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ABSTRACT

Heterogeneous graph is a kind of data structure widely existing in real life. Nowa-
days, the research of graph neural network on heterogeneous graph has become
more and more popular. The existing heterogeneous graph neural network algo-
rithms mainly have two ideas, one is based on meta-path and the other is not. The
idea based on meta-path often requires a lot of manual preprocessing, at the same
time it is difficult to extend to large scale graphs. In this paper, we proposed the
general heterogeneous message passing paradigm and designed R-GSN that does
not need meta-path, which is much improved compared to the baseline R-GCN.
Experiments have shown that our R-GSN algorithm achieves the state-of-the-art
performance on the ogbn-mag large scale heterogeneous graph dataset.

1 INTRODUCTION

In practical applications, many data can be regarded as graphs, such as social networks, academ-
ic networks and knowledge graphs. There are three types of common tasks on the graph, namely
the node classification, the link prediction and the graph classification. In recent years, due to the
numerous application scenarios and challenges of graphs, the research of graph neural networks
has become more and more popular, and many classic algorithms on the homogeneous graphs have
been proposed, such as ChebNet (Defferrard et al., [2016), GCN (Kipf & Welling, [2016), Graph-
SAGE (Hamilton et al., 2017), GAT (Velickovic et al., [2017)), GIN (Xu et al.,[2018)), DeepGCNs (L1
et al.,2019) and GeomGCN (Pe1 et al., [2020).

But obviously in real scenes many graphs are heterogeneous. Therefore, researchers began to pay
more attention to neural networks on heterogeneous graphs. R-GCN (Schlichtkrull et al., 2018) is a
heterogeneous graph neural network designed for knowledge graphs, which solved the tasks of entity
classification and link prediction on the knowledge graphs; note that R-GCN aggregates the first-
order neighborhoods. In heterogeneous graphs, by predefining meta-path (Dong et al., 2017), the
semantic high-order neighbors of the target node can be found and utilized. HAN (Wang et al.,2019)
used meta-path to aggregate high-order neighbors and introduced attention mechanism. MAGNN is
similar to HAN, the difference is that the features of all the nodes on the meta-path have been used in
MAGNN (Fu et al.,[2020). GTN (Yun et al.| 2019) is a novel model that can automatically learn the
meta-path without manually predefining it in advance. HGT (Hu et al., [2020b) got rid of the meta-
path, adopted meta-relation, and designed an aggregation method similar to Transformer (Vaswani
et al., 2017).

Since most of the existing algorithms are based on the meta-path, they require a lot of manual
processing and have poor generalization. For this we propose an end-to-end R-GSN algorithm based
on R-GCN, which does not need meta-path and can be easily applied to large scale heterogeneous
graph datasets, such as ogbn-mag (Hu et al.| 2020a). Our contributions are as follows:

e We propose a general heterogeneous message passing paradigm. Under this framework,
heterogeneous message passing is summarized into the following four steps: Message
Transform, Intra-relation Aggregation, Inter-relation Aggregation and Status Update. R-
GCN (Schlichtkrull et al.l 2018) is a special instance of this paradigm.

e We propose the R-GSN algorithm, which conforms to the general heterogeneous message
passing paradigm, and we design two novel similarity aggregation methods, called the
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SIM-ATTN aggregation and the SIM aggregation; note that the SIM-ATTN aggregation
includes an attention mechanism while the SIM aggregation does not.

e In R-GSN, we use normalization operations in several places. Experiments prove the neces-
sity of normalization operations. there are two other operations that are also useful, one is
the adversarial training method called FLAG (Kong et al.,|2020), and the other is specifical-
ly for the ogbn—mag dataset in generating parameterized initial features for nodes without
initial features through pre-propagation.

e R-GSN achieves the state-of-the-art performance on the ogbn-mag dataset. The average
accuracy on the validation dataset and test dataset are respectivly 51.82% and 50.32%,
both are higher than those of the existing algorithms. At the same time, compared with the
baseline R-GCN, there is a 4.21% gain on the validation dataset and a 3.54% gain on the
test dataset.

e We extend R-GSN and propose a homogeneous version algorithm called GSN and a
meta-path version algorithm called M-GSN. Respectively, we conducte experiments on
ogbn-arxiv, IMDB and DBLP datasets, and prove the effectiveness of the aggregation
method proposed in this paper.
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Figure 1: General heterogeneous message passing paradigm. It concludes the following four steps.
Message Transform, Intra-relation Aggregation, Inter-relation Aggregation and Status Update.

