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Abstract

We introduce a new loss function TripleEntropy001
to improve classification performance for fine-002
tuning general knowledge pre-trained language003
models based on cross-entropy and SoftTriple004
loss. This loss function can improve the ro-005
bust RoBERTa baseline model fine-tuned with006
cross-entropy loss by about (0.02% - 2.29%).007
Thorough tests on popular datasets indicate a008
steady gain. The fewer samples in the training009
dataset, the higher gain – thus, for small-sized010
dataset it is 0.78%, for medium-sized – 0.86%011
for large – 0.20% and for extra-large 0.04%.012

1 Introduction013

Natural language processing (NLP) is a rapidly014

growing area of machine learning with applica-015

tions wherever a computer needs to operate on a016

text that involves capturing its semantics. It may017

include text classification, translation, text summa-018

rization, question answering, dialogues. All these019

tasks are upstream and depend on the quality of the020

text representation (White et al., 2015). Many mod-021

els can produce such text representations, from022

Bag-Of-Word or Word2Vec word embedding to023

the state-of-the-art language representation model024

BERT with variations in most NLP tasks.025

The best performance on text classification tasks026

is obtained when the model is first trained on a027

general knowledge corpus to capture semantic rela-028

tionships between words and then fine-tuned with029

an additional dense layer on a domain corpus with030

cross-entropy loss (Radford et al., 2019).031

We introduce a new loss function TripleEntropy032

to improve classification performance for fine-033

tuning general knowledge pre-trained language034

models based on cross-entropy loss and SoftTriple035

loss (Devlin et al., 2018; Qian et al., 2019). Triplet036

Loss transforms the embedding space so that vec-037

tor representations from the same class can form038

separable subspaces, stabilizing, and generalizing039

the language model fine-tuning process. TripleEn- 040

tropy can improve the fine-tuning process of the 041

RoBERTa based models so the performance on 042

downstream task increases by about (0.02% - 043

2.29%). 044

In the following sections, we review relevant 045

work on state-of-the-art in distance metric learn- 046

ing (Section 2); describe our approach for training 047

and our metric SoftTriple loss and outline the ex- 048

perimental setup (Section 3); discuss the results 049

(Section 4); conclude and offer directions for fur- 050

ther research (Section 5). 051

2 Related Work 052

2.1 Building Sentence Embeddings 053

Building embeddings that represent sentences is 054

challenging because the natural language can be 055

very diverse. The meaning can change drastically 056

depending on the context of a word. It is also an 057

important issue because the quality of sentence em- 058

beddings substantially impacts the performance of 059

all downstream tasks like text classification and 060

question answering. Because of that, so far, con- 061

siderable research effort has been put into building 062

sentence embeddings. 063

One of the first vector representations (embed- 064

dings), bag-of-words (BOW), is an intriguing ap- 065

proach in which the text is represented as a bag 066

(multiset) of its words, with each word represented 067

by its occurrence in the text (Parsing, 2009). The 068

disadvantage of this strategy was that the embed- 069

dings were handcrafted, unlike the Word2Vec ap- 070

proach, which used a machine learning process to 071

predict word embeddings (Mikolov et al., 2013). 072

In Word2Vec, each word embedding is selected 073

based on its overall context in the training corpus 074

and can express the latent semantic of words. It 075

automatically expresses the semantics of the whole 076

sentences, though, so several approaches were pro- 077

posed to tackle this problem. The most popular was 078
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representing the sentence embedding as a weighted079

