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Abstract

Sensing human motions through Inertial Measurement Units (IMUs) embedded
in personal devices has enabled significant applications in health and wellness.
While labeled IMU data is scarce, we can collect unlabeled or weakly labeled
IMU data to model human motions. For video or text modalities, the “pretrain
and adapt” approach utilizes large volumes of unlabeled or weakly labeled data
for pretraining, building a strong feature extractor, followed by adaptation to
specific tasks using limited labeled data. However, for IMU data, pretraining
methods are poorly understood, and pretraining pipelines are rarely evaluated
on out-of-domain tasks. We propose PRIMUS: a method for PRetraining IMU
encoderS that uses a novel pretraining objective that is empirically validated based
on downstream performance on both in-domain and out-of-domain datasets. The
PRIMUS objective effectively enhances downstream performance by combining
self-supervision, multimodal, and nearest-neighbor supervision. With fewer than
500 labeled samples per class, PRIMUS can improve test accuracy by up to 15%,
compared to state-of-the-art baselines. To benefit the broader community, we
open-source our code at github.com/nokia-bell-labs/pretrained-imu-encoders.

1 Introduction

Wearable devices embed Inertial Measurement Unit (IMU) sensors, including accelerometers and
gyroscopes, which track the movement, acceleration, and orientation of the human body. When
modeled using machine learning (ML) methods, IMU data provides valuable insights into human
physical and emotional behaviors, playing a crucial role in health monitoring and overall well-
being [13, 6, 20, 31, 19]. For example, step-counting data from IMU sensors is one of the most
effective indicators of cognitive impairment progression in elderly individuals [1]. Such potential
has motivated the community to collect vast amounts of IMU data in time-series form. However,
obtaining large amounts of labeled IMU data remains a major challenge, because IMU time series
are inherently difficult to interpret and annotate, even by experts [30].

A promising solution for label scarcity is the “pretrain once, adapt many times” approach. This
involves initially training an encoder on a large corpus of unlabeled or weakly labeled data. Afterward,
a smaller ML model is trained on top of the (typically frozen) encoder for specific tasks, using
relatively small amounts of labeled data. While this approach has shown significant success in image,
video, audio, and natural language processing, its potential for IMU data remains underexplored,
primarily because of challenges in curating large volumes of quality datasets.

Difficulties in collecting labeled data have motivated representation learning methods for IMU
encoders by using supervisory signals from IMU data itself (self-supervised learning), or other
concurrent modalities (multimodal learning). Self-supervised (SS) learning approaches based on
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multi-task learning [22, 25], contrastive learning [26, 29], and masked reconstruction [9], have yet
to be evaluated on cross-domain use cases. Multimodal (MM) learning has become popular in
the field of representation learning [21, 11, 28, 15, 5], and has recently been used for pretraining
IMU encoders by utilizing supervisory signals from multiple devices [10, 23] or multimodal data [3].
IMU2CLIP [17] aligns the latent representations of IMU data with those coming from text annotations
or those from egocentric videos, where they show enhanced capabilities in multimodal data retrieval.

Figure 1: PRIMUS uses multi-objective pretraining including three terms,
LSS ,LMM , and LNN . Self-supervised losses encourage the IMU encoder
to be augmentation invariant, while multimodal and nearest neighbor losses
align the IMU data to co-occurring video and/or text data. We use open-
source models, pretrained by others, for both text and video encoders.

While both SS and MM ap-
proaches for representation
learning have shown promis-
ing results, neither one fully
leverages diverse sources of
information present in IMU
data. Given the promising syn-
ergistic relationship between
SS and MM learning shown
in computer vision and natural
language processing fields [18,
12, 27], and with the recent
publicly available large multi-
modal datasets EgoExo4D [8],
which includes synchronized
video, text, and IMU segments,
we explore the combination of
SS and MM learning for pretraining IMU encoders.

We propose PRIMUS (see Figure 1): a novel method for PRetraining IMU encoderS that produces
transferable representations by building a multi-objective representation learning strategy that com-
bines SS and MM losses to pretrain an IMU encoder. Pretrained on the recently released EgoExo4D
dataset [8], we assess the effectiveness of our strategy by evaluating how well PRIMUS IMU encoder
performs on both in-domain and out-of-domain classification tasks using only a small amount of
labeled data (i.e., few-shot learning). A consistent performance improvement of up to 15% in test
accuracy when compared to existing state-of-the-art multimodal and self-supervised training methods
was observed throughout different levels of data availability. Our ablation study also showcased the
superior performance of our proposed combined training objective. This demonstrates that PRIMUS
enables encoders to learn highly transferable representations, allowing for various future adaptations.

