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Abstract

We introduce a new loss function TripleEntropy
to improve classification performance for fine-
tuning general knowledge pre-trained language
models based on cross-entropy and SoftTriple
loss. This loss function can improve the ro-
bust RoBERTa baseline model fine-tuned with
cross-entropy loss by about (0.02% - 2.29%).
Thorough tests on popular datasets indicate a
steady gain. The fewer samples in the training
dataset, the higher gain — thus, for small-sized
dataset it is 0.78%, for medium-sized — 0.86%
for large — 0.20% and for extra-large 0.04%.

1 Introduction

Natural language processing (NLP) is a rapidly
growing area of machine learning with applica-
tions wherever a computer needs to operate on a
text that involves capturing its semantics. It may
include text classification, translation, text summa-
rization, question answering, dialogues. All these
tasks are upstream and depend on the quality of the
text representation (White et al., 2015). Many mod-
els can produce such text representations, from
Bag-Of-Word or Word2Vec word embedding to
the state-of-the-art language representation model
BERT with variations in most NLP tasks.

The best performance on text classification tasks
is obtained when the model is first trained on a
general knowledge corpus to capture semantic rela-
tionships between words and then fine-tuned with
an additional dense layer on a domain corpus with
cross-entropy loss (Radford et al., 2019).

We introduce a new loss function TripleEntropy
to improve classification performance for fine-
tuning general knowledge pre-trained language
models based on cross-entropy loss and SoftTriple
loss (Devlin et al., 2018; Qian et al., 2019). Triplet
Loss transforms the embedding space so that vec-
tor representations from the same class can form
separable subspaces, stabilizing, and generalizing

the language model fine-tuning process. TripleEn-
tropy can improve the fine-tuning process of the
RoBERTa based models so the performance on
downstream task increases by about (0.02% -
2.29%).

In the following sections, we review relevant
work on state-of-the-art in distance metric learn-
ing (Section 2); describe our approach for training
and our metric SoftTriple loss and outline the ex-
perimental setup (Section 3); discuss the results
(Section 4); conclude and offer directions for fur-
ther research (Section 5).

2 Related Work

2.1 Building Sentence Embeddings

Building embeddings that represent sentences is
challenging because the natural language can be
very diverse. The meaning can change drastically
depending on the context of a word. It is also an
important issue because the quality of sentence em-
beddings substantially impacts the performance of
all downstream tasks like text classification and
question answering. Because of that, so far, con-
siderable research effort has been put into building
sentence embeddings.

One of the first vector representations (embed-
dings), bag-of-words (BOW), is an intriguing ap-
proach in which the text is represented as a bag
(multiset) of its words, with each word represented
by its occurrence in the text (Parsing, 2009). The
disadvantage of this strategy was that the embed-
dings were handcrafted, unlike the Word2Vec ap-
proach, which used a machine learning process to
predict word embeddings (Mikolov et al., 2013).
In Word2Vec, each word embedding is selected
based on its overall context in the training corpus
and can express the latent semantic of words. It
automatically expresses the semantics of the whole
sentences, though, so several approaches were pro-
posed to tackle this problem. The most popular was



representing the sentence embedding as a weighted
average of the sentence’s word vectors. Because ev-
ery word has the same embedding regardless of its
meaning in the entire sentence, such an approach
is not resistant to sentence changes and context
semantics.

Bidirectional Encoder Representations from
Transformers (BERT) is a very well known tech-
nique for constructing high-quality sentence em-
beddings that can express the dynamic and latent
meaning of the whole sentences better than any
previous approach. Its sentence embeddings can
accurately reflect the meaning of the input text,
making a significant difference in the quality of
the downstream tasks performed. An even better
variant of the BERT-based architecture, RoOBERTa,
has emerged and has lately become unquestionably
state-of-the-art in terms of sentence embedding
construction (Liu et al., 2019; Dadas et al., 2020).