2 PROPOSED METHOD: R-GSN

2.1 GENERAL HETEROGENEOUS MESSAGE PASSING PARADIGM

Before introducing our R-GSN algorithm, in this part we first define a general paradigm for het-
erogeneous graph neural network message passing(see Figure[I). Both R-GCN and our R-GSN are
special instances under this paradigm. Heterogeneous message passing is summarized into the fol-
lowing four steps. Message Transform , Intra-relation Aggregation, Inter-relation Aggregation
and Status Update. Now we will take R-GCN as an example to analyze the detailed operation of
each component under this paradigm.

(1) Message Transform

Message transform is the first step in each layer of heterogeneous message passing. For R-GCN, it
is to assign the relation-specific parameter matrix W/_; to each relation r in the relation set R. for
the target node ¢, all neighbor nodes under any relation r will be multiplied by the relation-specific
parameter matrix W, (T).

hs; = W:elhs;‘ (1)
the relation-specific parameter matrix can transform the dimension of the feature(status). when

hsr € R? and W, € RY >4, we can get ﬁ; € R, In this way, the generated message feature to
be aggregated are obtained.

(2) Intra-relation Aggregation

In heterogeneous graph, for the target node ¢, there may be multiple types of edges connected to ¢,
and we will separately aggregate the neighbor nodes under each relation r. The core of intra-relation
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aggregation is how to perform feature aggregation for a certain type of edge. For R-GCN, we can
treat its intra-relation aggregation as MEAN aggregation.

hs = =7 h; 2
W %,

where h is the transformed feature generated by (1), N} is the set of the neighbor nodes of target
node ¢ under the relation 7. the result of Mean aggregation is h, which represents the neighborhood
aggregation feature of the target node ¢ under the relation r.

(3) Inter-relation Aggregation

When the intra-relation aggregation is finished, we will get the aggregation feature h[, of the target
node ¢ under each relation. After that, we need to aggregate the features obtained under different
relation again, which is the core operation of inter-relation. For R-GCN, its inter-relation aggregation

is SUM aggregation(3).
he=> Nl (3)

reR
Intuitively, the aggregated features under different relations are aggregated again through the addi-
tion operation, and the final aggregated feature h, of all neighboring nodes of the target node ¢ is
obtained.
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Figure 2: R-GSN Inter-realtion Aggregation(SIM aggregation).

(4) Status Update

Status update is the last step. We need to merge the feature h; of the target node ¢ with the feature
hs aggregated from all neighboring nodes together to obtain the final updated feature of the target
node ¢, which is the output status /} ().

h; = U(hs + Wnodeht) 4)

where W, 4. is the node transform parameter matrix. o is an element-wise activation function, such
as ReLU(+).

We find that equation (I9) is equivalent to concatenating equation (I)@)(3) and @). We can easily
decompose and analyze R-GCN according to the general paradigm defined above.

2.2 RELATION-BASED GRAPH SIMILAR NETWORK(R-GSN)

The R-GSN we proposed is a structure that conforms to the general heterogeneous message passing
paradigm. it is based on R-GCN, further introduces attention mechanism and similarity aggregation,
as well as various normalizations. Next, we will continue to decompose the R-GSN algorithm
according to the general paradigm.

