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Abstract

We introduce the task of implicit offensive text001
detection in dialogues, where a statement may002
have either an offensive or non-offensive inter-003
pretation, depending on the listener and con-004
text. We argue that reasoning is crucial for005
understanding this broader class of offensive006
utterances, and create Mh-RIOT (Multi-hop007
Reasoning Implicitly Offensive Text Dataset),008
to support research on this task. Experiments009
using the dataset show that state-of-the-art010
methods of offense detection perform poorly011
when asked to detect implicitly offensive state-012
ments, achieving only ∼0.11 accuracy.013

In contrast to existing offensive text detection014
datasets, Mh-RIOT features human-annotated015
chains of reasoning which describe the men-016
tal process by which an offensive interpreta-017
tion can be reached from each ambiguous state-018
ment. We explore the potential for a multi-hop019
reasoning approach by utilizing existing entail-020
ment models to score the transitions of these021
chains, and show that even naive reasoning022
models can result in improved performance in023
most situations. Analysis of the chains pro-024
vides insight into the human interpretation pro-025
cess and emphasizes the importance of incor-026
porating additional commonsense knowledge.027

1 Introduction028

With the development and popularity of online fo-029

rums and social media platforms, the world is be-030

coming an increasingly connected place to share031

information and opinions. However, the benefit032

these platforms provide to society is often marred033

by the creation of an unprecedented amount of bul-034

lying, hate, and other abusive speech1. Such toxic035

speech has detrimental effects on online communi-036

ties, and can cause great personal harm. Some037

efforts by the NLP community to address this038

1Disclaimer: due to the nature of this work, data and ex-
amples may contain content which is offensive to the reader.

I love bookclubs, I go there every week.

Do they have free food or something?

You go to bookclubs
because of free food.

You love free food and
eating.

You love eating a lot
which makes you fat.

You are fat.

Is that how you became fat?
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Figure 1: An instance illustrating Explicit OTD, Im-
plicit OTD and our multi-hop reasoning approach.

problem have achieved high accuracies in classify- 039

ing toxic speech in specific domains, such as sex- 040

ist (Golbeck et al., 2017), racist (Waseem, 2016), 041

or otherwise hateful text (Ross et al., 2016; Gao 042

and Huang, 2017; Davidson et al., 2017). 043

While many instances of toxic speech are 044

blatant and easily identified with sentence-level 045

classifiers, not all offensive text contains obvious 046

indicators. Waseem et al. (2017) argues for the 047

classification of offensive text into two categories, 048

(1) explicit offensive text2, which is unambiguous 049

in its potential to be offensive and often includes 050

overtly offensive terms, such as slurs, and (2) 051

implicit offensive text, which is more ambiguous, 052

and may use sarcasm, innuendo, or other rhetorical 053

2Waseem et al.(2017) originally defined these terms as “ex-
plicit/implicit abusive text”, but we adopt the phrase “offensive
text” as used by the OTD community.
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devices to hide the intended nature of the statement.054

