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ABSTRACT

Instruction tuning in multimodal large language models (MLLMs) generally in-
volves smooth integration of a backbone LLM and a feature encoder that has
non-text input modalities. The major challenge is how to efficiently find the syn-
ergy through cooperative learning, so that LLMs can adapt their reasoning abilities
in downstream tasks while feature encoders can adjust to provide more task-specific
information of its modality. In this paper, we analyze the MLLM instruction tuning
from both theoretical and empirical perspectives, where we find unbalanced learn-
ing between the two modules, i.e., the feature encoder and the LLM, can cause
problems of oscillation learning and insufficient training with diminishing learning
gradients. Inspired by our findings, we propose a Multimodal Balance Coefficient
that enables quantitative measurement on the balance of learning. Based on this,
we further design a dynamic learning scheduler that better coordinates the learning
between the LLM and feature encoder, alleviating the oscillation and insufficient
training. In addition, we introduce an auxiliary regularization on the gradient
to promote updating with larger step sizes, which potentially allows for a more
accurate estimation of the proposed MultiModal Balance Coefficient and further
improves the training sufficiency. Our techniques are agnostic to the architecture of
LLM and feature encoder, so can be generically integrated with various MLLMs.
We conduct experiment results on multiple downstream tasks with various MLLMs,
demonstrating the proposed method is more effective than the baselines in MLLM
instruction tuning.

1 INTRODUCTION
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Figure 1: Illustration of (a) single modality learning insuf-
ficiency problem, (b) and multimodal learning oscillation
problem, caused by imbalanced multimodal learning. We
show the optimization trajectories in solid bold lines and the
multimodal gradients at the current step t in solid thin lines.
The dashed line borders are the contours of the learning bal-
ance coefficient κt proposed and detailed in Section 4.

Multimodal instruction tuning aligns
pre-trained multimodal large language
models (MLLMs) with specific down-
stream tasks by fine-tuning MLLMs
to follow arbitrary instructions (Dai
et al., 2024; Zhang et al., 2023; Zhao
et al., 2024; Lu et al., 2023; Han et al.,
2023; Wu et al., 2024a; Wang et al.,
2024b). State-of-the-art pre-trained
MLLMs (Li et al., 2023; Liu et al.,
2024; Tang et al., 2023a; Chu et al.,
2023) generally adopt a similar model
architecture design. Specifically, the
non-text data (image, audio, etc) is
first encoded by a feature encoder into
embedding tokens. Then, these en-
coded embeddings are inserted into
language prompts, consisting of the
multimodal sequences as input to an
LLM. Multimodal understanding and
reasoning with MLLMs relies on the
ability to learn aligned multimodal features with the feature encoder (e.g., Li et al. (2023)) and the
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pre-trained abilities of the backbone LLMs (e.g., Touvron et al. (2023); Chiang et al. (2023)) to under-
stand the multimodal input. In the instruction tuning of these MLLMs, it is critical to cooperatively
learning and align the feature encoder and the backbone LLM. The challenge lies in two folds: (1) the
encoded non-text (e.g., vision and audio) features in downstream tasks might not be perfectly aligned
with the text features, which requires the backbone LLM to adjust its pre-train parameters to recognize
the new feature tokens from non-text modalities; (2) While LLMs are already knowledgeable of
different reasoning tasks in their pre-trained, the feature encoders require adjustments to provide
more relevant modal-specific information to the downstream tasks. As a result, the insufficiently
trained LLMs in (1) that fail to comprehend the non-text modalities can suffer from hallucination
problems (Bai et al., 2024; Rawte et al., 2024), due to the strong language prior in backbone LLMs.
On the other hand, insufficient learning of the feature encoder in (2) may cause information loss (Bai
et al., 2024; Tong et al., 2024), resulting in inadequate evidence for LLM reasoning. Therefore, it is
essential to balance the learning between the feature encoder and backbone LLM, so that the learning
is not overly biased on either of the two modules.

In this paper, we first propose a multimodal balance coefficient that quantifies the balance of learning
between the feature encoder and the backbone LLM in MLLM instruction tuning. Based on theoretical
analysis and empirical observations, we identify two types of learning dilemmas caused by imbalanced
learning in multimodal instruction tuning: i) the insufficient learning problem and ii) the oscillation
problem, which are illustrated in Figure 1 and can be describe by our proposed multimodal balance
coefficient. Specifically, in Figure 1a shows the insufficient learning problem where the training
is largely inclining towars either the LLM or the feature encoder (or overfit to one of the two
modules). In such cases, the effective gradient descent is mostly only updating the LLM or the feature
encoder, resulting in insufficient learning of the other module. This makes the gradient descent less
effective, since the insufficiently learned modult (LLM or feature encoder) cannot contribute sufficient
information to the output generation. The other learning difficulty in Figure 1b, is a demonstration
of the oscillation problem, which happens when the learning is alternatively inclining toward either
the feature encoder or the LLM. This will impede the convergence of the optimization process and
undermine learning efficiency.

To address these issues, we propose Coordinated MultiModal Instruction Tuning (CoMMIT), which
consists of a coordinated learning rate scheduler (Section 6.1) and regularization in gradient descent
(Section 6.2). The coordinated learning rate scheduler dynamically adjust the learning rate of the
feature encoder and LLM according to multimodal balance coefficient, which avoids the inefficiency
caused the oscillation problem while allowing sufficient gradient descent for both of the two modules.
The regularization promotes updates with larger step sizes during training. This alleviates the
gradient diminishing problem and further reduce the chance of insufficient training. In addition, we
theoretically analyze the convergence rate and demonstrate that we can achieve faster convergence
when optimizing with CoMMIT (Section 7). We summarize our main contributions as follows:

• We introduce a theoretical framework to uncover the pitfall of the learning imbalance
problem in MLLM instruction tuning, which can cause MLLM insufficient learning and the
oscillation problem.

