.

For instance, in the boolean hypercube M = {0, 1}d with ||x − y|| being the number of positions
j ∈ [d] for which xj ̸= yj , there is a simple monotone LSH family:

Lemma 2.4. Consider the family H = {hj}dj=1 consisting of functions that map x ∈ {0, 1}d to its
j-th bit x[j]. Then,H is a (c, r, p1, p2)–LSH where p1 = 1− r

d , and p2 = 1− cr
d .

Proof. Prh∈H[h(x) = h(y)] = Prj∈[d][x[j] = y[j]] = d−||x−y||
d = 1− ||x−y||d .

Given a construction of a (c, r, p1, p2)–LSH for a metric space, we can solve the (c, r)–ANN prob-
lem by amplifying the LSH guarantees. This is done via an “OR of ANDs” construction: we sam-
ple L := p−11 = nρ hash functions h1, ..., hL for ρ(c) ∈ (0, 1) by concatenating the outputs of
k = ⌈log1/p2

n⌉ “prototypical” LSH functions inH, as shown in (Indyk & Motwani, 1998).

Theorem 2.5. If a d–dimensional metric space admits a (c, r, p1, p2)–LSH family, then we can solve
the (c, r)–ANN problem on it using O(n1+ρ) space and O(dnρ) time per query, where ρ = log p1

log p2
.

3 FAIRNESS IMPLIES ROBUSTNESS

We first establish a connection between robustness and fairness. We use the definition of fairness in
ANN given by Aumüller et al. (2022) and argue that it is strong enough to guarantee robustness.

Definition 3.1. A data structure solves the Exact Fair (c, r)-ANN problem for a sequence of Q
queries if, with probability at least 1 − 1

Qn over its internal randomness, it satisfies the following
conditions for every query qi in the sequence i ∈ [Q]:

1. Fairness: If BS(qi, r) ̸= ∅, then the probability of returning any specific point p′ ∈
BS(qi, r) is exactly 1/n(qi, r). If BS(qi, r) = ∅, the algorithm must answer ⊥.

2. Independence: Conditioned on the algorithm’s success, the distribution of the answer
for query qi is statistically independent of the answers returned for all previous queries
q1, . . . , qi−1 and of the non-transcient randomness R.

In their prior work, Aumüller et al. (2022) prove the following theorem:

Theorem 3.2. There exists an exact fair (c, r)-ANN data structure using O(n1+ρ log2(n) log(Q))

space and O(d · (nρ + n(q,cr)
n(q,r)+1) · log

2(n) log(Q)) time per query.

Let Afair be the exact fair ANN algorithm given by Theorem 3.2. We claim that this algorithm is
also adversarially robust.

Claim 3.3 (Fairness Implies Robustness). Afair is an 1
n -adversarially robust ANN algorithm.

Proof. Let Egood be the good event where Afair succeeds on every query. We have Pr[Egood] ≥
1 − 1

n via a union-bound. Let us condition on Egood. We can treat the adversary B of game G
(Definition 2.1) as deterministic by fixing its internal randomness to be the string that maximizes its
probability of winning. Let Ai := BS(qi, r) ∪ {⊥} be the set of possible answers of A to query
qi. Then, we can describe the response of B be specifying a set of fixed functions g1, g2, g3, ...,
where gi : A1 ×A2 × · · · ×Ai−1 →M. Let us also fix the random strings R1, ..., RQ of transient
randomness used by Afair in any way that satisfies Egood.

Since the Ri are fixed, suppose that f(R) ⊂M is the set of queries for whichAwrongfully answers
⊥ when BS(qi, r) ̸= ∅. If Afair is not adversarially robust, then with probability at least 1− 1

n there
exists some i ∈ [Q] for which the random variables f(R) and gi(a1, ..., ai−1) are not independent.
Assuming Egood holds, the input a⃗ = (a1, ..., ai−1) of gi is distributed uniformly in A1×· · ·×Ai−1
and independently of R.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Still conditioning on Egood, consider the mutual information I(f(R), gi(⃗a))
4. By the data processing

inequality we have:
0 ≤ I(f(R); gi(⃗a)) ≤ I(f(R); a⃗) ≤ I(R; a⃗) = 0

implying that I(f(R); gi(⃗a)) = 0. This contradicts the non-independence of f(R) and gi(⃗a), mean-
ing that A is adversarially robust.

Remark. As discussed in the introduction, this argument extends to any algorithm which is required
to answer adaptive queries by picking from a discrete set of candidate values.

4 ASSUMPTION-FREE ROBUST SEARCHING VIA BUCKETING

A major limitation of the fair algorithm is that it only works efficiently when the dataset does not
induce a high density ratio, which is not guaranteed if S is picked by the adversary. Ideally, we aim
to obtain sublinear algorithms that work without any assumptions on the input dataset. To do this,
we introduce a search-to-decision framework:

4.1 WEAK DECISION ANN

Definition 4.1 (WEAK-DECISION-ANN). Consider the metric space M and let S ⊆ U with
|S| = n be an input point dataset. Let r > 0, c > 1 be two parameters and q ∈M be an adaptively
chosen query. If BS(q, r) ̸= ∅, then we should answer 1. If BS(q, cr) = ∅, we must answer 0. In
any other case, any answer is acceptable.

LetA be an algorithm for solving the weak decision ANN problem, though not necessarily robustly.
We can design an adversarially robust decider Adec by using A, while only increasing the space by
a factor of

√
Q. Adhering to the framework of Hassidim et al. (2022), we maintain L = Θ̃(

√
Q)

copies of the data structures D1, ...,DL generated by A using L independent random strings, and
then for each query q we combine the answers ofA privately. As opposed to the original framework
of (Hassidim et al., 2022), we do not need to use a private median algorithm, which simplifies the
analysis. To keep the query time small, we utilize privacy amplification by subsampling (Theo-
rem C.8).

Algorithm 1 The robust decider Adec (based on an oblivious decider A)

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL.
2: Parameters: Number of queries Q, number of copies L, number of sampled indices k.
3: Receive input dataset S ⊆ U from the adversary, where n = |S|.
4: Initialize D1, ...,DL where Di ← A(S) on random string ri.
5: for i = 1 to Q do
6: Receive query qi from the adversary.
7: Ji ← Sample k indices in [L] with replacement.
8: Let aij ← Di(qj) ∈ {0, 1} and Ni :=

1
k |{j ∈ Ji | aij = 1}|.

9: Let N̂i = Ni + Lap
(
1
k

)
.

10: Output 1[N̂i >
1
2]

To analyze this algorithm, we argue that for all i ∈ [Q], at least 8
10 of the k answers aij are correct,

even in the presence of adversarially generated queries. To do this, we first need to show that
the algorithm is differentially private with respect to the input random strings R. As a result, if
set L = 2400 log1.5(1/δ) ·

√
2Q and k = log(Q/δ) we get a robust decider that succeeds with

probability at least 1−Θ(δ). Our analysis (Theorem D.1) is included in full in Appendix D.

4.2 BUCKETING-BASED SEARCH

To perform the final search, we partition our point dataset S into nα segments, for α < 1. We then
instantiate a copy Ai ≡ Adec,i of Adec in each segment. When a query comes in, we forward it to

4For some background on information theory, see Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

each Ai and if some segment answers 1, we perform an exhaustive search in the segment to find a
point in BS(q, cr).

Algorithm 2 Robust ANN via Weak Decisions and Bucketing

1: Parameters: Error probability δ > 0, number of queries Q
2: Partition point set S arbitrarily into κ = nα segments L1, ..., Lκ of size n/κ.
3: Initialize κ independent copies A1, ...,Aκ of Adec, each with δ′ = δ/κ
4: for i = 1 to Q do
5: Receive query qi from the adversary.
6: for j = 1 to κ where Aj(qi) = 1 and all p ∈ Lj do
7: If p ∈ BS(q, cr) is found, output p and proceed to the next query.
8: Output ⊥ and proceed to the next query.