In this work we argue that there exists a direct055

relationship between these tasks, and that each056

implicitly offensive statement corresponds to an057

explicitly offensive statement which is realized058

through the interpretation process. This explicitly059

offensive statement is closer to the sentiment the060

listener feels when interpreting the statement as061

offensive. Consider the example in Figure 1, a062

dialogue between two speakers, S1 and S2:063

064

S1: “I love bookclubs, I go every week”065

S2: “Do they have free food or something?”066

067

By itself, the statement by S2 is innocuous and068

could be interpreted as a simple prompt for more069

information about the bookclub. However, other070

interpretations of this statement could lead S1 to ar-071

rive at a number of explicitly offensive statements,072

such as (1) “You are poor”, (2) “You are fat”, (3)073

“You are not smart/sophisticated”. Thus we con-074

sider the chain of reasoning which constitutes the075

interpretation to be a crucial part of recognizing076

implicitly offensive statements.077

The importance of more complex reasoning078

when resolving such ambiguities in offensive con-079

tent is not new. The Hateful Memes dataset (Kiela080

et al., 2021) pairs images with unrelated text cap-081

tions. Both of these components are benign when082

considered independently, but combining them can083

occasionally create memes with offensive interpre-084

tations. Consequently, approaches which jointly085

reason over a combined representations of each086

modality outperform those which treat each modal-087

ity independently, hindering the system’s ability to088

perform more complex reasoning.089

To study this phenomenon purely in the text090

domain, we use human annotators to construct a091

dataset consisting of (1) an implicitly offensive092

statement, (2) a corresponding explicitly offensive093

statement, and (3) a chain of reasoning mapping094

(1) to (2). When evaluated on the explicitly of-095

fensive examples, state-of-the-art models perform096

well, achieving > 90% accuracy. However, when097

applied to the implicit OTD samples, the accu-098

racy of the models drops to an average of about099

< 11%. We then explore the use of a multi-hop100

reasoning-based approach by utilizing a pre-trained101

entailment model to score the transitions along each102

“hop” of the reasoning chain. When incorporating103

additional knowledge (from human annotations)104

into the premises of each entailment, we achieve 105

higher accuracy than comparable methods which 106

do not utilize the reasoning chain. We present this 107

as evidence that a multi-hop reasoning-based ap- 108

proach is a promising solution to this problem, and 109

release our data to support further research into this 110

problem. 111

Our contributions in this work are threefold: 112

• We propose the task of implicit offensive 113

text detection (Implicit OTD), and construct a 114

dataset to research on this topic. The dataset 115

contains annotations of reasoning chains to 116

support study into multi-hop approaches. 117

• We conduct experiments using existing state- 118

of-the-art OTD models, and show they per- 119

form poorly on Implicit OTD task. 120

• We examine the use of entailment models as 121

part of a multi-hop reasoning approach for 122

Implicit OTD, showing improved accuracy in 123

most cases. We provide an analysis of which 124

types of reasoning are most challenging, and 125

which types of external knowledge is required. 126

2 Related Works 127

OTD in Text Classification Early approaches to 128

OTD relied primarily upon dictionaries like hate- 129

base 3 to lookup offensive words and phrases. The 130

creation of OTD datasets enabled the development 131

of ML-based approaches utilizing simple features, 132

such as bag-of-word representations (Davidson 133

et al., 2017). With the advent of social media plat- 134

forms, many resources have been developed for 135

identifying toxic comments in web text (Waseem 136

and Hovy, 2016; Davidson et al., 2017), includ- 137

ing a number of deep learning-based methods (Pit- 138

silis et al., 2018; Zhang et al., 2018b; Casula et al., 139

2020; Yasaswini et al., 2021; Djandji et al., 2020). 140

Notably, all of these methods can be described as 141

building a contextual representation of a sentence 142

(whether trained end-to-end or on top of existing 143

pre-trained language models), and making a classi- 144

fication based on this representation. 145

OTD in Dialogue Systems As user-facing tech- 146

nologies, preventing dialogue systems from pro- 147

ducing offensive statements is crucial for their role 148

in society. As noted in Dinan et al. (2020), toxicity 149

in generated dialogue may begin with biases and 150

3www.hatebase.org
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offensive content in the training data, and debias-151