• Based on the theoretical analysis and empirical observation, we propose CoMMIT to
balance multimodal learning progress by dynamically coordinating learning rates on the
feature encoder and LLM. CoMMIT also enforce a gradient regularization that encourage
larger step sized and further avoid infufficient training.

• Applying CoMMIT introduces a novel term in the convergence rate analysis. Theoretical
analysis proves that this term is always greater than one, leads to faster convergence. We
also demonstrate that the theorem can be generalized across various optimizers.

• Empirical results on multiple downstream tasks in vision and audio modalities with various
LLM backbones show the efficiency and effectiveness of the proposed methods. We
demonstrate that CoMMIT can better coordinate multimodal learning progress and reduce
learning oscillations.
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2 RELATED WORKS

MLLMs have become a new paradigm to empower multimodal learning with advanced language
reasoning capabilities, such as with vision (Li et al., 2023; Liu et al., 2024; Wang et al., 2024c; Maaz
et al., 2023; Zhang et al., 2023; Huang et al., 2023a; Yan et al., 2024), and audio (Huang et al., 2023b;
Tang et al., 2023a; Gardner et al., 2023). Despite good generalizability and zero-shot performance of
existing large language models (LLMs), the discrepancy between different modalities can be one
of the greatest challenges for LMMs to achieve comparable reasoning performance as LLMs. To
bridge the multimodality gap and align with downstream tasks, several works focus on two-fold
considerations: feature (modality) alignment and reasoning alignment. The most common approach
for feature alignment is to encode the source modality feature to semantic tokens within the LLMs’
embedding feature space. By adding the modality-specific tokens (Wang et al., 2024a; Liu et al.,
2021a; Zhang et al., 2024) as soft prompt inputs (Liu et al., 2021b; Xie et al., 2023; Wu et al., 2023;
2024b), the backbone LLMs can process these tokens with language tokens as a unified sequence.
However, the newly added semantic tokens cannot be understood by LLMs directly for language
reasoning, due to the limited text-only pretraining of LLMs. Such misalignment problems will lead to
textual hallucination problems, namely linguistic bias (Ko et al., 2023; Tang et al., 2023b), in which
the language models reason only based on their language prior. Thus, multimodal alignment should
be achieved by additional adaptation of the LLM itself with multimodal instruction tuning.

3 PRELIMINARIES: INSTRUCTION TUNING WITH MLLM

Given a pair of non-text input IS (images, audio, etc) and instruction prompt IX of nature language,
the instruction tuned MLLM should comprehend the semantics of IS and generate outputs that
comply with the instruction specified in IX . State-of-the-art MLLM instruction tuning generally
adopt a similar diagram of training(Gardner et al., 2023; Li et al., 2023; Liu et al., 2024), which
involves cooperative training between a feature encoder S and a pretrained language model X .
Specifically, S first encodes the multimedia input IS into the embedding space of X . Then, the
encoded IS is inserted into the instruction prompt IX as input that conditions the output generation
with X ,

PS,X(ŷk|IS , IX , yj<k) = X([S(IS), IX , yj<k]),

where yj<k are the expected ground truth tokens before the kth predicted token ŷk in auto-regressive
generation, k = 1, · · · ,K. The training loss is the cross-entropy defined on the predicted distribution
on ŷk and the ground truth yk(Liu et al., 2024; Ouyang et al., 2022),

L
(
Y ={yk}Kk=1 | IS , IT

)
= − 1

K

K∑
k=1

yk logPS,X(ŷk|IS , IX , yj<k), (1)

The learning objective is to find the optimal X and S by minimizing the loss function. As mentioned
in Section 1, the training of MLLM can either be insufficient by biasing toward only one of S and
X , or inefficient by oscillating between the optimization of the two modules. Our goal is to find a
balance between the learning of X and S, so to accelerate the convergence of training while ensure
that both S and X are learned with suffucient knowledge.

4 MEASUREMENT OF LEARNING BALANCE IN MLLM INSTRUCTION TUNING

To assess the balance between the updates on X and S, we first measure the significance of each update
separately with X and S. Formally, for the t-th step of training, we define d(PXt,St

||PXt+1,St
) and

d(PXt,St
||PXt,St+1

) that quantify the significance of updates on X and S, respectively, by measuring
the shift in output distribution,

d(PXt,St
||PXt+1,St

) =
1

K

∑
k

KL
(
PSt,Xt

(ŷk|IS , IX)||PSt+1,Xt
(ŷk|IS , IX)

)
, (2)

d(PXt,St ||PXt,St+1) =
1

K

∑
k

KL
(
PSt,Xt(ŷk|IS , IX)||PSt,Xt+1(ŷk|IS , IX)

)
(3)
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where we use the subscript t to index the trained steps and KL(·||·) is the KL divergence. Based on
Eq.2 and 3, we define the Multimodal Balance Coefficient that meaures the balance between training
on X and S.
Definition 4.1 (Multimodal balance coefficient). For time step t of joint training on X and S, the
Multimodal Balance Coefficient κt is measured considering the separate learning steps on the feature
encoder St and the language model Xt.