Lemma 4.2. Algorithm 2 is a δ-adversarially robust algorithm for the ANN problem.

Proof. The algorithm can only make a mistake when all the data structures reply with 0, even though
there is a point p ∈ BS(q, r). Consider the segment Li for which p ∈ Li, and examine it in isolation.
Because all the copies of AlgorithmAdec are initialized independently from each other, the adversary
should be able to forceAi to make a mistake, which by assumption happens with probability at most
k(δ + 1/nΩ(1)) over all the segments via union bound.

We create n1−α segments, each containing nα points. Recall that a single copy of Algorithm Adec

takes Õ(n1+ρ
√
Q) pre-processing time and space, and Õ(nρ) time and space per query. Each copy

Ai runs on nα points, so for pre-processing, our algorithm uses

Õ
(
n1−α(nα)1+ρ

√
Q
)
= Õ

(
n1+αρ

√
Q
)

bits of space for creating n1−α copies A1, ...,AL. On the other hand, to process a single query the
algorithm uses

Õ
(
n1−α · (nα)ρ + nα

)
= Õ

(
n1−α+αρ + nα

)
time. To balance the summands in the query complexity term, we set

n1−α+αρ = nα =⇒ α =
1

2− ρ
This proves Theorem 1.2 and concludes the analysis of Algorithm 2.

The biggest advantage of our algorithm is that it does not make any assumptions on the input dataset.
However, it achieves sublinear query time as 1

2−ρ < 1 when ρ < 1. Furthermore, the space complex-
ity of our algorithm for small values of Q is superior to the space complexity of even the oblivious
ANN algorithm that has space complexity n1+ρ.

5 RELAXED FAIR ANN VIA CONCENTRIC LSH ANNULI

As a warm-up, we first present an algorithmic improvement to Theorem 3.2, removing the depen-
dency on the ratio n(q,cr)

n(q,r) which could grow as big as n in the query time. We achieve purely
sublinear time for a relaxed fairness guarantee:
Definition 5.1 (Relaxed Fairness in ANN). Let S be the input dataset and q ∈ M be a query
point. If BS(q, r) ̸= ∅, the algorithm aims to output some point chosen uniformly at random,
independently of past queries, from BS(q, r

′), where r′ ∈ [r, cr] is a random variable depending
on q and S. Otherwise, if BS(q, r) = ∅, the algorithm can either answer ⊥ or output a uniformly
random point from BS(q, r

′) with r′ ∈ (r, cr].

Consider the following sequence of radii between r and cr, interspersed so that the ratio between
two consecutive ones is constant: r0 = r, r1, ..., rk−1, rk = cr are defined as ri = c′ · ri−1 for
i ∈ {1, ..., k}, where c′ = k

√
c. We create k instances of Afair, where the i-th instance is initialized

with parameters (c′, rk). We run each instance to output a point uniformly from BS(q, ri). If we
observe an instance running for longer than 100d(nρ′

+n1/k) log n timesteps, we stop the execution
and switch to the next instance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Claim 5.2. Consider a query q and suppose BS(q, r) ̸= ∅. There exists i ∈ {0, ..., k−1} such that:

n(q, ri+1)

n(q, ri)
≤ n

1
k (1)

Proof. Since n(q, r) ≥ 1 it also holds that n(q, ri) ≥ 1 for all i ∈ {0, ..., k}. Suppose that for all
i ∈ {0, ..., k − 1} it holds that:

n(q, ri+1)

n(q, ri)
> n

1
k

Then, via a telescoping product we arrive at a contradiction:
n(q, cr)

n(q, r)
=

n(q, r1)

n(q, r0)
· n(q, r3)
n(q, r2)

· · · n(q, rk−1)
n(q, rk−2)

· n(q, cr)

n(q, rk−1)
>

(
n

1
k−1

)k−1
= n

Claim 5.2 shows that if BS(q, r) ̸= ∅ we output a uniformly sampled point from some BS(q, ri),
where ri is a random variable R depending on S, q and our algorithm’s randomness. On the other
hand, if BS(q, r) = ∅, we either output ⊥ if all the copies Di time-out, or a uniformly sampled
point from some sphere BS(q, ri). In either case, we enjoy the relaxed fairness guarantee of Def-
inition 5.1. For the runtime, our algorithm takes space O(kn1+ρ(c′)) for pre-processing, and time
Õ(dk ·min{nρ(c′), n1/k}) for answering each query:
Theorem 5.3. There exists an algorithm for solving the relaxed fair (c, r)-ANN problem that uses
Õ(dnβ) time per query and Õ(n1+β) time for pre-processing, where β = min

k∈Z
max{ρ(c1/k), 1/k}.

Solving for β is metric space dependent. For the hypercube, we can use ρ(c) = 1
2c−1 , a back-of-

the-envelope calculation yields k = Θ(log c
log log c). To nail down the constants precisely, we pick:

β = min

{
max

{
1

⌊k∗⌋
,

1

2c1/⌊k∗⌋ − 1

}
,max

{
1

⌈k∗⌉
,

1

2c1/⌈k∗⌉ − 1

}}
with our algorithm having runtime Õ(dnβ) and space complexity Õ(

√
Q · n1+β). For instance, if

c = 4 we have k∗ = 2.48, so β = 1/3, while for c = 10 we have k∗ ≈ 3.15 so β = 1/3.

We plot the solutions for β for c ∈ [2, 100] in Figure 1. Note that β → 0 as c→∞.

Figure 1: Solutions for β for different values of c in the hypercube (left) and ℓ2 (right) domains.

6 ROBUST ANN IMPROVEMENTS

We now combine our concentric annuli technique with fair ANN to develop a more efficient and
robust algorithm.

We again partition the space into k ≥ 1 concentric annuli (ri−1, ri], where r0 = r and ri = c′ · ri−1
for c′ = k

√
c. For each annulus i, we instantiate two independent copies of the base algorithm: a

testing instance Ai ← Afair(c
′, ri−1) and a held-out execution instance A(i)

fair ← Afair(c
′, ri−1).

Our goal is to find an annulus whose algorithm runs quickly. We formalize this notion as follows.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Definition 6.1. Let Ti be the random runtime of the testing instance Ai. The i-th annulus is a good
annulus if its probability of fast termination, pi, is high:

pi := Pr[Ti ≤ 4d(nρ + n1/k) log n] ≥ 0.999

Upon receiving a query q, we estimate each probability pi with an additive error of at most η by
observing the fraction of Θ(η−2 log(kQn)) independent sub-trials of Ai that halt within the time
bound. Let p̂i be this empirical estimate for pi. We identify candidate annuli with an indicator vector
α̂ ∈ {0, 1}k, where: α̂i = 1[p̂i ≥ 0.997].

With high probability, α̂i = 1 implies that annulus i is good. A similar argument to Claim 5.2
guarantees that at least one good annulus must exist. We therefore find the first index i∗ for which
α̂i∗ = 1 and run the corresponding execution instance A(i∗)

fair to completion. This approach yields a
solution in Õ(d(nρ + n1/k)) time with probability at least 0.998

To ensure robustness, the release of the vector α̂ (and thus the choice of i∗) must not reveal infor-
mation about the internal randomness of our algorithm instances. We therefore use the DP-based
robustification framework of Hassidim et al. (2022) to release α̂ privately. While this increases the
space complexity by a factor of

√
Q, it allows us to achieve a considerably better, assumption-free,

and purely sublinear query time. Algorithm 3 presents the details of our approach, and the full
analysis, as well as the proof of Theorem 1.3, can be found in Appendix E.

Algorithm 3 Improved Robust ANN Search

1: Input: Query q ∈M, parameters c, r, k ≥ 1 and δ ∈ (0, 0.995)
2: procedure INITIALIZE
3: Let c′ ← k

√
c and r0 ← r.

