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ABSTRACT

We study the Approximate Nearest Neighbor (ANN) problem under a powerful
adaptive adversary that controls both the dataset and a sequence of Q queries.
Primarily, for the high-dimensional regime of d = ω(

√
Q), we introduce a se-

quence of algorithms with progressively stronger guarantees. We first establish
a novel connection between adaptive security and fairness, leveraging fair ANN
search (Aumüller et al., 2022) to hide internal randomness from the adversary
with information-theoretic guarantees. To achieve data-independent performance,
we then reduce the search problem to a robust decision primitive, solved using a
differentially private mechanism (Hassidim et al., 2022) on a Locality-Sensitive
Hashing (LSH) data structure. This approach, however, faces an inherent

√
n

query time barrier. To break this barrier, we propose a novel concentric-annuli
LSH construction that synthesizes these fairness and differential privacy tech-
niques. The analysis introduces a new method for robustly releasing timing infor-
mation from the underlying algorithm instances and, as a corollary, also improves
existing results for fair ANN.
In addition, for the low-dimensional regime d = O(

√
Q), we propose specialized

algorithms that provide a strong “for-all” guarantee: correctness on every possible
query with high probability. We introduce novel metric covering constructions
that simplify and improve prior approaches for ANN in Hamming and ℓp spaces.

1 INTRODUCTION

Randomness is a crucial tool in algorithm design, enabling resource-efficient solutions by circum-
venting the worst-case scenarios that plague deterministic approaches (Motwani & Raghavan, 1996).
The classical analysis of such algorithms assumes an oblivious setting, where data updates and
queries are fixed beforehand. However, this assumption breaks down in the face of an adaptive
adversary, who can issue queries based on the algorithm’s previous outputs. These outputs can leak
information about the algorithm’s internal randomness, allowing an adversary to construct query
sequences that maliciously break the algorithm’s performance guarantees (Hardt & Woodruff, 2013;
Gribelyuk et al., 2024).

Significant progress has been made in designing adversarially robust algorithms for estimation
problems, where the output is a single value (Lai & Bayraktar, 2020; Hassidim et al., 2022;
Chakrabarti et al., 2021; Attias et al., 2024; Ben-Eliezer et al., 2022a; Woodruff & Zhou, 2022;
Cherapanamjeri et al., 2023). A common defense involves sanitizing the output, for example, by
rounding or adding noise, often borrowing techniques from differential privacy to ensure the output
reveals little about the algorithm’s internal state (Hassidim et al., 2022; Attias et al., 2024; Beimel
et al., 2022). However, these techniques do not directly apply to search problems. In a search prob-
lem, the algorithm must return a specific element from a given dataset. Outputting a raw data point
can leak substantial information, and there is no obvious way to add noise or otherwise obscure the
output without violating the problem’s core constraint of returning a valid dataset element.

Perhaps the most fundamental search problem is Approximate Nearest Neighbor (ANN) Search,
which has numerous applications ranging from data compression and robotics to DNA sequenc-
ing and anomaly detection to Retrieval-Augmented Generation (SantaLucia et al., 1996; Kalan-
tidis & Avrithis, 2014; Ichnowski & Alterovitz, 2015; Verstrepen & Goethals, 2014; Tagami, 2017;
Bergman et al., 2020; Han et al., 2024; Kitaev et al., 2020). Given a dataset S of n points in a metric
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space (M, || · ||) and a radius r > 0, let BS(q, r) := {p ∈ S : ||p − q|| ≤ r}. Given a query point
q ∈ M and approximation parameter c ≥ 1, the goal is to build a data structure which finds a point
in BS(q, cr) if BS(q, r) ̸= ∅. If BS(q, cr) = ∅, the algorithm is required to answer ⊥.

Achieving the desired trade-off of sublinear query time and near-linear space has largely been pos-
sible only through randomization. Indeed, one of the most prominent family of algorithms for ANN
is based on Locality-Sensitive Hashing (LSH), which has been the subject of a long and fruitful line
of research in the oblivious setting (Gionis et al., 1999; Jafari et al., 2021; Andoni, 2009; Andoni
et al., 2018; 2017b; 2016; Andoni & Indyk, 2017; Andoni et al., 2017a; Indyk & Motwani, 1998;
Broder et al., 1998). ANN Algorithms that rely on LSH achieve query time complexity of Õ(dnρ)1

and space complexity Õ(n1+ρ), where d is the dimension ofM and ρ = ρ(c) ∈ (0, 1) is a fixed
constant depending on c and the LSH construction2.

The vulnerability of these classical randomized structures was recently highlighted by Kapralov
et al. (2024), who demonstrated an attack on standard LSH data structures. They showed that an
adaptive adversary can use a polylogarithmic number of queries to learn enough about the internal
hash functions to force the algorithm to fail. Inspired by their work, which relies on certain struc-
tural properties of the dataset (e.g., an “isolated” point), we consider a powerful adversarial model
where the adversary chooses both the dataset and the sequence of queries. We study the following
question:

Can search problems like ANN be solved efficiently in the face of adversarial queries?

1.1 OUR RESULTS AND TECHNIQUES

We propose adversarially robust algorithms answering the above questions in two regimes:

1.1.1 d = ω(
√
Q)

When the metric space dimension is very large in the sense that d = ω(
√
Q), we tackle the search

problem by employing a suite of different strategies.

Table 1: Algorithms for (c, r)-ANN problem {0, 1}d under the Hamming distance, where ρ = 1
2c−1

Metric Query Time Space

Theorem 1.1 (Fairness) Õ(d · (D + nρ)) Õ(n1+ρ)

Theorem 1.2 (Bucketing) Õ(dn
1

2−ρ ) Õ(
√
Q · n

2
2−ρ )

Theorem 1.3 (Concentric Annuli)
β = Θ( log log c

log c )
Õ(dnβ) O(

√
Q · n1+β)

(Feng et al., 2025)3 O(d · s · nρ) O(
√
Q · s · n1+ρ)

Robustness and Fairness We first recognize a connection between robustness and fairness. Fair
ANN algorithms output a point uniformly at random from a set of valid near neighbor candidates.
Such algorithms have already been rigorously studied in the context of LSH by Aumüller et al.
(2022), who also studied notions of approximate fairness. We show that the robust ANN problem
can be solved simply by invoking an algorithm for the exact fair ANN problem.
Theorem 1.1. Let n(q, r) := |BS(q, r)| be the S-density of the r-ball centered at q ∈ M. There
exists an adversarially robust (c, r)-ANN algorithm that uses O(n1+ρ(c) log2(n) log(Q)) bits of
space and O(d · (nρ(c) + n(q,cr)

n(q,r)+1 ) log
2(n) log(Q)) time per query.

1We use the Õ notation to hide polylogarithmic factors.
2For example, when M = {0, 1}k and c ≥ 1 is the approximation parameter, the state-of-the-art construc-

tion of Andoni & Razenshteyn (2015) yields ρ = 1
2c−1

. We shall use ρ and ρ(c) interchangeably.
3The work of Feng et al. (2025) concurrently studies the robust ANN problem. We present a comparison of

our results with their algorithm, as well as a more extended discussion of related work, in Appendix A.
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Note that the space complexity of this algorithm does not scale with
√
Q, unlike our other approaches

and also the algorithm of Feng et al. (2025). However, the query complexity depends on the density
ratio D of points between the cr-ball and the r-ball for a query q. An adversary can craft a dataset
where this ratio is large, severely degrading performance. This drawback is also shared by the
algorithm of (Feng et al., 2025), though they exhibit a dependency on the density s = n(q, cr),
which is strictly greater than D (see Table 1).
Remark. The link between fairness and robustness is not limited to ANN. Any algorithm that is
required to select from a discrete set of candidate values as response to adaptively generated queries
can be made secure if it selects fairly. The distribution does not even have to be uniform, as long
as it is consistent and independent from other queries. From this perspective, fairness is not just a
“nice to have” property, but is inextricably linked with security.

Assumption-Free Searching via Bucketing To mitigate data dependencies, we propose a meta-
algorithm that reduces a search problem to a weak decision problem. In this problem, positive
instances correspond to the existence of r-close neighbors to a query q, while negative instances
showcase the absence of cr-close neighbors. Such a weak decision problem can be solved obliv-
iously simply be using a classic LSH data structure D. Unlike the search problem, an oblivious
decider can be robustified by applying the well-known Differential Privacy (DP) obfuscation tech-
nique of (Hassidim et al., 2022): we maintain

√
Q copies of D and combine their responses in a

private manner with respect to the random bits of each copy.