average of the sentence’s word vectors. Because ev-080

ery word has the same embedding regardless of its081

meaning in the entire sentence, such an approach082

is not resistant to sentence changes and context083

semantics.084

Bidirectional Encoder Representations from085

Transformers (BERT) is a very well known tech-086

nique for constructing high-quality sentence em-087

beddings that can express the dynamic and latent088

meaning of the whole sentences better than any089

previous approach. Its sentence embeddings can090

accurately reflect the meaning of the input text,091

making a significant difference in the quality of092

the downstream tasks performed. An even better093

variant of the BERT-based architecture, RoBERTa,094

has emerged and has lately become unquestionably095

state-of-the-art in terms of sentence embedding096

construction (Liu et al., 2019; Dadas et al., 2020).097

2.2 Distance Metric Learning098

Learning embeddings where instances from the099

same class are closer than examples from other100

classes is known as Distance Metric Learning101

(DML) (Qian et al., 2019). DML recently has102

drawn much attention due to its wide applications,103

especially in image processing. It can be used in104

the classification tasks together with the k-nearest105

neighbour algorithm (Weinberger and Saul, 2009),106

clustering along with K-means algorithm (Xing107

et al., 2002) and semi-supervised learning (Wu108

et al., 2020). DML’s objective is to create em-109

beddings similar to examples from the same class110

but different from observations from other classes.111

(Movshovitz-Attias et al., 2017). In contrary to the112

cross-entropy loss, which only takes care of intra-113

class distances to make them linearly separable,114

the DML approach maximizes inter-class and min-115

imizes the intra-class distances (Wen et al., 2016).116

Aside from that, a typical classifier based solely on117

cross-entropy loss concentrates on class-specific118

characteristics rather than generic ones, as it is119

only concerned with distinguishing between classes120

rather than learning their representations. DML fo-121

cuses on learning class representations, making the122

model more generalizable to new observations and123

more robust to outliers.124

2.2.1 Contrastive Loss125

Contrastive Loss is one of the methods in DML126

(Hadsell et al., 2006). It concentrates on pairs127

of similar and dissimilar observations, whose dis-128

tances are attempted to be minimized if they belong 129

to the same class and maximized if they belong 130

to different classes. The loss function is given in 131

Equation 1. 132

L

(
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(
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−→
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)i)
= (1− Y )LS

(
Di

W

)
+ Y LD

(
Di

W

)
(1) 133

where
(
Y,

−→
X 1,

−→
X 2

)i
denotes the labeled sample 134

pair of with the index i, LS represents the loss 135

function for a pair of similar points, LD is the 136

loss function applied for pair of dissimilar points 137

and DW denotes distance function between pair of 138

points −→X1,
−→
X2. 139

2.2.2 Triplet Loss 140

Triplet Loss is similar to Contrastive Loss but 141

works with triplets instead of pairs, is another so- 142

lution to the DML problem (Schroff et al., 2015). 143

Each triplet comprises an anchor, a positive, and a 144

negative observation. Positive examples are mem- 145

bers of the same class as an anchor, but negative 146

instances belong to a separate class. Because it 147

considers more observation simultaneously, it opti- 148

mizes the embedding space better than Contrastive 149

Loss. The actual formula for Triplet Loss is in 150

Equation 2. 151

L =
N∑
i=1

[
∥fa

i − fp
i ∥

2
2 − ∥fa

i − fn
i ∥

2
2 + α

]
+

(2) 152

where f(x) represents the embedding that embeds 153

ab observation x into a d-dimensional Euclidean 154

space. xai denotes an anchor, xpi (positive) is the 155

observation from the same class as the anchor, xni 156

(negative) denotes an observation belonging to a 157

different than the anchor class, α is an imposed 158

between positive and negative pairs margin. 159

The most typical issue with triplets and con- 160

trastive learning is that as the number of obser- 161

vations in a batch grows, the number of pairs and 162

triplets grows squarely or cubically. Another is- 163

sue that might arise is the use of training pairs and 164

triplets that are relatively easy to distinguish, lead- 165

ing to poor model generalization. Semi-solutions 166

of the above problems are as introducing τ a tem- 167

perature parameter that controls the separation of 168

classes (Chen et al., 2020), or hard triples, which 169

creates triplets based on harder negatives (Hermans 170

et al., 2017). 171
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2.2.3 ProxyNCA Loss172

It is a more general approach to solving a prob-173

lem with high resource consumption (Movshovitz-174

Attias et al., 2017). It employs proxies, artificial175

data points that represent the entire dataset. One176

proxy approximates one class; therefore, there are177

as many proxies as classes. This technique dras-178

tically reduces the number of triplets while simul-179

taneously raising the convergence rate since each180

proxy make the triplet more resistant to outliers.181

The proxies are integrated into the model as train-182

able parameters since synthetic data points are rep-183

resented as embeddings. Equation 3 depicts a Prox-184

yNCA loss formula.185

L = − log

 exp

(
−d

(
xi

∥xi||2
,

f(xi)
∥f(xi)∥2

))
∑

f(z)∈Z
exp

(
−d

(
xi

∥xi∥2
,

f(z)
∥f(z)∥2

))
(3)186

where Ci is a set of observations from the same187

class, f(a) denotes a proxy function returning class188

proxy for given parameter a, |a||2 is the L2-Norm189

of the vector a, d (xi, f (xi)) denotes a distance190

between the sample xi and proxy f (xi), Z denotes191

set of all proxies, where f(z) ∈ Z and z /∈ Ci.192

A single proxy per class may not be enough to193

represent the class’s inherent structure in real-world194

data. Another DML loss function has been created195

that introduces multiple proxies per class - Soft-196

Triple Loss (Qian et al., 2019). ProxyNCA Loss197

can produce better embeddings while maintaining198

a smaller number of triplets than Triplet Loss or199

Contrastive Loss. The SoftTriple Loss is defined200

by the formulas in Equations 4 and 5.201
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λ
(
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exp
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λ
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(4)202
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(5)203