4: Let η = 0.001, m = η−2 log(Qk/δ) and L = 2400 log1.5(1/δ)
√
2Q.

5: for i = 1, . . . , k do
6: Let N = L ·m and ri ← c′ · ri−1.
7: Instantiate N copies Ai,j ← Afair(c

′, ri−1). ▷ Testing Instances (m× L grid)
8: Instantiate A(i)

fair ← Afair(c
′, ri−1) ▷ Execution Instances

9: procedure QUERY(q)
10: for i ∈ {1, . . . , k} do
11: Let Strunc ← 4d(n1/k + nρ) log n ▷ Let pj ← Pr[Tj < Strunc].
12: Ji ← Sample s = log(Qk/δ) indices in [L] with replacement.
13: for j ∈ Ji do
14: Let p̃ij ← 1[Ti,jm+w < Strunc] for w ∈ {0, ...,m− 1}.
15: Let p̂i ← 1

s

∑
j∈Ji

p̃ij + Lap(1s).

16: Set â(q)i ← 1[p̂i ≥ 0.998].
17: if â(q) = 0⃗ then
18: return ⊥
19: else
20: i∗ ← min{i ∈ {1, . . . , k} | a(q)i = 1} ▷ Find most significant bit index
21: return A(i∗)

fair (q)

7 CONCLUSION

This study presents a series of algorithms for solving ANN against adaptive adversaries. Our ap-
proaches, which integrate principles of fairness and privacy with novel data constructions, offers are
efficient and input-independent. Our work raises several intriguing questions for future research:
Can we establish time and space lower bounds for robust algorithms? How do our algorithms per-
form against adversaries with more information, such as the timestamps? Lastly, can the powerful
link between fairness and robustness be extended to other domains, like estimation problems? We
believe this work provides a strong foundation for future exploration into these areas.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD thesis,
Massachusetts Institute of Technology, 2009.

Alexandr Andoni and Piotr Indyk. Nearest neighbors in high-dimensional spaces. In Handbook of
Discrete and Computational Geometry, pp. 1135–1155. Chapman and Hall/CRC, 2017.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pp. 793–801, 2015.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Lower bounds on time-
space trade-offs for approximate near neighbors. arXiv preprint arXiv:1605.02701, 2016.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proceedings of the twenty-eighth annual
ACM-SIAM symposium on discrete algorithms, pp. 47–66. SIAM, 2017a.

Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest: Practical algorithms
made theoretical. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 67–78. SIAM, 2017b.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial stream-
ing via differential privacy and difference estimators. Algorithmica, pp. 1–56, 2024.

Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco Silvestri. Sam-
pling a near neighbor in high dimensions—who is the fairest of them all? ACM Transactions on
Database Systems (TODS), 47(1):1–40, 2022.

Raef Bassily, Adam Smith, Thomas Steinke, and Jonathan Ullman. More general queries and less
generalization error in adaptive data analysis. arXiv preprint arXiv:1503.04843, 2015.

Raef Bassily, Kobbi Nissim, Adam Smith, Thomas Steinke, Uri Stemmer, and Jonathan Ullman.
Algorithmic stability for adaptive data analysis. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pp. 1046–1059, 2016.

MohammadHossein Bateni, Laxman Dhulipala, Willem Fletcher, Kishen N Gowda, D Ellis Her-
shkowitz, Rajesh Jayaram, and Jakub Lacki. Efficient centroid-linkage clustering. Advances in
Neural Information Processing Systems, 37:49649–49683, 2024.

Soheil Behnezhad, Rajmohan Rajaraman, and Omer Wasim. Fully dynamic (∆ + 1)-coloring against
adaptive adversaries. In Yossi Azar and Debmalya Panigrahi (eds.), Proceedings of the 2025
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA,
January 12-15, 2025, pp. 4983–5026. SIAM, 2025. doi: 10.1137/1.9781611978322.169. URL
https://doi.org/10.1137/1.9781611978322.169.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower
bounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1671–1684, 2022.

Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense-
sparse trade-offs. In Symposium on Simplicity in Algorithms (SOSA), pp. 214–227. SIAM, 2022a.

Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adver-
sarially robust streaming algorithms. ACM Journal of the ACM (JACM), 69(2):1–33, 2022b.

Liron Bergman, Niv Cohen, and Yedid Hoshen. Deep nearest neighbor anomaly detection. arXiv
preprint arXiv:2002.10445, 2020.

10

https://doi.org/10.1137/1.9781611978322.169

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise inde-
pendent permutations. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pp. 327–336, 1998.

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release and learn-
ing of threshold functions. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pp. 634–649. IEEE, 2015.

Amit Chakrabarti and Manuel Stoeckl. Finding missing items requires strong forms of randomness.
In 39th Computational Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2024.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph
streams. arXiv preprint arXiv:2109.11130, 2021.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. Advances in Neural
Information Processing Systems, 33:11178–11190, 2020.

Yeshwanth Cherapanamjeri and Jelani Nelson. Terminal embeddings in sublinear time. TheoretiCS,
3, 2024.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Thomas M Cover and Joy A Thomas. Entropy, relative entropy and mutual information, chapter 2,
pp. 12–49. Number 1. John Wiley & Sons, Ltd, 2001. ISBN 9780471200611. doi: https:
//doi.org/10.1002/0471200611.ch2. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/0471200611.ch2.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Itai Dinur, Uri Stemmer, David P Woodruff, and Samson Zhou. On differential privacy and adap-
tive data analysis with bounded space. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 35–65. Springer, 2023.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010
IEEE 51st annual symposium on foundations of computer science, pp. 51–60. IEEE, 2010.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron Roth. Gen-
eralization in adaptive data analysis and holdout reuse. Advances in neural information processing
systems, 28, 2015a.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon
Roth. Preserving statistical validity in adaptive data analysis. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pp. 117–126, 2015b.

Shiyuan Feng, Ying Feng, George Zhaoqi Li, Zhao Song, David Woodruff, and Lichen Zhang.
On differential privacy for adaptively solving search problems via sketching. In Forty-second
International Conference on Machine Learning, 2025.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hash-
ing. In Proceedings of the 25th International Conference on Very Large Data Bases, VLDB
’99, pp. 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN
1558606157.

11

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471200611.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471200611.ch2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Elena Gribelyuk, Honghao Lin, David P Woodruff, Huacheng Yu, and Samson Zhou. A strong
separation for adversarially robust ℓ0 estimation for linear sketches. In 2024 IEEE 65th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 2318–2343. IEEE, 2024.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In International Conference on Learn-
ing Representations (ICLR), 2024. arXiv preprint arXiv:2310.05869.

Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards re-
moving the curse of dimensionality. Theory of Computing, 1(8):321–350, 2012.

Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive inputs? In Pro-
ceedings of the forty-fifth annual ACM symposium on Theory of computing, pp. 121–130, 2013.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversarially
robust streaming algorithms via differential privacy. Journal of the ACM, 69(6):1–14, 2022.

Jeffrey Ichnowski and Ron Alterovitz. Fast nearest neighbor search in se (3) for sampling-based mo-
tion planning. In Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh
International Workshop on the Algorithmic Foundations of Robotics, pp. 197–214. Springer, 2015.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Omid Jafari, Preeti Maurya, Parth Nagarkar, Khandker Mushfiqul Islam, and Chidambaram Cru-
shev. A survey on locality sensitive hashing algorithms and their applications. arXiv preprint
arXiv:2102.08942, 2021.

Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization for approximate
nearest neighbor search. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2321–2328, 2014.

Michael Kapralov, Mikhail Makarov, and Christian Sohler. On the adversarial robustness of locality-
sensitive hashing in hamming space. arXiv preprint arXiv:2402.09707, 2024.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
In International Conference on Learning Representations (ICLR), 2020. arXiv preprint
arXiv:2001.04451.

