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ABSTRACT
In recent years, governments of more than 200 countries and regions have enacted measures to control the spread of COVID-19.
A precise and comprehensive evaluation of policy effect provides important grounds for policy-making. Since the whole world has
entered the post-epidemic era, prevention policies are inclined to strike a trade-off between controlling confirmed/death cases and
the  economic  rebound.  Furthermore,  with  the  increasing  vaccination  rate,  vaccination  has  become  a  considerable  factor  in
determining policy stringency. However, the existing approaches are still limited in efficiency due to the following reasons: (1) They
are still confined to policies’ containment effect on COVID-19, neglecting the impact of vaccination on policy effect and the impact
of policies on economy; (2) While evaluating policy effect in different regions, most existing models lack robustness. To address
these problems, we propose a multi-dimensional evaluation model for more effective assessment of epidemic prevention policies
in  post-epidemic  era.  The  proposed  model  consists  of  two  modules:  (1)  A  multi-dimensional  objective-programming  module  is
raised to evaluate the policy effect comprehensively, where vaccination, policy stringency, economy indicators, confirmed cases,
and  reproductive  rate  are  taken  into  account;  (2)  A  vaccine-dependent  parameter  learning  (VDPL)  module  based  on  Bayesian
deep  learning  (BDL)  models  a  vaccine-dependent  parameter  which  indicates  the  relationship  between  vaccination  and  policy
stringency. The module also strengthens the robustness of the proposed model with the help of BDL since BDL can adapt the data
of different regions better through resampling the probability distribution of network weights. Finally, We evaluate our model on the
data of the US. The results demonstrate that the proposed approach performs better in depicting the spread of COVID-19 under
the influence of policy.

KEYWORDS
COVID-19; Bayesian deep learning (BDL); vaccine; optimal policies

 

COVID-19,  a  pandemic caused by the  SARS-CoV-2 virus,
has  spread  around  the  globe  since  2020[1].  In  order  to
tackle  the  outbreaks  of  COVID-19,  the  governments  of

almost  every  countries  have  adopted  many kinds  of  measures  to
delay the spread of  COVID-19[2].  For the sake of  assessing policy
effect  and  making  adjustments  promptly,  a  large  amount  of
researches  on  COVID-19  policy  effect  evaluation  have  been
conducted.

Early  in  2020,  COVID-19  policies  are  evaluated  by  means  of
constructing counterfactual, which is the prediction of confirmed
cases or reproductive rate of COVID-19 in a given policy and time
scenario[3].  Various  methods[4, 5] ranging  from  difference  equation
to  machine  learning  (ML)  are  applied  to  evaluate  the  effect  of
COVID-19  policies  more  accurately.  With  further  researches,
more detailed indicators like age, medical facilities, income, and so
on  are  considered  to  study  the  relation  between  these  indicators
and  the  effect  of  policies[2].  In  2021,  Center  for  Disease  Control
and  Prevention  (CDC)  put  forward  the  concept  of  vaccine-
differentiated  policies[6, 7],  which  means  vaccinated  people  can
access  greater  freedoms  due  to  their  vaccination  status,  and  are
subject to less stringent restrictions.

Though previous works have achieved initial success, there still
exists some deficiencies. Firstly, the existing works fail to consider
the  impact  of  vaccination  on  policy  effect  and  the  impact  of
policies  on  economy.  While  entering  the  post-epidemic  era,

controlling  the  confirmed  cases  only  seems  to  be  short-sighted.
More attention is supposed to be paid to the recovery of economy.
The more people get vaccinated, the fewer people will be infected
and  the  more  labor  force  available.  Hence,  new  factors  like
vaccination  and  adjustment  of  policies  are  required  imminently.
Secondly,  the  existing  models  have  disadvantages  of  being
subjective  and  in  short  of  robustness.  For  example,  the  age-
dependent parameter in the age-structured model[8] is determined
on the basis of real statistics artificially rather than being inducted
by algorithms. Most of the works[4−8] only discuss case study at the
level of the whole country or just in a fixed region, which lacks in
enough robustness while evaluating in different states.

To  solve  the  challenges  above,  a  multi-dimensional  evaluation
model is  proposed in this  article  for more efficient assessment of
epidemic  policy  effect.  The  whole  model  consists  of  a  vaccine-
dependent parameter learning (VDPL) module and an objective-
programming module. Considering that the spread of COVID-19
is a complicated process, the VDPL module is designed based on
the  architecture  of  Bayesian  deep  learning  (BDL)  to  learn  a
vaccine-dependent  parameter  in  a  more  robust  way.  In  the
proposed  BDL  architecture,  policy  stringency  is  imported  as  the
prior probability, and Monte Carlo (MC) dropout method is used
to  determine  the  relationship  between  vaccination  and  policy
stringency.  In  addition,  an  objective-programming  module  is
applied to give a more comprehensive evaluation of policy effect. 
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The objective function is to minimize the confirmed cases, and the
constraints  are  composed  of  economic  indicators,  policy
stringency,  vaccination,  etc.  The  confirmed  cases,  reproductive
rate,  and  policy  stringency  are  linked  with  a  velocity  formula[9].
Hence,  the  optimized  policies  in  post-epidemic  era  can  be
described quantitatively.

Through  extensive  experiments,  the  proposed  model  has
successfully evaluated the policy effect. Furthermore, the common
characters  and  particularity  of  each  policy  in  each  state  are
discussed  in  detail,  which  provides  significant  supplementary  for
policy-making  in  post-epidemic  era.  The  main  contributions  of
this paper are as follows:

(1)  We  take  the  impact  of  vaccine-differentiation  into
consideration  in  epidemic  prevention  policy  effect  evaluation  for
the  first  time,  and  a  vaccine-dependent  parameter  is
correspondingly designed to describe the impact, which optimizes
the existing method of policy effect evaluation.