(1) Message Transform

The message transformation of R-GSN is the same as that of R-GCN. it is to assign the relation-
specific parameter matrix W/, to each relation r in the relation set R. For the target node ¢, all
neighbors under any relation r will be multiplied by the relation-specific parameter matrix W, (5).

her = Wiyher (5)

where hyr € R? and W/, € R¥xd g0 hs; € R In this way, the generated message feature to be
aggregated are obtalned
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(2) Intra-relation Aggregation

The intra-relation aggregation of R-GCN is MEAN aggregation described in equation (2). In R-
GSN, the intra-relation aggregation is SIM-ATTN aggregation(similarity-attention aggregation),
which can also be regarded as a coefficient-weighted aggregation. As described in Figure [6] in
subsubsection [A.2] and equation ().

h = L2Norm( Y alhyy) (6)
s;'EN[

where L2Norm is L2 normalization (L2Norm(x) = m) h:/r is the transformed feature gener-

ated by equation (5). the result of SIM-ATTN aggregation is h/;, which represents the neighborhood

aggregation feature of the target node ¢ under the relation 7, and hl € R? . The difference from
R-GCN’s MEAN aggregation is that there is an additional weighted coefficient a}, which can be

calculated by the following equation (7)(8)(©)(I0).

har = L2Norm(hsr) @
hor = L2Norm(——- Z hsy ®)
|N sTENT
(3: = attn” * [ sf”hsr} ©)
e’
a; = softmax(e]) = 7zr (10
v ZjEN[' €

where hy € R?, 50 hyr € R? and hyr € RY, symbol || means concatenation, so [hyr||hyr] € R,
attn” € R?? is the trainable attention mechanism parameters which is also relation-specific, the *

here represents the inner product. When e is calculated, the final weighted coefficient a] can be
obtained through the neighborhood softmax on e;.

Note that our SIM-ATTN aggregation method is a little similar to GAT’s attention aggrega-
tion(TI)(T2) (VeliCkovié et al.l 2017), but there is still a big difference. For example, in the process
of calculating the weighted coefficient, only the feature of the source node is used, and the feature
of the target node is not used. Before similarity calculation, we first performed the L2 normalization
operation in order to make the features concatnate at the same scale. Meanwhile in SIM-ATTN
aggregation, the Leakey ReLU operation is abandoned.

e; = LeakyReLU (attn  [Why, ||Why]) (11)
e
a; = softmax(e;) = =——— (12)
2 jens €

(3) Inter-relation Aggregation

As mentioned above, inter-ralation aggregation will aggregate the feature i/, of the target node t
under all relations. In R-GCN, SUM aggregation is used. In R-GSN, we propose to use SIM
aggregation, which is somewhat similar to SIM-ATTN aggregation. The only difference is that no
attention vector is introduced here, so there are no parameters. We can use equation (I3)) to describe
SIM aggregation (Figure [2)).

he =Y bl'hl (13)

reER

Here h, € RY. The difference between R-GSN and R-GCN ’s inter-relation aggregation
is b. b is also a similarity weighted coefficient, which represents the importance weight that
the nodetype m should be given under the relation r. Of course, the premise is that assuming the
nodetype of the target node ¢ is m. m € M and M is a collection of node types. b can be
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calculated by the following equation (T4)(I3)(I6)(I7).

hin — L2Norm(v% S hae(t)) (14)
‘ | t;eym
. 1

hm = L2Norm(———— hs(t5)) (15)

R > [V ZRZ,, ’
em = R hm (16)

67”/
b" = softmax(e)’) = == (17)
ZjeR €j

We mentioned that A7, is the neighborhood aggregated feature of the target node ¢ under the relation
7, We can also write h as a verbose form A7 (t). In equation (14), V™ represents the collection of

all nodes of nodetype m. Where h-(t;) € R% so h € R? and h™ € R, the * here represents the
inner product. When €] is calculated, the final weighted coefficient b]"* can be obtained through the
softmax on e across all relations.

(4) Status Update
@—fuester)
D—toreom)—~®
@—{went)

Figure 3: R-GSN Status Update.