where, C denotes the class number, k is the204

number of proxies representing observations from205

SoftTriple for each class, δ defines a margin be-206

tween the example and class centers from different207

classes, λ reduces the influence from outliers and208

makes the loss more robust, γ is the scaling fac-209

tor for the entropy regularizer, xi defines the sin-210

gle observation represented as an array of tokens,211

E(·) ∈ Rd indicates the encoder, wk
c are weights 212

representing proxy embeddings of the class c (there 213

are k of them). 214

3 Our Approach 215

For fine-tuning pre-trained language models, we 216

offer a novel objective function. It is based on the 217

supervised cross-entropy loss and the SoftTriple 218

Loss (Qian et al., 2019). The latter component is 219

a loss from the Distance Metric Learning (DML) 220

family of losses, which learns an embedding by 221

capturing similarities between embeddings from 222

the same class and distinguishing them from em- 223

beddings from different classes (Qian et al., 2019). 224

For a classification problem let us denote: 225

• N the number of observations, 226

• C the class number, 227

• yic the objective probability of the class c for 228

the ith observation, 229

• β the scaling factor that tunes influence of 230

both parts of the loss. 231

The novel goal function is given by the following 232

formula: 233

L = (β)ℓMCE + (1− β)ℓSoftTriple (6) 234

, where 235

ℓMCE = − 1

N

N∑
i

C∑
c

yic log (pic) (7) 236

It can be applied for different encoders E(·) ∈ 237

Rd from both image and natural language process- 238

ing domains. 239

3.1 Model 240

In our work, we use the objective function from 241

Equation 6 to fine-tune the pre-trained BERT-based 242

language models provided by the huggingface li- 243

brary as RoBERTa-base and RoBERTa-large. In 244

the standard setting, the single input text is first 245

tokenized with WordPiece embeddings (Wu et al., 246

2016), which produces a vector of tokens xi with 247

a maximum length of 512, with [CLS] at the be- 248

ginning of an array, [EOS] at the end and [SEP ] 249

between tokens representing different sentences. 250

The output of RoBERTa model E(xi) ∈ Rd is an 251

array of embeddings, where each input token has 252

its corresponding embedding. 253
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3.1.1 Multinominal Cross-Entropy Loss254