2.2 Distance Metric Learning

Learning embeddings where instances from the
same class are closer than examples from other
classes is known as Distance Metric Learning
(DML) (Qian et al., 2019). DML recently has
drawn much attention due to its wide applications,
especially in image processing. It can be used in
the classification tasks together with the k-nearest
neighbour algorithm (Weinberger and Saul, 2009),
clustering along with K-means algorithm (Xing
et al., 2002) and semi-supervised learning (Wu
et al., 2020). DML’s objective is to create em-
beddings similar to examples from the same class
but different from observations from other classes.
(Movshovitz-Attias et al., 2017). In contrary to the
cross-entropy loss, which only takes care of intra-
class distances to make them linearly separable,
the DML approach maximizes inter-class and min-
imizes the intra-class distances (Wen et al., 2016).
Aside from that, a typical classifier based solely on
cross-entropy loss concentrates on class-specific
characteristics rather than generic ones, as it is
only concerned with distinguishing between classes
rather than learning their representations. DML fo-
cuses on learning class representations, making the
model more generalizable to new observations and
more robust to outliers.

2.2.1 Contrastive Loss

Contrastive Loss is one of the methods in DML
(Hadsell et al., 2006). It concentrates on pairs
of similar and dissimilar observations, whose dis-

tances are attempted to be minimized if they belong
to the same class and maximized if they belong
to different classes. The loss function is given in
Equation 1.
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2.2.2 Triplet Loss

Triplet Loss is similar to Contrastive Loss but
works with triplets instead of pairs, is another so-
lution to the DML problem (Schroff et al., 2015).
Each triplet comprises an anchor, a positive, and a
negative observation. Positive examples are mem-
bers of the same class as an anchor, but negative
instances belong to a separate class. Because it
considers more observation simultaneously, it opti-
mizes the embedding space better than Contrastive
Loss. The actual formula for Triplet Loss is in
Equation 2.
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where f(x) represents the embedding that embeds
ab observation z into a d-dimensional Euclidean
space. z¢ denotes an anchor, 2% (positive) is the
observation from the same class as the anchor, z7'
(negative) denotes an observation belonging to a
different than the anchor class, « is an imposed
between positive and negative pairs margin.

The most typical issue with triplets and con-
trastive learning is that as the number of obser-
vations in a batch grows, the number of pairs and
triplets grows squarely or cubically. Another is-
sue that might arise is the use of training pairs and
triplets that are relatively easy to distinguish, lead-
ing to poor model generalization. Semi-solutions
of the above problems are as introducing 7 a tem-
perature parameter that controls the separation of
classes (Chen et al., 2020), or hard triples, which
creates triplets based on harder negatives (Hermans
et al., 2017).



2.2.3 ProxyNCA Loss

It is a more general approach to solving a prob-
lem with high resource consumption (Movshovitz-
Attias et al., 2017). It employs proxies, artificial
data points that represent the entire dataset. One
proxy approximates one class; therefore, there are
as many proxies as classes. This technique dras-
tically reduces the number of triplets while simul-
taneously raising the convergence rate since each
proxy make the triplet more resistant to outliers.
The proxies are integrated into the model as train-
able parameters since synthetic data points are rep-
resented as embeddings. Equation 3 depicts a Prox-
yNCA loss formula.
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where Cj is a set of observations from the same
class, f(a) denotes a proxy function returning class
proxy for given parameter a, |al|, is the L2-Norm
of the vector a, d (z;, f (x;)) denotes a distance
between the sample z; and proxy f (z;), Z denotes
set of all proxies, where f(z) € Z and z ¢ C;.

A single proxy per class may not be enough to
represent the class’s inherent structure in real-world
data. Another DML loss function has been created
that introduces multiple proxies per class - Soft-
Triple Loss (Qian et al., 2019). ProxyNCA Loss
can produce better embeddings while maintaining
a smaller number of triplets than Triplet Loss or
Contrastive Loss. The SoftTriple Loss is defined
by the formulas in Equations 4 and 5.
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where, C' denotes the class number, k is the
number of proxies representing observations from
SoftTriple for each class, ¢ defines a margin be-
tween the example and class centers from different
classes, A reduces the influence from outliers and
makes the loss more robust, -y is the scaling fac-
tor for the entropy regularizer, x; defines the sin-
gle observation represented as an array of tokens,

E(-) € R% indicates the encoder, w” are weights
representing proxy embeddings of the class c (there

are k of them).