M

For R-GSN, the process of State Update is described in equation and Figure
h; = o(LayerNorm(MsgNorm (hg, W™ . he) + W he)) (18)

node ode

where W . is nodetype-specific parameter matrix for target node ¢ of nodetype m, W, €

R >4, MsgNorm is proposed by |Li et al.|(2020), its core idea is to normalize the message feature
first, and then multiply it by the norm of the target node feature. In R-GSN, we design a normaliza-
tion layer that cascades MsgNorm and LayerNorm (Ba et al.l [2016), which can integrate message
features and node features well. ¢ is an element-wise activation function, such as ReLU(-). hj is the

updated feature of the target node ¢ and h; € R

3 EXPERMENTS

3.1 HETEROGENEOUS GRAPH DATASET: OGBN-MAG

The ogbn-mag dataset is a heterogeneous network (Wang et al., 2020). It contains four types of
entitiestpapers (736,389 nodes), authors (1,134,649 nodes), institutions (8,740 nodes), and fields of
study (59,965 nodes) as well as four types of directed relations connecting two types of entitiestan
author is affiliated with an institution, an author writes a paper, a paper cites a paper, and a paper
has a topic of a field of study. each paper is associated with a 128-dimensional word2vec feature
vector, and all the other types of entities are not associated with input node features. The task on
the heterogeneous ogbn-mag dataset is to predict the venue (conference or journal) of each paper,
given its content, references, authors, and authors affiliations. This is of practical interest as some
manuscripts venue information is unknown or missing in MAG, due to the noisy nature of Web data.
In total, there are 349 different venues in ogbn-mag, making the task a 349-class classification
problem.

3.2 NODE CLASSIFICATION
3.2.1 R-GSN IMPLEMENTATION DETAILS

In R-GSN, the implementation details of each heterogeneous message passing layer have been de-
scribed in section Our R-GSN model has two layers, the feature dimension of the hidden layer is
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Table 1: Results for ogbn-mag.

Method Accur.acy. (%)

Params  Validation Test
MLP 188,509 26.26+0.16 26.92+0.26
GCN 1,495,901 29.53+0.22 30.43+0.25
GRAPHSAGE 1,495,901 30.70+0.19 31.53+0.15

METAPATH2VEC 94,479,069  35.06£0.17 35.44+0.36
CLUSTERGCN 154,366,772  38.40+0.31 37.32+0.37

SIGN 3,724,645 40.68+£0.10 40.46+0.12
R-GCN 154,366,772  47.61+0.68 46.78+0.67
GRAPHSAINT 154,366,772  48.37+0.26 47.514+0.22
HGT 21,173,389 49.89+£0.47 49.27£0.61
R-GSN 154,373,028 51.82+0.41 50.32+0.37

Table 2: Ablation study of R-GSN on ogbn-mag.

Method SIM-ATTN  SIM  Norm FT  FLAG Accuracy (%)
Params Validation Test

R-GCN - - - - — 154366772 47.6140.68 46.7840.67
R-GCN(1+) - - v - — 154370340 49.86+0.29 48.83-+0.50
R-GCN(2+) - - o oY — 154370340 50.724027 49.66-+0.37
R-GCN(3+) - - S v v 154370340 51044048 49.74+0.47
R-GSN(1+4) v v v - — 154373,028 50.43+0.46  49.26-0.40
R-GSN(2+) v v v v — 154373,028 51.334035 50.1040.42
R-GSN(3+) v v < v v 154373,028 51.824041 50.3240.37

64, and the feature dimension of the output layer is 349 (the number of categories of the ogbn-mag
dataset). We use cross entropy loss and Adamw (Loshchilov & Hutter, |2018)) optimizer for train-
ing, the learning rate is set to 0.004, and use early-stop technology and Dropout (Srivastava et al.,
2014) technology to prevent overfitting. We use the minibatch neighborhood sampling method for
training (Hamilton et al.| [2017)), the batchsize is 1024. For the original feature, we set the feature
to be trainable and use FLAG (Kong et al., |2020) adversarial training. The division of train/val/test
is in accordance with the official division. Table [I] reports the accuracy of the validation and test
dataset of our R-GSN on the ogbn-mag(Note that the report is the mean and standard deviation of
the results of 10 random runs ), the results of other algorithms are all from the public results on the
official leaderboard (https://ogb.stanford.edu/docs/leader_nodeprop/).