To perform the search, we then partition S ∈ Mn into buckets of size roughly
√
n and instantiate

a copy of the robust weak decider in each bucket. We can use these copies to identify a bucket
that contains a suitable point to output and then exhaustively search that bucket to produce the final
answer:
Theorem 1.2. There exists an adversarially robust algorithm for the (c, r)-ANN problem, suc-
cessfully answering up to Q queries with probability at least 1 − Θ(δ). The algorithm uses
Õ(n1+ρ/(2−ρ)√Q) space and Õ(dn1/(2−ρ)) time per-query, where ρ = ρ(c) ∈ (0, 1).

Breaking the
√
n Barrier via Concentric LSH Annuli Finally, the bucketing method yields

a query time complexity that is always at least O(
√
n), which is not ideal considering that LSH

methods can induce the exponent of n to be arbitrarily close to 0. To go beyond this barrier, we
introduce a concentric annuli construction.

We partition the (r, cr)-annulus into several smaller, concentric sub-annuli and apply the fair ANN
algorithm Afair within each one. A simple counting argument guarantees that at least one of these
sub-annuli must have a low point-density ratio, allowing Afair to terminate efficiently. For each
annulus that does not exceed the runtime threshold, we obtain an estimate to the probability that
the corresponding Afair copy terminates quickly. This allows us to pick a favorable annulus to run
a held-out testing copy of Afair. To maintain robustness however, we must also be careful not to
release information regarding which annulus was used at each query. To do this we apply the DP
robustification framework on the “timestamp” probabilities of each annulus-based, fair algorithm.

This algorithm is both assumption-free and enjoys a better runtime than O(
√
n). Our result holds for

any metric space equipped with a family of LSH functions, though its runtime and space guarantees
depend on the structure of that family.
Theorem 1.3. There exists a robust algorithm for solving the fair (c, r)-ANN problem that that uses
space Õ(

√
Q ·n1+β), where β = mink∈Z≥1

max{ρ(c1/k), 1/k}. Any query takes Õ(dnβ) time with
probability at least 0.998.

For many metric spaces, the value of β resolves nicely. For the hypercube {0, 1}d under the Ham-
ming distance we have ρ(c) = 1

2c−1 , which yields β = Θ( log c
log log c ) → 0 as c → ∞, which is not

the case with the exponent 1
2−ρ(c) of Theorem 1.2. As a corollary, this technique also allows us to

achieve purely sublinear time for a class of “relaxed” fair ANN problems.

1.1.2 d = O(
√
Q): For-all ALGORITHMS

For low-dimensional metric spaces, we develop algorithms for ANN that provide a powerful for-all
guarantee: with high probability, the data structure correctly answers every possible query q ∈ M.

3
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Our approach builds on a discretization technique applied to an LSH data structure, a paradigm
explored in prior work (Cherapanamjeri & Nelson, 2020; 2024; Bateni et al., 2024). We refine this
line of research by introducing a novel, simpler metric covering construction, improving the space
complexity by a logarithmic factor, and using sampling to improve the time complexity by a factor
of d. We present our result for the Hamming hypercube below, including results for ℓp spaces in
Appendix F.

Theorem 1.4. For the (c, r)-ANN problem in the d-dimensional Hamming hypercube {0, 1}d, there
exists an algorithm that correctly answers all possible queries with at least 0.99 probability. The
space complexity is Õ(d · n1+ρ+o(1)) and query time is Õ(d · nρ), where ρ = 1

2c−1 .

Remark (The Price of For-All Algorithms). Despite their remarkable guarantees, for-all algo-
rithms have significant drawbacks. Their space complexity scales by a factor of d, making them
intractable for high-dimensional metric spaces.

2 PRELIMINARIES

The Adversarial Robustness Model An algorithm is adversarially robust if it correctly answers a
sequence of adaptively chosen queries with high probability. This is formalized (Ben-Eliezer et al.,
2022b) through the following interactive game:

Definition 2.1. Consider the following game G between an Algorithm (A) and an Adversary (B):

1. Setup Phase: The adversary chooses a dataset S. The algorithm A then uses its private
internal randomness R ∈ {0, 1}∗ to preprocess S and build a data structure D. The
adversary may know the code for A but not the specific instance of R.

2. Query Phase: The game proceeds for Q rounds. In each round i ∈ [Q]:

• The adversary adaptively chooses a query qi. This choice can depend on the
dataset S and the history of all previous queries and their corresponding answers,
(q1, a1), . . . , (qi−1, ai−1).

• The algorithmA uses its data structure D and potentially new private randomness Ri

to compute and return an answer ai.

3. Winning Condition: The algorithm fails if there exists at least one round i ∈ [Q] for which
the answer ai is an incorrect response to the query qi.

We say that an algorithmA is δ-adversarially robust if for any dataset and any strategy the adversary
can employ, the probability that the algorithm fails is at most δ. The probability is taken over the
algorithm’s entire internal randomness (Rsetup, R1, . . . , RQ).

Approximate Nearest Neighbor Search and LSH In the Nearest Neighbors problem, we seek to
find a point in our input dataset that minimizes the distance to some query point.

Definition 2.2 (ANN). Let c > 1 and r > 0 be positive constants. In the (c, r)–Approximate
Nearest-Neighbors Problem (ANN) we are given as input a set S ⊂ M with |S| = n and a
sequence of queries {qi}Qi=1 with qi ∈. For each query qi, if there exists p ∈ BS(qi, r), we are
required to output some point p′ ∈ BS(qi, cr). If BS(qi, cr) = ∅, we are required to output ⊥. In
the case where BS(qi, r) = ∅ ≠ BS(qi, cr) we can either output a point from BS(qi, cr) or ⊥. Our
algorithm should successfully satisfy these requirements with probability at least 2/3.

A prevalent method for solving ANN is Locality Sensitive Hashing (LSH). Intuitively, we seek a
hash function that hashes close points together and far points apart with high probability.

Definition 2.3 (Locality Sensitive Hashing, (Har-Peled et al., 2012)). A hash familyH of functions
mapping M to a set of buckets is called a (c, r, p1, p2)–Locality Sensitive Hash Family (LSH) if
the following two conditions are satisfied:

• If x, y ∈M have ||x− y|| ≤ r, then Prh∈H[h(x) = h(y)] ≥ p1.

• If x, y ∈M have ||x− y|| ≥ cr, then Prh∈H[h(x) = h(y)] ≤ p2.

4
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where p1 ≫ p2 are parameters in (0, 1). We often assume that computing h in a d–dimensional
metric space requires O(d) time. We assume that the LSH constructions we consider are monotone,
which means that Pr[h(x) = h(y)] monotonically decreases as ||x− y|| increases.

For instance, in the boolean hypercube M = {0, 1}d with ||x − y|| being the number of positions
j ∈ [d] for which xj ̸= yj , there is a simple monotone LSH family:

Lemma 2.4. Consider the family H = {hj}dj=1 consisting of functions that map x ∈ {0, 1}d to its
j-th bit x[j]. Then,H is a (c, r, p1, p2)–LSH where p1 = 1− r

d , and p2 = 1− cr
d .

Proof. Prh∈H[h(x) = h(y)] = Prj∈[d][x[j] = y[j]] = d−||x−y||
d = 1− ||x−y||d .

Given a construction of a (c, r, p1, p2)–LSH for a metric space, we can solve the (c, r)–ANN prob-
lem by amplifying the LSH guarantees. This is done via an “OR of ANDs” construction: we sam-
ple L := p−11 = nρ hash functions h1, ..., hL for ρ(c) ∈ (0, 1) by concatenating the outputs of
k = ⌈log1/p2

n⌉ “prototypical” LSH functions inH, as shown in (Indyk & Motwani, 1998).

Theorem 2.5. If a d–dimensional metric space admits a (c, r, p1, p2)–LSH family, then we can solve
the (c, r)–ANN problem on it using O(n1+ρ) space and O(dnρ) time per query, where ρ = log p1

log p2
.

3 FAIRNESS IMPLIES ROBUSTNESS

We first establish a connection between robustness and fairness. We use the definition of fairness in
ANN given by Aumüller et al. (2022) and argue that it is strong enough to guarantee robustness.

Definition 3.1. A data structure solves the Exact Fair (c, r)-ANN problem for a sequence of Q
queries if, with probability at least 1 − 1

Qn over its internal randomness, it satisfies the following
conditions for every query qi in the sequence i ∈ [Q]:

1. Fairness: If BS(qi, r) ̸= ∅, then the probability of returning any specific point p′ ∈
BS(qi, r) is exactly 1/n(qi, r). If BS(qi, r) = ∅, the algorithm must answer ⊥.

2. Independence: Conditioned on the algorithm’s success, the distribution of the answer
for query qi is statistically independent of the answers returned for all previous queries
q1, . . . , qi−1 and of the non-transcient randomness R.