(2)  We  model  the  uncertainty  of  epidemic  data  through
Bayesian deep learning and a variationalestimator module is designed
while  coding,  which  improves  the  robustness  of  the  proposed
model.

(3)  Economic  indicators  are  considered  as  constraints  of  the
objective-programming  part  of  our  model,  which  make  the
criteria  of  policy  effect  evaluation  more  comprehensive  and
reasonable in the post-epidemic era.

The  rest  of  the  paper  is  as  follows.  The  related  literature  and
current works about the topic are discussed in Section 1. Section 2
describes the whole model and introduces the principles in detail.
In  Section  3,  the  experimental  results  are  displayed  and  detailed
analyses  are  also  performed.  Finally,  Section  4  concludes  the
whole passage and gives some inspirations for further researches. 

1    Related Work
The  topic  of  COVID-19  policies  evaluation  has  harvested
immense  interest  and  spawned  various  literature.  The  methods
and focus of current studies varied as research progresses.

Specifically,  the  approaches  of  studying  COVID-19  policies’
effect can be divided into 3 groups, that is traditional method, ML-
based method, and other methods. 

1.1    Traditional method
Traditional  method  includes  difference  equation[10],  markov
process, statistical inference, etc. These models have the advantage
of: (1) The architecture is easy to understand and operate. (2) No
demanding  requirements  for  hardware  like  CPU  or  GPU.  Vokó
and Pitter[11] applied the method of interrupted time series analysis
to  discuss  the  effect  of  social  distance  measures  on  COVID-19
epidemics  in  Europe.  Berry  et  al.[12] proposed  a  difference-in
difference  (DID)  model  to  assess  the  effects  of  shelter-in-place
policies. Bonacini et al.[3] used panel data model to fitting the trend
of  the spread of  COVID-19 and analyzed the effect  of  lockdown
measures in Italy. However, since there are fewer parameters used
to describe the spread of COVID-19, the counterfactual predicted
by  traditional  method  was  not  accurate  enough  to  give
governments  any  effective  guidelines.  And  therefore,  ML-based
method plays a more and more significant role in later work. 

1.2    ML-based method
ML-based  method  applies  neural  networks  (NN)  like  artificial
neural  network (ANN)[13],  gate recurrent unit  (GRU), long-short-
time-memory (LSTM), etc. to predict the confirmed cases at given
policies. Ghamizi et al.[14] combined susceptible-infected-recovered

(SIR)  model  with  Deep  Neural  Network  (DNN),  and
epidemiological model’s parameters were learnt by DNN. Genetic
algorithm  was  also  applied  to  search  for  optimal  exit  strategies.
Arora et  al.[15] compared 3  types  of  LSTM’s  variants,  that  is  deep
LSTM  (DLSTM),  cached  LSTM  (CLSTM),  and  bidirectional
LSTM (BiLSTM) to predict the positive cases in India. Luo et al.[16]

combined  LSTM  with  XGBoost  algorithm  to  determine  the
optimal  non-pharmacological  interventions.  Tayarani-Najaran[17]

integrated  9  kinds  of  ML-based  models  including  K-nearest
neighbor  (KNN),  probabilistic  neural  networks  (PNN),
feedforward neural networks (FNN), etc. to search for the optimal
epidemic prevention policies.

Recent studies focus on producing more precise results.  In the
early  stage  of  research,  what  experts  discussed  was  the  types  of
polices, the duration, the starting time, etc. Sun et al.[18] quantified
the  effect  of  public  activity  intervention  policies  in  145  countries
and found that  earlier  implementation and longer  duration were
able to reduce the infections of COVID-19. Subsequently, detailed
indicators like policy stringency, age, vaccine, etc. were taken into
account.  Grundel  et  al.[19] and Canabarro et  al.[20] determined age-
dependent social-distancing policies with the assistance of a model
predictive control framework. Chen et al.[21] discussed the vaccine
allocation  problem  based  on  the  structural  properties  of
individuals’ underlying  social  contact  network.  Li  et  al.[22]

investigated how policy stringency affect the spread of COVID-19
pandemic and provided cases study on the US, the UK, Italy, and
Turkey. 

1.3    BDL-based method
Considering  the  spread  of  COVID-19  is  a  complicated  process,
which  is  a  result  of  collective  effect  of  virus,  prevention  policies,
economy,  etc.  BDL  has  been  demonstrated  to  perform  well  in
estimating the uncertainties in the spread of COVID-19. BDL was
a  principled  probabilistic  framework  that  integrate  deep  learning
with  probabilistic  graphical  models  (PGM),  which  had  two
seamlessly  integrated  components:  a  perception  component  for
understanding the task’s component (e.g., text, image, etc.) and a
task-specific  component  for  describing  the  probabilistic
relationship  among  different  variables[23, 24].  Normally,  deep
learning  was  adept  at  perception  tasks  while  PGM specialized  in
probabilistic  reasoning tasks.  BDL took the advantage of  the two
models, and therefore, it works effectively in assessing uncertainty
of a complicated tasks and avoiding over-fitting. This method has
been applied in the researches of COVID-19 prediction. Cabras[25]

applied  BDL  in  estimating  COVID-19  evolution  in  Spain,  and  a
comparison  between  LSTM  and  BDL  was  also  discussed  in  this
paper.

Our  approach  combines  the  characteristics  and  superiority  of
BDL  and  objective-programming,  which  leads  to  a  multi-view
evaluation of COVID-19 policies and proposes the optimal one in
vaccine-differentiated scenario. 