ing techniques focused on gender can reduce the152

amount of sexist comments generated by the re-153

sulting system. Similar outcomes can be obtained154

through adjustments to the model or training pro-155

cedure, for instance, toxic words can be masked156

during training to reduce their role in model pre-157

dictions (Dale et al., 2021). GeDi (Krause et al.,158

2020) proposed using class-conditional LMs as159

discriminators to reduce the toxicity produced by160

large pre-trained LMs (GPT-2). Additionally it161

may also be important to identify offensive state-162

ments made to a dialogue system, as it has been163

shown that dialogue systems can react with counter-164

aggression (Cercas Curry and Rieser, 2018), and165

systems which continuously learn during deploy-166

ment may incorporate toxic user responses into167

future generations.168

Subjectivity in OTD Previous work has hit upon169

the role that an individual’s own perspective may170

play when determining offensiveness. For instance,171

in the Offensive Language Identification Dataset172

(OLID), a widely used OTD dataset (Zampieri173

et al., 2019a,b, 2020), annotations exist on a hierar-174

chy. Each level dictates the target of the offensive175

text, in terms of their identity as a group, individual,176

or entity. But to our knowledge, a person’s iden-177

tity or attributes have not played a critical role in178

existing OTD research. OLID was also augmented179

with labels for capturing the degree of explicit-180

ness (Caselli et al., 2020)), and may also support181

research into resolving implicitly offensive state-182

ments. However, implicitness in OLID is defined183

primarily as the lack of an overtly offensive word184

or slur, and the aforementioned personal attributes185

or subjectivity of interpretation are not considered.186

Our dataset differs in this respect, as we consider187

not just if a statement is offensive, but how it can188

be considered offensive, by defining the interpre-189

tation process as a chain of reasoning towards a190

subjective experience. In this sense, a more similar191

approach comes from normative reasoning in moral192

stories (Emelin et al., 2020), where a short chain of193

reasoning is used to assess morality of actions and194

consequences.195

3 Data196

We propose Mh-RIOT as a dataset for the study of197

Implicit OTD as a multi-hop reasoning problem,198

and for use as a diagnostic to test models’ ability199

to identify implicitly offensive statements.200

Each example in the dataset consists of three 201

parts: 202

1. A personal attribute of the reader/listener. 203

2. An implicitly offensive statement, its corre- 204

sponding explicitly offensive statement, and a 205

non-offensive statement. 206

3. A chain of reasoning, describing the iterative 207

process of how the ambiguity of the implicitly 208

offensive statement can be resolved into the 209

corresponding explicitly offensive statement. 210

Appendix A lists some sample chains in Mh- 211

RIOT. 212

We collect annotations for Mh-RIOT using Ama- 213

zon Mechanical Turk (AMT). Four pilot experi- 214

ments were conducted to select qualified annotators 215

for the final annotation. The instructions provided 216

to the annotators can be found in Appendix C. 217

3.1 Annotation Scheme 218

Personal Attribute As we have defined in Sec- 219

tion 1, we argue that the context in which a state- 220

ment occurs is crucial to understanding its potential 221

in creating an offensive interpretation, and there- 222

fore the context should play an important role in 223

the annotation task. However, providing an overly 224

specific context can increase the difficulty of pro- 225

viding a relevant implicitly offensive statement. To 226

make the annotation task more feasible we reduce 227

the context to a single feature: a personal attribute 228

of the reader/listener. 229

The set of attributes is obtained from the per- 230

sonas in the PERSON-CHAT corpus (Zhang et al., 231

2018a), of the form “I like sweets.”, or “I work as a 232

stand up comedian.” Attributes related to ethnicity, 233

gender, and other protected classes are manually re- 234

moved, leaving 5334 distinct attributes. We divide 235

the attributes into several categories (detailed cate- 236

gory information can be found in Appendix B) be- 237

fore randomly sampling a subset of 920 attributes, 238

uniformly across categories, in order to increase 239

the number of workers assigned to each attribute. 240

Implicit, Explicit and Non-offensive Text For 241

each example, workers were provided 3 diverse at- 242

tributes and asked to choose one as writing prompt. 243

The workers are then instructed to provide annota- 244

tion in the form of example sentences, including: 245

Implicitly offensive statement Utterances that do 246

not express an overt intention to cause offense and 247

often require complicated reasoning or external 248
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knowledge to be fully recognized as offensive con-249

tents.250

Explicitly offensive statement Utterances which251

contain an obvious and direct intention to cause252

offense without external knowledge or reasoning253

processes.254

Non-offensive statement Utterances that do not255

cause offense under the context initiated with the256

attribute.257

Both explicit and implicit offensive statements258

should share the same meaning in terms of how259

they are offensive. Non-offensive statements are260

collected to construct a balanced dataset and to261

evaluate the accuracy of existing OTD models.262

Chain of Reasoning A distinguishing character-263

istic of our work is the collection of chains of264

reasoning to explain the interpretation process for265

implicitly offensive text. We represent the chain266

of reasoning as a series of sentence-to-sentence267

rewrites, similar to natural logic (MacCartney and268

Manning, 2014). One practical advantage of using269

a sentence-based representation for reasoning steps270

(in comparison to a structured representation like271

predicate-argument tuples) is that it allows the use272

of powerful text-to-text (T5) (Raffel et al., 2019)273

and entailment models (Liu et al., 2019; He et al.,274

2021), which are trained on sentence-level input.275

Formally each chain begins with an implicitly276

offensive statement (0-th step, denoted as s0) and277

ends with an explicit offense (sl), making the278

length of the chain the number of steps between s0279

and sl, inclusive.280

3.2 Post-processing281

We were able to collect 2657 examples from the282

AMT and performed post-processing to ensure the283

quality of the data. We define three processes to284

edit the collected annotations in order to standard-285

ize the format of the reasoning steps, listed below.286

Examples with steps that can not be handled by287

any of the processes are removed from the dataset.288

To reduce biases in post-processing, we assign 3289

workers to each task.290

Attribute Insertion Rule (AIR) We insert the291

attribute statement into the first reasoning step (s1)292

to make this information accessible to any model293

taking the sentence as input. For instance, for an294

example with the attribute, “I am colorblind.” and295

the implicit offensive statement, “Oh, that would296

explain your wardrobe!”, the reasoning step “Oh,297

Knowledge

Only the best can win contests.
Classic things are usually old.
Grown-ups don’t play with dolls.
Parents want children to be independent.
Overworking makes people exhausted.

Table 1: Samples of the knowledge used to construct
chains of reasoning.

your color blindness would explain your wardrobe!” 298

generated by the worker is tagged as AIR. 299

Knowledge Insertion Rule (KIR) Steps that are 300

used to introduce external commonsense knowl- 301

edge are tagged as KIR. For instance, to support 302

the reasoning process from step “You are a grown- 303

up who can’t afford to rent a house.” to “You are 304

poor.”, the knowledge of “Poor people can’t afford 305

to rent a house.” is introduced. The following step 306

“You are poor.” is then tagged as KIR. To better 307

understand the effectiveness of external knowledge, 308

we also extract the commonsense knowledge dur- 309

ing the post-processing (Table 1). 310

Rephrasing Rule (RR). Steps that have equiva- 311

lent meaning to previous steps but can be simplified 312

by rephrasing are tagged as RR. For instance, to 313

express more explicit offensive meaning, an rea- 314

soning step written as a question “Do you like meat 315

too much, or just food in general?” is rephrased as 316

a declarative sentence step “You must love food too 317

much in general.” and tagged as RR. 318

3.3 Post-processing Results 319

Of the initially collected 2657 examples, 1050 re- 320

mained after the post-processing. The high task 321

rejection rate (60.5%) also conveys the difficulty of 322

this content generation task. In the dataset, the av- 323

erage length of a reasoning chain is 4.84 steps, with 324

a minimum length of 3 (60 examples) and a max- 325

imum of 6 (39 examples). Among all three tags, 326

RR is most frequently applied (59.6%), followed 327

by KIR (21.5%) and AIR (18.9%). 328

4 Experiments 329

We evaluate the difficulty of the Implicit OTD task 330

using existing state-of-the-art models, before ex- 331

ploring a multi-hop approach to Implicit OTD us- 332

ing existing entailment models to score transitions 333

in the reasoning chains. 334
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Accuracy