Because ogbn-mag is a heterogeneous graph, some changes need to be made to migrate the GNN
algorithm on a homogeneous graph. Specifically, for GCN (Kipf & Welling, |2016) and Graph-
SAGE (Hamilton et al.l|2017), since they were originally designed for homogeneous graphs, apply
the model to homogeneous subgraphs, keeping only the paper nodes and their citation relations. For
MLP, the graph structure is ignored and only paper nodes are considered. Except for these three
algorithms, the others are directly designed for heterogeneous graphs.

Obviously, R-GSN has a powerful improvement over R-GCN (Schlichtkrull et al,, 2018)), and its
performance is better than the previous best algorithm HGT (Hu et al.l 2020b). R-GSN achieves
the state-of-the-art performance on the ogbn-mag dataset. The average accuracy on the validation
dataset and test dataset are respectivly 51.82% and 50.32%, both are higher than those of the existing
algorithms. At the same time, compared with the baseline R-GCN, there is a 4.21% gain on the
validation dataset and a 3.54% gain on the test dataset. Compared with HGT, there is a 1.93% gain
on the validation dataset and a 1.05% gain on the test dataset.
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Figure 4: Ablation study. Left: Test accuracy on the ogbn-mag dataset. Right: Valid accuracy on
the ogbn-mag dataset.
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Figure 5: Results on the ogbn—arxiv dataset. Left: Test accuracy. Right: Valid accuracy.

3.3 ABLATION STUDY

In this part, we show ablation experiments to analyze which operations boost the performance of
R-GCN and R-GSN, The results of ablation experiments are shown in Table Q SIM-ATTN: the
method used by R-GSN Intra-relation aggregation. SIM: the method used by R-GSN Inter-relation
aggregation. Norm: Normalization is used in 4 places, namely LayerNorm at the input, L2Norm
at the Intra-relation aggregation, MsgNorm and LayerNorm at Status Update. FT: the abbreviation
of feature training, because the original heterogeneous graph data only has the features of the paper
node, so we first perform feature pre-propagation according to the connection relation to obtain the
initial features of other types of nodes, and set these features as trainable parameter. FLAG: It is

an adversarial training method that improves the robustness of the trained model by perturbing the
original data.

In Table 2] the result of R-GCN is the result reported on the official website, and we use it as the
baseline model. R-GCN(1+), R-GCN(2+) and R-GCN(3+) are R-GCN with one, two and three
operations added, namely Norm, FT, FLAG . We can find that when three operations are succes-
sively added to R-GCN and R-GSN, the accuracy of the validation and test dataset will increase
accordingly. Therefore, these three operations all have the positive effect. Of course, by comparing
R-GCN(1+4) and R-GSN(1+), R-GCN(2+) and R-GSN(2+), R-GCN(3+) and R-GSN(3+), it can be
found that R-GSN with SIM-ATTN aggregation and SIM aggregation has better performance than
R-GCN with MEAN aggregation and SUM aggregation. Figure @] shows more intuitively in Table

2] The boxplot of the accuracy distribution of the 7 models after multiple random trainings (more
than 10 times).
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3.4 HOMOGENEOUS GRAPH VERSION OF R-GSN: GSN