Lifeng Lai and Erhan Bayraktar. On the adversarial robustness of robust estimators. IEEE Transac-
tions on Information Theory, 66(8):5097–5109, 2020.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. ACM Computing Surveys
(CSUR), 28(1):33–37, 1996.

Ninh Pham and Rasmus Pagh. Scalability and total recall with fast coveringlsh. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Management, pp.
1109–1118, 2016.

John SantaLucia, Hatim T Allawi, and P Ananda Seneviratne. Improved nearest-neighbor parame-
ters for predicting dna duplex stability. Biochemistry, 35(11):3555–3562, 1996.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Adam Smith. Information, privacy and stability in adaptive data analysis. arXiv preprint
arXiv:1706.00820, 2017.

Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 793–818. SIAM, 2023.

Yukihiro Tagami. Annexml: Approximate nearest neighbor search for extreme multi-label classifica-
tion. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 455–464, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Koen Verstrepen and Bart Goethals. Unifying nearest neighbors collaborative filtering. In Proceed-
ings of the 8th ACM Conference on Recommender systems, pp. 177–184, 2014.

Alexander Wei. Optimal las vegas approximate near neighbors in ℓp. ACM Transactions on Algo-
rithms (TALG), 18(1):1–27, 2022.

David P Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1183–1196. IEEE, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX CONTENTS

A Related and Concurrent Work 14

A.1 Comparison with Feng et al. (2025) . 15

B Background from Information Theory 15

C Review of Differential Privacy 16

C.1 Definition of differential privacy . 16

C.2 The Laplace Mechanism and its properties . 16

C.3 Properties of differential privacy . 16

D Proof of Theorem D.1 17

E Proof of Theorem 1.3 19

F Improved Robust ANNS Algorithms with ∀ guarantees 20

F.1 A For-all guarantee in the Hamming cube . 21

F.1.1 Improving the query runtime via sampling 22

F.1.2 Utilizing the optimal LSH algorithm . 23

F.2 Discretization of continuous spaces through metric coverings 23

F.2.1 Metric coverings in continuous spaces . 23

F.2.2 The robust ANN algorithm . 25

F.2.3 Removing the dependency on the scale 26

A RELATED AND CONCURRENT WORK

The challenge of designing algorithms robust to adversarial queries is well-studied, particularly in
privacy and statistics (Bassily et al., 2015; Smith, 2017; Bassily et al., 2016), where Differential
Privacy is a central tool for ensuring robustness (Dwork et al., 2015a; Dinur et al., 2023). The
question of adversarial robustness was formally introduced to streaming algorithms by Ben-Eliezer
et al. (Ben-Eliezer et al., 2022b), motivated by attacks on linear sketches (Hardt & Woodruff, 2013),
and has since inspired a long line of work on robustifying various streaming algorithms (Hassidim
et al., 2022; Chakrabarti et al., 2021; Lai & Bayraktar, 2020; Chakrabarti & Stoeckl, 2024; Stoeckl,
2023; Woodruff & Zhou, 2022; Ben-Eliezer et al., 2022a).

Our work is most directly inspired by the framework of Hassidim et al. (Hassidim et al., 2022),
who used Differential Privacy to solve estimation problems robustly, and by Cherapanamjeri et
al. (Cherapanamjeri et al., 2023), who applied this framework with low query time overhead. While
we adapt a similar approach, their methods are fundamentally limited to estimation and don’t extend
to search problems like NNS, where the output must be a specific dataset element. The difficulty
of robust search is further highlighted by Beimel et al. (Beimel et al., 2022), who established lower
bounds showing that robust algorithms for certain search problems are inherently slower than their
oblivious counterparts, motivating our investigation.

Different works further reinforce the unique challenges of robust search. Work on robust graph
coloring, for example, also requires techniques beyond simple noise addition due to its discrete
output space (Chakrabarti et al., 2021; Behnezhad et al., 2025). Our approach is also distinct from
Las Vegas LSH constructions (Pham & Pagh, 2016; Wei, 2022). While these methods guarantee

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

no false negatives, they remain vulnerable to adversaries who can inflate their expected runtime
(Kapralov et al., 2024). Our focus, in contrast, is on robustifying traditional Monte Carlo algorithms.

Finally, our approach builds on the use of discretization and net-based arguments to achieve ’for-
all’ guarantees for ANN. This technique was previously used for robust distance estimation (Chera-
panamjeri & Nelson, 2020), for ANN in conjunction with partition trees (Cherapanamjeri & Nelson,
2024) and for efficient centroid-linkage clustering (Bateni et al., 2024). We contribute a simpler and
more streamlined construction that offers a modest performance improvement over this prior work.

A.1 COMPARISON WITH FENG ET AL. (2025)

Our work was developed concurrently and independently with Feng et al. (2025). Our approaches,
assumptions, and performance guarantees differ significantly.

Methodology Feng et al. (2025) propose a method tightly coupled to the structure of DP noise
via a reduction to the private selection problem. In contrast, our “search-to-decision” and
fairness frameworks are more general, treating the DP component as a black-box primitive.

Assumptions Their algorithm’s complexity depends on a near-neighbor density bound s, where
|BS(q, cr)| ≤ s. We present the first algorithms whose query runtimes are independent of
the input dataset, making them robust to worst-case data distributions.

Performance Their query time scales multiplicatively with the number of points in the annulus,
|BS(q, cr)|, while our algorithms are either purely sublinear or their query time depends
additively only on the density ratio D = |BS(q,cr)|

|BS(q,r)| . Crucially, this dependency on D does
not affect our space complexity, which still grows by an additional factor of

√
Q.

B BACKGROUND FROM INFORMATION THEORY

We will use some basic notions from information theory in this work:

Definition B.1. The entropy of a random variable X that has support on a domain X is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (2)

The entropy expresses the information content of X , in the following sense: if the entropy is high,
one needs a lot of bits to encode a value of a random variable in expectation. The joint and condi-
tional entropy notions are defined similarly, using the joint and conditional distributions respectively
(Cover & Thomas, 2001).

Definition B.2. The mutual information of two random variables X and Y is defined as:

I(X ; Y) = H(X)−H(X | Y) = H(Y)−H(Y | X) = I(Y ; X) (3)

Analogously, one can define notions such as the joint mutual information and conditional mutual
information. Note that X and Y are independent if and only if I(X ; Y) = 0.

Lemma B.3 (Chain Rule of Mutual Information). Let X1, ..., Xn, Y be random variables. Then:

I(X1, ..., Xn ; Y) =

n∑
i=1

I(Xi ; Y | X1, ..., Xi−1) (4)

The data-processing inequality shows that no manipulation of the data can improve the inferences
that can be made from it (Cover & Thomas, 2001):

Lemma B.4 (Data Processing Inequality). Consider random variables X,Y, Z that form a Markov
Chain X → Y → Z - that is, X and Z are conditionally independent given Y . Then:

I(X;Y) ≥ I(X;Z) (5)

Corollary B.5. If X → Y → Z then I(X;Y | Z) ≤ I(X;Y).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C REVIEW OF DIFFERENTIAL PRIVACY

Our work leans heavily on results from differential privacy, so we give the necessary definitions and
results here.

C.1 DEFINITION OF DIFFERENTIAL PRIVACY

Definition C.1 (Differential Privacy). Let A be any randomized algorithm that operates on
databases whose elements come from some universe. For parameters ε > 0 and δ ∈ [0, 1], the
algorithmA is (ε, δ)–differentially private (DP) if for any two neighboring databases S ∼ S′ (ones
that differ on one row only), the distributions on the algorithm’s outputs when run on S vs S′ are
very close. That is, for any S ∼ S′ and any subset of outcomes T of the output space of A we have:

Pr[A(S) ∈ T] ≤ eε · Pr[A(S′) ∈ T] + δ

C.2 THE LAPLACE MECHANISM AND ITS PROPERTIES

Theorem C.2 (The Laplace Mechanism, (Dwork et al., 2006)). Let f : X∗ → R be a function.
Define its sensitivity ℓ to be an upper bound to how much f can change on neighboring databases:

∀S ∼ S′ : |f(S)− f(S′)| ≤ ℓ

The algorithm that on input S ∈ X∗ returns f(S) + Lap
(
ℓ
ε

)
is (ε, 0)–DP, where

Lap(λ;x) :=
1

2λ
exp

(
− |x|

λ

)
is the Laplace Distribution over R.