Mh-RIOT Twitter OffensEval Toxicity

Models Implicit Explicit Non All All All All

RoBERTa-Twitter 1.7 79.0 99.7 59.5 85.9 85.8 89.1
BERT-OffensEval 15.9 93.2 99.2 62.8 82.2 82.4 84.2

ALBERT-OffensEval 9.7 88.6 94.5 65.2 82.4 82.7 85.2
BERT-Toxicity 14.8 96.6 98.5 61.9 81.2 81.9 83.6

ALBERT-Toxicity 11.4 91.5 94.9 62.8 79.4 80.3 82.6
Avg. 10.7 89.8 97.4 62.5 82.2 82.6 84.9

Table 2: Performance of SOTA OTD models on the classification task. Non: Non-offensive.

4.1 Sentence Classification335

We begin by evaluating existing state-of-the-art336

OTD models on both the Implicit-OTD and337

Explicit-OTD task. These include BERT (Devlin338

et al., 2019), RoBERTa (Liu et al., 2019), and AL-339

BERT (Lan et al., 2020), three pretrained large340

scale language models fine-tuned on existing OTD341

datasets, which produce the highest accuracy re-342

ported on the explicit OTD task.343

These models are fine-tuned on three OTD344

datasets, including (1) the OLID/OffensEval2019345

dataset (Zampieri et al., 2019a), discussed in346

Section 2, which contains 14,200 labeled tweets347

and includes implicit offensive statements, (2)348

the TWEETEVALL (Barbieri et al., 2020) multi-349

task offensive Twitter set for detecting irony, hate350

speech and offensive language, and (3) the Google351

Jigsaw Toxic Comments dataset 4 which contains352

159,571 samples in the training set. In the subse-353

quent sections we refer to these datasets as Offen-354

sEval, Twitter, and Toxicity, respectively.355

Table 2 shows the results of the baseline models356

on correctly classifying the implicitly and explicitly357

offensive text as offensive/non-offensive (systems358

are denoted as a hyphenated combination of pre-359

trained model and dataset). In every situation, the360

performance on the implicit task is significantly361

lower. The overall trend is perhaps unsurprising, as362

implicit examples lack clear indicators of offensive-363

ness, such as highly offensive words. However, the364

degree to which these models underperform in the365

Implicit-OTD task illustrates the extent to which366

these tasks differ, and highlights the risk of deploy-367

ing such models to perform this task in real-world368

situations.369

An underlying assumption of this work and the370

4Google Jigsaw Toxic Comments

motivation for reasoning chains is the expectation 371

that as the reasoning process is applied, the in- 372

terpretation of the implicitly offensive utterance 373

becomes increasingly (explicitly) offensive. We 374

evaluate the extent to which this holds true in the 375

dataset, using the baseline systems to predict the 376

offensiveness of each rewrite across the reasoning 377

chain. Appendix D shows that this is indeed the 378

case, that moving down the reasoning chain corre- 379

lates with higher accuracy, and implying that each 380

step gradually reveals more of the offensive con- 381

notations in implicit offense. It also verifies that 382

the collected/annotated chains have the property of 383

being orderly. 384

4.2 Reasoning by Entailment 385

The results of Section 4.1 indicate two things: cur- 386

rent OTD systems perform poorly on the implicit 387

OTD task, and the difficulty of using existing mod- 388

els decreases as each successive step of the reason- 389

ing chain is applied. This insight hints at a poten- 390

tial approach to implicit OTD: apply a reasoning 391

model to map initial statements to their simplest 392

and most explicit corresponding offensive state- 393

ment (and score the likelihood of it being entailed 394

by the original statement), and then score the re- 395

sulting statement with a dedicated OTD model. In 396

essence, this decomposes a difficult inference into 397

a series of smaller inferences which may be tack- 398

led with higher accuracy by current models. We 399

explore the possibility using this approach with 400

existing models, assuming the human-annotated 401

chains as gold proof paths. 402

We treat the problem of scoring reasoning chains 403

as a multi-hop textual entailment problem as in 404

Figure 2. Using an existing state-of-the-art textual 405

entailment model, we score the transition from each 406

step si to the next, si+1. Such models take as input 407

5
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I love bookclubs, I go
there every week.

Do they have free
food  or something? Attribute Insertion

Rephrasing Knowledge Insertion Rephrasing

Do bookclubs
have free food?

You love free
food and eating.

You love eating a lot
which makes you fat.

 You are fat. 

Eating a lot makes
people fat.

Speaker Listener

You go to bookclubs
for free food.