2 Methodology
Let I denote an encoder that takes a segment of multivariate IMU time series as input and generates a
latent representation as output. As shown in Fig. 1, we train I with three objectives: self-supervision
loss (LSS), multimodal loss (LMM ), and nearest-neighbour loss (LNN ). (1) LSS ensures that I
remains invariant to noise, similar to those that are introduced by slight changes in sensor position
or type. (2) LMM pushes IMU representations towards aligned text and video representations,
allowing I to learn the rich semantic information present in other modalities. (3) LNN uses the
closest examples in representation space as positive pairs, enabling the model to leverage natural data
similarities for more adaptive contrastive learning.

In our implementation, I is a Stacked RNN consisting of convolutional, group normalization, and
max-pooling layers, topped with a GRU layer, based on the architecture of the IMU2CLIP model [17],
with a total of 1.4M parameters (see Appendix Fig. 4). For pretraining, we use the EgoExo4D
dataset [8], a multimodal dataset containing IMU from head-placed sensors, egocentric videos, and
free-form text annotations. After pre-processing, this dataset consists of around 250K segments,
each of 5-second length, providing aligned IMU, video, and text triplets. We denote the pretraining
dataset as D = {(mi, vi, ti)}Ni=1 where mi, vi, ti correspond to a single segment of time-aligned
IMU, video, and text, respectively.

Self-Supervision. The self-supervised learning objective is an unimodal loss that encourages the
representations of augmented versions of the same data to be similar (the first block, shown in red
in Fig. 1). For data augmentation, we define a stochastic transformation module h(.) consisting
of two transformations: (1) scaling by a random factor and (2) reversing the direction of time.
These transformations were chosen after evaluating all pairs of augmentations proposed in [26].
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(a) EgoExo4D Results
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(b) Ego4D Results
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(c) REALWORLD Results

Figure 2: Main Results. The few-shot learning performance on various classification datasets. PRIMUS
generally outperforms SS methods (SimCLR, MultitaskSSL), and prior MM methods (IMU2CLIP), as well as
training a randomly initialized model (standard training). The standard error is computed over 5 trials.

Given a batch B = {(mi, vi, ti)}ni=1, and considering τ as a learnable temperature parameter, the
self-supervised objective, adapted from SimCLR [2, 26], can be formally expressed as

LSS(B) =
n∑

i=1

exp
(
I(mi) · I(h(mi))

)1/τ∑n
k=1 exp

(
I(mi) · I(h(mk))

)1/τ ,
Multimodal Supervision. We use multimodal learning (the second block, shown in blue in Fig. 1)
in order to allow the IMU encoder to learn semantic features that are present in rich modalities
such as text and video, but difficult to learn with self-supervision alone [17]. Many open-source
video and text encoders have been pretrained on web-scale data and can be used to produce rich
representations for the video/text in each frame. Throughout this paper, we use an open-source video
encoder V and text encoder T produced by CLIP4Clip [15] to instantiate our multimodal learning
objective, since this model is designed to handle short video clips and is readily available. Given a
batch B = {(mi, vi, ti)}ni=1, the multimodal loss has two components which can be expressed as

Lm2v(B) =

n∑
i=1

exp
(
I(mi) · V(vi)

)1/τ∑n
j=1 exp

(
I(mi) · V(vj)

)1/τ , Lm2t(B) =

n∑
i=1

exp
(
I(mi) · T (ti)

)1/τ∑n
j=1 exp

(
I(mi) · T (tj)

)1/τ ,
where again τ is a learnable temperature. Intuitively, Lm2v (or Lm2t) encourage I to map IMU data
to representations that are close to corresponding video (or text) representations in the latent space.
We use LMM (B) = Lm2v(B) + Lm2t(B) as our MM objective.

Nearest Neighbor Supervision. The loss terms introduced so far, LSS and LMM , both derive
supervision from within the same triplet segment. To increase the diversity of supervision and go
beyond a single instance, we leverage nearest-neighbor supervision [12, 4] (shown in the rightmost
block in orange in Fig. 1 and in detail in Appendix Fig. 5). During training, we maintain a feature
queue Q = {(zmj , zvj , z

t
j)}Kj=1, where zmj , zvj , and ztj are cached representations of IMU, video, and

text produced from their respective encoders. For every given instance (mi, vi, ti) in a batch B,
we define η(i) = argmaxk∈[K] (z

v
k · V(vi)) , which identifies the index k in Q corresponding to the

video embedding that is the most similar to vi. We leverage the video representations for identifying
the closest pairs because the video encoder is pretrained on a large dataset, and therefore produces
stable representations. Also, videos capture much finer details about human activities compared
to text descriptions. We then push I(mi) close to zmη(i), z

v
η(i), z

t
η(i) by LNN , which consists of a

unimodal and multimodal loss similar to LSS and LMM as

LNN (B) =
∑

mod∈{m,v,t}

n∑
i=1

exp
(
I(mi) · zmod

η(i)