In their prior work, Aumüller et al. (2022) prove the following theorem:

Theorem 3.2. There exists an exact fair (c, r)-ANN data structure using O(n1+ρ log2(n) log(Q))

space and O(d · (nρ + n(q,cr)
n(q,r)+1 ) · log

2(n) log(Q)) time per query.

Let Afair be the exact fair ANN algorithm given by Theorem 3.2. We claim that this algorithm is
also adversarially robust.

Claim 3.3 (Fairness Implies Robustness). Afair is an 1
n -adversarially robust ANN algorithm.

Proof. Let Egood be the good event where Afair succeeds on every query. We have Pr[Egood] ≥
1 − 1

n via a union-bound. Let us condition on Egood. We can treat the adversary B of game G
(Definition 2.1) as deterministic by fixing its internal randomness to be the string that maximizes its
probability of winning. Let Ai := BS(qi, r) ∪ {⊥} be the set of possible answers of A to query
qi. Then, we can describe the response of B be specifying a set of fixed functions g1, g2, g3, ...,
where gi : A1 ×A2 × · · · ×Ai−1 →M. Let us also fix the random strings R1, ..., RQ of transient
randomness used by Afair in any way that satisfies Egood.

Since the Ri are fixed, suppose that f(R) ⊂M is the set of queries for whichAwrongfully answers
⊥ when BS(qi, r) ̸= ∅. If Afair is not adversarially robust, then with probability at least 1− 1

n there
exists some i ∈ [Q] for which the random variables f(R) and gi(a1, ..., ai−1) are not independent.
Assuming Egood holds, the input a⃗ = (a1, ..., ai−1) of gi is distributed uniformly in A1×· · ·×Ai−1
and independently of R.
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Still conditioning on Egood, consider the mutual information I(f(R), gi(⃗a))
4. By the data processing

inequality we have:
0 ≤ I(f(R); gi(⃗a)) ≤ I(f(R); a⃗) ≤ I(R; a⃗) = 0

implying that I(f(R); gi(⃗a)) = 0. This contradicts the non-independence of f(R) and gi(⃗a), mean-
ing that A is adversarially robust.

Remark. As discussed in the introduction, this argument extends to any algorithm which is required
to answer adaptive queries by picking from a discrete set of candidate values.

4 ASSUMPTION-FREE ROBUST SEARCHING VIA BUCKETING

A major limitation of the fair algorithm is that it only works efficiently when the dataset does not
induce a high density ratio, which is not guaranteed if S is picked by the adversary. Ideally, we aim
to obtain sublinear algorithms that work without any assumptions on the input dataset. To do this,
we introduce a search-to-decision framework:

4.1 WEAK DECISION ANN

Definition 4.1 (WEAK-DECISION-ANN). Consider the metric space M and let S ⊆ U with
|S| = n be an input point dataset. Let r > 0, c > 1 be two parameters and q ∈M be an adaptively
chosen query. If BS(q, r) ̸= ∅, then we should answer 1. If BS(q, cr) = ∅, we must answer 0. In
any other case, any answer is acceptable.

LetA be an algorithm for solving the weak decision ANN problem, though not necessarily robustly.
We can design an adversarially robust decider Adec by using A, while only increasing the space by
a factor of

√
Q. Adhering to the framework of Hassidim et al. (2022), we maintain L = Θ̃(

√
Q)

copies of the data structures D1, ...,DL generated by A using L independent random strings, and
then for each query q we combine the answers ofA privately. As opposed to the original framework
of (Hassidim et al., 2022), we do not need to use a private median algorithm, which simplifies the
analysis. To keep the query time small, we utilize privacy amplification by subsampling (Theo-
rem C.8).

Algorithm 1 The robust decider Adec (based on an oblivious decider A)

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL.
2: Parameters: Number of queries Q, number of copies L, number of sampled indices k.
3: Receive input dataset S ⊆ U from the adversary, where n = |S|.
4: Initialize D1, ...,DL where Di ← A(S) on random string ri.
5: for i = 1 to Q do
6: Receive query qi from the adversary.
7: Ji ← Sample k indices in [L] with replacement.
8: Let aij ← Di(qj) ∈ {0, 1} and Ni :=

1
k |{j ∈ Ji | aij = 1}|.

9: Let N̂i = Ni + Lap
(
1
k

)
.

10: Output 1[N̂i >
1
2 ]

To analyze this algorithm, we argue that for all i ∈ [Q], at least 8
10 of the k answers aij are correct,

even in the presence of adversarially generated queries. To do this, we first need to show that
the algorithm is differentially private with respect to the input random strings R. As a result, if
set L = 2400 log1.5(1/δ) ·

√
2Q and k = log(Q/δ) we get a robust decider that succeeds with

probability at least 1−Θ(δ). Our analysis (Theorem D.1) is included in full in Appendix D.

4.2 BUCKETING-BASED SEARCH

To perform the final search, we partition our point dataset S into nα segments, for α < 1. We then
instantiate a copy Ai ≡ Adec,i of Adec in each segment. When a query comes in, we forward it to

4For some background on information theory, see Appendix B.
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each Ai and if some segment answers 1, we perform an exhaustive search in the segment to find a
point in BS(q, cr).

Algorithm 2 Robust ANN via Weak Decisions and Bucketing

1: Parameters: Error probability δ > 0, number of queries Q
2: Partition point set S arbitrarily into κ = nα segments L1, ..., Lκ of size n/κ.
3: Initialize κ independent copies A1, ...,Aκ of Adec, each with δ′ = δ/κ
4: for i = 1 to Q do
5: Receive query qi from the adversary.
6: for j = 1 to κ where Aj(qi) = 1 and all p ∈ Lj do
7: If p ∈ BS(q, cr) is found, output p and proceed to the next query.
8: Output ⊥ and proceed to the next query.

Lemma 4.2. Algorithm 2 is a δ-adversarially robust algorithm for the ANN problem.

Proof. The algorithm can only make a mistake when all the data structures reply with 0, even though
there is a point p ∈ BS(q, r). Consider the segment Li for which p ∈ Li, and examine it in isolation.
Because all the copies of AlgorithmAdec are initialized independently from each other, the adversary
should be able to forceAi to make a mistake, which by assumption happens with probability at most
k(δ + 1/nΩ(1)) over all the segments via union bound.

We create n1−α segments, each containing nα points. Recall that a single copy of Algorithm Adec

takes Õ(n1+ρ
√
Q) pre-processing time and space, and Õ(nρ) time and space per query. Each copy

Ai runs on nα points, so for pre-processing, our algorithm uses

Õ
(
n1−α(nα)1+ρ

√
Q
)
= Õ

(
n1+αρ

√
Q
)

bits of space for creating n1−α copies A1, ...,AL. On the other hand, to process a single query the
algorithm uses

Õ
(
n1−α · (nα)ρ + nα

)
= Õ

(
n1−α+αρ + nα

)
time. To balance the summands in the query complexity term, we set

n1−α+αρ = nα =⇒ α =
1

2− ρ
This proves Theorem 1.2 and concludes the analysis of Algorithm 2.

The biggest advantage of our algorithm is that it does not make any assumptions on the input dataset.
However, it achieves sublinear query time as 1

2−ρ < 1 when ρ < 1. Furthermore, the space complex-
ity of our algorithm for small values of Q is superior to the space complexity of even the oblivious
ANN algorithm that has space complexity n1+ρ.

5 RELAXED FAIR ANN VIA CONCENTRIC LSH ANNULI

As a warm-up, we first present an algorithmic improvement to Theorem 3.2, removing the depen-
dency on the ratio n(q,cr)

n(q,r) which could grow as big as n in the query time. We achieve purely
sublinear time for a relaxed fairness guarantee:
Definition 5.1 (Relaxed Fairness in ANN). Let S be the input dataset and q ∈ M be a query
point. If BS(q, r) ̸= ∅, the algorithm aims to output some point chosen uniformly at random,
independently of past queries, from BS(q, r

′), where r′ ∈ [r, cr] is a random variable depending
on q and S. Otherwise, if BS(q, r) = ∅, the algorithm can either answer ⊥ or output a uniformly
random point from BS(q, r

′) with r′ ∈ (r, cr].