Rephrasing

Attribute

Step 1

Step 2

Step 3

Step 4

Step 5

Knowledge

Implicit

Figure 2: An example demonstrating the entailment experiment. Entailment scores between adjacent steps are
given by the text entailment models. Arrows represent the entailment processes. Esi→sj represents the entailment
score from step i to step j, where s0 represents the implicit offense and sl represents the last step (step 4 in this
example) of the chain.

a pair of texts, <premise, hypothesis>, and output408

scores for a set of labels indicating “entailment”409

(Ep→h), “netural” and “contradiction” (Cp→h). An410

example reasoning step, the premise “You look like411

someone who could use more exercise.” entails the412

hypothesis “You are fat.”.413

A naive approach to multi-hop reasoning is to414

treat each transition as an independent event, and415

model the probability of a reasoning chain as a416

product of transition scores. In the context of rea-417

soning chains, we define the probability of a chain418

c as:419

E(c) =
l−1∏
i=0

Esi→si+1 (1)420

We refer to this as MUL, the product model ap-421

proach to multi-hop reasoning. For the entailment422

model scoring each transition in the chain, we con-423

sider two systems, one derived from DeBERTa-424

base (He et al., 2021) and one from RoBERTa-425

large (Liu et al., 2019). Both systems were fine-426

tuned on the MNLI corpus (Nangia et al., 2017), a427

standard corpus for textual entailment.428

In our experiments we are most interested in429

comparing the scores of MUL to those of methods430

which ignore the reasoning chain, either by scoring431

the entailment of the explicitly offensive statement432

given the implicit one(s0 → sl), or by using one433

of the current state-of-the-art approaches to clas-434

sify the implicit statement directly(Table 2). While435

MUL is a naive model, any advantage of a model436

with such strong independence assumptions sug-437

gests areas where future multi-hop reasoning mod-438

els could significantly improve over non-reasoning439

“single hop” counterparts.440

The results of the multi-hop experiments are pre- 441

sented in Table 3. We observe that under most 442

conditions, MUL outperforms Es0→sL by a mod- 443

est margin. The performance of MUL does suffer 444

on the longest reasoning chains as a result of an in- 445

creasing number of < 1.0 multiplications (a conse- 446

quence of the independence assumptions), negating 447

the margins between the two systems. The detailed 448

results can be found in Appendix G. 449

In terms of the types of reasoning which are 450

most beneficial, we observe large changes in the 451

transition scores before and after knowledge is inte- 452

grated into the reasoning process, i.e., around KIR 453

steps. We examine this behavior further, analyzing 454

the performance of OTD models on predicting the 455

final layer at points sk−1 and sk, before and after 456

knowledge integration (Table 5). We observe sig- 457

nificant (2-3 fold) improvements when predicting 458

after knowledge is integrated. Similar results can 459

also be observed on textual inference models as 460

shown in Appendix E. 461

To explore the effectiveness of the external 462

knowledge, we utilize the extracted knowledge 463

mentioned in Section 3.2 and perform an additional 464

set of experiments (denoted k+) where the external 465

knowledge acquired in data annotation is added 466

to each statement as a conjunction, until after a 467

KIR step occurs. For instance, if the knowledge 468

in sk is “Eating too much can make people fat.”, 469

this knowledge will then be connected to all steps 470

in {si|i = 0, 1, ..., k − 1} to form “<si> and eat- 471

ing too much can make people fat.” As shown 472

in Table 3, adding knowledge increases scores for 473

both models, but notably resulting in a significant 474

advantage to the RoBERTa product model, which 475
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Entailment Scores

RoBERTa DeBERTa

Chain Length Chain Length

Step 3 4 5 6 ALL 3 4 5 6 ALL

s0 → s1 64.7 84.4 89.9 90.0 - 68.4 78.2 86.5 90.7 -
s1 → s2 37.1 58.0 46.9 57.4 - 29.7 46.1 41.2 45.0 -
s2 → s3 73.6 55.1 42.5 50.2 - 64.4 50.5 35.5 44.3 -
s3 → s4 58.2 61.6 40.6 - 51.0 55.6 37.5 -
s4 → s5 60.9 65.9 - 50.0 63.3 -
s5 → s6 67.5 - 57.8 -

MULs0,...,sl 14.3 13.1 4.6 5.4 11.5 12.1 7.7 1.8 3.3 6.8
Es0→sl 17.2 9.1 4.4 5.6 7.6 8.3 5.9 2.4 3.6 4.5

MULs0,...,sl (k+) 38.1 32.0 17.9 16.5 23.5 30.2 20.3 7.6 4.0 14.1
Es0→sl (k+) 35.9 15.9 10.8 8.6 15.0 25.3 11.9 7.5 6.6 10.9

Table 3: Entailment scores between various steps of the reasoning chain, and the scores of a product model pro-
cessing each step sequentially (MUL). Column headers indicate subsets of the data, where all chains are of 3, 4, 5,
or 6 steps respectively. k+: scores indicate those where external knowledge is concatenated to all statements prior
to a KIR step.