We hope that the aggregation method proposed in R-GSN and some tricks should also be beneficial
to homogeneous graphs. To this end, we conducted experiments on the paper citation network:
ogbn-arxiv dataset, which is significantly larger than the Cora, and PubMed datasets, and is more
in line with real-world applications. Small datasets often have only hundreds of thousands of edges,
while the ogbn-arxiv has 169,343 nodes and 1,162,243 edges, with an average degree of 13.7.
The ogbn-arxiv dataset is a directed graph, which is a citation network between ARXIV papers.
Each node is a paper published on ARXIV, and each directed edge represents the paper citation
relationship between the two papers. Each paper has a 128-dimensional initial feature vector. The
Word2vec model is run on the MAG corpus to calculate the embedding of a single word. The initial
feature vector is obtained by averaging the embeddings of the words in its title and abstract. The task
is to predict 40 subject areas of computer science papers on ARXIV, such as artificial intelligence,
operating systems, and etc., so this is a multi-classification task with 40 categories.

We designed a homogenous version of R-GSN, called GSN. It can be regarded as the R-GSN
with only one type of node and one type of edge. We conducted a simple experiment on the
ogbn-arxiv dataset and compared it with several classic graph neural network algorithms. The
experimental results are shown in Table (3] which reported the mean and standard deviation of the
accuracy after 10 random trainings.

Table 3: Results for ogbn-arxiv.

Method Accuracy (%)
Params Validation Test

MLP 38,696 54.2240.12 56.254+0.12
GCN 38,184 70.2440.28 71.3940.22
GRAPHSAGE 76,072 69.9040.49 70.8140.50
SGC 38,184 70.4340.30 71.514+0.23
GAT 38,776 70.8940.26 71.8940.27
GSN 39,547 71.40+0.22 72.31+0.21

For a fair comparison, all the graph neural network algorithms in the table 3| are unified to 3 layers,
the hidden layer dimension is 128, the Adam optimizer is used, the learning rate is 0.01, and the
Dropout and Early-stop techniques are adopted to prevent over-fitting. It can be found that our
GSN has better results than MLP and these classic graph neural network algorithms, which proves
the effectiveness of our proposed aggregation method and several tricks. The box plot in Figure 5]
can more intuitively show the performance distribution of these graph neural network models after
multiple random training (more than 10 times). It can be seen that GSN has the best performance
on both the validation and the test dataset.

3.5 EXTENDED GENERAL HETEROGENEOUS MESSAGE PASSING PARADIGM

The existing heterogeneous graph neural network algorithms mainly have two ideas, one is based
on meta-path and the other is not. The idea based on meta-path often requires a lot of manual
preprocessing, and it is difficult to extend to large scale graphs. The general heterogeneous message
passing paradigm and the R-GSN algorithm that we introduced earlier are all based on relation,
and meta-path can be seen as a generalized higher-order relation. In this part, we appropriately
extend the previous general heterogeneous message passing paradigm, which can be adjusted to the
following four steps: Message Transform, Intra-metapath Aggregation, Inter-metapath Aggregation
and Status Update. At the same time, we propose the M-GSN algorithm under this framework. In
the M-GSN algorithm, two aggregation methods are used in the Intra-metapath Aggregation, MEAN
aggregation and SIM aggregation.

We used two datasets for experiments, IMDB and DBLP. IMDB is an online dataset about movies
and TV shows. We use a subset of IMDB here, which contains 4278 movies, 208 directors, and
5257 actors after data preprocessing. Each movie is represented by a bag of words describing its
keywords. For the semi-supervised learning model, the movie node is divided into train/val/test sets,
which contain 400 (9.35%), 400 (9.35%) and 3478 (81.30%) training nodes, validation nodes and
test nodes, respectively. DBLP is a computer science website. We use a subset of DBLP. After data
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Table 4: Results for IMDB and DBLP.