We will make use of the following concentration property of the Laplace Distribution:

Lemma C.3. For m ≥ 1, let Z1, ...Zm ∼ Lap (λ) be iid random variables. We have that:

Pr
[

m
max
i=1

Zi > λ(ln(m) + t)
]
≤ e−t

C.3 PROPERTIES OF DIFFERENTIAL PRIVACY

Differential Privacy has numerous properties that are useful in the design of algorithms. The fol-
lowing theorem is known as “advanced adaptive composition” and describes a situation when DP
algorithms are linked sequentially in an adaptive way.

Theorem C.4 (Advanced Composition, (Dwork et al., 2010)). Suppose algorithmsA1, ...,Ak are
(ε, δ)–DP. Let A′ be the adaptive composition of these algorithms: on input database x, algorithm
Ai is provided with x, and, for i ≥ 2, with the output yi−1 of Ai−1. Then, for any δ′ ∈ (0, 1),
Algorithm A is (ε̃, δ̃)–DP with:

ε̃ = ε ·
√

2k ln(1/δ′) + 2kε2 and δ̃ = kδ + δ′

There is also a composition theorem concerning situations where the dataset is partitioned:

Theorem C.5 (Parallel Composition). Let f1, ..., fk be (ε, 0)-DP mechanisms and X be a dataset.
Suppose X is partitioned into k parts X1, ..., Xk and let f(X) = (f1(X1), ..., fk(Xk)). Then f is
(ε, 0)-DP.

The next theorem dictates that post-processing the output of a DP algorithm cannot degrade its
privacy guarantees, as long as the processing does not use information from the original database.

Theorem C.6 (DP is closed under Post-Processing). Let A : Un → Y m and B : Y m → Zr be
randomized algorithms, where U, Y, Z are arbitrary sets. If A is (ε, δ)–DP, then so is the composed
algorithm B(A(·)).

The following theorem showcases the power of DP algorithms in learning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem C.7 (DP and Generalization, (Bassily et al., 2016; Dwork et al., 2015b)). Let ε ∈
(0, 1/3) and δ ∈ (0, ε/4). Let A be a (ε, δ)–DP algorithm that operates on databases in Xn and
outputs m predicate functions hi : X → {0, 1} for i ∈ [m]. Then, if D is any distribution over X
and S consists of n ≥ 1

ε2 · log
(
2εm
δ

)
iid samples from D, we have for all i ∈ [m] that:

Pr
S∼Dn

hi←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

hi(x)− E
x∼D

[hi(x)]

∣∣∣∣∣ ≥ 10ε

]
≤ δ

ε

In other words, a privately generated predicate is a good estimator of its expectation under any
distribution on the input data. A final property of privacy that we will use is a boosting technique
through sub-sampling:
Theorem C.8 (Privacy Amplification by Subsampling, (Bun et al., 2015; Cherapanamjeri et al.,
2023)). Let A be an (ε, δ)–DP algorithm operating on databases of size m. For n ≥ 2m, consider
an algorithm that for input a database of size n, it subsamples (with replacement) m rows from the
database and runs A on the result. Then this algorithm is (ε′, δ′)–DP for

ε′ =
6εm

n
and δ′ = exp

(
6εm

n

)
· 4m

n
· δ

D PROOF OF THEOREM D.1

In this section we include a formal analysis of the construction of Algorithm 1. We prove the
following theorem:
Theorem D.1. LetA be an oblivious decider algorithm for ANN that uses s(n) space and t(n) time
per query. Let δ ∈ (0, 0.995) and suppose we set L = 2400 log1.5(1/δ) ·

√
2Q and k = log(Q/δ).

Then, the algorithm Adec is an adversarially robust decider that succeeds with probability at least
1−Θ(δ) using s(n) · Õ

(√
Q
)

bits of space and Õ (t(n)) time per query.

First, we show that the algorithm is differentially private with respect to its input randomness.
Lemma D.2. Let ε = 0.01 and δ ∈ (0, 0.995). Algorithm Adec is (ε, δ)–DP with respect to the
string of randomness R.

Proof. We analyze the privacy of the algorithm Adec given in Algorithm 1 with respect to the string
of randomness R, which we interpret as its input. Suppose we let

ε′ =
ε

2
√

2Q ln(1/δ)

For all i ∈ [Q], we claim that the response to query qi is (ε′, 0)–DP with respect to R. This is because
the statistic Ni defined in Line 8 of Algorithm 1 has sensitivity 1/k and therefore by Theorem C.2,
after applying the Laplace mechanism in Line 9, we have that releasing N̂i is (1, 0)–DP with respect
to the strings R. The binary output based on comparing N̂i with the constant threshold 1/2 is still
(1, 0)-DP by post-processing (Theorem C.6).

Since L ≥ 2k, using the amplification by sub-sampling property (Theorem C.8), we get that each
iteration is (ε′, 0)–DP, because for large enough Q we have:

6k

L
=

6ε log 1
δ + 6ε logQ

24 · log 1
δ

√
2Q ln

(
1
δ

) <
2ε

4
√

2Q ln
(
1
δ

) = ε′

Finally, by adaptive composition (Theorem C.4), after Q adaptive steps our resulting algorithm is
(ε′′, δ)-DP where:

ε′′ = ε′

√
2Q ln

(
1

δ

)
+Q(ε′)2 =

ε

2
+

ε2

4 ln
(
1
δ

) ≤ ε

for ε ≤ 2 ln δ−1, which is satisfied for δ ∈ (0, 0.995). Thus, Algorithm Adec is (ε, δ)–DP with
respect to its inputs – the random strings R.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Next, we show that a majority of the data structuresDi output accurate verdicts with high probability,
even against adversarially generated queries.

Lemma D.3. With probability at least 1 − δ, for all i ∈ [Q], at least 0.8L of the answers aij are
accurate responses to the decision problem with query qi.

Proof. The central idea of the proof, as it appeared in (Hassidim et al., 2022), is to imagine the
adversary B as a post-processing mechanism that tries to guess which random strings lead A to
making a mistake.

Imagine a wrapper meta-algorithm C, outlined as Algorithm 4, that takes as input the random string
R = r1 ◦r2 ◦· · ·◦rL, which is generated according to some unknown, arbitrary distributionR. This
algorithm C simulates the game between Adec and B: It first runs B to provide some input dataset
S ⊆ U to Adec, which is seeded with random strings in R. Then, C uses B to query Adec adaptively
with queries (q1, ..., qQ). At the same time, it simulates Adec to receive answers a1, ..., aQ that are
fed back to B. By Lemma D.2, the output (a1, ..., aQ) is produced privately with respect to R,
regardless of how the adversary makes their queries.

At every step i, once B has provided q⃗i = (q1, ..., qi) and has gotten back i answers (a1, ..., ai) from
Adec, our meta-algorithm C post-processes this output history {(qj , aj)}ij=1 to generate a predicate
hq⃗i : {0, 1}∗ → {0, 1}. This predicate tells which strings r ∈ {0, 1}∗ lead algorithm A to success-
fully answer query prefix q⃗i on input dataset S, in the decision-problem regime. More formally5:

hq⃗i(r) :=
∧

1≤j≤i

{A(r)(S, qj) = 1 [BS(qj , r̄) ̸= ∅]} (6)

Algorithm 4 The meta-algorithm C, ran for i steps

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL, descriptions of AlgorithmsAdec and B.
2: Simulate B to obtain a dataset S ⊂ U .
3: Initialize Adec with random strings (r1, ..., rL) and the dataset S.
4: for i ∈ Q do
5: Simulate B to produce a query qj based on the prior history of queries and answers.
6: Simulate A on query qj to produce an answer.
7: Compute (via post-processing of query/answer history) predicate hq⃗i(·) from Equation 6.
8: Output (hq⃗1 , ..., hq⃗Q).