now outperforms direct prediction, and all previous476

baseline models, in all scenarios. The resulting sys-477

tem is also more robust to long reasoning chains.478

We even observe that the performance margins over479

direct prediction in the 6-step chains exceeds that480

of 3-step setting.481

5 Discussion482

We introduced this work based on a hypothesis483

of multi-hop approach as having a conceptual ad-484

vantage over existing approaches to offensive text485

detection, in that humans must each be perform-486

ing some reasoning process in order to find state-487

ments either offensive or unoffensive in different488

situations. We then showed that this conceptual489

advantage could translate to an empirical one, and490

showed performance gains over current approaches.491

However, we do so under strong assumptions and492

with access to additional information. How realis-493

tic is our experimental setup?494

5.1 A Perfect Reasoning Model?495

A concern in our initial entailment experiment is496

the naive product reasoning model. As mentioned497

in Section 4.2, an ideal reasoning model for this498

multi-hop approach should be a generative model499

that outputs explicitly offensive statements directly500

from implicitly offensive statements with reasoning501

process handled internally. In this sense, existing502

contextual paraphrase generation models (Kazem- 503

nejad et al., 2020; Niu et al., 2021) can be promis- 504

ing candidates for a generative reasoning model. 505

Such models aim at paraphrasing sentences while 506

incorporating knowledge and external reasoning 507

process and thus possess the potential to handle 508

the reasoning process underlying implicit offensive 509

statements after trained on large amount of data. 510

But to what extend can a perfect reasoning model 511

benefit the performance? 512

To answer that, we can assume a perfect para- 513

phrasing model and the task reduces to whether 514

we can predict the first transition from the implicit 515

statement to the next step in the chain. This is 516

akin to moving from an observed statement to a 517

hypothetical knowledge base, upon which reason- 518

ing can occur to produce the explicitly offensive 519

analog, which can be classified with high accu- 520

racy. As shown in Table 4a, the initial transition, 521

Es0→s1 , can be predicted with much higher score 522

than the direct prediction, Es1→sl . On one hand, 523

This result shows that even if the model is aware 524

of the corresponding explicitly offensive rewrite, it 525

has difficulty directly understanding the inference 526

relationship between them. Lower Cimplicit→non 527

also shows the difficulty distinguishing implicit and 528

non-offensive statements as shown in Table 4b. On 529

the other hand, these results show the possibility of 530

getting better inference by grounding the implicit 531
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Entailment Scores
Steps RoBERTa DeBERTa

s0 → s1 86.1 83.1
s0 → sl 6.7 3.9

(a)

Contradiction Scores
Steps RoBERTa DeBERTa

implicit→ non 13.7 17.9
explicit→ non 94.6 97.0

(b)

Table 4: The entailment scores (a) and contradiction
scores (b) from implicit statements to non-offerensive
statements versus explicit statements to non-offensive
statements.

statement in a knowledgebase that follows the gen-532

eral structure of the reasoning chains, which can533

finally result in improvements in the overall clas-534

sification accuracy. In other words, with such a535

paraphrasing model (rather than our naive product536

model), we should be able to improve the accuracy537

ultimately close to Es0→s1 .538

5.2 What Knowledge is Necessary?539

In a separate experiment, we identified the biggest540

obstacle to accurate reasoning to be the integration541

of existing knowledge. From Table 5, we are able to542

observe different effectiveness on different models.543

It is worth exploring what type of knowledge is nec-544

essary. We examined the entire set of knowledge to545

study what types of information is import to reason-546

ing. Largely the information falls in 3 categories:547

(1) dictionary-based knowledge, (2) commonsense,548

and (3) folk knowledge. Statements of knowledge549

like “classic things are old.” is explained primarily550

as a way to bridge the gap between specific words,551

which might not be necessary given the gaining552

ability of large scale language models.553

A second form of knowledge, commonsense554

knowledge is exemplified in statements like, “salad555

is healthy.”. Existing work on defeasible reason-556

ing (Sap et al., 2019; Zhang et al., 2020) has shown557

improvements incorporating external knowledge to558

support entailment-based reasoning using models559

similar to those used in this work. A third and un-560

usual type of knowledge is “folk knowledge” which561

may be a personal opinion and factually inaccurate.562

Examples of this in the dataset can be “smart peo-563

ple don’t make mistakes.”Although it is potentially564

Accuracy
Models sk−1 sk

RoBERTa-Twitter 7.9 29.6
BERT-OffensEval 13.6 42.5

ALBERT-OffensEval 24.1 51.1
BERT-Toxicity 9.3 35.8

ALBERT-Toxicity 15.5 39.1

Table 5: Performance of SOTA OTD models on steps
before KIR (sk−1) and steps after KIR (sk).