2    Method
The  architecture  of  our  model  is  shown  in Fig.  1,  which  is
composed  of  2  main  modules.  The  COVID-19  confirmed  cases
data,  vaccine-differentiated  data,  and  policy  stringency  data  are
adopted as the input of our model. A VDPL module applies BDL
architecture to determine the parameter, which will be used in the
next  module.  Following  this,  an  objective-programming  module
sets  the  objective  function  as  minimizing  confirmed  cases.  Some
hard  constraints  like  Gross  Domestic  Product  (GDP),
unemployment  rate,  etc.  are  taken  into  consideration  to  give  a
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more  comprehensive  evaluation  of  policy  effect  and  suggestions
on  policy-making.  And  epidemic  velocity  formula  is  used  to
bridge  the  parameter  and  confirmed  cases.  In  this  section,  we
firstly introduce the basis theories of BDL and the VDPL module
in  Section  2.1.  Furthermore,  a  complete  description  of  the
objective-programming part is shown in Section 2.2. 

2.1    VDPL module
According  to  existing  researches[20],  policy  stringency  can  be
affected  by  many  factors  like  vaccination,  environment,
population,  etc.  The  relationship  between  vaccination  and  policy
stringency can be interfered by other uncertainties. Moreover, the
vaccine-differentiated  data  have  the  characteristic  of  sparsity  and
volatility  since  the  vaccination  policy  is  changing  in  different
regions all the time. Therefore, a VDPL module based on BDL is
applied to learning the vaccine-dependent parameter. 

2.1.1    Basic framework of BDL
Before  introducing  the  framework  of  BDL,  let  us  have  a  brief
retrospect of the Bayes’ formula in probability theory[23].

p(z|x) = p(x,z)
p(x)

=
p(x|z)p(z)

p(x)
(1)

p(z|x) p(x,z)
p(x|z) p(z)

p(x)

where  is  referred  to  as  the  posterior,  is  the  joint
probability,  is  the  likelihood  probability,  is  the  prior
probability,  and  is  called  evidence.  Considering  total
probability formula, that is:

p(x) =
w
p(x|z)p(z)dz (2)

Equation (1) can be represented in the following form:

p(z|x) = p(x|z)p(z)r
p(x|z)p(z)dz

(3)

Based on Bayes’ formula and relative theories, PGM especially
directed  PGM  is  proposed  and  applied  to  describe  random
variables  and  relationships  among  them[24].  A  brief  example  of
PGM for BDL is shown in Fig. 2, where the red part on the left is

the perception component and the blue part on the right indicates
the task-specific component.

Ωp

Ωt Ωh

The  variables  in  the  red  rectangle  in Fig.  2 is  named  as
perception  variable ,  the  blue  ones  are  task-specific  variables

,  and  another  type  of  variable  is  hinge  variable  which
associates perception component with task-specific component. In
our  BDL  architecture,  perception  variables  are  composed  of  the
weights and neurons in the probabilistic  formulation of  the deep
learning  network,  which  means  all  quantities  (e.g.,  weights,
neurons, bias, etc.) are displayed as probability distributions rather
than point estimates in BDL, just like the network architecture in
BDL module shown in Fig. 1.

Getting  back  to  the  Bayes’ formula,  prior  probability
distributions  have  close  associations  with  model  parameters  and
are applied to describe their relationships to the data. With the aid
of  probability  theory,  uncertainties  in  these  data  can  be  inferred.
By  transforming  the  prior  probability  distributions  (determined
before  training)  into  posterior  distributions  (defined  after
observing data), features and parameters of the observed data (e.g.,
confirmed cases) can be learnt. 

2.1.2    Method of training BDL
In  Section  2.1.1,  we  have  an  understanding  that  BDL  can  be
applied  by  sampling  the  distribution  of  weight  and  bias,  which
contributes to making the results more robust. However, a critical
problem is how to train the network in BDL.

W
X= x1,x2, . . . ,xn,n ∈ Z

Y= y1,y2, . . . ,yn,n ∈ Z

ℓ(yi, ŷi, i ∈ Z) ŷi, i ∈ Z
ℓ(·)

The  key  issue  of  solving  this  problem  is  uncertainty  (e.g.,
aleatory  uncertainty,  epistemic  uncertainty,  and  ontological
uncertainty)  estimation.  Some  variables  need  to  be  defined.  We
denote  by  the  weight  and  bias  of  our  network,  by

 the  input  of  network  (e.g.,  confirmed
cases  and  vaccine-differentiated  data),  and  by

 the  actual  data  (e.g.,  policy  stringency).
Our  goal  is  to  minimize  the  loss  between  prediction  and  actual
policy  stringency  values .  means  the
predicted  stringency  value  and  is  the  loss  function.  And
therefore, Eq. (3) can be written as

p(W|X,Y) = p(Y|X,W)p(W)r
p(Y|X,W)p(W)dW

(4)

p(W)

p(Y|X,W) W
X Y

p(W|X,Y)
W

p(Y|X)

Generally  speaking,  the  prior  probability  is  initially
defined as the distribution of the policy stringency in our model,
and  the  likelihood  probability  is  a  function  of .
Assuming  that  and  are  given,  the  posterior  probability
distribution  of  weight  can  be  determined  easily.
However, our goal is to calculate the probability distribution of ,
which means the denominator of Eq. (4) need to be solved. It is a
barrier  that  can  not  be  solved  analytically  and  some
approximation  techniques  are  required  like:  (1)  Approximating
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the integral with Markov chain Monte Carlo (MCMC); (2) Using
black-box  variational  inference;  and  (3)  Using  MC  dropout
sampling.  Because  the  COVID-19  data  and  policy  data  are  so
large that make our network complex, and dropout is superior to
preventing  over-fitting.  In  our  experiments,  we  adapt  a  BLiTZ
module to build the BDL network.