In our experiments, we used the multinominal255

cross-entropy loss calculated in the same way as256

it was proposed by the authors of the BERT lan-257

guage model(Devlin et al., 2018). The sentence258

representation is obtained by pooling the output259

of the model E(xi) ∈ Rd and passing it to the C260

dimensional single fully connected layer. Its out-261

put is passed to the softmax function generating262

probabilities pic, which are, along with objective263

probabilities yic, directly feeding the multinominal264

cross-entropy loss.265

3.1.2 SoftTriple Loss266

The second component of the TripleEntropy 6 is267

SoftTriple Loss (3), responsible for a more robust268

and better generalization of the model during tun-269

ing. It is fed by the direct output of the model270

E(xi) ∈ Rd, even before pooling. It means that if271

the batch size is B, then the total number of embed-272

dings that feed SoftTriple Loss during one training273

iteration is B * |xi|. This implementation ensures274

that the proxies representing each class will be well275

approximated so that the quality of fine-tuning in-276

creases.277

Our implementation is a development of the ear-278

lier work (Gunel et al., 2020), where Contrastive279

Loss was applied only to the embedding corre-280

sponding to the first [CLS] token of the input vec-281

tor xi. We apply SoftTriple Loss to the embeddings282

corresponding to all tokens from the input vector283

xi, which ensures the better generalization of the284

fine-tuning process but requires more computing285

power. Fortunately, the SoftTriple Loss is signif-286

icantly more efficient than the Contrastive Loss287

since it generates triplets not from all observations288

but its approximated proxies.289

3.2 Training Procedure290

Each result (average accuracy) was obtained291

as based on 4 seed runs (2, 16, 128, 2048),292

where each run was 5-fold cross-validated. It293

means that each accuracy result is an aver-294

aged of 20 different results. Apart from that,295

each result was based on the best parameter296

combination obtained by grid search which297

included parameters k ∈ {10, 100, 1000, 2000},298

γ ∈ {0.01, 0.03, 0.05, 0.07, 0.1},299

λ ∈ {1, 3, 3.3, 4, 6, 8, 10}, δ ∈300

{0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1} and β ∈301

{0.1, 0.3, 0.5, 0.7, 0.9}. We noticed that for302

most experiments, the best hyperparameter set is303

following k = 2000, γ = 0.1, λ = 3.3, δ = 0.3 304

and β = 0.9. 305

3.3 Datasets 306

We employed a variety of well-known datasets 307

from SentEval (Conneau and Kiela, 2018) along 308

with the IMDb (Maas et al., 2011) for model eval- 309

uations that covered both text classification and 310

textual entailment as two important natural lan- 311

guage tasks in order to assess the general use of 312

TripleEntropy. Additionally, we have examined the 313

performance of our method when the number of 314

training examples is limited to 1,000 and 10,000 315

observations on sampled datasets. Table 1 shows 316

the description of the datasets and their sampled 317

versions. 318

4 Results 319

Results are presented in the form of comparison 320

between the performance of the RoBERTa-base 321

(RB) and the RoBERTa-large (RL) models as a 322

baselines and the RoBERTa-base with SoftTriple 323

Loss (RB SoftTriple) as well as RoBERTa-large 324

with SoftTriple Loss (RL SoftTriple). Moreover, 325

we have created 4 groups depending on the size of 326

the dataset. In the first group, we present results 327

regarding the small-sized datasets with the num- 328

ber of sentences of 1,000. In the second group, 329

we explore results for the medium-sized datasets 330

in which the number of sentences is not greater 331

than 5,000 and not smaller than 4,000. In the third 332

group, we present results belonging to the large- 333

sized datasets with the number of sentences larger 334

than 10,000 and fewer than 11,000. The extra-large- 335

sized group consists of elements where the number 336

of observations is larger than 50,000. 337

The RB baseline models were trained with the 338

use of AdamW optimizer (Kingma and Ba, 2014), 339

beginning learning rate 1e-5, L2 regularization, 340

learning rate scheduler and linear warmup from 341

0 to 1e-5 for the first 6% of steps and batch size of 342

64. The RB SoftTriple models were trained on the 343

same set of hyperparameters as the baseline models 344

they refer to and additional parameters specific to 345

SoftTriple Loss as it is described in Section 3.2. 346

4.1 RB SoftTriple for small datasets 347

Table 2 presents the results for the datasets con- 348

taining 1,000 sentences. We observe that models 349

trained using TripleEntropy have a higher perfor- 350

mance than the baselines by about 0.78% on av- 351
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Dataset # Sentences # Classes Sampled
subsets

Task

SST2 67k 2 10k, 1k Sentiment (movie reviews)(Socher et al., 2013)
IMDb 50k 2 10k, 1k Sentiment (movie reviews) (Maas et al., 2011)
MR 11k 2 1k Sentiment (movie reviews) (Pang and Lee, 2005)
MPQA 11k 2 1k Opinion polarity (Wiebe et al., 2005)
SUBJ 10k 2 1k Subjectivity status (Pang and Lee, 2004)
TREC 5k 6 1k Question-type classification (Pang and Lee, 2005)
CR 4k 2 1k Sentiment (product review) (Hu and Liu, 2004)
MRPC 4k 2 1k Paraphrase detection (Dolan et al., 2004)

Table 1: SentEval and IMDb datasets, and their sampled subsets, used for our evaluation.