possible to embed such folk knowledge into pre- 565

trained language models through training, current 566

trend in NLP research is to remove the biases from 567

the training data (Bender et al., 2021). In this case, 568

it is still difficult to collect such knowledge and we 569

leave this for future work. 570

6 Conclusion 571

In this work we aim to broaden the scope of offen- 572

sive text detection research to include the nuanced 573

utterances . Improvements in these models have 574

applications ranging from distant futures where hu- 575

mans frequently interact with dialogue systems in 576

situated ways which require such pragmatic reason- 577

ing to avoid unintended offense, to today’s online 578

forums, where often a cat-and-mouse game of in- 579

creasingly more creative offensive text creation and 580

moderation occurs. 581

In addition to providing a dataset of implicitly of- 582

fensive text, which can itself be used purely as a di- 583

agnostic of systems’ ability to identify more subtle 584

instances of offensive text, we also provide chain of 585

reasoning annotations which we hope can provide 586

insight to how statements lead to offensive interpre- 587

tations in certain situations. Our experiments pro- 588

vide a proof of concept of how multi-hop reasoning 589

models have the potential to outperform directly 590

classifying offensive text using current state-of-the- 591

art approaches, and identify areas for improvement 592

via future research in commonsense knowledge 593

base construction and inference. 594

7 Ethical Considerations 595

In this work we aim to develop models which can 596

more accurately predict the emotions elicited from 597

text statements, and although our goal is to identify 598

potentially harmful statements in order to avoid 599

them, it is important to consider potential negative 600

use-cases for such work. A system which can iden- 601
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tify offensive statements can also select for them,602

and it may be possible to use such a system to tar-603

get users, attacking them on topics or attributes604

which they are most sensitive about. To the extent605

that we are able, we must be cautious not to aid in606

the development of such systems in the process of607

furthering research for more empathetic dialogue608

systems.609

We tailor our study in two ways in an effort to re-610

duce the risk of harm. First, we focus primarily on611

identifying implicitly offensive statements. While612

a system which produces implicitly offensive state-613

ments may still be used to attack users, they are614

significantly more challenging to generate when615

compared to explicitly offensive statements, which616

do not require any additional inferences or world617

knowledge. We hypothesize that this makes im-618

plicitly offensive statements unlikely to be utilized619

in offensive systems. Second, our dataset size is620

chosen with the goal of being large enough to sup-621

port evaluation, but not training. It can therefore622

function as a useful diagnostic of offensive text de-623

tection systems, with limited risk of being used to624

create one. Third, in our dataset we have removed625

protected attributes such as ethnicity, gender and626

racism. Our dataset contains chain of reasoning627

which indicates the thinking processes of offen-628

sive statements. Given that such thinking processes629

could involve culture, personality and other high-630

level affective elements, removing such attributes631

could prevent the present work to be used to con-632

struct toxic generation models.633
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A Samples854

Table 6 shows some examples in Mh-RIOT. Each855

sample contains an Attribute, an Implicit State-856

ment, an Explicit Statement, a Non-offensive State-857

ment and a chain of reasoning mapping from im-858

plicit statement to explicit statement. The post-859

processing tag is attached to the end of each rea-860

soning step, where AIR is for “Attribute Insertion861

Rule”, KIR is for “Knowledge Insertion Rule” and862

RR is for “Rephrasing Rule”.863

Table 7 shows some examples of extracted864

knowledge from KIR steps of the chain of reason-865

ing during post-processing. sk−1 indicates the rea-866

soning steps before applying KIR and sk indicates867

the reasoning steps after applying KIR.868
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Attribute I eat lots of pancakes and syrup.
Implicit Statement That can indeed give you extra energy.
Explicit Statement You are fat.

Non-offensive I love pancakes, too.
Chain of Reasoning Pancakes and syrup can indeed give you extra energy. (AIR)

You got extra energy from eating. (RR)
You eat too much. (RR)
You eat too much which makes you fat. (KIR)
You are fat. (RR)

Attribute I am a guitar player.
Implicit Statement Oh did you learn that by yourself?
Explicit Statement Your guitar skills are awful.

Non-offensive That’s why you are so good at music.
Chain of Reasoning Did you learn guitar by yourself? (AIR)

You must have learned guitar by yourself. (RR)
You must have learned guitar by yourself because you don’t look so professional. (KIR)
You are not professional at guitar. (RR)
Your guitar skills are awful. (RR)

Attribute I wear contacts.
Implicit Statement Another reason why I’m scared to get old.
Explicit Statement You are so old.

Non-offensive I usually wear glasses.
Chain of Reasoning Wearing contacts is another reason why I’m scared to get old. (AIR)

I’m scared to get old because I don’t want to wear contacts like you. (RR)
I’m scared to get old because old people wear contacts like you. (KIR)
Old people like you wear contacts like you. (RR)
You are so old. (RR)

Attribute I come from a small town.
Implicit Statement Are you coming here for higher education?
Explicit Statement You are uneducated, then.

Non-offensive I always want to move to a small town.
Chain of Reasoning Are you coming to this big city for higher education? (AIR)

You come to this big city for higher education. (RR)
You come to this big city for education because you couldn’t get enough education in the small town. (KIR)
You couldn’t get enough education in the small town. (RR)
You are uneducated. (RR)

Table 6: Some chain of reasoning samples.

sk−1 You eat too much.
sk You eat too much which makes you fat.

Knowledge Eating too much can make people fat.
sk−1 I’ve never seen you on TV as a comedian.
sk I’ve never seen you on TV as a comedian because you’re not famous.

Knowledge Famous comedians are always on TV.
sk−1 You should lose weight.
sk You should lose weight because you are fat.