3 Ouwur Approach

For fine-tuning pre-trained language models, we
offer a novel objective function. It is based on the
supervised cross-entropy loss and the SoftTriple
Loss (Qian et al., 2019). The latter component is
a loss from the Distance Metric Learning (DML)
family of losses, which learns an embedding by
capturing similarities between embeddings from
the same class and distinguishing them from em-
beddings from different classes (Qian et al., 2019).
For a classification problem let us denote:

¢ N the number of observations,
* ( the class number,

* y; the objective probability of the class c for
the :th observation,

* [3 the scaling factor that tunes influence of
both parts of the loss.

The novel goal function is given by the following
formula:

L= (5)€MCE + (1 - 5)€SoftTriple (6)

, where

L N.C
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It can be applied for different encoders E(-) €
R from both image and natural language process-
ing domains.

3.1 Model

In our work, we use the objective function from
Equation 6 to fine-tune the pre-trained BERT-based
language models provided by the huggingface li-
brary as RoBERTa-base and RoBERTa-large. In
the standard setting, the single input text is first
tokenized with WordPiece embeddings (Wu et al.,
2016), which produces a vector of tokens z; with
a maximum length of 512, with [C'LS] at the be-
ginning of an array, [FO.S] at the end and [SE P|
between tokens representing different sentences.
The output of ROBERTa model E(z;) € R%is an
array of embeddings, where each input token has
its corresponding embedding.



3.1.1 Multinominal Cross-Entropy Loss

In our experiments, we used the multinominal
cross-entropy loss calculated in the same way as
it was proposed by the authors of the BERT lan-
guage model(Devlin et al., 2018). The sentence
representation is obtained by pooling the output
of the model E(x;) € R? and passing it to the C
dimensional single fully connected layer. Its out-
put is passed to the softmax function generating
probabilities p;., which are, along with objective
probabilities y;., directly feeding the multinominal
cross-entropy loss.

3.1.2 SoftTriple Loss

The second component of the TripleEntropy 6 is
SoftTriple Loss (3), responsible for a more robust
and better generalization of the model during tun-
ing. It is fed by the direct output of the model
E(z;) € R4, even before pooling. It means that if
the batch size is B, then the total number of embed-
dings that feed SoftTriple Loss during one training
iteration is B * |z;|. This implementation ensures
that the proxies representing each class will be well
approximated so that the quality of fine-tuning in-
creases.

Our implementation is a development of the ear-
lier work (Gunel et al., 2020), where Contrastive
Loss was applied only to the embedding corre-
sponding to the first [C'LS] token of the input vec-
tor ;. We apply SoftTriple Loss to the embeddings
corresponding to all tokens from the input vector
xi, which ensures the better generalization of the
fine-tuning process but requires more computing
power. Fortunately, the SoftTriple Loss is signif-
icantly more efficient than the Contrastive Loss
since it generates triplets not from all observations
but its approximated proxies.

3.2 Training Procedure

Each result (average accuracy) was obtained
as based on 4 seed runs (2, 16, 128, 2048),
where each run was 5-fold cross-validated. It
means that each accuracy result is an aver-
aged of 20 different results. Apart from that,
each result was based on the best parameter
combination obtained by grid search which
included parameters £ € {10,100, 1000, 2000},
¥ € {0.01,0.03,0.05,0.07,0.1},
A € {1,3,3.3,4,6,8,10}, ¢ €
{0.01,0.1,0.3,0.5,0.7,0.9,1} and fS €
{0.1,0.3,0.5,0.7,0.9}.  We noticed that for
most experiments, the best hyperparameter set is

following £ = 2000, v = 0.1, A = 3.3, 0 = 0.3
and 5 = 0.9.