MAGNN MAGNN M- M- M- M-
Datasets  Metrics Train % GCN GAT HAN G G GSN GSN F;SN ,GSN
paper repro Mean Mean(N) Sim Sim(N)

20%  52.73 53.64 56.19  59.35 58.41 61.04 60.67 61.01 60.74
40%  53.67 55.50 56.15  60.27 59.44 61.28 61.36 61.34 61.36

MacroFL - Cog 5424 5646 5729 60.66 5991 6147 6150 6159 6148
MDE 80% 5477 5743 5851 6144 6020 6192  61.82  62.04 61381
20% 5280 5364 5632 5960 5842 6108 6081  6L03  60.87
Micop  40% 5376 5556 5732 6050 5951 6140 6152 6144 6183
60% 5423 5647 5842 60.88 5996 6155 6165  61.66 6161
80% 5463 5740 5924 6153 6028 6201 6198 6214  61.97
20% 88.00 91.05 91.69 9313  92.61 9333 9378 9295  93.84
Varopi | 40% 8900 9124 0196 9323 9304 9349 9384 9311 9392
60% 89.43 9142 9214 9357 9323 9360 9393 9332  93.96
DBLP 80% 89.98 9173 9250 9410 9338  93.59 9390 9340  93.99
20% 8851 91.61 9233 9361 9316 9382 9422 9343 948
‘ 40% 8922 9177 92.57 93.68 9353 9395 9425 9360  94.32
Micro F1

60%  89.57 9197 92.72  93.99 93.73 94.08 94.35 93.82 94.38
80%  90.33 9224 93.23  94.47 93.85 94.04 94.31 93.86 94.38

preprocessing, it contains 4057 authors, 14328 papers, 7723 institutions and 20 publication loca-
tions. The author is divided into four research fields (database, data mining, artificial intelligence,
information retrieval). Each author is described by a bag of words of keywords in their papers. For
the semi-supervised learning model, the author nodes are divided into 400 (9.35%), 400 (9.35%)
and 3257 (80.28%) training nodes, validation nodes and test nodes.

We conducted node classification experiments on the TMDB and DBLP datasets. After training, we
use the trained model to extract the feature of the nodes in the test set, and then divide the data
according to different train/test ratios (20%, 40%, 60%, 80%) are sent to the linear SVM model for
training. In order to make a fair comparison, we just sent the nodes of the test dataset to the SVM
model, because our semi-supervised graph embedding algorithm has seen the nodes of the training
dataset during training. Therefore, the train/test ratio of the SVM here only involves the test dataset
(that is, 3478 nodes for IMDB and 3257 nodes for DBLP). We report the average Macro-F1 and
Micro-F1 of 10 runs for each embedded model in Table 4l

For GNNs, including GCN, GAT, HAN, MAGNN and our proposed M-GSN, we set the dropout
rate to 0.5; we use the same splits of train/val/test sets; we employ the Adam optimizer with the
learning rate set to 0.005 and the weight decay set to 0.001; we train the GNNs for 100 epochs and
apply early stopping with a patience of 30. For a fair comparison, we set the embedding dimension
of all the models mentioned above to 64. In the table[d] MAGNN paper is the result reported in (Fu
et al.,2020), MAGNN repro is the result of our reproducing the MAGNN algorithm, M-GSN Mean
represents the use of MEAN aggregation, M-GSN Mean(N) represents the use of MEAN aggrega-
tion while adding the layer L2 normalization, M-GSN Sim represents using SIM aggregation, and
M-GSN Sim(N) represents the use of SIM aggregation while adding the layer L2 normalization. In
each row of results, we highlight the Top 3 of the F1 metric. From the results, we can find that our
M-GSN basically occupies the Top 3 of the F1 metric. In the node classification task, our algorithm
can learn a better node representation of the node.