Knowledge Fat people should lose weight.
sk−1 You quit school.
sk You quit school which makes you uneducated.

Knowledge People who quit school are uneducated.

Table 7: Some external knowledge samples.
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B Attribute Categories869

Table 8 shows how we categorized and selected870

different attributes. The original attributes are di-871

vided into four big categories: AM, HAVE, MY and872

OTHER based on the syntax features (subject type,873

POS, Norm) of the sentence. Each category of AM,874

HAVE and MY are then divided into several sub-875

categories based on the object type of the sentence.876
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Category Sub-Category Example Number

AM (Attributes that describe personal status with a be-verb as the root.) 1429 (230)
AM-noun I am a teacher. 754 (50)
AM-number I am 30 years old. 76 (15)
AM-status I’m getting married next week. 149 (25)

I am funny.
AM-other I’m from San Francisco. 450 (140)

HAVE (Attributes that describe certain personal actions with a verb as the root.) 3203 (230)
HAVE-preference I like to remodel homes. 901 (65)

I hate talking to people.
Have-status I have a dog named bob. 540 (40)
Have-other I own my home. 1762 (125)

I live in Colorado.

MY (Attributes that describe possession status related to the speaker.) 731 (230)
MY-preference My favorite sport is football. 256(80)

My favorite movie is pretty woman.
My favorite food is cheeseburgers.

My-other My mom is a checker at the local grocery store. 475(150)
My wife and i like to go scuba diving.

OTHER (Other remaining attributes that do not have specific syntax features.) 763(230)
Before i die , i want to skydive. 763 (230)
While both my parents have thick European accents, I do not.
It is my universe, and everyone else is just a character in it.

Total 5334 (920)

Table 8: Different categories of personal attributes and the number of selected attributes (numbers in parentheses).
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C Crowdsourcing Instruction877

Figure 3 shows a template instruction that we used878

in our AMT tasks. Crowd workers are instructed879

with the purpose of the research and are notified880

about the potential offensive contents of this task.881
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Figure 3: Introduction in the crowdsourcing task
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D Sentence Classification Results882

Figure 4 shows the results of existing SOTA OTD883

models on each step of the chain of reasoning in884

Mh-RIOT.885
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Figure 4: Performance of the models on each step of the chains of reasoning with different lengths.
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E Model Details886

Table 9 shows the details of the models used in all887

of our experiments. We implemented the frame-888

work with the “TextClassification” pipeline from889

HuggingFace5. All models can be directly down-890

loaded from the links given in the table.891

5https://huggingface.co/
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Experiment Model Sources

Classification

RoBERTa-Twitter
Base model: RoBERTa-base
#Parameters: 125M
Trained on: TWEETEVAL (2020)
Source: https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive

BERT-OffensEval Base model: BERT-base-uncased
#Parameters: 110M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/bert-base-uncased-offenseval2019-downsample

ALBERT-OffensEval Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-offenseval2019-downsample

BERT-toxicity Base model: BERT-base-uncased
#Parameters: 110M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/toxicity-classifier

ALBERT-toxicity Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-toxicity

Entailment

RoBERTa

Base model: RoBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/roberta-large-mnli
Reported Acc. on MNLI: 90.2

DeBERTa

Base model: DeBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/microsoft/deberta-large-mnli
Reported Acc. on MNLI: 91.1

Table 9: Details of the models used in the experiments.
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F Knowledge Entailment Experiment892

Table 10 shows the results of running text inference893

models around KIR steps of the chain of reasoning.894

To be noticed, we were not able to find any KIR895

steps in the chain of reasoning whose length is 3.896

This implies that knowledge insertion might not be897

necessary to interpret implicit statements that are898

not “implicit” enough.899

G Knowledge Entailment Experiment900

Table 11 shows the final accuracy calculated with901

the entailment scores and accuracy of OTD models902

on Explicit inputs.903
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Entailment Scores
Length Models sk−1 → sk sk → sk+1

4-steps RoBERTa 28.2 66.4
DeBERTa 19.8 58.3

5-steps RoBERTa 23.0 78.2
DeBERTa 15.7 66.5

6-steps RoBERTa 19.1 79.5
DeBERTa 17.5 71.5

Table 10: Entailment scores between the KIR step (sk) and step before KIR (sk−1) and step after KIR (sk+1). The
chains with length of three are not included in this evaluation as they do not frequently contain a KIR step.

Accuracy

Implicit
MUL*Explicit MUL(k+)*Explicit

OTD Models RoBERTa DeBERTa RoBERTa DeBERTa

RoBERTa-Twitter 1.7 9.1 5.4 18.6 11.1
BERT-OffensEval 15.9 10.7 6.3 21.9 13.1

ALBERT-OffensEval 9.7 10.2 6.0 20.8 12.5
BERT-Toxicity 14.8 11.1 6.6 22.7 13.6

ALBERT-Toxicity 11.4 10.5 6.2 21.5 12.9

Table 11: Full accuracy calculated from reasoning models and the accuracy of OTD models on Explicit.
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