P(ω)
Q(ω|θ)

When  we  assume  that  is  set  as  probability  density
function (pdf). As the prior distribution of weights,  is the
posterior  empirical  distribution  pdf  of  sampling  weights.  By
combining  the  derivation  with  Kullback–Leibler  divergence,
that is:

DKL (p(z|x) ||q(z|x)) = ∑ p(z|x) log(p(z|x))/(q(z|x) ) (5)

We  can  find  that  for  each  sample,  complexity  cost  can  be
expressed as

Cn(ω(n),θ) = logQ(ω(n),θ)− logP(ω(n)) (6)

Finally, the loss function of the NTH weight sample is

Ln(ω(n),θ) = Cn(ω(n),θ)−Pn(ω(n),θ) (7)

variationalestimator

samplenbr

samplenbr

By  doing  so,  we  ensure  that  while  optimizing  computational
complexity, the differences between our model and its predictions
will  be  reduced.  Therefore,  the  module  is  built
into  the  BLiTZ  framework  to  do  this.  Bayesian  neural  networks
are  typically  optimized  by  sampling  losses  from  the  same  batch
several  times before,  which is  to compensate for the randomness
of  the weights  while  avoiding optimizing them on losses  affected
by  outliers.  Given  the  input,  output,  criterion,  and ,
BLiTZ  calculates  the  loss  and  its  mean  during  the
iteration,  and  finally  returns  the  sum  of  the  complexity  loss  and
fitting loss.

In this way, the weight and bias of the network are sampled in a
more accurate way, and therefore the uncertainty of network and
prediction of output can be estimated more robustly. 

2.2    Objective-programming module
In  order  to  provide  policymakers  with  more  useful  and  proper
suggestions on policy making, an objective-programming module
is  formulated.  Thus  we  can  explore  the  optimized  measures  that
satisfy  our  requirement  of  both  controlling  confirmed  cases  and
economy recovery.  Before  we  present  the  specific  formula,  some
parameters that are selected as constraints are introduced.

The criterion we opt for these constraint parameters is that they
should  have  direct  or  obvious  relationship  with  not  only  the
spread  of  COVID-19  but  also  the  economy.  Population  density,
hospitalization,  unemployment  rate,  Gini  coefficients,  and  GDP
are selected. 

2.2.1    Population density
According  to  the  report  published  by  CDC[26],  COVID-19
transmission  occurs  when  people  breathe  air  contaminated  by
droplets  and  small  airborne  particles  containing  the  virus.
Therefore,  a  positive  correlation  between  infection  rate  and
population  density  can  be  confirmed.  The  more  crowded  the
population is, the higher the chance of infection will be. Moreover,
denser  population  can  bring  more  labor  force  that  will  directly
contribute to the economic resurgence. 

2.2.2    Population density
Hospitalization  gives  a  rough  estimation  of  the  capacity  of  the
hospital  to  receive  patients  with severe  symptoms.  if  the  number

of  patients  with  severe  symptoms  exceeds  the  limit  of
hospitalization,  it  will  cause  serious  problems  in  society.  Hence,
keep  the  number  of  confirmed  cases  under  control  can  be
estimated  by  hospitalization.  Furthermore,  countries  or  regions
with good economic conditions are more likely to conduct more
investment  on  the  construction  of  medical  infrastructure  like
hospital. 

2.2.3    Unemployment rate
The definition of unemployment rate is  the percentage of people
above a  specified age (usually  15) not  being in paid employment
or  self-employment  but  currently  available  for  work  during  the
reference period[27].  Since the outbreak of  COVID-19,  it  has  been
reported that  many infectious people  were fired by the company
and  became  unemployed.  To  some  degree,  unemployment  rate
can reflect the development of economy. 

2.2.4    Gini coefficient
Gini  coefficient  is  a  measure  of  statistical  dispersion  intended  to
represent  the  income  inequality  or  the  consumption  inequality
within a nation or a social group[28]. Many researches have revealed
the  inequality  problem  in  medical  resources  allocation  like
vaccine, mask, etc. For the sake of providing optimized policies in
a fairer way, Gini coefficient is under consideration. 

2.2.5    GDP
GDP is  the  final  result  of  the  production activities  of  all  resident
units  in  a  country  (or  region)  within  a  certain  period  of  time[29],
which can reflect the condition of economic rebound in the most
apparent  way.  The last  3  years  have witnessed a  sharp decline in
GDP of all countries or regions around the globe. One of the most
significant goals of economic recovery is to stimulate the increase
of GDP.

Here,  we  can  give  a  complete  description  of  our  objective-
programming module:

min N(t) (8)

s.t., log R(t) = N(t)+ βm logR(t− 1)+ ϵ(t),
R(t) ∈ (0, 1),

βm ∈ [0,4],(βm ∈ Z),
W(t) = Γ (N(t),ϕi),

ϕi ∈ [0,ϕmax
i ]

(9)

N(t)
N(t)

N(t) βm
R(t)

R(t)
R(t− 1)

N(t)
R(t− 1) ϵ(t)

R(t)
R(t)

R(t)

where  refers to the number of confirmed cases.  Our goal is
to  minimize  the  value  of ,  which  is  also  the  traditional
standard  of  policy  effect  evaluation.  In  order  to  establish  the
association  with  and  learnt  by  BDL,  epidemic  velocity
formula  in  Formula  (9)[9] is  applied.  stands  for  the
reproductive  rate  of  COVID-19,  which  is  a  common-used
parameter.  It  is  generally believed that the reproductive rate 
is  the  result  which  historical  reproductive  rate  and  new
infections  affect together. The effect of policy stringency has
a  direct  impact  on  historical  reproductive  rate .  is  a
perturbation  term  to  depict  potential  noise.  According  to
researches home and abroad,  is less than 1 when the spread
of COVID-19 is well controlled, while  is larger than 1 when
COVID-19  tends  to  spread  continuously.  For  the  purpose  of
controlling COVID-19, the range of  is set between 0 and 1.

βmThe range of  is given by the reports published by the Oxford
COVID-19 Government Response Tracker (OXCGRT)[7], and the
specific definition is shown in Table 1.  The larger the number is,
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Γ (·)
ϕi

ϕhospitaliztion

the  stricter  the  policy  implementation  will  be.  The  specific
relationship  between  confirmed  cases  and  economic  indicators
will  be  fitted  in  our  experiment  and  denotes  the  mapping
function. The value of  is also constrained by the real situation.
For  example,  the  capacity  of  a  hospital  can  be  calculated  by  the
value  of  ICU  occupancy,  and  therefore,  we  can  constrain  the
confirmed  cases  through  the  mapping  function  between
confirmed cases and  to prevent healthcare system from
collapsing. 