κt =
d(PXt,St

||PXt+1,St
)

d(PXt,St
||PXt,St+1

)
. (4)

κt >> 1 and κt → 0 indicates that the learning is inclining toward X and S, respectively. κt with
high variance corresponds to learning that oscillates between optimizing on X or S. To further
illustrate this, we derive the Theorem 1 that estimated the gradient on X and S during training.
Theorem 1. Let GX

t and GS
t be the gradient on X and S at time step t, we can derive the multimodal

gradient estimated bounds,

∥GX
t ∥ ≤ (κt + 1)HS

t , ∥GS
t ∥ ≤ (

1

κt
+ 1)HX

t , (5)

where HS
t and HT

t represent the individual learning steps of S and X , respectively. These are given
by,

HS
t =

(
∥IXt ∥+ ∥St(I

S
t )∥
)−1 ∥logits(PXt,St+1

)∥,

HX
t =

∥∥ISt ∥∥−1 ∥logits(PXt+1,St)∥. (6)

The detailed proof are provided in Appendix A.1.

Within the metric space of generated probability distribution (PS,X , d), the value of HS
t and HT

t

are bounded by a finite norm. HS
t and HT

t are also lower-bounded, assuming multimodal gradients
are not diminishing which we alleviate by proposing a regularization on gradient in Section 6.2.
Therefore, κt can account the most for the gradient upper bound in Eq. 5 so is suitable to measure
the learning imbalance problem.

Learning dilemmas in MLLM instruction tuning. Based on the definiation and analysis above, we
propose two hypotheses regarding potential learning dilemmas in MLLM instruction tuning, which
are further evaluated in Section 5 and 8.
Hypothesis 4.1 (Learning inefficiency). The oscillation of the multimodal learning balance coefficient
κt can cause an inefficient learning problem that slows the training and convergence.
Hypothesis 4.2 (Learning insufficiency). When κt >> 1 or κt → 0, the imbalanced learning that
inclines toward either X or S can cause the insufficient learning problem.

In Section 5, we observe the dynamics of κt is different experiment settings. Based on the observa-
tion, we propose CoMMIT in Section 6 which alleviates the identified learning insufficiency and
inefficiency problems. Specifically, CoMMIT consists of a Coordinated Learning Rate Scheduling
(Section 6.1) that strikes a balance between training on X and S, along with a regularization loss
(Section 6.2) that avoids gradient diminishing and further promotes sufficient training.

5 EMPIRICAL STUDY OF LEARNING DILEMMAS IN MLLM INSTRUCTION
TUNING

We conduct an empirical study of MLLM instruction tuning to understand the behavior of X and
S in multimodal instruction tuning. The experiment is conducted on a visual question-answering
task TextVQA (Singh et al., 2019), on which a BLIP-2 (Li et al., 2023) model is instruction-tuned.
We show the analysis results on TextVQA, one of the common instruction tuning downstream tasks
which is widely used in vision LLMs (Dai et al., 2024; Yin et al., 2024). To probe the problem of
imbalance and insufficient learning, we include three learning strategies: (1) Synced LR is trained by
setting the learning rate of both X and S to 1e− 4; (2) Language LR ↑ increases learning rate of X
to 1e− 3; (2) Encoder LR ↑ increases the learning rate of S to 1e− 3.

4
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5.1 THE OSCILLATION PROBLEM IN IMBALANCED MLLM INSTRUCTION TUNING

To quantitatively understand the effect of the imbalanced multimodal learning problem in MLLM
instruction tuning, we show the learning curves (Figure 2) of the measurement variables HS

t , HX
t ,

and κt proposed in Eq. 5.

2000 4000 6000
Iteration

10 1

(a) HS
t

2000 4000 6000
Iteration

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

(b) HX
t

Synced LR
Language LR 
Encode LR 

2000 4000 6000
Iteration

100

(c) t

Figure 2: Learning curves of the variables HS
t , HX

t , and κt for a measurement of learning balance in
BLIP-2 instruction tuning on TextVQA.

Observation 5.1. As shown in Figure 2(c), the multimodal learning process can suffer from signifi-
cant oscillation problems in the Synced LR setting.

Specifically, the learning curve of κt in the Synced LR setting varies around the value of 1 (i.e., an
absolute balance), which is a showcase of the oscillation problems that signify training instability.
Interestingly, it can be found that the feature encoder S is more unstable than the language model X ,
by comparing HS

t in Figure 2(a) and HX
t in Figure 2(b). By increasing the learning rate either X

(Encoder LR) or S (Language LR), we can observe that the three metrics in Figure 2 are stabilized.
In the next section, we show that such a stabilization is at the expense of insufficient training. We
further demonstrate Hypothesis 4.1 that oscillation can cause inefficient training in Section 8.

5.2 THE LEARNING INSUFFICIENCY IN IMBALANCED MLLM INSTRUCTION TUNING

Let θSt and θXt be the parameters of S and X at time step t. We further show three metrics
with the same backbone MLLM and training data as in Section 5.1: (1) the normalized learning
gradient ∥GS

t ∥/∥θSt ∥ of the feature encoder S in Figure 3(a), (2) the normalized learning gradient
∥GX

t ∥/∥θXt ∥ of the language model X in Figure 3(b), and (3) the cross-entropy loss in Figure 3(c),
to understand the impact of imbalanced learning between X and S on the learning sufficiency in
MLLM instruction tuning.