)1/τ∑n
j=1 exp

(
I(mi) · zmod

η(j)

)1/τ . (1)

The final multi-objective loss that we use in PRIMUS is L(B) = αLSS(B) + βLMM (B) +
γLNN (B). We set α = β = γ = 1, and leave the fine-tuning of hyperparameters to future studies.
Note that, as these hyperparameters are not tuned, the results reported in the following sections
represent lower bounds on the performance achievable with a more thorough hyperparameter search.
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3 Experimental Evaluation

We evaluate on human activity recognition tasks using only IMU data (see the datasets’ details in
Appendix Table 1). We consider different levels of data scarcity by varying the number of labeled
segments per class (i.e., few-shot learning). We compare with baselines by analyzing the performance
of a linear classifier on the representations produced by the IMU encoder (i.e., linear probing [21]),
a technique which requires few computational resources to train and retains the robustness of the
pretrained encoder. We compare PRIMUS against other pretraining baselines (§3.1), evaluate data
efficiency of PRIMUS (§3.2), and conduct ablations on each loss term of PRIMUS (Appendix C).

3.1 Main Results

We compare our PRIMUS against four baselines. (I) SimCLR [26] is a self-supervised training
method based on data augmentations. (II) IMU2CLIP [17] is a multimodal training method for IMU
data, corresponding to using only LSS or LMM as the pretraining objective on EgoExo4D. Moreover,
our work leverages supervisory signals from different learning setups to train a better-performing
feature extractor. Thus, we also compare PRIMUS against (III) MultitaskSSL [22], a well-established
self-supervised approach for IMU signals. Finally, we compare PRIMUS against (IV) Standard
Training, which starts from a randomly initialized model and updates all the parameters (as opposed
to just the final layer) with standard supervised learning. This final baseline represents the standard
procedure used to train a model in the absence of a pretrained IMU encoder.

Fig. 2 presents the comparison of PRIMUS with all four baselines. Across all experiments, we
observe that our PRIMUS model, pretrained with the joint objective, significantly outperforms any
pretraining strategy previously proposed. Our method consistently outperforms all other baselines
by as much as 15% on the EgoExo4D dataset. On Ego4D, it performs on par with IMU2CLIP but
still surpasses all other baselines. Additionally, on the REALWORLD dataset, our method generally
outperforms all baselines, particularly in scenarios where labeled data is limited (fewer than 100
samples). Notably, standard training, which updates all the parameters, fails to generalize well in the
low-data regime particularly for complex classification tasks (on EgoExo4D and Ego4D). We include
additional results evaluating the importance of each objective in the PRIMUS loss in Appendix C.

3.2 PRIMUS Pretraining Data Efficiency
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Figure 3: Data Efficiency. We report few-
shot performance on the EgoExo4D clas-
sification task at 500 segments per class
for PRIMUS models trained with various
amounts of multimodal data. Models pre-
trained with the PRIMUS objective re-
quire far fewer IMU segments with aligned
video/text than IMU2CLIP.

Obtaining large-scale IMU datasets that are temporally
aligned with videos and text could be challenging. There-
fore, we explore the possibility of training an effective
IMU encoder using only a small portion of the data that
includes aligned video and text. Specifically, we remove
the aligned video and text data for different fractions of
the pretraining data and evaluate the efficacy of the result-
ing IMU encoder in few-shot learning. Fig. 3 shows that
there is no statistically significant difference between an
encoder pretrained with only 10% of the data aligned with
video/text with the PRIMUS and an encoder pretrained in
the style of IMU2CLIP on EgoExo4D in terms of few-shot
learning performance.

4 Conclusion

We study pretraining objectives for IMU time series that
can be adapted to unseen tasks with limited labeled data. We empirically demonstrate the superiority
of our pretraining method against existing approaches on in-domain and out-of-domain tasks, and
identify some of the components that were critical to its success. See our discussion on future work
in Appendix D.
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APPENDIX

A PRIMUS Methodology

A.1 IMU Encoder Architecture

Figure 4: The architecture of IMU Encoder I. The backbone
consists of both 1D-CNN and GRU layers. During pretraining, the
IMU encoder has two MLP heads: one for multimodal loss and the
other for unimodal loss. After pre-training, only the output of the
multimodal head is kept for training downstream tasks, as it offers a
more generalized latent representation. The architecture is adopted
from [17].

Our motivation for this architecture (Figure 4) is its efficiency in deployment on mobile and wearable
devices, which are the target platforms for collecting IMU data [14]. Moreover, it has shown effective
generalization performance in processing ML tasks on IMU data. During pretraining, I has two
MLP heads: the first head is used to compute the unimodal self-supervision loss and the second
head is used to compute the multimodal loss. For downstream tasks, only the latter is retained as it
provides a richer latent representation.