3    Experiment
In this section, we back up our model with concrete examples and
a  detailed  case  study  in  the  US  is  investigated.  COVID-19
confirmed  cases  data  from  the  Center  for  Systems  Science  and
Engineering  (CSSE)  in  John  Hopkins  University  (JHU),  policy-
related data form OXCGRT, and economy data form World Bank
and  World  Economy  Organization  (WEO)  are  used  in  our
experiment.

In  July  2021,  OXCGRT  upgraded  their  datasets  to  track  the
differentiated  policies  to  the  vaccinated  and  non-vaccinated
people[8],  which brings us great convenience to study the effect of
COVID-19  policies  in  a  vaccine-differentiated  scenario.  All  the
data  before “2020-12-31” are  set  as  training  set  and  the  data
ranging from “2021-01-01” to “2021-06-30” are set as testing set.
Firstly, four types of policies including school closing, public event
cancel, stay-at-home requirements, and restrictions on gatherings
are taken into account since they involve education, work, public
events,  and  household  that  help  us  to  put  forward  more
comprehensive  suggestions.  Secondly,  in  order  to  make our final
suggestions more general,  fine-grained case studies in eight states
(e.g.,  New  York,  Massachusetts,  California,  Kentucky,  North
Dakota,  Wyoming,  Florida,  and  Texas)  all  over  the  US  are
conducted. 

3.1    Effectiveness of vaccine-differentiated policies
Figure  3 shows  the  prediction  of  confirmed  cases  after  applying
vaccine-differentiated policies in eight states in the US in the first
two quarters in 2021. Three types of differentiation ratio including
75%, 50%, and 25% are under estimation.

According  to  the  results  in Fig.  3,  it  is  obvious  that  vaccine-
differentiated  policies  are  effective  in  controlling  the  infection  of
COVID-19.  For  instance,  the  confirmed  cases  are  predicted  to
decline  by  at  least  0.5%  in  California,  which  means  at  least  0.3
million  people  can  prevent  from  being  infected.  Similarly,  the
confirmed cases will decrease by at least 0.2% in Florida, 0.05% in

New York, 0.03% in Kentucky, and so on.
However, vaccine-differentiated policies do not perform well in

all the states in the US. We can easily find that the prediction cases
are  almost  overlapped  with  the  real  data  in  Wyoming  or  even
higher than the actual confirmed cases in North Dakota. As far as
we  are  concerned,  these  situations  have  close  relations  with  the
economic state of the region. It is reported that states with better
developments  of  economy  are  tend  to  be  equipped  with  more
adequate medical resources like vaccines, which play a vital role in
immunity. The inequality of medical resources can be regarded as
the  major  cause  of  the  difference  in  the  effectiveness  of  same
policies.

Moreover,  on the basis  of  our prediction,  there  is  a  trend that
the  higher  the  vaccine-differentiation  rate  is,  the  fewer  the
confirmed  cases  are.  The  cases  in  Florida,  New  York,  Kentucky,
and North Dakota have demonstrated it.  However,  there are still
some exceptions like Texas. After searching for related reports and
studies in Texas, we attribute it to the lack of vaccination initiative
by Texas’ government. It is reported that there is no state or local
COVID-19 immunization requirements, and even no government
entity in Texas can mandate the COVID-19 vaccine according to
Governor Abbott’s Executive Order GA-39 in Texas[30]. 

3.2    Evaluation of different policies
In  Section  3.1,  we  have  investigated  that  vaccine-differentiated
policy  is  effective.  Therefore,  in  this  section,  we  will  conduct
further  discussion  about  how  vaccine-differentiated  policy  can
make contributions to economy resurgence and other factors that
may make a difference.

Due  to  the  space  constraints,  here  we  take  the  results  of
Massachusetts,  New  York,  and  North  Dakota  as  examples.
Obviously, vaccine-differentiated policies stimulate the recovery of
economy. We can conclude some common characters. Firstly, the
implementation  of  vaccine-differentiated  policies  in  public  event
cancel  policy  is  the  most  effective  way  to  improve  the  economy
rebound among the four measures. It is because public event has a
tight  and  direct  association  with  economy.  Secondly,  gathering
restrictions  policy  can  hardly  make  contributions  to  economic
development  even  though  vaccine-differentiated  policies  are  put
into effect,  which is  caused by consumption restrictions.  Thirdly,
the results in Figs. 4−6 are consistent with the results in Fig. 3. The
better the economic state is, the more vaccine resources they have,
and  the  higher  vaccination  rate  they  can  obtain.  Therefore,
vaccine-differentiated policies can perform in a more effective way
in these states.

 

Table 1    Policies and stringency definition.

Policy
Stringency definition

Stringency=0 Stringency=1 Stringency=2 Stringency=3 Stringency=4

School closing No measures

Recommend closing or all
schools open with alterations

resulting in significant
differences compared to non-

COVID-19 operations

Require closing (only some
levels or categories, e.g., just
high school, or just public

schools)

Require closing all levels —

Public event cancel No measures Recommend cancelling Require cancelling — —

Stay-at-home
requirement No measures Recommend not leaving

house

Require not leaving house
with exceptions for daily

exercise, grocery shopping,
and “essential” trips

Require not leaving house
with minimal exceptions (e.g.,
allowed to leave once a week,
or only one person can leave

at a time, etc.)