2000 4000 6000
Iteration

10 6

10 5

10 4

10 3

10 2

(a) GS
t / S

t

2000 4000 6000
Iteration

10 2

10 1

100

101

(b) GX
t / X

t

Synced LR
Language LR 
Encode LR 

2000 4000 6000
Iteration

100

101

(c) Cross-entropy Loss

Figure 3: The learning curves of normalized learning gradient ∥GS
t ∥/∥θSt ∥ and ∥GX

t ∥/∥θXt ∥ for the
feature encoder and language model respectively, as well as the cross-entropy training losses.

Observation 5.2. In Figure 3(c), we observe that imbalanced learning that inclines toward X or S
(e.g., Encoder LR ↑) can slow the convergence of the MLLM with gradient diminishing and inferior
training performance.

This is consistent with Hypothesis 4.2, since the diminishing gradient would result in insufficient
training with gradient descent. For example, we can observe in Figure 3(a) and Figure 3(b) that

5
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the Encoder LR can simultaneously cause the gradient diminishing in both X and S, with the
cross-entropy converging to a higher value in Figure 3(c). In such cases, it is necessary to strategically
balance the learning between different modules, so the training is not inclining toward either X or S.

6 COMMIT: COORDINATED MULTIMODAL INSTRUCTION TUNING

6.1 COORDINATED LEARNING RATE SCHEDULING

Based on the observations in Section 5, the learning rate on X should be boosted when the training
is inclining toward S (κt → 0 ), and vise verse. So motivated, we propose a dynamic learning rate
scheduling method to coordinate multimodal learning between X and S, which alleviates the learning
oscillation problems while enabling sufficient training for both X and S.

Inspired by damping strategies in optimization (Lucas et al., 2018; Tanaka & Kunin, 2021; Wei
et al., 2021), we use the proposed learning balance metric κt in Eq. 4 as the damping parameter
that facilitates a balanced multimodel learning. Specifically, we track the Nκ moving average of κt

through the learning process,

κ̃t =
1

Nκ

Nκ∑
i=1

κt−i+1, (7)

then dynamically adjust learning rates of X and S in accordance. Let βX
t and βS

t be the learning
rates on X and S at time step t. We adjust the learning rates by,

βT
t =

2α

κ̃t + 1
, βS

t =
2α

1/κ̃t + 1
, (8)

where α is the base learning rate. To avoid a large computation overhead for batch-wise calculation
of κ̃t and reduce the noise caused by frequent adjustment of the learning rates, we only periodically
update the learning rates for every Nlr time steps.

6.2 REGULARIZATION

During training, the diminishing HS
t and HT

t as observed in Figure 3 can cause higher estimation
errors in κ̃t. To address these, we propose an auxiliary regularization that encourages large step sizes
for both X and S, which mitigates gradient diminishing. Specifically, we want to encourage larger
distribution drifts d(PXt,St ||PXt+1,St) for X and d(PXt,St ||PXt,St+1) for S, apart from gradient
descending on the cross-entropy loss Eq. 1.

The gradient update for our proposed CoMMIT at time step t is,

θXt+1 ← θXt − βX
t · ∇θXL(St(X̃θX

t
)) + βX

t · ∇θXd(PXt,St
||PXt+1,St

), (9)

θSt+1 ← θSt − βS
t · ∇θSL(Tt(St(X)); θSt ) + βS

t · ∇θSd(PXt,St
||PXt,St+1

). (10)

Note that the distribution drifts d(PXt,St
||PXt+1,St

) and d(PXt,St
||PXt,St+1

) does not involve ground
truth labels. Therefore, our proposed regularization is potentially also applicable to unsupervised
instruction tuning.

7 THEORETICAL ANALYSIS

In this section, we present the computation and proof of a new convergence bound with our proposed
method. Our theoretical analysis demonstrates that it achieves a faster convergence rate compared to
the imbalanced MLLM instruction tuning.

7.1 SETUP AND NOTATIONS

Consider a non-convex random objective function F : Rd → R. In the context of large-scale
optimization, this function can be effectively expressed as the average of N component functions,
denoted as, F (x) = 1

K

∑K
k=1 fk(x), where each fk(x) is an i.i.d sample. We are going to minimize

the expect value of E [F (x)] given x ∈ Rd. We also define Ek−1 as the conditional expectation with

6
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respect to f1, f2, · · · , fk. Similar as Adam (Kingma & Ba, 2014) algorithm, we denote mk,i, vk,i,
xk,i as the i-th component of mk, vk, xk ∈ Rd iteratively. Building upon the insight of Défossez et
al. (Défossez et al., 2020) regarding the presence of two bias correction terms mk and vk, we define

αk,i = αi

√
1−βk

2

1−β2
. Notably, we opt to drop the correction term for mk due to its faster convergence

compared to vk.

Aligned with our proposed methodology, we incorporate two additional terms into the original Adam
algorithm. A dynamic learning parameter λ that balances feature and language learning is designed
to adapt based on changes in κ̃. To mitigate the risk of vanishing or exploding gradients, we introduce
an auxiliary loss regularization function h(x), defined in Section 6.2 to enhance training stability and
support the overall robustness of the learning process. By setting β1 = 0, 0 < β2 ≤ 1, αk,i > 0,
ϵ = 10−8, m0 = 0, and v0 = 0, given x0 ∈ Rd as our starting point, this refinement yields the
updated rules as follows,

vk,i = β2vk−1,i + (λ∇ifk(xk−1) +∇ihk(xk−1))
2 (11)

xk,i = xk−1,i − αk
λ∇ifk(xk−1) +∇ihk(xk−1)√

vk,i + ϵ
(12)

Throughout the proof, we also assume the norm of the gradients ∥∇f(x) +∇h(x)∥ is bounded by
R−
√
ϵ. The small constant ϵ is used for numerical stability.