Consider the following sequence of radii between r and cr, interspersed so that the ratio between
two consecutive ones is constant: r0 = r, r1, ..., rk−1, rk = cr are defined as ri = c′ · ri−1 for
i ∈ {1, ..., k}, where c′ = k

√
c. We create k instances of Afair, where the i-th instance is initialized

with parameters (c′, rk). We run each instance to output a point uniformly from BS(q, ri). If we
observe an instance running for longer than 100d(nρ′

+n1/k) log n timesteps, we stop the execution
and switch to the next instance.
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Claim 5.2. Consider a query q and suppose BS(q, r) ̸= ∅. There exists i ∈ {0, ..., k−1} such that:

n(q, ri+1)

n(q, ri)
≤ n

1
k (1)

Proof. Since n(q, r) ≥ 1 it also holds that n(q, ri) ≥ 1 for all i ∈ {0, ..., k}. Suppose that for all
i ∈ {0, ..., k − 1} it holds that:

n(q, ri+1)

n(q, ri)
> n

1
k

Then, via a telescoping product we arrive at a contradiction:
n(q, cr)

n(q, r)
=

n(q, r1)

n(q, r0)
· n(q, r3)
n(q, r2)

· · · n(q, rk−1)
n(q, rk−2)

· n(q, cr)

n(q, rk−1)
>

(
n

1
k−1

)k−1
= n

Claim 5.2 shows that if BS(q, r) ̸= ∅ we output a uniformly sampled point from some BS(q, ri),
where ri is a random variable R depending on S, q and our algorithm’s randomness. On the other
hand, if BS(q, r) = ∅, we either output ⊥ if all the copies Di time-out, or a uniformly sampled
point from some sphere BS(q, ri). In either case, we enjoy the relaxed fairness guarantee of Def-
inition 5.1. For the runtime, our algorithm takes space O(kn1+ρ(c′)) for pre-processing, and time
Õ(dk ·min{nρ(c′), n1/k}) for answering each query:
Theorem 5.3. There exists an algorithm for solving the relaxed fair (c, r)-ANN problem that uses
Õ(dnβ) time per query and Õ(n1+β) time for pre-processing, where β = min

k∈Z
max{ρ(c1/k), 1/k}.

Solving for β is metric space dependent. For the hypercube, we can use ρ(c) = 1
2c−1 , a back-of-

the-envelope calculation yields k = Θ( log c
log log c ). To nail down the constants precisely, we pick:

β = min

{
max

{
1

⌊k∗⌋
,

1

2c1/⌊k∗⌋ − 1

}
,max

{
1

⌈k∗⌉
,

1

2c1/⌈k∗⌉ − 1

}}
with our algorithm having runtime Õ(dnβ) and space complexity Õ(

√
Q · n1+β). For instance, if

c = 4 we have k∗ = 2.48, so β = 1/3, while for c = 10 we have k∗ ≈ 3.15 so β = 1/3.

We plot the solutions for β for c ∈ [2, 100] in Figure 1. Note that β → 0 as c→∞.

Figure 1: Solutions for β for different values of c in the hypercube (left) and ℓ2 (right) domains.

6 ROBUST ANN IMPROVEMENTS

We now combine our concentric annuli technique with fair ANN to develop a more efficient and
robust algorithm.

We again partition the space into k ≥ 1 concentric annuli (ri−1, ri], where r0 = r and ri = c′ · ri−1
for c′ = k

√
c. For each annulus i, we instantiate two independent copies of the base algorithm: a

testing instance Ai ← Afair(c
′, ri−1) and a held-out execution instance A(i)

fair ← Afair(c
′, ri−1).

Our goal is to find an annulus whose algorithm runs quickly. We formalize this notion as follows.

8
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Definition 6.1. Let Ti be the random runtime of the testing instance Ai. The i-th annulus is a good
annulus if its probability of fast termination, pi, is high:

pi := Pr[Ti ≤ 4d(nρ + n1/k) log n] ≥ 0.999

Upon receiving a query q, we estimate each probability pi with an additive error of at most η by
observing the fraction of Θ(η−2 log(kQn)) independent sub-trials of Ai that halt within the time
bound. Let p̂i be this empirical estimate for pi. We identify candidate annuli with an indicator vector
α̂ ∈ {0, 1}k, where: α̂i = 1[p̂i ≥ 0.997].

With high probability, α̂i = 1 implies that annulus i is good. A similar argument to Claim 5.2
guarantees that at least one good annulus must exist. We therefore find the first index i∗ for which
α̂i∗ = 1 and run the corresponding execution instance A(i∗)

fair to completion. This approach yields a
solution in Õ(d(nρ + n1/k)) time with probability at least 0.998

To ensure robustness, the release of the vector α̂ (and thus the choice of i∗) must not reveal infor-
mation about the internal randomness of our algorithm instances. We therefore use the DP-based
robustification framework of Hassidim et al. (2022) to release α̂ privately. While this increases the
space complexity by a factor of

√
Q, it allows us to achieve a considerably better, assumption-free,

and purely sublinear query time. Algorithm 3 presents the details of our approach, and the full
analysis, as well as the proof of Theorem 1.3, can be found in Appendix E.

Algorithm 3 Improved Robust ANN Search

1: Input: Query q ∈M, parameters c, r, k ≥ 1 and δ ∈ (0, 0.995)
2: procedure INITIALIZE
3: Let c′ ← k

√
c and r0 ← r.

4: Let η = 0.001, m = η−2 log(Qk/δ) and L = 2400 log1.5(1/δ)
√
2Q.

5: for i = 1, . . . , k do
6: Let N = L ·m and ri ← c′ · ri−1.
7: Instantiate N copies Ai,j ← Afair(c

′, ri−1). ▷ Testing Instances (m× L grid)
8: Instantiate A(i)

fair ← Afair(c
′, ri−1) ▷ Execution Instances

9: procedure QUERY(q)
10: for i ∈ {1, . . . , k} do
11: Let Strunc ← 4d(n1/k + nρ) log n ▷ Let pj ← Pr[Tj < Strunc].
12: Ji ← Sample s = log(Qk/δ) indices in [L] with replacement.
13: for j ∈ Ji do
14: Let p̃ij ← 1[Ti,jm+w < Strunc] for w ∈ {0, ...,m− 1}.
15: Let p̂i ← 1

s

∑
j∈Ji

p̃ij + Lap( 1s ).

16: Set â(q)i ← 1[p̂i ≥ 0.998].
17: if â(q) = 0⃗ then
18: return ⊥
19: else
20: i∗ ← min{i ∈ {1, . . . , k} | a(q)i = 1} ▷ Find most significant bit index
21: return A(i∗)

fair (q)

7 CONCLUSION

This study presents a series of algorithms for solving ANN against adaptive adversaries. Our ap-
proaches, which integrate principles of fairness and privacy with novel data constructions, offers are
efficient and input-independent. Our work raises several intriguing questions for future research:
Can we establish time and space lower bounds for robust algorithms? How do our algorithms per-
form against adversaries with more information, such as the timestamps? Lastly, can the powerful
link between fairness and robustness be extended to other domains, like estimation problems? We
believe this work provides a strong foundation for future exploration into these areas.

9
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A RELATED AND CONCURRENT WORK

The challenge of designing algorithms robust to adversarial queries is well-studied, particularly in
privacy and statistics (Bassily et al., 2015; Smith, 2017; Bassily et al., 2016), where Differential
Privacy is a central tool for ensuring robustness (Dwork et al., 2015a; Dinur et al., 2023). The
question of adversarial robustness was formally introduced to streaming algorithms by Ben-Eliezer
et al. (Ben-Eliezer et al., 2022b), motivated by attacks on linear sketches (Hardt & Woodruff, 2013),
and has since inspired a long line of work on robustifying various streaming algorithms (Hassidim
et al., 2022; Chakrabarti et al., 2021; Lai & Bayraktar, 2020; Chakrabarti & Stoeckl, 2024; Stoeckl,
2023; Woodruff & Zhou, 2022; Ben-Eliezer et al., 2022a).

Our work is most directly inspired by the framework of Hassidim et al. (Hassidim et al., 2022),
who used Differential Privacy to solve estimation problems robustly, and by Cherapanamjeri et
al. (Cherapanamjeri et al., 2023), who applied this framework with low query time overhead. While
we adapt a similar approach, their methods are fundamentally limited to estimation and don’t extend
to search problems like NNS, where the output must be a specific dataset element. The difficulty
of robust search is further highlighted by Beimel et al. (Beimel et al., 2022), who established lower
bounds showing that robust algorithms for certain search problems are inherently slower than their
oblivious counterparts, motivating our investigation.

Different works further reinforce the unique challenges of robust search. Work on robust graph
coloring, for example, also requires techniques beyond simple noise addition due to its discrete
output space (Chakrabarti et al., 2021; Behnezhad et al., 2025). Our approach is also distinct from
Las Vegas LSH constructions (Pham & Pagh, 2016; Wei, 2022). While these methods guarantee
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no false negatives, they remain vulnerable to adversaries who can inflate their expected runtime
(Kapralov et al., 2024). Our focus, in contrast, is on robustifying traditional Monte Carlo algorithms.