3.3 Datasets

We employed a variety of well-known datasets
from SentEval (Conneau and Kiela, 2018) along
with the IMDb (Maas et al., 2011) for model eval-
uations that covered both text classification and
textual entailment as two important natural lan-
guage tasks in order to assess the general use of
TripleEntropy. Additionally, we have examined the
performance of our method when the number of
training examples is limited to 1,000 and 10,000
observations on sampled datasets. Table 1 shows
the description of the datasets and their sampled
versions.

4 Results

Results are presented in the form of comparison
between the performance of the RoBERTa-base
(RB) and the RoBERTa-large (RL) models as a
baselines and the ROBERTa-base with SoftTriple
Loss (RB SoftTriple) as well as RoBERTa-large
with SoftTriple Loss (RL SoftTriple). Moreover,
we have created 4 groups depending on the size of
the dataset. In the first group, we present results
regarding the small-sized datasets with the num-
ber of sentences of 1,000. In the second group,
we explore results for the medium-sized datasets
in which the number of sentences is not greater
than 5,000 and not smaller than 4,000. In the third
group, we present results belonging to the large-
sized datasets with the number of sentences larger
than 10,000 and fewer than 11,000. The extra-large-
sized group consists of elements where the number
of observations is larger than 50,000.

The RB baseline models were trained with the
use of AdamW optimizer (Kingma and Ba, 2014),
beginning learning rate le-5, L2 regularization,
learning rate scheduler and linear warmup from
0 to 1e-5 for the first 6% of steps and batch size of
64. The RB SoftTriple models were trained on the
same set of hyperparameters as the baseline models
they refer to and additional parameters specific to
SoftTriple Loss as it is described in Section 3.2.

4.1 RB SoftTriple for small datasets

Table 2 presents the results for the datasets con-
taining 1,000 sentences. We observe that models
trained using TripleEntropy have a higher perfor-
mance than the baselines by about 0.78% on av-



Dataset | # Sentences | # Classes | Sampled | Task

subsets
SST2 67k 2 10k, 1k Sentiment (movie reviews)(Socher et al., 2013)
IMDb | 50k 2 10k, 1k Sentiment (movie reviews) (Maas et al., 2011)
MR 11k 2 1k Sentiment (movie reviews) (Pang and Lee, 2005)
MPQA | 11k 2 1k Opinion polarity (Wiebe et al., 2005)
SUBJ 10k 2 1k Subjectivity status (Pang and Lee, 2004)
TREC | 5k 6 1k Question-type classification (Pang and Lee, 2005)
CR 4k 2 1k Sentiment (product review) (Hu and Liu, 2004)
MRPC | 4k 2 1k Paraphrase detection (Dolan et al., 2004)

Table 1: SentEval and IMDb datasets, and their sampled subsets, used for our evaluation.

erage. It is worth noting that the gain in perfor-
mance is observed at each dataset, especially for
the TREC-1k and MRPC-1k, where it amounts to
2.29% and 1.11%, respectively.

4.2 RB SoftTriple for medium datasets

Table 3 shows the results based on the datasets
containing more than 1,000 sentences and less than
11,000. Here, we can observe that models trained
using TripleEntropy have higher performance than
the baselines by about 0,86% on average. The
highest gain in performance is observed in the case
of TREC and MRPC datasets by 1.00% and 1.28%,
respectively.

4.3 RB SoftTriple for large datasets

Table 4 shows the results based on the datasets
containing 10,000-11,000 sentences. The gain in
the performance amounts 0.20%.

4.4 RB SoftTriple for extra-large datasets

Table 5 shows the results based on the datasets
containing more than 50,000 sentences. The gain
in the performance is not as high as in the case
of the medium and small-sized datasets, and it is
0.04% on average, which is not significant.