7.2 CONVERGENCE PROOF

Following the second Theorem outlined by Défossez et al. (Défossez et al., 2020), we calculate the
convergence bound of our algorithm with a dynamic learning rate and loss function.
Theorem 2. Given the assumptions from Appendix A.2 and applying Lemma A.3, for all components
of the step sizes and gradients, update αi with the corresponding value from HS

t and HT
t . Let {xk}

be a sequence generated by the optimizer, with 0 < β2 ≤ 1, and αi > 0. For any time step K, we
have,

E
[
∥∇F (xk)

2
2∥
]
≤ 2R

F (x0)− f∗

λαiK
+ C (13)

where

C =
1

K

(
2αiR√
1− β2

+
α2
iL

2(1− β2)

)(
ln

(
(1− βk

2 )R
2

(1− β2)ϵ

)
− ln(β2)

)
The detailed proof is provided in Appendix A.4.

CoMMIT adjusts both λ and h(x) to balance multimodal learning progress. The parameter λ, which
measures the balance between feature and language learning, remains greater than 1 during training,
driven by the balance metric κ̃. By avoiding learning oscillations, λ can grow even larger, contributing
to faster learning. When κ̃ > 1, the model suffers from insufficient feature learning. CoMMIT
reduces the learning rate of the LLM to balance learning, ensuring λ = κ̃t+1

κ̃t−1+1 > 1. Conversely,

when κ̃ < 1, the model suffers from insufficient language learning, ensuring λ = 1/κ̃t+1
1/κ̃t−1+1 > 1.

Notably, ∇h(x) is directly added to ∇f(x) to induce gradient changes, which further contributes to
the increase of λ, resulting in a faster convergence rate.

In this section, we show the proof using Adam as the base optimizer. Due to the reason that
CoMMIT does not modify the optimization algorithm itself, the theorem can also be extended to any
gradient-based optimization method such as the stochastic gradient descent.

8 EXPERIMENT

Experiment setup We conduct experiments on two non-text modalities, vision and audio, with
multiple instruction-tuning downstream tasks: (1) for Vision, we fine-tune the pre-trained BLIP-2
(Li et al., 2023), which consists of a vision Q-Former (i.e., the feature encoder) and a backbone
OPT-2.7B LLM (Zhang et al., 2022). We evaluate on three visual question-answering tasks: TextVQA

7
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(Singh et al., 2019), IconQA (Lu et al., 2021), and A-OKVQA (Schwenk et al., 2022), which focus
on text recognition and reasoning, knowledge-intensive QA, and abstract diagram understanding,
respectively; (2) for Audio, we leverage the SALMONN (Tang et al., 2023a) model, which extracts
both speech and audio features from waveforms and composes these low-level features by a learnable
audio Q-Former structure (i.e., the feature encoder). The audio tokens generated by the audio
Q-Former are prefixed to the language instruction tokens, which are then input to the backbone
Vicuna-7B LLM (Chiang et al., 2023). We evaluate one audio question-answering task and two
audio captioning tasks: ClothoAQA (Lipping et al., 2022), MACS (Morato & Mesaros, 2021), and
SDD (Manco et al., 2023), which focus respectively on crowdsourced audio question-answering,
acoustic scene captioning, and text-to-music generation.

We follow the common instruction tuning diagram (Dai et al., 2024; Tang et al., 2023a; Huang et al.,
2023a), where the parameters of backbone LLMs are finetuned with LoRAs (Hu et al., 2021) and
the feature encoders are finetuned directly. We set the learning rate to 1e − 4 for all the feature
encoders and backbone LLMs in our baseline methods Constant LR (Dai et al., 2024; Tang et al.,
2023a), Feature CD, Language CD (Wright, 2015). For Feature CD, we first update the feature
encoder until its weights stabilize, then update the backbone LLMs. For Language CD, the process is
reversed, with the LLMs being trained first. We also use 1e − 4 as the base learning rates for our
CoMMIT variants. There are two CoMMIT variants: CoMMIT and CoMMIT-CLR. CoMMIT is
out proposed method in this paper, while CoMMIT-CLR is an ablation on CoMMIT, without the
regularization in Section 6.2.

Improved Learning Efficiency in MLLM Instruction Tuning. We evaluate the learning efficiency
of the proposed methods CoMMIT-CLR and CoMMIT in comparison with Constant LR in Figure 4
and 5. For visual question-answering tasks in Figure 4, we observe that CoMMIT-CLR and CoMMIT
are able to accelerate the instruction tuning of BLIP-2 in the early stage. This is especially in the
task of IconQA which is out-of-domain in the pretraining of BLIP-2 (Dai et al., 2024). Specifically,
IconQA requires regional-level and spatial visual understanding that are different from pre-trained
tasks (Chen et al., 2023). In addition, CoMMIT-CLR and CoMMIT can achieve lower training losses
compared with Constant LR. These validates that CoMMIT improves the training efficiency.
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Figure 4: Instruction-tuning learning curves of BLIP-2 on three vision-based downstream tasks.
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Figure 5: Instruction-tuning learning curves of SALMONN on three audio-based downstream tasks.