Finally, our approach builds on the use of discretization and net-based arguments to achieve ’for-
all’ guarantees for ANN. This technique was previously used for robust distance estimation (Chera-
panamjeri & Nelson, 2020), for ANN in conjunction with partition trees (Cherapanamjeri & Nelson,
2024) and for efficient centroid-linkage clustering (Bateni et al., 2024). We contribute a simpler and
more streamlined construction that offers a modest performance improvement over this prior work.

A.1 COMPARISON WITH FENG ET AL. (2025)

Our work was developed concurrently and independently with Feng et al. (2025). Our approaches,
assumptions, and performance guarantees differ significantly.

Methodology Feng et al. (2025) propose a method tightly coupled to the structure of DP noise
via a reduction to the private selection problem. In contrast, our “search-to-decision” and
fairness frameworks are more general, treating the DP component as a black-box primitive.

Assumptions Their algorithm’s complexity depends on a near-neighbor density bound s, where
|BS(q, cr)| ≤ s. We present the first algorithms whose query runtimes are independent of
the input dataset, making them robust to worst-case data distributions.

Performance Their query time scales multiplicatively with the number of points in the annulus,
|BS(q, cr)|, while our algorithms are either purely sublinear or their query time depends
additively only on the density ratio D = |BS(q,cr)|

|BS(q,r)| . Crucially, this dependency on D does
not affect our space complexity, which still grows by an additional factor of

√
Q.

B BACKGROUND FROM INFORMATION THEORY

We will use some basic notions from information theory in this work:

Definition B.1. The entropy of a random variable X that has support on a domain X is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (2)

The entropy expresses the information content of X , in the following sense: if the entropy is high,
one needs a lot of bits to encode a value of a random variable in expectation. The joint and condi-
tional entropy notions are defined similarly, using the joint and conditional distributions respectively
(Cover & Thomas, 2001).

Definition B.2. The mutual information of two random variables X and Y is defined as:

I(X ; Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) = I(Y ; X) (3)

Analogously, one can define notions such as the joint mutual information and conditional mutual
information. Note that X and Y are independent if and only if I(X ; Y ) = 0.

Lemma B.3 (Chain Rule of Mutual Information). Let X1, ..., Xn, Y be random variables. Then:

I(X1, ..., Xn ; Y ) =

n∑
i=1

I(Xi ; Y | X1, ..., Xi−1) (4)

The data-processing inequality shows that no manipulation of the data can improve the inferences
that can be made from it (Cover & Thomas, 2001):

Lemma B.4 (Data Processing Inequality). Consider random variables X,Y, Z that form a Markov
Chain X → Y → Z - that is, X and Z are conditionally independent given Y . Then:

I(X;Y ) ≥ I(X;Z) (5)

Corollary B.5. If X → Y → Z then I(X;Y | Z) ≤ I(X;Y ).
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C REVIEW OF DIFFERENTIAL PRIVACY

Our work leans heavily on results from differential privacy, so we give the necessary definitions and
results here.

C.1 DEFINITION OF DIFFERENTIAL PRIVACY

Definition C.1 (Differential Privacy). Let A be any randomized algorithm that operates on
databases whose elements come from some universe. For parameters ε > 0 and δ ∈ [0, 1], the
algorithmA is (ε, δ)–differentially private (DP) if for any two neighboring databases S ∼ S′ (ones
that differ on one row only), the distributions on the algorithm’s outputs when run on S vs S′ are
very close. That is, for any S ∼ S′ and any subset of outcomes T of the output space of A we have:

Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ

C.2 THE LAPLACE MECHANISM AND ITS PROPERTIES

Theorem C.2 (The Laplace Mechanism, (Dwork et al., 2006)). Let f : X∗ → R be a function.
Define its sensitivity ℓ to be an upper bound to how much f can change on neighboring databases:

∀S ∼ S′ : |f(S)− f(S′)| ≤ ℓ

The algorithm that on input S ∈ X∗ returns f(S) + Lap
(
ℓ
ε

)
is (ε, 0)–DP, where

Lap(λ;x) :=
1

2λ
exp

(
− |x|

λ

)
is the Laplace Distribution over R.

We will make use of the following concentration property of the Laplace Distribution:

Lemma C.3. For m ≥ 1, let Z1, ...Zm ∼ Lap (λ) be iid random variables. We have that:

Pr
[

m
max
i=1

Zi > λ(ln(m) + t)
]
≤ e−t

C.3 PROPERTIES OF DIFFERENTIAL PRIVACY

Differential Privacy has numerous properties that are useful in the design of algorithms. The fol-
lowing theorem is known as “advanced adaptive composition” and describes a situation when DP
algorithms are linked sequentially in an adaptive way.

Theorem C.4 (Advanced Composition, (Dwork et al., 2010)). Suppose algorithmsA1, ...,Ak are
(ε, δ)–DP. Let A′ be the adaptive composition of these algorithms: on input database x, algorithm
Ai is provided with x, and, for i ≥ 2, with the output yi−1 of Ai−1. Then, for any δ′ ∈ (0, 1),
Algorithm A is (ε̃, δ̃)–DP with:

ε̃ = ε ·
√

2k ln(1/δ′) + 2kε2 and δ̃ = kδ + δ′

There is also a composition theorem concerning situations where the dataset is partitioned:

Theorem C.5 (Parallel Composition). Let f1, ..., fk be (ε, 0)-DP mechanisms and X be a dataset.
Suppose X is partitioned into k parts X1, ..., Xk and let f(X) = (f1(X1), ..., fk(Xk)). Then f is
(ε, 0)-DP.

The next theorem dictates that post-processing the output of a DP algorithm cannot degrade its
privacy guarantees, as long as the processing does not use information from the original database.

Theorem C.6 (DP is closed under Post-Processing). Let A : Un → Y m and B : Y m → Zr be
randomized algorithms, where U, Y, Z are arbitrary sets. If A is (ε, δ)–DP, then so is the composed
algorithm B(A(·)).

The following theorem showcases the power of DP algorithms in learning.
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Theorem C.7 (DP and Generalization, (Bassily et al., 2016; Dwork et al., 2015b)). Let ε ∈
(0, 1/3) and δ ∈ (0, ε/4). Let A be a (ε, δ)–DP algorithm that operates on databases in Xn and
outputs m predicate functions hi : X → {0, 1} for i ∈ [m]. Then, if D is any distribution over X
and S consists of n ≥ 1

ε2 · log
(
2εm
δ

)
iid samples from D, we have for all i ∈ [m] that:

Pr
S∼Dn

hi←A(S)

[∣∣∣∣∣ 1

|S|
∑
x∈S

hi(x)− E
x∼D

[hi(x)]

∣∣∣∣∣ ≥ 10ε

]
≤ δ

ε

In other words, a privately generated predicate is a good estimator of its expectation under any
distribution on the input data. A final property of privacy that we will use is a boosting technique
through sub-sampling:
Theorem C.8 (Privacy Amplification by Subsampling, (Bun et al., 2015; Cherapanamjeri et al.,
2023)). Let A be an (ε, δ)–DP algorithm operating on databases of size m. For n ≥ 2m, consider
an algorithm that for input a database of size n, it subsamples (with replacement) m rows from the
database and runs A on the result. Then this algorithm is (ε′, δ′)–DP for

ε′ =
6εm

n
and δ′ = exp

(
6εm

n

)
· 4m

n
· δ

D PROOF OF THEOREM D.1

In this section we include a formal analysis of the construction of Algorithm 1. We prove the
following theorem:
Theorem D.1. LetA be an oblivious decider algorithm for ANN that uses s(n) space and t(n) time
per query. Let δ ∈ (0, 0.995) and suppose we set L = 2400 log1.5(1/δ) ·

√
2Q and k = log(Q/δ).

Then, the algorithm Adec is an adversarially robust decider that succeeds with probability at least
1−Θ(δ) using s(n) · Õ

(√
Q
)

bits of space and Õ (t(n)) time per query.

First, we show that the algorithm is differentially private with respect to its input randomness.
Lemma D.2. Let ε = 0.01 and δ ∈ (0, 0.995). Algorithm Adec is (ε, δ)–DP with respect to the
string of randomness R.

Proof. We analyze the privacy of the algorithm Adec given in Algorithm 1 with respect to the string
of randomness R, which we interpret as its input. Suppose we let

ε′ =
ε

2
√

2Q ln(1/δ)

For all i ∈ [Q], we claim that the response to query qi is (ε′, 0)–DP with respect to R. This is because
the statistic Ni defined in Line 8 of Algorithm 1 has sensitivity 1/k and therefore by Theorem C.2,
after applying the Laplace mechanism in Line 9, we have that releasing N̂i is (1, 0)–DP with respect
to the strings R. The binary output based on comparing N̂i with the constant threshold 1/2 is still
(1, 0)-DP by post-processing (Theorem C.6).