—

Restriction on
gatherings No measures

Restrictions on very large
gatherings (the limit is above

1000 people)

Restrictions on gatherings
between 101−1000 people

Restrictions on gatherings
between 11−100 people

Restrictions on
gatherings of 10 people

or less
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However,  there  are  still  some  diversities  in  different  states.
Firstly, different types of policies have various contributions to the
economy.  For  instance,  implementation  of  vaccine-differentiated
policies  in  school  closing  has  achieved  great  success  in  our
prediction.  That  is  because  there  are  plenty  of  universities  and
colleges  in  Massachusetts  like  Harvard  University  and

Massachusetts’ Institution  of  Technology,  and  there  are  many
students  and  scholars  from  all  over  the  world.  Vaccine-
differentiated  policies  in  school  closing  means  travel  restrictions
on students could be relaxed and the economy will be resuscitated
gradually.  Unlike  Massachusetts,  public  event  cancel  policy  out-
stands  in  New York since  New York is  a  cosmopolitan city,  and
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Fig. 3    Confirmed cases  prediction after  applying vaccine-differentiated policies  in (a)  California,  (b)  Texas,  (c)  Florida,  (d)  New York,  (e)  Massachusetts,  (f)
Kentucky, (g) North Dakota, and (h) Wyoming in the US in the first two quarters in 2021. The vaccine-differentiated condition is 75% vaccination (green), 50%
vaccination (yellow), and 25% (brown). The actual confirmed cases are shown in a solid line (blue). Time axis corresponds to the days since the first outbreak of
COVID-19.
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business  issues  are  active  there.  Secondly,  vaccine-differentiated
policies  does  not  perform  well  in  North  Dakota  in  comparison
with  that  in  New  York  and  Massachusetts,  which  owes  it  to  the
economic underdevelopment in North Dakota, and it is similar to
the circumstances in Texas.

According  to  the  concept  of  vaccine-differentiated,  different
vaccination  rate  correspond  to  various  policy  stringency.
Generally  speaking,  the  higher  the  vaccination  rate  is,  the  lower
the policy stringency will be. For instance, vaccination rate of 75%
corresponds to policy stringency of 0 or 1, and vaccination rate of

25% or even lower corresponds to policy stringency of 3 or 4. We
highlight  the  most  effective  policy  stringency  in Fig.  7 with  red
edge.  On  the  whole,  more  accommodative  policies  are
recommended  in  the  post-epidemic  era.  Moreover,  we  appeal  to
allocate  more  medical  resources  like  vaccine,  mask,  etc.  to
economically  underdeveloped  areas.  It  will  improve  the  overall
effect of policy. 

3.3    Robustness of model
In previous work, case studies are almost conducted at the level of
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a country or just in a fixed area. Thus the models are more likely
to  perform well  in  a  fixed  region  only.  The  robustness  of  model
can not be guaranteed in researches of other regions. In order to
demonstrate  that  our  model  has  improved  the  robustness  of
results  in  comparison  with  existing  work,  we  draw  a  boxplot  of
the  mean  absolute  percentage  error  (MAPE)  value  of  our
experiments in eight states.  A comparison with the robustness of
LSTM model is also shown in Fig. 7. Generally speaking, the more
centralized  the  data,  the  higher  the  robustness  of  the  model.
According  to Fig.  7,  we  can  conclude  that  the  MAPE  data  of
Florida, New York, California, and Wyoming are centralized, the
difference among data is less than 0.1. Moreover, except Kentucky,
the difference among data is  less than 0.2 in the rest  of  the three
states.  Compared  with  the  results  of  LSTM  model,  the  MAPE
value  are  more  likely  to  be  centralized  in  all  8  states.  And  the
MAPE value in our model are much smaller than that of LSTM.
Therefore,  we can conclude that  our  model  performs well  in  the
accuracy and robustness of results. 

3.4    Performance comparison
In existing works of policy effect evaluation, most of the results are

MAPE R2

compared with real observed data. Generally speaking, as long as
the prediction results are lower than the real data, the model can
be regarded as effective. However, if the prediction performance of
the model is not accurate, it can hardly give the proper suggestions
on  policy-making. Hence,  there  is  a  lack  of  comparing  the
predictive performance of different policy effect evaluation model.
According  to  the  related  work,  various  models  ranging  from
traditional  method  of  difference  and  fitting  to  ML-based
approaches are applied in policy effect evaluation. The core idea of
this  subject  is  to  construct  counterfactual  based  on  prediction
model.  Therefore,  to  make  our  results  more  convincing,  we
compared  our  model  with  some  classic  prediction  model  like
ANN, LSTM, and LSTM+Transformer. The confirmed cases data
from  JHU  ranging  from “2020-01-22” to “2021-12-31” are
regarded as the input of all the models. The data before “2021-11-
30” are set as training data while the rest are set as test data to be
predicted.  The  evaluation  metrics  we  used  for  performance
comparison are  and , which can be defined as

MAPE =
1
N

N

∑
t=1

|F
t−At

At
| (10)
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Fig. 6    Predictive increasing ratio of GDP in North Dakota after applying different vaccine-differentiated policies.
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R2 = 1− Rss

Tss
(11)

Rss Tss

Ft At
where  is  the  sum  of  squares  of  residuals  and  is  the  total
sum of squares.  and  are the predicted results and actual data
of  confirmed  cases,  respectively.  The  performance  index  of  each

model is shown in Fig. 8 and Table 2.
According  to Table  2,  our  model  have  the  best  performance

followed  by  LSTM,  LSTM+Transformer,  and  ANN,  which  can
demonstrate  that  all  the  results  discussed in  our  paper  above are
reliable  and  can  provide  proper  and  dependable  guidance  for
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policy-makers. In the future, considering most of the people have
gotten vaccination and are immune to COVID-19, the stringency
and form of anti-epidemic policies need adjusting timely. 