Similar to the vision-based tasks, we can find in Figure 5 that CoMMIT-CLR and CoMMIT can
also converge to lower loss values in audio tasks. Specifically, we observe that the CoMMIT-CLR
and CoMMIT can achieve better accelerations on the audio captioning tasks of MACS and SDD,
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compared to training on the audio question-answering task of ClothoAQA. Since audio captioning
tasks need more adaptation in MLLMs to generate relatively longer context and align the generation
distribution with specific tasks, the coordinated learning rate scheduling method in Section 6.1 can
more dynamically adjust the learning rate for less learned components at each model update step. In
addition, we show that the proposed loss regularization method adopted in CoMMIT can actively
promote the difference in MLLM’s generation distribution between optimization steps, which can
better benefit tasks, such as audio captioning, that require the model to generate longer contexts.

Model Task Constant
LR

Feature
CD

Language
CD

CoMMIT
CLR CoMMIT

BLIP-2
A-OKVQA 54.06 57.99 49.87 60.44 64.37
IconQA 37.16 35.48 34.47 39.09 38.65
TextVQA 26.48 18.00 19.44 27.66 28.12

SALMONN
ClothoAQA 42.49 45.80 38.52 52.86 50.55
MACS 24.60 22.41 23.64 23.81 25.06
SDD 15.10 5.70 15.74 15.07 15.33

InternVL2
A-OKVQA 76.59 73.19 79.47 78.00 80.52
IconQA 80.94 83.20 81.60 80.85 82.87
TextVQA 65.22 65.60 65.08 65.18 67.00

LLaVA-1.5
A-OKVQA 79.20 77.64 76.94 77.82 79.55
IconQA 64.09 64.16 58.17 65.78 69.60
TextVQA 41.98 43.34 49.32 47.80 49.30

Table 1: Instruction tuning results for four MLLMs: BLIP-2, SALMONN, InternVL2-8B, and LLaVA-
1.5-7B. These are pre-trained LLMs in vision and audio respectively. For questions-answering tasks
like A-OKVQA, IconQA, TextVQA, and ClothoAQA, we report the accuracy score of the generated
answers. For audio captioning tasks (MACS and SDD), we report the Rouge-L metric that compares
the generated caption with candidate captions. We highlight the best method in bold font for each
downstream task of instruction tuning.
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Encode LR 
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Figure 6: Learning curves of the multimodal learn-
ing balance coefficient κt for multiple methods. In
addition to the learning curve, we also report the
standard deviation of κt of each method.

Improved Downstream Performance across
Modalities. In Table 1, We evaluate the perfor-
mance of the proposed methods CoMMIT-CLR
and CoMMIT, comparing with three baselines
Constant LR, Feature CD, and Language CD.
Among the three baselines, we observe that coor-
dinate gradient descend methods have the most
improvement compared to the constant learn-
ing rate methods that show significant learn-
ing tendencies towards a certain modality (e.g.,
Language CD in SDD, and Feature CD in A-
OKVQA and ClothoAQA). However, since such
learning balance varies in downstream tasks, co-
ordinate descend methods cannot consistently
improve MLLM instruction tuning, while arbi-
trarily inclining towards only a certain modality
can result in inferior model performance (e.g.,
Feature CD in SDD and Language CD in A-
OKVQA).

Different from the fixed learning tendency which needs to be predetermined by coordinate descend
methods, the proposed coordinated learning rate scheduling method can dynamically adapt learning
rates for multimodal components and balance the multimodal joint training. With better coordinated
multimodal learning, CoMMIT-CLR and CoMMIT consistently improve Constant LR across modali-
ties and downstream tasks. In addition, the proposed regularization in CoMMIT can promote larger
step sizes in gradient descent, which enlarges differences in in the generated output distributions
between differen time steps. This prevents learning from being stuck at local optima, which can be
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especially beneficial for modality-specific captioning tasks whose optimization space can be relatively
larger than question-answering tasks.

Method A-OKVQA TextVQA IconVQA
LR=1e-5 50.30 27.58 35.45
LR=1e-4 54.06 26.48 37.16
LR=1e-3 45.24 20.60 34.93
CoMMIT 64.37 28.12 38.65

Table 2: Comparison on A-OKVQA, TextVQA, and Icon-
VQA with BLIP-2 backbone model. Baselines are Constant
LR that direct fine tune the backbone model with various
learning rate. Comparative, our CoMMIT dynamically ad-
justs its learning rate.

Balanced Multimodal Learning. In
Figure 6, we evaluate the stability of
our proposed CoMMIT and CoMMIT-
CLR in comparison with the three
learning rate scheduling methods de-
scribed in Section 5. We report with
the BLIP-2 (Li et al., 2023) backbone
model on the task of TextVQA (Singh
et al., 2019). It can be observed that
both CoMMIT and CoMMIT-CLR
can stabilize multimodal learning with
smaller standard deviations of κt over
time. Though Language LR ↑ also
yields high stability on κ, such learn-
ing rate adjustment method suffers
from the problems of imbalanced training between the feature encoder and LLM as described
in Section 5.2, which would potentially cause insufficient training on the feature encoder and worse
performance of instruction tuning. Comparing CoMMIT and CoMMIT-CLR, we can observe that
CoMMIT achieves more balanced learning with the value of κt closer to 1, while demonstrating
relatively milder learning oscillation with less variant κt during training. Such better stability in
CoMMIT can be benefited by the loss regularization in Section 6.2, which encourages generation
distribution change in MLLMs conditioned on the learning progress of the feature encoder and
language model. Accompanied by the loss regularization, the learning balance coefficient κt, which
is calculated based on generation distributions, can be more accurately estimated and the coordinated
learning rate scheduler can more effectively adapt the optimization process.

Note that SynLR that has oscillated value of κt is actually our baseline Constant LR. In Figure 4
and 5, it is shown that Constant LR generally has lower rate of training (descent on loss values) at
the earlier stage. These are consistent with Hypothesis 4.1 that the oscillation problem can slow the
training of MLLM in instruction tuning.