Generating these predicates is possible because hq⃗i only depends on q⃗i, which is a substring of the
output history that C has access to. As a result, C can produce hq⃗i by (say) calculating its value for
each value of R exhaustively6. Because C is only allowed to post-process the query/answer vector
(q1, a1, ..., qi, ai), the output predicate hq⃗i is also generated in a (ε, δ)–DP manner with respect to
r1, ..., rL, by Theorem C.6.

Given these Q privately generated predicates, and since L > 1
ε2 log

2εQ
δ for large enough Q, by the

generalization property of DP (Theorem C.7) we have that with probability at least 1− δ
ε = 1−Θ(δ)

it holds for any distributionR and for all i ∈ [Q] that:∣∣∣∣∣∣ E
r∼R

[hq⃗i(r)]−
1

L

L∑
j=1

hq⃗i(rj)

∣∣∣∣∣∣ ≤ 10ε =
1

10
(7)

But if R is the uniform distribution, then Er∼R [hq⃗i(r)] is simply the probability that A2 gives an
accurate answer on the fixed query sequence q⃗i. Since A is an oblivious decider, Equation 7 implies
that:

E
r∼R

[hq⃗i(r)] ≥
9

10
(8)

5We replace the radius parameter r with r̄ briefly in this argument. The symbol r is reserved for an arbitrary
random string.

6We assume C has unbounded computational power.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Further, 1
L

∑L
j=1 hq⃗i(rj) is the fraction of random strings that lead A2 to be correct. Thus, by

Equation 8, this fraction is at least
(

9
10 −

1
10

)
L = 0.8L for all i ∈ [Q].

We are now ready to prove the main theorem of this section.

Proof of Theorem D.1. Let us condition on the event that Lemma D.3 holds, which happens with
probability at least 1 − Θ(δ). Then, for all i ∈ [Q], Ni is either at least 0.8, when BS(qj , r̄) ̸= ∅,
or at most 1− 0.8 = 0.2, otherwise. By Lemma C.3, we require that the maximum Laplacian noise
not exceed 0.2 with high probability:

Pr [|Zi| > 0.2] = Pr

[
|Zi| >

1

k
(ln(1) + 0.2k)

]
≤ e−0.2k (9)

Since our threshold for deciding is N̂i := Ni + Zi ≥ 0.5, we can see that setting k = Ω(log(Q/δ))
will make the probability in Equation 9 at most δ

Q , implying, by union bound, that Adec outputs the
correct answer at every timestep i ∈ [Q] with high probability.

E PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3 to analyze Algorithm 3. First we show that the vector â(q) is
produced robustly.

ri+1ri

Figure 2: Our concentric LSH construction. In green lies the set BS(q, ri), and blue represents the annulus that
extends to BS(q, ri+1)

Lemma E.1. With probability at least 1−Θ(δ) over all queries and annuli, the vectors p̂ computed
by Algorithm 3 are such that:

||p̂− p||∞ ≤ 2η

This holds despite the adversary’s action to establish the opposite.

Proof. Our argument mimics the proof of Theorem D.1 in that it invokes the robustification frame-
work of Hassidim et al. (2022).

We first show that producing p̂ is (1, 0)-private. Note that it suffices to argue that for a fixed i ∈ [k]
we have |p̂i − pi| ≤ η and p̂i is produced randomly with respect to the randomness of the copies of
Afair. Indeed, if each p̂i is produced privately with respect to the input randomness, we can invoke
the parallel composition theorem of DP (Theorem C.5) to show that the entire release of p̂ is private
without additional cost to the privacy parameters.

As we know, privacy with respect to the input randomness implies robustness, so we now have to
calculate the cost of privacy in our approximation algorithm.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fixing some query and i ∈ [k] we know by the triangle inequality and a standard Chernoff bound
(since m = Ω(η−2 log n)) that:

|pi − p̂i| ≤

∣∣∣∣∣∣pi − 1

s

∑
j∈Ji

p̃i

∣∣∣∣∣∣+
∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣ ≤ η +

∣∣∣∣∣∣1s
∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣
The latter term of the above sum is the error incurred via the privatization process. We can bound it
by using our known bound on the magnitude of Laplacian noise (Equation 9):∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣ =
∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij −
1

s

∑
j∈Ji

p̃ij + Lap
(
1

s

)∣∣∣∣∣∣ ≤ 1

s
ηs = η

This happens with probability at least 1 − e−ηs ≥ 1 − 1
poly(kQ/δ) . Taking a union bound over k

annuli and Q queries establishes the lemma.

Corollary E.2. Since Algorithm 3 generates vector a⃗ ∈ {0, 1}k by post-processing, this also implies
that a is generated robustly.

Next, we argue that the output point of the algorithm is produced correctly and within the claimed
runtime and space complexity.

Theorem E.3. Algorithm 3 is a (δ + 1
poly(n))-robust (c, r)–ANN algorithm that uses space Õ(

√
Q ·

n1+β), where c′ = k
√
c and k is an integer chosen to minimize the quantity β = max{ρ(c1/k), 1/k}.

Any query takes Õ(dnβ) time with probability at least 0.998.

Proof. Letting β = max{ρ(c′), 1/k}, we maintain Θ(k log2.5(kQn)
√
Q) testing instances, as well

as k execution instances. This means our total space complexity is:

Θ
(
k log2.5(kQn/δ)

√
Q · n1+ρ + kn1+ρ

)
= Õ(k

√
Q · n1+ρ).

For the query runtime, suppose BS(q, r) ̸= ∅. As we argued in Claim 5.2, there must exist some
annulus ℓ for which the density ratio is at most n1/k. For that annulus, the guarantees of Theorem 3.2
imply that:

Pr
[
Tℓ < 4(nρ + n1/k) log2(n)

]
≥ 1− 1

poly(n)
≫ 0.999

Therefore, there always exists a good annulus when BS(q, r) ̸= ∅.
By Lemma E.1 we have that a good annulus will, with high probability be captured by Algorithm 3.
Conversely, if â(q)i = 1, then pi ≥ 0.999 − η = 0.998. As a result, if i∗ is the MSB of a,
the corresponding execution instance A(i∗)

fair runs in time O(dnβ) with probability at least 0.998.
Overall, to process one query, we run all ks = O(log(Qkn)) truncated copies Aij O(n1/k). Thus,
our algorithm takes O(d log(nQ) · nβ) per query, as initially claimed.

Finally, to argue robustness, we know from Lemma E.1 that releasing vector â is done robustly. Also,
Claim 3.3 tells us that the held-out execution copy is robust, given that the MSB i∗ is produced from
a via a fixed function (post-processing). Overall, the output of Algorithm 3 is adversarially robust
with probability at least 1 − δ − 1

poly(n) , accounting for the probability that any of the fair ANN
algorithms fail.

F IMPROVED ROBUST ANNS ALGORITHMS WITH ∀ GUARANTEES

In this section, we will discuss another path to adversarial robustness for search problems –providing
a for-all guarantee. We will focus on the ANN problem for this section, due to its ubiquity and
importance, as well as its amenity to the techniques we discuss.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F.1 A For-all GUARANTEE IN THE HAMMING CUBE

We present the Hamming Distance ANN case first because it is the most natural for-all guarantee
one can give. This is because the space we are operating over is discrete, and we can easily union-
bound over all possible queries and only incur a cost polynomial to the dimension d of the metric
space.

Theorem F.1. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer every possible query correctly with probability
at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)), and the time required per query is
Õ(d2 · nρ), where ρ = 1/c.