4.5 RL SoftTriple for small datasets

We have compared our results to the related work
(Gunel et al., 2020) where the authors claim the per-
formance gains over baseline RoOBERTa-large by
applying loss function consisted of cross-entropy
loss and Supervised Contrastive Learning loss. The
work shows the improvement over baseline in the
few-shot learning defined as fine-tuning based on
the training dataset consisted of 20, 100 and 1,000
observations. In order to compare our new loss
function with the results from the related work
we conducted experiments where the baseline was

RoBERTa-large (RL) with cross-entropy loss and
compared it to the RoBERTa-large with cross-
entropy and SoftTriple loss (RL SoftTriple) on the
dataset consisted of 1,000 observations. We can
observe that our method yields a gain over baseline
of 0.48%, which is higher than the performance im-
provement over baseline for a dataset of the same
size from related work, whose improvement over
baseline is 0.27%. The results are presented on the
table 6.

4.6 Discussion

We can observe that our method improves the per-
formance most significantly for the small-sized
dataset by 0.87% in the case of ROBERTa-base
baseline and 0.48% in the case of RoOBERTa-large
baseline and the medium-sized dataset, where the
increase amounts to 0.86%. For the large-sized
dataset, the increase over baseline is 0.20%, while
for the extra-large-sized dataset, the gain over base-
line amounts 0.04%. Our experiments show consis-
tent performance improvement over baseline when
using SoftTriple loss, which is highest for the small
and medium-sized datasets and decreases for the
large and extra-large sized datasets. It is an im-
provement over previous related work, where the
performance improvement for the supervised clas-
sification tasks was achieved only for the few-shot
learning settings (Gunel et al., 2020).

‘We also conclude that the smaller the dataset is,
the higher our new goal function’s performance
gain over baseline. This observation is consistent
with the conclusions of previous work (Gunel et al.,
2020). When the dataset is larger than about 10k
observations, the gain is negligible. In addition,
our work focuses on datasets of no less than 1k
observations, so we do not know how it behaves
in case of few-shot learning, which in contrast has



Model | SST2-1k | IMDb-1k | SUBJ-1k | MPQA-1k | MRPC-1k | TREC-1k | CR-1k | MR-1k
RB 88.63 81.00 94.61 87.75 78.01 79.80 91.57 | 85.89
RB ST | 89.09 81.45 94.70 87.93 79.12 82.09 92.16 | 86.39

Table 2: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss (RB ST) for small sized datasets

Model MRPC | TREC | CR MR
RB 83.11 | 96.19 | 93.28 | 89.09
RB SoftTriple | 84.39 | 97.19 | 93.58 | 89.29

Table 3: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for medium sized datasets

Table 4: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for large sized datasets

Model SST2-10k | IMDb-10k | SUBJ | MPQA
RB 92.63 85.12 96.83 | 91.08
RB SoftTriple | 92.79 85.23 97.15 | 91.30

Model SST2 | IMDb
RB 94.89 | 87.10
RB SoftTriple | 94.95 | 87.12

Table 5: RoBERTa-base (RB) vs RoBERTa-base with SoftTriple Loss for extra large sized datasets

Model SST2-1k | MPQA-1k | MRPC-1k | TREC-1k | CR-1k | MR-1k
RL 91.96 90.18 76.09 83.75 93.43 | 89.69
RL SoftTriple | 92.14 90.59 77.16 84.59 93.62 | 89.89

Table 6: RoBERTa-large (RB) vs RoBERTa-large with SoftTriple Loss for small sized datasets

been well documented in the case of work (Gunel
etal., 2020). The performance comparison between
baseline and our method throughout dataset size is
depicted in Figure 1.

#Sentences in the dataset

———rE

Figure 1: Performance comparison between RB and RB
SoftTriple

5 Conclusions

We proposed a supervised Distance Learning Met-
ric objective that increases the performance of the
RoBERTa-base models, which are strong baselines
in the Natural Language Processing tasks. The
performance is proved over multiple tasks from
the single sentence classification and pair sentence
classification to be higher by about (0.02%-2.29%)
depending on the training dataset size. In addi-
tion, each result has been confirmed through tests
with 5-fold cross-validation on 4 different seeds
to increase its reliability. In the future, we plan to
extend the application of our method to compare
the results with language models from different ar-
chitectures to investigate its general usefulness in
other tasks.
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