4    Conclusion and Outlook
In this paper, we discuss the effectiveness of vaccine-differentiated
policies  and  gave  a  more  comprehensive  policy  evaluation  that
satisfied the requirements of both controlling confirmed cases and
stimulate  economic  resurgence.  An  extending  model  that
combines  a  VDPL  module  and  objective-programming  module
has  been  put  forward  and  put  into  application.  The  results  have
revealed  some  important  conclusions.  Firstly,  vaccine-
differentiated  policies  have  been  proven  to  be  effective  in  both
controlling  and improving  economy.  Secondly,  different  types  of
vaccine-differentiated  policies  make  contributions  to  economy
recovery  to  varying  degrees.  Thirdly,  responses  to  vaccine-
differentiated  policies  vary  in  different  states,  and  it  depends  on
the condition of economic development to a large extent. Finally,
a novel comparison mode in the subject of policy effect evaluation
is proposed in our paper. The predictive performance of different
models  is  compared,  which  leads  to  further  verification  of  the
accuracy of our model and the rationality of our results.

Even though our model has been demonstrated to perform well
in  the  case  study  in  the  US,  there  are  still  a  few  limitations.  For
example, considering the complexity of model, only five indicators
related to economy and COVID-19 are taken into account. More
indicators  involving  geographical  or  climate  indexes  can  be
analyzed  in  further  study.  Another  limitation  is  that  we  only
compare our model with some typical ones like LSTM, ANN, and
so on.  Even if  we come up with a  novel  thinking of  policy effect
evaluation, more discussion remains to be extended.

While  entering  the  post-epidemic  era,  previous  researches  on
policy  effect  evaluation  are  outdated,  and  the  standard  of
assessment  needs  adjusting.  A  new  set  of  opportunities  and
challenges has emerged. Apart from the state of economy rebound
that we have discussed in this paper, other scenarios like medical
resource allocation, infrastructure construction, social psychology,
etc. are worth studying. 
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Table 2    Model performance comparison.
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California
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R2 −0.31 −0.43 0.68 0.98
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MAPE 79.32 40.98 24.66 3.33
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R2 −0.17 −0.04 0.90 0.97

Texas
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R2 −0.91 −0.71 0.86 0.95
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MAPE 64.31 57.63 14.99 2.34

R2 −7.94 −5.21 0.91 0.98

CAAI Artificial Intelligence Research

 

10 CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150034 | 2024

https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-2021
https://doi.org/10.1007/s00148-020-00799-x
https://doi.org/10.1590/0102-311x00213920
http://www.nber.org/papers/w26981.pdf
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.channelnewsasia.com/singapore/dining-vaccinated-people-covid-19-aug-10-hawkers-2096546
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19


responses-covid-19, 2020.
 R. M. Colombo, M. Garavello,  F.  Marcellini,  and E. Rossi, An age
and  space  structured  SIR  model  describing  the  COVID-19
pandemic, J. Math. Ind., vol. 10, no. 1, p. 22, 2020.

[8]

 G. L.  Watson,  D.  Xiong,  L.  Zhang,  J.  A.  Zoller,  J.  Shamshoian,  P.
Sundin,  T.  Bufford,  A.  W.  Rimoin,  M.  A.  Suchard,  and  C.  M.
Ramirez, Pandemic velocity: Forecasting COVID-19 in the US with
a  machine  learning  &  Bayesian  time  series  compartmental  model,
PLoS Comput. Biol., vol. 17, no. 3, p. e1008837, 2021.

[9]

 N. A. Haber, E. Clarke-Deelder, J. A. Salomon, A. Feller, and E. A.
Stuart,  COVID-19  policy  impact  evaluation:  A  guide  to  common
design issues, arXiv preprint arXiv: 2009.01940, 2020.

[10]

 Z. Vokó and J.  G.  Pitter, The effect  of  social  distance measures on
COVID-19 epidemics in Europe: An interrupted time series analysis,
GeroScience, vol. 42, no. 4, pp. 1075–1082, 2020.

[11]

 C.  R.  Berry,  A.  Fowler,  T.  Glazer,  S.  Handel-Meyer,  and  A.
MacMillen, Evaluating the effects of shelter-in-place policies during
the COVID-19 pandemic, Proc. Natl. Acad. Sci. USA,  vol. 118, no.
15, p. e2019706118, 2021.

[12]

 M. Aledhari, R. Razzak, R. M. Parizi, and A. Dehghantanha, A deep
recurrent neural network to support guidelines and decision making
of social  distancing,  in Proc.  IEEE Int.  Conf.  Big Data  (Big Data),
Atlanta, GA, USA, 2020, pp. 4233–4240.

[13]

 S.  Ghamizi,  R.  Rwemalika,  M.  Cordy,  L.  Veiber,  T.  F.  Bissyandé,
M. Papadakis, J. Klein, and Y. Le Traon, Data-driven simulation and
optimization  for  COVID-19  exit  strategies,  in  Proc.  26th  ACM
SIGKDD Int.  Conf.  Knowledge  Discovery  & Data  Mining,  Virtual,
2020, pp. 3434–3442.

[14]

 P. Arora, H. Kumar, and B. K. Panigrahi, Prediction and analysis of
COVID-19 positive cases using deep learning models: A descriptive
case  study  of  India, Chaos  Solitons  Fractals,  vol.  139,  p.  110017,
2020.

[15]

 J.  Luo,  Z.  Zhang,  Y.  Fu,  and  F.  Rao,  Time  series  prediction  of
COVID-19  transmission  in  America  using  LSTM  and  XGBoost
algorithms, Results Phys., vol. 27, p. 104462, 2021.

[16]

 M. H. Tayarani-Najaran, A novel ensemble machine learning and an
evolutionary  algorithm  in  modeling  the  COVID-19  epidemic  and
optimizing  government  policies,  IEEE  Trans.  Syst.  Man  Cybern.
Syst., vol. 52, no. 10, pp. 6362–6372, 2022.