Since L ≥ 2k, using the amplification by sub-sampling property (Theorem C.8), we get that each
iteration is (ε′, 0)–DP, because for large enough Q we have:

6k

L
=

6ε log 1
δ + 6ε logQ

24 · log 1
δ

√
2Q ln

(
1
δ

) <
2ε

4
√

2Q ln
(
1
δ

) = ε′

Finally, by adaptive composition (Theorem C.4), after Q adaptive steps our resulting algorithm is
(ε′′, δ)-DP where:

ε′′ = ε′

√
2Q ln

(
1

δ

)
+Q(ε′)2 =

ε

2
+

ε2

4 ln
(
1
δ

) ≤ ε

for ε ≤ 2 ln δ−1, which is satisfied for δ ∈ (0, 0.995). Thus, Algorithm Adec is (ε, δ)–DP with
respect to its inputs – the random strings R.
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Next, we show that a majority of the data structuresDi output accurate verdicts with high probability,
even against adversarially generated queries.

Lemma D.3. With probability at least 1 − δ, for all i ∈ [Q], at least 0.8L of the answers aij are
accurate responses to the decision problem with query qi.

Proof. The central idea of the proof, as it appeared in (Hassidim et al., 2022), is to imagine the
adversary B as a post-processing mechanism that tries to guess which random strings lead A to
making a mistake.

Imagine a wrapper meta-algorithm C, outlined as Algorithm 4, that takes as input the random string
R = r1 ◦r2 ◦· · ·◦rL, which is generated according to some unknown, arbitrary distributionR. This
algorithm C simulates the game between Adec and B: It first runs B to provide some input dataset
S ⊆ U to Adec, which is seeded with random strings in R. Then, C uses B to query Adec adaptively
with queries (q1, ..., qQ). At the same time, it simulates Adec to receive answers a1, ..., aQ that are
fed back to B. By Lemma D.2, the output (a1, ..., aQ) is produced privately with respect to R,
regardless of how the adversary makes their queries.

At every step i, once B has provided q⃗i = (q1, ..., qi) and has gotten back i answers (a1, ..., ai) from
Adec, our meta-algorithm C post-processes this output history {(qj , aj)}ij=1 to generate a predicate
hq⃗i : {0, 1}∗ → {0, 1}. This predicate tells which strings r ∈ {0, 1}∗ lead algorithm A to success-
fully answer query prefix q⃗i on input dataset S, in the decision-problem regime. More formally5:

hq⃗i(r) :=
∧

1≤j≤i

{A(r)(S, qj) = 1 [BS(qj , r̄) ̸= ∅]} (6)

Algorithm 4 The meta-algorithm C, ran for i steps

1: Inputs: Random string R = r1 ◦ r2 ◦ · · · rL, descriptions of AlgorithmsAdec and B.
2: Simulate B to obtain a dataset S ⊂ U .
3: Initialize Adec with random strings (r1, ..., rL) and the dataset S.
4: for i ∈ Q do
5: Simulate B to produce a query qj based on the prior history of queries and answers.
6: Simulate A on query qj to produce an answer.
7: Compute (via post-processing of query/answer history) predicate hq⃗i(·) from Equation 6.
8: Output (hq⃗1 , ..., hq⃗Q).

Generating these predicates is possible because hq⃗i only depends on q⃗i, which is a substring of the
output history that C has access to. As a result, C can produce hq⃗i by (say) calculating its value for
each value of R exhaustively6. Because C is only allowed to post-process the query/answer vector
(q1, a1, ..., qi, ai), the output predicate hq⃗i is also generated in a (ε, δ)–DP manner with respect to
r1, ..., rL, by Theorem C.6.

Given these Q privately generated predicates, and since L > 1
ε2 log

2εQ
δ for large enough Q, by the

generalization property of DP (Theorem C.7) we have that with probability at least 1− δ
ε = 1−Θ(δ)

it holds for any distributionR and for all i ∈ [Q] that:∣∣∣∣∣∣ E
r∼R

[hq⃗i(r)]−
1

L

L∑
j=1

hq⃗i(rj)

∣∣∣∣∣∣ ≤ 10ε =
1

10
(7)

But if R is the uniform distribution, then Er∼R [hq⃗i(r)] is simply the probability that A2 gives an
accurate answer on the fixed query sequence q⃗i. Since A is an oblivious decider, Equation 7 implies
that:

E
r∼R

[hq⃗i(r)] ≥
9

10
(8)

5We replace the radius parameter r with r̄ briefly in this argument. The symbol r is reserved for an arbitrary
random string.

6We assume C has unbounded computational power.
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Further, 1
L

∑L
j=1 hq⃗i(rj) is the fraction of random strings that lead A2 to be correct. Thus, by

Equation 8, this fraction is at least
(

9
10 −

1
10

)
L = 0.8L for all i ∈ [Q].

We are now ready to prove the main theorem of this section.

Proof of Theorem D.1. Let us condition on the event that Lemma D.3 holds, which happens with
probability at least 1 − Θ(δ). Then, for all i ∈ [Q], Ni is either at least 0.8, when BS(qj , r̄) ̸= ∅,
or at most 1− 0.8 = 0.2, otherwise. By Lemma C.3, we require that the maximum Laplacian noise
not exceed 0.2 with high probability:

Pr [|Zi| > 0.2] = Pr

[
|Zi| >

1

k
(ln(1) + 0.2k)

]
≤ e−0.2k (9)

Since our threshold for deciding is N̂i := Ni + Zi ≥ 0.5, we can see that setting k = Ω(log(Q/δ))
will make the probability in Equation 9 at most δ

Q , implying, by union bound, that Adec outputs the
correct answer at every timestep i ∈ [Q] with high probability.

E PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3 to analyze Algorithm 3. First we show that the vector â(q) is
produced robustly.

ri+1ri

Figure 2: Our concentric LSH construction. In green lies the set BS(q, ri), and blue represents the annulus that
extends to BS(q, ri+1)

Lemma E.1. With probability at least 1−Θ(δ) over all queries and annuli, the vectors p̂ computed
by Algorithm 3 are such that:

||p̂− p||∞ ≤ 2η

This holds despite the adversary’s action to establish the opposite.

Proof. Our argument mimics the proof of Theorem D.1 in that it invokes the robustification frame-
work of Hassidim et al. (2022).

We first show that producing p̂ is (1, 0)-private. Note that it suffices to argue that for a fixed i ∈ [k]
we have |p̂i − pi| ≤ η and p̂i is produced randomly with respect to the randomness of the copies of
Afair. Indeed, if each p̂i is produced privately with respect to the input randomness, we can invoke
the parallel composition theorem of DP (Theorem C.5) to show that the entire release of p̂ is private
without additional cost to the privacy parameters.

As we know, privacy with respect to the input randomness implies robustness, so we now have to
calculate the cost of privacy in our approximation algorithm.
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Fixing some query and i ∈ [k] we know by the triangle inequality and a standard Chernoff bound
(since m = Ω(η−2 log n)) that:

|pi − p̂i| ≤

∣∣∣∣∣∣pi − 1

s

∑
j∈Ji

p̃i

∣∣∣∣∣∣+
∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣ ≤ η +

∣∣∣∣∣∣1s
∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣
The latter term of the above sum is the error incurred via the privatization process. We can bound it
by using our known bound on the magnitude of Laplacian noise (Equation 9):∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij − p̂i

∣∣∣∣∣∣ =
∣∣∣∣∣∣1s

∑
j∈Ji

p̃ij −
1

s

∑
j∈Ji

p̃ij + Lap
(
1

s

)∣∣∣∣∣∣ ≤ 1

s
ηs = η

This happens with probability at least 1 − e−ηs ≥ 1 − 1
poly(kQ/δ) . Taking a union bound over k

annuli and Q queries establishes the lemma.

Corollary E.2. Since Algorithm 3 generates vector a⃗ ∈ {0, 1}k by post-processing, this also implies
that a is generated robustly.

Next, we argue that the output point of the algorithm is produced correctly and within the claimed
runtime and space complexity.

Theorem E.3. Algorithm 3 is a (δ + 1
poly(n) )-robust (c, r)–ANN algorithm that uses space Õ(

√
Q ·

n1+β), where c′ = k
√
c and k is an integer chosen to minimize the quantity β = max{ρ(c1/k), 1/k}.

Any query takes Õ(dnβ) time with probability at least 0.998.

Proof. Letting β = max{ρ(c′), 1/k}, we maintain Θ(k log2.5(kQn)
√
Q) testing instances, as well

as k execution instances. This means our total space complexity is:

Θ
(
k log2.5(kQn/δ)

√
Q · n1+ρ + kn1+ρ

)
= Õ(k

√
Q · n1+ρ).