A.2 Nearest Neighbor Supervsion

Figure 5: Nearest neighbor supervision. Given
a query segment, we retrieve the most similar seg-
ment in the queue, based on video-to-video simi-
larity, and use all modalities to derive supervisory
signals for the IMU segment. Features are retrieved
from a fixed-size queue.

We illustrate the queuing mechanism for nearest neighbor retrieval in Fig. 5.

B Experimental Setup

B.1 Datasets and Setup

Table 1: Downstream Tasks. Classification datasets for our evaluation. Unlike previous work, we
consider tasks that have IMU data collected from unseen devices and have novel output domains.

Test Set Activities Input Domain Output Domain Sample Size
EgoExo4D [8] 8: {play music, cook, medical test, perform CPR, repair bike, climb rock, soccer, dance} Same Same Train: 195K–Test: 53K
Ego4D [7] 10: {play music, cook, eat, clean, carpenter, craft, farmer, household, walk, construction} Same Different Train: 555K–Test: 57K
REALWORLD [24] 8: {climbing up, climbing down, jumping, lying down, run, walk, sit, down} Different Different Train: 8.3K–Test: 2.6K

All encoders are pretrained on EgoExo4D, which contains IMU data (triaxial accelerometer and
triaxial gyroscope) collected from head-placed sensors. Thus, we focus on downstream tasks that use
IMU data of head-placed sensors. A summary of datasets is given in Table 1.
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EgoExo4D [8] and Ego4D [7]. From each dataset, we choose a held-out test set for human activity
recognition, where IMU data is labeled according to the activities indicated in the filenames. Note
that Ego4D is captured using the same device, Project-Aria smartglass2, the same as EgoExo4D
(pretraining dataset), but Ego4D includes some activities that are not present in EgoExo4D.

REALWORLD [24]. The REALWORLD dataset is a human activity recognition dataset with 8
predefined classes, that contain data captured by various Samsung Galaxy-S4 and LG G-Watch-R
placed at different positions on the body. For our analysis, we use the data from the head-placed
sensor. We adopted the well-established user-based dataset-splitting strategy for our evaluations, in
which data from a held-out set of users are reserved for testing, measuring the performance of the
model on unseen users. This dataset also evaluates the out-of-domain performance of our pretrained
models since both the set of activities and device type are different from EgoExo4D.
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(a) EgoExo4D Results
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(b) Ego4D Results

100 200 300 400

Labeled Segments per Class

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Te
st

 A
cc

ur
ac

y

PRIMUS(ours)
MM + NN

MM

SS

SS + NN

(c) REALWORLD Results

Figure 6: Ablations. The importance of each individual term in the PRIMUS objective. We pretrain encoders
with different losses and evaluate them based on few-shot learning performance; each experiment over 5 trials.

Fig. 6 presents an ablation study on the pretraining objectives to understand which components of
the loss are most critical. We find that LMM is a key component, indicating that future studies for
developing IMU foundation models should incorporate aligned video, text, audio, and potentially
other under-explored wearable sensors. We also find that LNN is generally helpful, but only when
we have a reliable estimate of similarity. With LSS + LNN , we observe some form of collapse (with
accuracy around 10-15%) since this setting does not exploit any multimodal signals, and using the
IMU representations itself to find similar segments from the queue can make training unstable. Finally,
while LSS is not particularly helpful in EgoExo4D (evident from the fact that LMM + LNN nearly
matches the performance of PRIMUS), self-supervision seems to make a significant difference on
out-of-domain tasks, offering up to 5% of accuracy improvement in REALWORLD. We hypothesize
that this is due to the fact that this loss term explicitly encourages the IMU encoder to be invariant to
some of the types of noise that may be observed due to changing devices or positions on the body.

D Future Work

Our work has its limitations and there are several promising directions for future work. First, while
we evaluate on out-of-domain downstream tasks, all of our evaluation schemes assume that the sensor
position on the human body is similar to that of the pretraining set. Training a model that is capable of
generalizing across human body positions is an important future direction, but pretraining datasets to
enable this are not yet available. Second, our evaluation focuses on activities of medium granularity
(corresponding to ‘actions’ according to the hierarchy of activities proposed in [16]). To recognize
more abstract or primitive activities, a different processing pipeline would be needed to accommodate
the different time scales in which these activities occur. Further studies might be needed to adapt
our proposed method for these different scenarios. Despite open challenges, our work contributes
to developing generalizable IMU models by introducing a highly adaptable pretraining strategy. By
open-sourcing our framework, we aim to encourage the community to further build upon our efforts.

2https://www.projectaria.com
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