Comparing various learning rates. In Table 2, we compare CoMMIT with results of constant LR
with different learning rate. We report the results on tasks of A-OKVQA, TextVQA, and Icon-VQA
with BLIP-2 backbone model. We can observe that our proposed CoMMIT outperforms the Constant
LR baselines with significant margin. In addition, we can also find that there is no fixed value of
learning rate that consistently yields the best performance for Constant LR, while out proposed
CoMMIT is able to dynamically adjust its learning rate. These resuts demonstrate the necessity and
effectiveness of dynamic learning rate adjustment for balanced learning between the feature encoder
and LLM in multimodal instruction tuning.

9 CONCLUSION

In this work, we address the challenge of imbalanced learning between the feature encoder and
the backbone LMM during MLLM instruction tuning. Through theoretical analysis and empirical
observations, we uncovered how this imbalance can lead to insufficient learning and the oscillation
problem. To mitigate these challenges, we proposed CoMMIT, a novel approach that dynamically
coordinates the learning rates of the feature encoder and LLM backbone. Our CoMMIT also included
regularization on the gradient gradients that promotes training sufficiency. Our theoretical and
empirical analyses demonstrate that CoMMIT improves the overall learning efficiency. Experiments
across multiple vision and audio downstream instruction tuning tasks illustrate that the training with
CoMMIT for MLLMs is more effective compared to baselines.

Our work has the potential limitations as follows: (i) the MLLMs which we focus on have a similar
architecture design that is composed of a feature encoder and a backbone LLM for reasoning; (ii) the
proposed method only focuses on MLLM instruction tuning but may not be directly generalized to
MLLM pre-training.
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A APPENDIX

A.1 LEARNING BALANCE IN MULTIMODAL JOINT TRAINING

Proof. According to Lipschitz continuity in cross-entropy loss function (Mao et al., 2023), there
exists a sequence of Tt and St during MLLM instruction tuning, where multimodal components are
jointly trained. Given the two metric spaces, (R, l2) of the cross-entropy losses and (H, d) of the
generation distributions, there exists 0 < γ < 1 such that, at each optimization step t,∥∥L (PXt,St)− L

(
PXt+1,St+1

)∥∥
2
≤ γd

(
PXt+1,St+1 ||PXt,St

)
, (14)

where the metric d measures the change in the prediction distribution PXt,St ∈ H as the multimodal
components X and S are updated. Based on the triangle inequality in metric space, a joint step of
multimodal learning is bounded by the combination of two components’ separate step forward,

d
(
PXt+1,St+1

||PXt,St

)
≤ d

(
PXt+1,St

||PXt,St

)
+ d

(
PXt,St+1

||PXt,St

)
, (15)

where the first term represents the change due to updating the X-component while keeping S fixed,
and the second term represents the change due to updating the S-component.

Then we can derive the multimodal gradient estimated bounds based on MLLM’s generative perfor-
mance in its metric space d shown in the Theorem 1.

A.2 NECESSARY ASSUMPTIONS

We state the necessary assumptions (Bertsekas et al., 2003) commonly used when analyzing the
convergence of stochastic algorithms for non-convex problems:

Assumption 1. The minimum value of f(x) is lower-bounded,

∀x ∈ Rd, f∗ = min f(x).

Assumption 2. The gradient of the non-convex objective function f is L-Liptchitz continuous (Nes-
terov, 2013). Then ∀x, y ∈ Rd, the following inequality holds,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥x− y∥22.

A.3 CONTROLLING DEVIATION FROM DESCENT DIRECTION

Following the first Lemma outlined by Défossez et al. (Défossez et al., 2020), where the expected
update direction can positively correlate with the gradient (Sashank et al., 2018), we aim to control
the deviation from the descent direction to enhance convergence.

Lemma 1. For all k ∈ N∗ and R ≥ ∥∇f(x) +∇h(x)∥+
√
ϵ, the gradient update follows a descent

direction,

Ek−1

[
∇iF (xk−1)

λ∇ifk(xk−1) +∇ihk(xk−1)√
ϵ+ vk,i

]
− λ(∇iF (xk−1))

2

2
√

ϵ+ ṽk,i

≥ ∇iF (xk−1)∇ihk(xk−1)

2
√
ϵ+ ṽk,i

− 2REk−1

[
(λ∇ifk(xk−1) +∇ihk(xk−1))

2

ϵ+ vk,i

]
. (16)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. Denote F = ∇iF (xk−1), f = λ∇ifk(xk−1), h = ∇ihk(xk−1), and ṽk,i = β2vk−1,i +

Ek−1

[
(λ∇ifk(xk−1) +∇ihk(xk−1))

2
]
, we get:

Ek−1

[
F (f + h)
√
ϵ+ vk,i

]
= Ek−1

[
F (f + h)√
ϵ+ ṽk,i

]
+ Ek−1

[
F (f + h)

(
1

√
ϵ+ vk,i

− 1√
ϵ+ ṽk,i

)]
(17)

We know that g and ṽk,i are independent given f1, f2, · · · , fn−1. h and ṽk,i are also independent
based on our settings which do not affect the momentum, we have,

Ek−1

[
F (f + h)√
ϵ+ ṽk,i

]
=

λF 2√
ϵ+ ṽk,i

+
Fh√
ϵ+ ṽk,i

(18)

The only thing we need to do is control the deviation of the second term in Eq.( 17). Applying
Cauchy-Schwarz (Steele, 2004),