For the query runtime, suppose BS(q, r) ̸= ∅. As we argued in Claim 5.2, there must exist some
annulus ℓ for which the density ratio is at most n1/k. For that annulus, the guarantees of Theorem 3.2
imply that:

Pr
[
Tℓ < 4(nρ + n1/k) log2(n)

]
≥ 1− 1

poly(n)
≫ 0.999

Therefore, there always exists a good annulus when BS(q, r) ̸= ∅.
By Lemma E.1 we have that a good annulus will, with high probability be captured by Algorithm 3.
Conversely, if â(q)i = 1, then pi ≥ 0.999 − η = 0.998. As a result, if i∗ is the MSB of a,
the corresponding execution instance A(i∗)

fair runs in time O(dnβ) with probability at least 0.998.
Overall, to process one query, we run all ks = O(log(Qkn)) truncated copies Aij O(n1/k). Thus,
our algorithm takes O(d log(nQ) · nβ) per query, as initially claimed.

Finally, to argue robustness, we know from Lemma E.1 that releasing vector â is done robustly. Also,
Claim 3.3 tells us that the held-out execution copy is robust, given that the MSB i∗ is produced from
a via a fixed function (post-processing). Overall, the output of Algorithm 3 is adversarially robust
with probability at least 1 − δ − 1

poly(n) , accounting for the probability that any of the fair ANN
algorithms fail.

F IMPROVED ROBUST ANNS ALGORITHMS WITH ∀ GUARANTEES

In this section, we will discuss another path to adversarial robustness for search problems –providing
a for-all guarantee. We will focus on the ANN problem for this section, due to its ubiquity and
importance, as well as its amenity to the techniques we discuss.
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F.1 A For-all GUARANTEE IN THE HAMMING CUBE

We present the Hamming Distance ANN case first because it is the most natural for-all guarantee
one can give. This is because the space we are operating over is discrete, and we can easily union-
bound over all possible queries and only incur a cost polynomial to the dimension d of the metric
space.

Theorem F.1. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer every possible query correctly with probability
at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)), and the time required per query is
Õ(d2 · nρ), where ρ = 1/c.

Proof. First, let us recall the standard LSH in the Hamming Hypercube: We are given a point set
S ⊆ {0, 1}d with |S| = n. We receive queries q ∈ {0, 1}d. Our Locality Sensitive Hash family H
is defined as follows: Pick some coordinate i ∈ [d] and hash x ∈ {0, 1}d according to xi ∈ {0, 1}.
This function h acts as a hyperplane separating the points in the hypercube into two equal halves,
depending on the i-th coordinate. Sampling h uniformly at random fromH is equivalent to sampling
i ∈ [d] uniformly at random. We can easily see thatH is an (r, cr, p1, p2)–LSH family, as:

Pr
h∼H

[h(p) = h(q)] =
d− ||p− q||

d
=

{
≥ 1− r

d := p1, when ||p− q|| ≤ r

≤ 1− cr
d := p2, when ||p− q|| ≥ cr

We now go through the typical amplification process for LSH families (Gionis et al., 1999). Instead
of sampling just one coordinate, we sample k. And instead of sampling just one hash function, we
sample L different ones h1, ..., hL ∈ Hk and require that a close point collides with q at least once.
With this scheme, we know that if we fix q ∈ {0, 1}d and p ∈ BS(q, r) we have:

Pr [∃i ∈ [L] : hi(p) = hi(q)] ≥ 1− (1− pk1)
L

Furthermore, if ||p− q|| ≥ cr, we must have:

Pr [∃i ∈ [L] : hi(q) = hi(p)] ≤ Lpk2

Now, we want to guarantee that with high probability there doesn’t exist any query q ∈ {0, 1}d such
that for all points p ∈ BS(q, r) we have hi(q) ̸= hi(p) for all i ∈ [L]. In other words, we want:

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤ 1

n

We can use the union bound to get:

Pr
[
∃q ∈ {0, 1}d : ∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)

]
≤

∑
q∈{0,1}d

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)]

So it suffices to establish that for fixed q ∈ {0, 1}d we have:

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤
1

n2d

We can weaken this statement and union-bound as follows:

Pr [∀p ∈ BS(q, r)∀i ∈ [L] : hi(p) ̸= hi(q)] ≤ Pr [∃p ∈ BS(q, r) ̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤
∑

p∈BS(q,r)

Pr [̸ ∃i ∈ [L] : hi(p) = hi(q)]

≤ |BS(q, r)| · (1− pk1)
L

≤ n(1− pk1)
L

So it suffices to require that:

(1− pk1)
L ≤ 1

n22d
(10)
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On the other hand, the expected number of points in S \ BS(q, cr) that we will see in the same
buckets as q is:

E [|p ∈ S \BS(q, cr) | ∃i ∈ [L] : hi(p) = hi(q)|] =
∑

p∈S\BS(q,cr)

Pr [∃i ∈ [L] | hi(p) = hi(q)]

(11)

≤ nLpk2 (12)
We can now combine Equation 10 and Equation 12 to work out the values of k and L. First, we
want to get O(L) time in expectation, so we require pk2 ≤ 1/n, which gives:

k ≥ log1/p2
(n)

Now, let p1 = pρ2. Substituting, we resolve the value of L as:
L ≥ nρd log n

With that in place, we can see that our algorithm takes O(L) time with high probability. Indeed, let
X be the number of points in S \ BS(q, cr) that are hashed to some common bucket with q. Using
a simplified Chernoff bound, we have that:

Pr [X ≥ 10L] ≤ 2−10L =
1

n10dnρ ≪
1

nΩ(1)

which implies that our runtime per query is O(L) with high probability. As for the value of the
constant ρ we have by definition that:

ρ :=
log p1
log p2

=
log

(
1− r

d

)
log

(
1− cr

d

) ≈ 1

c

Overall, evaluating our hash function requires Õ(log n) time, and evaluating distances between
points requires O(d) time. We maintain O(d · nρ log n) hash tables, meaning that on a single query
we spend O(d2 ·nρ log n) time. For pre-processing, apart from storing the entire dataset in dn space,
we take O(d · n1+ρ+o(1)) space to construct our data structure.

F.1.1 IMPROVING THE QUERY RUNTIME VIA SAMPLING

We can improve the dependency on d for the query runtime by using sampling to find a good bucket.
The following theorem encapsulates this finding, reducing the runtime complexity by a factor of d:
Theorem F.2. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 1− 1/n2. The space requirements are Õ(d · n1+ρ+o(1)) and the time required per query is
Õ(d · nρ), where ρ = 1/c.

Proof. From our analysis above, we know that we take L = nρ · d log n different hash functions.
Consider some query q. We analyze the expected number of buckets that contain some point p ∈
BS(q, r). Let Xq be a random variable representing the number of buckets i ∈ [L] for which some
point in BS(q, r) lies in bucket i. Define the following indicator random variable:

1i =

{
1, if some point p ∈ BS(q, r) lies in bucket i ∈ [L]

0, otherwise
By linearity of expectation, we can now write:

E[Xq] =

L∑
i=1

Pr[1i = 1]

=

L∑
i=1

Pr

 ⋃
p∈BS(q,r)

{hi(p) = hi(q)}


≥ L · pk1
= L · (p2)ρk

≥ L

nρ

= d log n
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By using the Chernoff bound, we can see that with high probability, Xq is close to its expectation:

Pr

[
Xq ≤

1

2
d log n

]
≤ e−

d log n
8 =

1

nd/8
≪ 1

n

Let us, then, condition on Xq > 1
2d log n. On query time, we can simply sample m = Θ(nρ log n)

buckets uniformly at random from [L]. We know that with probability at least d logn
2nρd logn = 1

2nρ , a
single randomly selected bucket contains some point from BS(q, r). So, for all m of the selections
to not contain such a point, the probability is at most:(

1− 1

nρ

)nρ logn

≤ e− logn =
1

n

So, with probability at least 1 − 1
n we find a bucket containing a good point. Since, with high

probability, the number of points in P \BS(q, cr) in any bucket are O(L), we see that this sampling
method improves the query runtime to O(nρ log n).

F.1.2 UTILIZING THE OPTIMAL LSH ALGORITHM

Our earlier exposition used the original LSH construction for the Hamming Hypercube (Indyk &
Motwani, 1998) that achieves ρ = 1/c. We can also use the state-of-the-art approach from (Andoni
& Razenshteyn, 2015) that achieves ρ = 1

2c−1 in place of Theorem F.1. This slightly improves the
exponent on n:
Theorem F.3. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
d–dimensional Hamming Hypercube that can answer all possible queries correctly with probability
at least 0.99. The space complexity is O(d ·n1+ρ+o(1)), and the time required per query is O(d ·nρ),
where ρ = 1

2c−1 . These runtime guarantees hold with high probability.