[17]

 J. Sun, Y. Zheng, W. Liang, Z. Yang, Z. Zeng, T. Li, J. Luo, M. T.
Alexander Ng, J. He, and N. Zhong, Quantifying the effect of public
activity  intervention  policies  on  COVID-19  pandemic  containment
using epidemiologic data from 145 countries, Value Health, vol. 25,
no. 5, pp. 699–708, 2022.

[18]

 S. Grundel, S. Heyder, T. Hotz, T. K. S. Ritschel, P. Sauerteig, and
K. Worthmann, How much testing and social distancing is required
to control  COVID-19? Some insight  based on an age-differentiated
compartmental  model, SIAM  J.  Control  Optim.,  vol.  60,  no.  2,  pp.
S145–S169, 2022.

[19]

 A. E. Tenório, R. Martins, L. Martins, S. Brito, and R. Chaves, Data-
driven  study  of  the  COVID-19  pandemic  via  age-structured
modelling and prediction of the health system failure in Brazil amid
diverse  intervention  strategies,  PLoS  One,  vol.  15,  no.  7,  p.
e0236310, 2020.

[20]

 J.  Chen,  S.  Hoops,  A.  Marathe,  H.  Mortveit,  B.  Lewis,  S.
Venkatramanan,  A.  Haddadan,  P.  Bhattacharya,  A.  Adiga,  A.
Vullikanti,  et  al.,  Effective  social  network-based  allocation  of
COVID-19 vaccines, in Proc. 28th ACM SIGKDD Conf. Knowledge
Discovery  and  Data  Mining,  Washington,  DC,  USA,  2022,  pp.
4675–4683.

[21]

 Y.  Li,  C.  Chan,  Y.  Li,  and  E.  E.  Kuruoglu,  How  does  policy
stringency  affect  the  spread  of  COVID-19  pandemic?  A  country
level  study,  in  Proc.  29th  European  Signal  Processing  Conf.
(EUSIPCO), Dublin, Ireland, 2021, pp. 1965–1969.

[22]

 H.  Wang  and  D.  Y.  Yeung,  A  survey  on  Bayesian  deep  learning,
ACM Comput. Surv., vol. 53, no. 5, p. 108, 2020.

[23]

 S.  Fang,  A.  Narayan,  R.  Kirby,  and  S.  Zhe,  Bayesian  continuous-
time  tucker  decomposition,  in  Proc.  39th  Int.  Conf.  Machine
Learning  (PMLR  2022),  Baltimore,  MD,  USA,  2022,  pp.
6235–6245.

[24]

 S. Cabras, A Bayesian-deep learning model for estimating COVID-
19 evolution in Spain, Mathematics, vol. 9, no. 22, p. 2921, 2021.

[25]

 S. E. Oliver, J. W. Gargano, H. Scobie, M. Wallace, S. C. Hadler, J.
Leung, A. E. Blain, N. McClung, D. Campos-Outcalt, R. L. Morgan,
et  al.,  The  advisory  committee  on  immunization  practices’  interim
recommendation  for  use  of  Janssen  COVID-19  vaccine—United
States,  February  2021,  Morb.  Mortal.  Wkly.,  vol.  70,  no.  9,  pp.
329–332, 2021.

[26]

 Unemployment, https://en.wikipedia.org/w/index.php?title=Unemploy
ment&oldid=1218143641, 2024.

[27]

 Gini coefficient, https://en.wikipedia.org/w/index.php?title=Gini_co-
efficient&oldid=1217958780, 2024.

[28]

 Gross  domestic  product, https://en.wikipedia.org/w/index.php?title=
Gross_domestic_product&oldid=1218146966, 2024.

[29]

 Texas Government, COVID-19 vaccination recommendations, https://
www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-
vaccine-information, 2021.

[30]

A Multi-Dimensional Evaluation Model for Epidemic Prevention Policies

 

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150034 | 2024 11

https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://www.bsg.ox.ac.uk/research/publications/variation-government-responses-covid-19
https://doi.org/10.1186/s13362-020-00090-4
https://doi.org/10.1371/journal.pcbi.1008837
https://doi.org/10.1007/s11357-020-00205-0
https://doi.org/10.1073/pnas.2019706118
https://doi.org/10.1016/j.chaos.2020.110017
https://doi.org/10.1016/j.rinp.2021.104462
https://doi.org/10.1109/TSMC.2022.3143955
https://doi.org/10.1109/TSMC.2022.3143955
https://doi.org/10.1016/j.jval.2021.10.007
https://doi.org/10.1137/20M1377783
https://doi.org/10.1371/journal.pone.0236310
https://doi.org/10.3390/math9222921
https://en.wikipedia.org/w/index.php?title=Unemployment&oldid=1218143641
https://en.wikipedia.org/w/index.php?title=Unemployment&oldid=1218143641
https://en.wikipedia.org/w/index.php?title=Gini_coefficient&oldid=1217958780
https://en.wikipedia.org/w/index.php?title=Gini_coefficient&oldid=1217958780
https://en.wikipedia.org/w/index.php?title=Gini_coefficient&oldid=1217958780
https://en.wikipedia.org/w/index.php?title=Gross_domestic_product&oldid=1218146966
https://en.wikipedia.org/w/index.php?title=Gross_domestic_product&oldid=1218146966
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information
https://www.dshs.texas.gov/covid-19-coronavirus-disease-2019/covid-19-vaccine-information

	1 Related Work
	1.1 Traditional method
	1.2 ML-based method
	1.3 BDL-based method

	2 Method
	2.1 VDPL module
	2.1.1 Basic framework of BDL
	2.1.2 Method of training BDL

	2.2 Objective-programming module
	2.2.1 Population density
	2.2.2 Population density
	2.2.3 Unemployment rate
	2.2.4 Gini coefficient
	2.2.5 GDP


	3 Experiment
	3.1 Effectiveness of vaccine-differentiated policies
	3.2 Evaluation of different policies
	3.3 Robustness of model
	3.4 Performance comparison

	4 Conclusion and Outlook
	Acknowledgment
	References