Proof. First, let us recall the standard LSH in the Hamming Hypercube: We are given a point set
S ⊆ {0, 1}d with |S| = n. We receive queries q ∈ {0, 1}d. Our Locality Sensitive Hash family H
is defined as follows: Pick some coordinate i ∈ [d] and hash x ∈ {0, 1}d according to xi ∈ {0, 1}.
This function h acts as a hyperplane separating the points in the hypercube into two equal halves,
depending on the i-th coordinate. Sampling h uniformly at random fromH is equivalent to sampling
i ∈ [d] uniformly at random. We can easily see thatH is an (r, cr, p1, p2)–LSH family, as:

Pr
h∼H

[h(p) = h(q)] =
d− ||p− q||

d
=

{
≥ 1− r

d := p1, when ||p− q|| ≤ r

≤ 1− cr
d := p2, when ||p− q|| ≥ cr

We now go through the typical amplification process for LSH families (Gionis et al., 1999). Instead
of sampling just one coordinate, we sample k. And instead of sampling just one hash function, we
sample L different ones h1, ..., hL ∈ Hk and require that a close point collides with q at least once.
With this scheme, we know that if we fix q ∈ {0, 1}d and p ∈ BS(q, r) we have:

Pr [∃i ∈ [L] : hi(p) = hi(q)] ≥ 1− (1− pk1)
L

Furthermore, if ||p− q|| ≥ cr, we must have:

Pr [∃i ∈ [L] : hi(q) = hi(p)] ≤ Lpk2

Now, we want to guarantee that with high probability there doesn’t exist any query q ∈ {0, 1}d such
that for all points p ∈ BS(q, r) we have hi(q) ̸= hi(p) for all i ∈ [L]. In other words, we want:

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤ 1

n

We can use the union bound to get:

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤

∑
q∈{0,1}d

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)]

So it suffices to establish that for fixed q ∈ {0, 1}d we have:

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤
1

n2d

We can weaken this statement and union-bound as follows:

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤ Pr [∃p ∈ BS(q, r) ̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤
∑

p∈BS(q,r)

Pr [̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤ |BS(q, r)| · (1− pk1)
L

≤ n(1− pk1)
L

So it suffices to require that:

(1− pk1)
L ≤ 1

n22d
(10)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

On the other hand, the expected number of points in S \ BS(q, cr) that we will see in the same
buckets as q is:

E [|p ∈ S \BS(q, cr) | ∃i ∈ [L] : hi(p) = hi(q)|] =
∑

p∈S\BS(q,cr)

Pr [∃i ∈ [L] | hi(p) = hi(q)]

(11)

≤ nLpk2 (12)
We can now combine Equation 10 and Equation 12 to work out the values of k and L. First, we
want to get O(L) time in expectation, so we require pk2 ≤ 1/n, which gives:

k ≥ log1/p2
(n)

Now, let p1 = pρ2. Substituting, we resolve the value of L as:
L ≥ nρd log n

With that in place, we can see that our algorithm takes O(L) time with high probability. Indeed, let
X be the number of points in S \ BS(q, cr) that are hashed to some common bucket with q. Using
a simplified Chernoff bound, we have that:

Pr [X ≥ 10L] ≤ 2−10L =
1

n10dnρ ≪
1

nΩ(1)

which implies that our runtime per query is O(L) with high probability. As for the value of the
constant ρ we have by definition that:

ρ :=
log p1
log p2

=
log

(
1− r

d

)
log

(
1− cr

d

) ≈ 1

c

Overall, evaluating our hash function requires Õ(log n) time, and evaluating distances between
points requires O(d) time. We maintain O(d · nρ log n) hash tables, meaning that on a single query
we spend O(d2 ·nρ log n) time. For pre-processing, apart from storing the entire dataset in dn space,
we take O(d · n1+ρ+o(1)) space to construct our data structure.

F.1.1 IMPROVING THE QUERY RUNTIME VIA SAMPLING

We can improve the dependency on d for the query runtime by using sampling to find a good bucket.
The following theorem encapsulates this finding, reducing the runtime complexity by a factor of d:
Theorem F.2. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)) and the time required per query is
Õ(d · nρ), where ρ = 1/c.

Proof. From our analysis above, we know that we take L = nρ · d log n different hash functions.
Consider some query q. We analyze the expected number of buckets that contain some point p ∈
BS(q, r). Let Xq be a random variable representing the number of buckets i ∈ [L] for which some
point in BS(q, r) lies in bucket i. Define the following indicator random variable:

1i =

{
1, if some point p ∈ BS(q, r) lies in bucket i ∈ [L]

0, otherwise
By linearity of expectation, we can now write:

E[Xq] =

L∑
i=1

Pr[1i = 1]

=

L∑
i=1

Pr

 ⋃
p∈BS(q,r)

{hi(p) = hi(q)}


≥ L · pk1
= L · (p2)ρk

≥ L

nρ

= d log n

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

By using the Chernoff bound, we can see that with high probability, Xq is close to its expectation:

Pr

[
Xq ≤

1

2
d log n

]
≤ e−

d log n
8 =

1

nd/8
≪ 1

n

Let us, then, condition on Xq > 1
2d log n. On query time, we can simply sample m = Θ(nρ log n)

buckets uniformly at random from [L]. We know that with probability at least d logn
2nρd logn = 1

2nρ , a
single randomly selected bucket contains some point from BS(q, r). So, for all m of the selections
to not contain such a point, the probability is at most:(

1− 1

nρ

)nρ logn

≤ e− logn =
1

n

So, with probability at least 1 − 1
n we find a bucket containing a good point. Since, with high

probability, the number of points in P \BS(q, cr) in any bucket are O(L), we see that this sampling
method improves the query runtime to O(nρ log n).

F.1.2 UTILIZING THE OPTIMAL LSH ALGORITHM

Our earlier exposition used the original LSH construction for the Hamming Hypercube (Indyk &
Motwani, 1998) that achieves ρ = 1/c. We can also use the state-of-the-art approach from (Andoni
& Razenshteyn, 2015) that achieves ρ = 1

2c−1 in place of Theorem F.1. This slightly improves the
exponent on n:
Theorem F.3. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 0.99. The space complexity is O(d ·n1+ρ+o(1)), and the time required per query is O(d ·nρ),
where ρ = 1

2c−1 . These runtime guarantees hold with high probability.

The analysis is identical, so we will not repeat it again: Since the algorithm succeeds with constant
probability, and we want it to succeed on all 2d possible queries, we boost its success probability
to 1 − 1

100·2d . This way, after the union bound, any query succeeds with probability at least 0.99.
Furthermore, the analysis of the sampling algorithm for improving the query runtime in Theorem F.2
also remains the same. All that changes between using the standard Hamming norm LSH as opposed
to the optimal one is the ratio ρ := log p1

log p2
.

F.2 DISCRETIZATION OF CONTINUOUS SPACES THROUGH METRIC COVERINGS

The for-all algorithm we presented as Theorem F.2 cannot be applied outside of discrete spaces,
however, because the key to our analysis was the union bound over all the possible queries.

To simulate a similar argument for solving ANN in continuous, ℓp spaces, we can consider a strategy
of discretizing the space. We place special “marker” points and guarantee that some version of the
ANN problem is solvable around them. Then, when a query comes in, we find its corresponding
marker point, and solve the ANN problem for it. We show that the answer we get is valid for the
original query as well, so long as the “neighborhood” around the marker points is small enough. A
similar strategy and covering construction appeared in (Cherapanamjeri & Nelson, 2024), although
they did not make algorithmic use of the ability to project any query point to the covering set.
Instead, their algorithm deems it sufficient to be successful on every point on just the covering set.