RHS = F (f + h)
Ek−1

[
(f + h)2

]
− (f + h)2

√
ϵ+ vk,i

√
ϵ+ ṽk,i(

√
ϵ+ vk,i +

√
ϵ+ ṽk,i)

≤ F (f + h)
Ek−1

[
(f + h)2

]
√
ϵ+ vk,i(ϵ+ ṽk,i)

+ F (f + h)
(f + h)2

√
ϵ+ vk,i(ϵ+ ṽk,i)

. (19)

By applying the inequality ab ≤ 1
2λb

2 + λ
2a

2 with λ =

√
ϵ+ṽk,i

2 , a = F√
ϵ+ṽk,i

, and b =

(f+h)Ek−1[(f+h)2]√
ϵ+ṽk,i

√
ϵ+vk,i

, the conditional expectation of the first term in Eq.( 19) can be bounded as,

Ek−1

[
F (f + h)

Ek−1

[
(f + h)2

]
√
ϵ+ vk,i(ϵ+ ṽk,i)

]
≤ Ek−1

[
F 2

4
√

ϵ+ ṽk,i
+

(f + h)2Ek−1

[
(f + h)2

]2√
ϵ+ ṽk,i

3
(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+ Ek−1

[
(f + h)2Ek−1

[
(f + h)2

]√
ϵ+ ṽk,i(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+REk−1

[
(f + h)2

ϵ+ vk,i

]
, (20)

with respect to the fact that ϵ+ ṽk,i ≥ Ek−1

[
(f + h)2

]
and Ek−1

[
(f + h)2

]
≤ R.

Similarly, applying the inequality ab ≤ λ
2a

2 + 1
2λb

2 with λ =

√
ϵ+ṽk,i

2Ek−1[(f+h)2] , a = F (f+h)√
ϵ+ṽk,i

, and

b = (f+h)2

ϵ+vk,i
, the conditional expectation of the second term in Eq.( 19) can be bounded as,

Ek−1

[
F

(f + h)2(f + h)
√
ϵ+ vk,i(ϵ+ ṽk,i)

]
≤ Ek−1

[
F 2

4
√

ϵ+ ṽk,i

(f + h)2

Ek−1 [(f + h)2]
+

Ek−1

[
(f + h)2

]√
ϵ+ ṽk,i

(f + h)4

(ϵ+ vk,i)2

]

≤ F 2

4
√
ϵ+ ṽk,i

+ Ek−1

[
Ek−1

[
(f + h)2

]√
ϵ+ ṽk,i

(f + h)2

(ϵ+ vk,i)

]

≤ F 2

4
√
ϵ+ ṽk,i

+REk−1

[
(f + h)2

ϵ+ vk,i

]
, (21)

given again Ek−1

[
(f + h)2

]
≤ R.

Putting inequalities (20) and (21) back into (19) gives,

Ek−1

[
F (f + h)

(
1

√
ϵ+ vk,i

− 1√
ϵ+ ṽk,i

)]
≤ F 2

2
√

ϵ+ ṽk,i
+ 2REk−1

[
(f + h)2

ϵ+ vk,i

]
(22)

And, therefore, adding Eq.(22) and Eq.(18) into Eq.(17) finishes the proof.
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A.4 PROOF OF CONVERGENCE

In this section, we prove the theorem 2.

Proof. Given αk = α
√

1−βk
2

1−β2
, we apply the Assumption 2 and get,

F (xk) ≤ F (xk−1)− αk∇F (xk−1)
Tuk +

α2
kL

2
∥uk∥22. (23)

Since we define the bound R ≥ ∥∇f(x)+∇h(x)∥+
√
ϵ, it follows that

√
ϵ+ ṽk,i ≤ R

√∑n−1
j=0 βj

2 .
By applying this inequality, we obtain,

αk

(
(λ∇iF (xk−1))

2

2
√
ϵ+ ṽk,i

+
∇iF (xk−1)∇ihk(xk−1)

2
√
ϵ+ ṽk,i

)

≥ α

(
(λ∇iF (xk−1))

2

2R
+
∇iF (xk−1)∇ihk(xk−1)

2R

)
. (24)

By taking the conditional expectation, we apply Eq.( 24) to Lemma 1 to derive results from Eq.( 23),

Ek−1 [F (xK)] ≤ Ek−1 [F (xk−1)]−
αλ

2R
∥∇F (xk)

2
2∥

− α

2R
(∇F (xk)

T∇h(xk)) +

(
2αkR+

α2
kL

2

)
E
[
∥uk∥22

]
(25)

Summing the previous inequality over all k and taking the full expectation with respect to the fact
that α ≥ αk

√
1− β2. By applying Lemma 5.2 from Défossez et al. (Défossez et al., 2020), we get

the final bound,

E
[
∥∇F (xk)

2
2∥
]
≤ 2R

F (x0)− f∗

α(1 + λ)K
+

(
2αR√
1− β2

+
α2L

2(1− β2)

)(
1

K
ln

(
(1− βn

2 )R
2

(1− β2)ϵ

)
− ln(β2)

)
(26)

A.5 COMPUTATION RESOURCES

Our model is trained on 4 A100 GPUs with 40GB memory. The average training time is about 8
hours.

B ANALYSIS ON THE COMPARISON OF NORMALIZED LEARNING GRADIENTS
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10 2
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Figure 7: The learning curves of normalized learning gradient ∥GS
t ∥/∥θSt ∥ and ∥GX

t ∥/∥θXt ∥ for the
feature encoder and language model respectively.
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