The analysis is identical, so we will not repeat it again: Since the algorithm succeeds with constant
probability, and we want it to succeed on all 2d possible queries, we boost its success probability
to 1 − 1

100·2d . This way, after the union bound, any query succeeds with probability at least 0.99.
Furthermore, the analysis of the sampling algorithm for improving the query runtime in Theorem F.2
also remains the same. All that changes between using the standard Hamming norm LSH as opposed
to the optimal one is the ratio ρ := log p1

log p2
.

F.2 DISCRETIZATION OF CONTINUOUS SPACES THROUGH METRIC COVERINGS

The for-all algorithm we presented as Theorem F.2 cannot be applied outside of discrete spaces,
however, because the key to our analysis was the union bound over all the possible queries.

To simulate a similar argument for solving ANN in continuous, ℓp spaces, we can consider a strategy
of discretizing the space. We place special “marker” points and guarantee that some version of the
ANN problem is solvable around them. Then, when a query comes in, we find its corresponding
marker point, and solve the ANN problem for it. We show that the answer we get is valid for the
original query as well, so long as the “neighborhood” around the marker points is small enough. A
similar strategy and covering construction appeared in (Cherapanamjeri & Nelson, 2024), although
they did not make algorithmic use of the ability to project any query point to the covering set.
Instead, their algorithm deems it sufficient to be successful on every point on just the covering set.

F.2.1 METRIC COVERINGS IN CONTINUOUS SPACES

To initiate our investigation, we need the definition of a metric covering:

Definition F.4. Consider a metric spaceM = (Rd, || · ||p) with metric µ. Let U ⊂ Rd be a bounded
subset. A set Ŝ ⊆ Rd is called an ∆-covering of U if for all q ∈ U there exists some ŝ ∈ Ŝ such that

||q − ŝ||p ≤ ∆

Suppose that U is a bounded subset of Rd. We can construct the following the following ∆-covering
of U : Let C := sup

x∈U
||x||∞ and suppose {ui}di=1 is an orthonormal basis spanning U . We know that

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

||x||∞ ≤ C for all x ∈ U , so let us define:

Ŝ =

d∑
i=1

α̂iui, where

α̂i ∈ {−C,−C + ε, ..., C − ε, C}

for some choice of ε that we will decide later. This is a standard construction for ℓ2 that we now
extend to ℓp (Shalev-Shwartz & Ben-David, 2014). As defined, we have:∣∣∣Ŝ∣∣∣ = (

2C

ε

)d

q

p∗
r

Figure 3: An illustration of an r-covering.

Now, fix some q ∈ U . We can write:

q =

d∑
i=1

αiui

For all i ∈ [d], let α̂i be such that αi ∈ α̂i ± ε. Let ŝ :=
d∑

i=1

α̂iui. Now we have that:

||q − ŝ||pp =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(αi − α̂i)ui

∣∣∣∣∣
∣∣∣∣∣
p

p

=

d∑
i=1

|αi − α̂i|p ≤ dεp

Now, let us set:

ε =
∆

d1/p
=⇒ ||q − ŝ||p ≤ ∆

Our construction thus has size:

|Ŝ| =
(
2Cd1/p

∆

)d
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F.2.2 THE ROBUST ANN ALGORITHM

With this construction in mind, our algorithm for robust (c, r)–ANN in ℓp space follows as Algo-
rithm 5. The algorithm remains agnostic to the specific LSH data structure that could be used to
solve ANN in ℓp metric spaces obliviously (Charikar, 2002; Datar et al., 2004), but assumes that
the success probability over a set of queries in that data structure can be boosted by increasing the
number of hash functions taken. This was the case for the Hamming norm as well.

Algorithm 5 Robust ℓp ANN through discretization

1: Parameters: Max-norm C, runtime/accuracy tradeoff ∆ > 0, LSH parameters c, r > 0.
2: Receive point dataset S ⊂ U with |S| = n from the adversary.
3: Let Ŝ be a ∆-covering of U as constructed in Section F.2.1, and let c′ ← cr−∆

r+∆ .
4: Initialize an LSH data structure D for solving (c′, r + ∆)–ANN that answers all queries in Ŝ

correctly with high probability.
5: while Adversary provides queries do
6: Receive query q ∈ U from the adversary.
7: Find ŝ ∈ Ŝ such that ||q − ŝ||p ≤ ∆.
8: Query D on ŝ and output whatever it outputs.

Theorem F.5. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in the
(Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. Assumming
that the input dataset and the queries are all elements of U = {x ∈ Rd | ||x||p ≤ C} for some
C > 0, the pre-processing space is Õ(nT ) and the time per query is Õ(T ), where:

T = O

[
d · nρ′

log

(
Cd1/p

cr

)]
(13)

where:

ρ′ =
(10 + c)2

161c2 − 20c− 100

Proof. First, to argue for correctness, let q be any query. Suppose there exists some point x ∈ S
with ||x− q||p ≤ r. Then, by triangle inequality it holds that:

||x− ŝ||p ≤ ||x− q||p + ||ŝ− q||p ≤ ∆+ r

Thus, with high probability, D will find some point x′ ∈ S with ||x′− ŝ||p ≤ cr−∆. For that point,
we have that:

||x′ − q||p ≤ ||x′ − ŝ||p + ||ŝ− q||p ≤ cr −∆+∆ = cr

Therefore, Algorithm 5 will output a correct answer. If there doesn’t exist such a point x, it is valid
for our algorithm to output ⊥, so are done.

For the runtime, recall that |Ŝ| ≤ O(2Cd1/p/∆)d. Hence, in order to guarantee success for all
queries in Ŝ, a similar analysis as to the one for the Hamming Hypercube shows that D takes up:

O

[
d · n1+ 1

2c′2−1 log

(
2Cd1/p

∆

)]
space for pre-processing and

O

[
n

1
2c′2−1 log

(
2Cd1/p

∆

)]
time per query processed, where

c′ :=
cr −∆

r +∆

Note that we use the optimal LSH algorithm for ℓp spaces, which guarantees ρ = 1
2c2−1 . Our only

constraint is that we must have ∆ < cr. If we set ∆ = c
10r, we get a per-query runtime of:

O

[
n
1+ 1

2c′2−1 log

(
20Cd1/p

cr

)]
, where c′ =

9c

10 + c
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F.2.3 REMOVING THE DEPENDENCY ON THE SCALE

Our algorithm from Theorem F.5 crucially depends on logC, where C is a bounding box for the
query and input point space in the ℓp norm. We can remove the dependency on C by designing our
covering to be data dependent, instead paying an additional logarithmic factor.

A

B

C

Figure 4: Data-Dependent Discretization of the input query space.

Our new covering Ŝ′ will be a collection of n∆-coverings, as constructed in Algorithm 5, each one
discretizing the r-ball around a point p ∈ S. The number of points in this new covering is:

|Ŝ′| ≤ O

[
n ·

(
r · d1/p

cr

)d
]
= O

[
n ·

(
d1/p

c

)d
]

(14)

Note that the size of this covering improves upon the (nd)d size of the covering given in (Chera-
panamjeri & Nelson, 2024), which results in a slightly better runtime. This new covering notably
does not cover every possible query. However, it covers exactly the queries we care about. This
improved covering leads to the following for-all guarantee for robust ANN:
Theorem F.6. There exists an adversarially robust algorithm solving the (c, r)–ANN problem in
the (Rd, ℓp) metric space that can answer an unbounded number of adversarial queries. The pre-
processing time / space is Õ(nT ) and the time per query is Õ(T/d), where:

T = O
[
d · nρ′

(d log d+ log n)
]

(15)

where:

ρ′ =
1

2c′2 − 1
=

(10 + c)2

161c2 − 20c− 100

Proof. We distinguish between two cases:

1. If a query q is not included in any BS(p, r) for any p ∈ S, then the answer can safely be
⊥ because BS(q, r) = ∅ necessarily. Thus, we can just run the default LSH algorithm and
simply output whatever it outputs.

2. Otherwise, a query q can be included in some BS(p, r) for some p ∈ S. Then, suppose
ŝ′ ∈ Ŝ′ is a point in our covering such that ||q − ŝ′||p ≤ ∆. Then:

||p− ŝ′||p ≤ ||p− q||p + ||ŝ′ − q||p ≤ r +∆ (16)
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Thus, as we argued before, with high probability D finds some point x ∈ S with ||x −
ŝ′||p ≤ cr −∆, and for that point we have:

||x− q||p ≤ ||x− ŝ′||p + ||ŝ′ − q||p ≤ cr −∆+∆ = cr (17)

which means our algorithm will output a correct answer.

As before, our algorithm’s space and runtime guarantees scale with log |Ŝ′|.
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