F.2.1 METRIC COVERINGS IN CONTINUOUS SPACES

To initiate our investigation, we need the definition of a metric covering:

Definition F.4. Consider a metric spaceM = (Rd, || · ||p) with metric µ. Let U ⊂ Rd be a bounded
subset. A set Ŝ ⊆ Rd is called an ∆-covering of U if for all q ∈ U there exists some ŝ ∈ Ŝ such that

||q − ŝ||p ≤ ∆

Suppose that U is a bounded subset of Rd. We can construct the following the following ∆-covering
of U : Let C := sup

x∈U
||x||∞ and suppose {ui}di=1 is an orthonormal basis spanning U . We know that

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

||x||∞ ≤ C for all x ∈ U , so let us define:

Ŝ =

d∑
i=1

α̂iui, where

α̂i ∈ {−C,−C + ε, ..., C − ε, C}

for some choice of ε that we will decide later. This is a standard construction for ℓ2 that we now
extend to ℓp (Shalev-Shwartz & Ben-David, 2014). As defined, we have:∣∣∣Ŝ∣∣∣ = (

2C

ε

)d

q

p∗
r

Figure 3: An illustration of an r-covering.

Now, fix some q ∈ U . We can write:

q =

d∑
i=1

αiui

For all i ∈ [d], let α̂i be such that αi ∈ α̂i ± ε. Let ŝ :=
d∑

i=1

α̂iui. Now we have that:

||q − ŝ||pp =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(αi − α̂i)ui

∣∣∣∣∣
∣∣∣∣∣
p

p

=

d∑
i=1

|αi − α̂i|p ≤ dεp

Now, let us set:

ε =
∆

d1/p
=⇒ ||q − ŝ||p ≤ ∆

Our construction thus has size:

|Ŝ| =
(
2Cd1/p

∆

)d

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2.2 THE ROBUST ANN ALGORITHM

With this construction in mind, our algorithm for robust (c, r)–ANN in ℓp space follows as Algo-
rithm 5. The algorithm remains agnostic to the specific LSH data structure that could be used to
solve ANN in ℓp metric spaces obliviously (Charikar, 2002; Datar et al., 2004), but assumes that
the success probability over a set of queries in that data structure can be boosted by increasing the
number of hash functions taken. This was the case for the Hamming norm as well.

Algorithm 5 Robust ℓp ANN through discretization

1: Parameters: Max-norm C, runtime/accuracy tradeoff ∆ > 0, LSH parameters c, r > 0.
2: Receive point dataset S ⊂ U with |S| = n from the adversary.
3: Let Ŝ be a ∆-covering of U as constructed in Section F.2.1, and let c′ ← cr−∆

r+∆ .
4: Initialize an LSH data structure D for solving (c′, r + ∆)–ANN that answers all queries in Ŝ

correctly with high probability.
5: while Adversary provides queries do
6: Receive query q ∈ U from the adversary.
7: Find ŝ ∈ Ŝ such that ||q − ŝ||p ≤ ∆.
8: Query D on ŝ and output whatever it outputs.

Theorem F.5. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
(Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. Assumming
that the input dataset and the queries are all elements of U = {x ∈ Rd | ||x||p ≤ C} for some
C > 0, the pre-processing space is Õ(nT) and the time per query is Õ(T), where:

T = O

[
d · nρ′

log

(
Cd1/p

cr

)]
(13)

where:

ρ′ =
(10 + c)2

161c2 − 20c− 100

Proof. First, to argue for correctness, let q be any query. Suppose there exists some point x ∈ S
with ||x− q||p ≤ r. Then, by triangle inequality it holds that:

||x− ŝ||p ≤ ||x− q||p + ||ŝ− q||p ≤ ∆+ r

Thus, with high probability, D will find some point x′ ∈ S with ||x′− ŝ||p ≤ cr−∆. For that point,
we have that:

||x′ − q||p ≤ ||x′ − ŝ||p + ||ŝ− q||p ≤ cr −∆+∆ = cr

Therefore, Algorithm 5 will output a correct answer. If there doesn’t exist such a point x, it is valid
for our algorithm to output ⊥, so are done.

For the runtime, recall that |Ŝ| ≤ O(2Cd1/p/∆)d. Hence, in order to guarantee success for all
queries in Ŝ, a similar analysis as to the one for the Hamming Hypercube shows that D takes up:

O

[
d · n1+ 1

2c′2−1 log

(
2Cd1/p

∆

)]
space for pre-processing and

O

[
n

1
2c′2−1 log

(
2Cd1/p

∆

)]
time per query processed, where

c′ :=
cr −∆

r +∆

Note that we use the optimal LSH algorithm for ℓp spaces, which guarantees ρ = 1
2c2−1 . Our only

constraint is that we must have ∆ < cr. If we set ∆ = c
10r, we get a per-query runtime of:

O

[
n
1+ 1

2c′2−1 log

(
20Cd1/p

cr

)]
, where c′ =

9c

10 + c

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.2.3 REMOVING THE DEPENDENCY ON THE SCALE

Our algorithm from Theorem F.5 crucially depends on logC, where C is a bounding box for the
query and input point space in the ℓp norm. We can remove the dependency on C by designing our
covering to be data dependent, instead paying an additional logarithmic factor.

A

B

C

Figure 4: Data-Dependent Discretization of the input query space.

Our new covering Ŝ′ will be a collection of n∆-coverings, as constructed in Algorithm 5, each one
discretizing the r-ball around a point p ∈ S. The number of points in this new covering is:

|Ŝ′| ≤ O

[
n ·

(
r · d1/p

cr

)d
]
= O

[
n ·

(
d1/p

c

)d
]

(14)

Note that the size of this covering improves upon the (nd)d size of the covering given in (Chera-
panamjeri & Nelson, 2024), which results in a slightly better runtime. This new covering notably
does not cover every possible query. However, it covers exactly the queries we care about. This
improved covering leads to the following for-all guarantee for robust ANN:
Theorem F.6. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in
the (Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. The pre-
processing time / space is Õ(nT) and the time per query is Õ(T/d), where:

T = O
[
d · nρ′

(d log d+ log n)
]

(15)

where:

ρ′ =
1

2c′2 − 1
=

(10 + c)2

161c2 − 20c− 100

Proof. We distinguish between two cases:

1. If a query q is not included in any BS(p, r) for any p ∈ S, then the answer can safely be
⊥ because BS(q, r) = ∅ necessarily. Thus, we can just run the default LSH algorithm and
simply output whatever it outputs.

2. Otherwise, a query q can be included in some BS(p, r) for some p ∈ S. Then, suppose
ŝ′ ∈ Ŝ′ is a point in our covering such that ||q − ŝ′||p ≤ ∆. Then:

||p− ŝ′||p ≤ ||p− q||p + ||ŝ′ − q||p ≤ r +∆ (16)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Thus, as we argued before, with high probability D finds some point x ∈ S with ||x −
ŝ′||p ≤ cr −∆, and for that point we have:

||x− q||p ≤ ||x− ŝ′||p + ||ŝ′ − q||p ≤ cr −∆+∆ = cr (17)

which means our algorithm will output a correct answer.

As before, our algorithm’s space and runtime guarantees scale with log |Ŝ′|.

27

	Introduction
	Our Results and Techniques
	regime2
	regime1: For-all Algorithms

	Preliminaries
	Fairness Implies Robustness
	Assumption-Free Robust Searching via Bucketing
	Weak Decision ANN
	Bucketing-Based Search

	Relaxed Fair ANN via Concentric LSH Annuli
	Robust ANN Improvements
	Conclusion
	Related and Concurrent Work
	Comparison with Feng et al (2025)

	Background from Information Theory
	Review of Differential Privacy
	Definition of differential privacy
	The Laplace Mechanism and its properties
	Properties of differential privacy

	Proof of Theorem D.1
	Proof of Theorem 1.3
	Improved Robust ANNS Algorithms with forall guarantees
	A For-all guarantee in the Hamming cube
	Improving the query runtime via sampling
	Utilizing the optimal LSH algorithm

	Discretization of continuous spaces through metric coverings
	Metric coverings in continuous spaces
	The robust ANN algorithm
	Removing the dependency on the scale