erage. It is worth noting that the gain in perfor-352

mance is observed at each dataset, especially for353

the TREC-1k and MRPC-1k, where it amounts to354

2.29% and 1.11%, respectively.355

4.2 RB SoftTriple for medium datasets356

Table 3 shows the results based on the datasets357

containing more than 1,000 sentences and less than358

11,000. Here, we can observe that models trained359

using TripleEntropy have higher performance than360

the baselines by about 0,86% on average. The361

highest gain in performance is observed in the case362

of TREC and MRPC datasets by 1.00% and 1.28%,363

respectively.364

4.3 RB SoftTriple for large datasets365

Table 4 shows the results based on the datasets366

containing 10,000-11,000 sentences. The gain in367

the performance amounts 0.20%.368

4.4 RB SoftTriple for extra-large datasets369

Table 5 shows the results based on the datasets370

containing more than 50,000 sentences. The gain371

in the performance is not as high as in the case372

of the medium and small-sized datasets, and it is373

0.04% on average, which is not significant.374

4.5 RL SoftTriple for small datasets375

We have compared our results to the related work376

(Gunel et al., 2020) where the authors claim the per-377

formance gains over baseline RoBERTa-large by378

applying loss function consisted of cross-entropy379

loss and Supervised Contrastive Learning loss. The380

work shows the improvement over baseline in the381

few-shot learning defined as fine-tuning based on382

the training dataset consisted of 20, 100 and 1,000383

observations. In order to compare our new loss384

function with the results from the related work385

we conducted experiments where the baseline was386

RoBERTa-large (RL) with cross-entropy loss and 387

compared it to the RoBERTa-large with cross- 388

entropy and SoftTriple loss (RL SoftTriple) on the 389

dataset consisted of 1,000 observations. We can 390

observe that our method yields a gain over baseline 391

of 0.48%, which is higher than the performance im- 392

provement over baseline for a dataset of the same 393

size from related work, whose improvement over 394

baseline is 0.27%. The results are presented on the 395

table 6. 396

4.6 Discussion 397

We can observe that our method improves the per- 398

formance most significantly for the small-sized 399

dataset by 0.87% in the case of RoBERTa-base 400

baseline and 0.48% in the case of RoBERTa-large 401

baseline and the medium-sized dataset, where the 402

increase amounts to 0.86%. For the large-sized 403

dataset, the increase over baseline is 0.20%, while 404

for the extra-large-sized dataset, the gain over base- 405

line amounts 0.04%. Our experiments show consis- 406

tent performance improvement over baseline when 407

using SoftTriple loss, which is highest for the small 408

and medium-sized datasets and decreases for the 409

large and extra-large sized datasets. It is an im- 410

provement over previous related work, where the 411

performance improvement for the supervised clas- 412

sification tasks was achieved only for the few-shot 413

learning settings (Gunel et al., 2020). 414

We also conclude that the smaller the dataset is, 415

the higher our new goal function’s performance 416

gain over baseline. This observation is consistent 417

with the conclusions of previous work (Gunel et al., 418

2020). When the dataset is larger than about 10k 419

observations, the gain is negligible. In addition, 420

our work focuses on datasets of no less than 1k 421

observations, so we do not know how it behaves 422

in case of few-shot learning, which in contrast has 423

5



Model SST2-1k IMDb-1k SUBJ-1k MPQA-1k MRPC-1k TREC-1k CR-1k MR-1k
RB 88.63 81.00 94.61 87.75 78.01 79.80 91.57 85.89
RB ST 89.09 81.45 94.70 87.93 79.12 82.09 92.16 86.39

Table 2: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss (RB ST) for small sized datasets

Model MRPC TREC CR MR
RB 83.11 96.19 93.28 89.09
RB SoftTriple 84.39 97.19 93.58 89.29

Table 3: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for medium sized datasets

Model SST2-10k IMDb-10k SUBJ MPQA
RB 92.63 85.12 96.83 91.08
RB SoftTriple 92.79 85.23 97.15 91.30

Table 4: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for large sized datasets

Model SST2 IMDb
RB 94.89 87.10
RB SoftTriple 94.95 87.12

Table 5: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for extra large sized datasets

Model SST2-1k MPQA-1k MRPC-1k TREC-1k CR-1k MR-1k
RL 91.96 90.18 76.09 83.75 93.43 89.69
RL SoftTriple 92.14 90.59 77.16 84.59 93.62 89.89

Table 6: RoBERTa-large (RB) vs RoBERTa-large with SoftTriple Loss for small sized datasets

been well documented in the case of work (Gunel424

et al., 2020). The performance comparison between425

baseline and our method throughout dataset size is426

depicted in Figure 1.427

Figure 1: Performance comparison between RB and RB
SoftTriple

5 Conclusions 428

We proposed a supervised Distance Learning Met- 429

ric objective that increases the performance of the 430

RoBERTa-base models, which are strong baselines 431

in the Natural Language Processing tasks. The 432

performance is proved over multiple tasks from 433

the single sentence classification and pair sentence 434

classification to be higher by about (0.02%-2.29%) 435

depending on the training dataset size. In addi- 436

tion, each result has been confirmed through tests 437

with 5-fold cross-validation on 4 different seeds 438

to increase its reliability. In the future, we plan to 439

extend the application of our method to compare 440

the results with language models from different ar- 441

chitectures to investigate its general usefulness in 442

other tasks. 443
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