4 CONCLUSION

In this paper, we define a general heterogeneous message passing paradigm, under which we can
design different heterogeneous graph neural network models. In theory, any homogenous graph
neural network can be migrated to this framework to obtain the corresponding heterogeneous ver-
sion (homogeneous graph aggregation is equivalent to Intra-relation aggregation in this paradigm).
The R-GSN we designed under this paradigm can achieve the state-of-the-art performance on the
ogbn-mag dataset. Of course, R-GSN can still be further improved. For example, our subgraph
sampling algorithm is simple neighborhood sampling, we only experimented with 2 layers of R-
GSN, which is limited by the 11GB memory limit of our NVIDIA-1080Ti GPU. The aggregation
method of GSN is still the first-order neighborhood aggregation, therefore, our R-GSN can only
receive the information of 2-hop neighbor nodes, and cannot receive the information of semantic
high-order neighbors. Deepening the number of layers while avoiding overfitting is still an open
question.
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A APPENDIX

A.1 RELATED WORK
A.1.1 HETEROGENEOUS GRAPH

A heterogeneous graph is defined as a graph G = (V, £) associated with a nodetype mapping ¢ :
YV — M and an edgetype mapping ¢ : £ — R. M and R denote the predefined sets of nodetypes
and edgetypes, respectively, with | M|+ |R| > 2. When | M| = 1 and |R| = 1, it is a homogeneous
graph.

A.1.2 RELATIONAL GRAPH CONVOLUTIONAL NETWORK (R-GCN).

R-GCN (Schlichtkrull et al., |2018)) is the first method which shows that the GCN framework can
be extended to modeling relational data. It is proposed to solve the task of entity classification
(assigning types or categorical properties to entities) and link prediction (recovery of the missing
triples) on the knowledge graphs. Obviously, this method can be easily transferred to solve the task
of node classification and link prediction on the heterogeneous graph.

In the R-GCN model, the author proposed to use the following forward propagation model to update
the status of the nodes in the multi-relation graph.

1 -
Mo=0(d D T Wrahs: + Waodche), (19)
t

where ¢ is the target node, N denotes the set of neighbors of node ¢ under the relation r € R, while
‘R is the set of all the relations. s] represents the i-th neighbor node of the target node ¢ under the
relation . W, is the relation-specific parameter matrix and W, 4. is the node transform parameter
matrix. ¢ is an element-wise activation function, such as ReLU(-). Intuitively, equation shows
how the status h; of the node ¢ is abtained by aggregating the status of the neighbor nodes for all the
relations and then updates to the new status hj.

It should be pointed out that we can regard R-GCN as a migration of spatial average aggregation
GNN(like [Kipf & Welling| (2016)), Hamilton et al.|(2017)) on heterogeneous graph. When |R| = 1,
equation (I9) becomes the following naive GNN.

1
hg = 0’(7 Z thz + Wnodeht)a (20)
‘Ml s €N

A.2 R-GSN INTRA-REALTION AGGREGATION

Figure[6] shows the details of R-GSN intra-realtion aggregation.

A.3 EXPERIMENT

A.3.1 0GBN—-MAG DATASET

The ogbn-mag dataset is a heterogeneous network composed of a subset of the Microsoft Academic
Graph (MAG). It contains four types of entities: papers, authors, institutions, and fields as well as
four types of directed relations. The schema of the ogbn-mag dataset is shown in Figure[7] and the
statistical information is shown in Table[3]and
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Figure 6: R-GSN Intra-realtion Aggregation (SIM-ATTN aggregation).
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Figure 7: The schema of ogbn-mag dataset.
A.3.2 IMDB AND DBLP DATASETS

IMDB is an online dataset about movies and TV shows and DBLP is a dataset about computer science
website. The schema and meta-path of IMDB and DBLP datasets are shown in Figure[§]
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Figure 8: The schema and meta-path of IMDB and DBLP datasets
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Table 5: ogbn-mag node statistics

Node type(4) Number description
Paper 736389  128-d feature, 349 categories
Author 1134649 None
Institution 8740 None
Field of study 59965 None

Table 6: ogbn-mag edge statistics

Edge type(4) Number
’Author’, ’affiliated with’, *Institution’ 1043998
> Author’, *writes’, "Paper’ 7145660
’Paper’, “cites’, "Paper’ 5416271
’Paper’, ’has a topic of’, Field of study’ 7505078
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