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ABSTRACT

In recent years, governments of more than 200 countries and regions have enacted measures to control the spread of COVID-19.
A precise and comprehensive evaluation of policy effect provides important grounds for policy-making. Since the whole world has
entered the post-epidemic era, prevention policies are inclined to strike a trade-off between controlling confirmed/death cases and
the economic rebound. Furthermore, with the increasing vaccination rate, vaccination has become a considerable factor in
determining policy stringency. However, the existing approaches are still limited in efficiency due to the following reasons: (1) They
are still confined to policies’ containment effect on COVID-19, neglecting the impact of vaccination on policy effect and the impact
of policies on economy; (2) While evaluating policy effect in different regions, most existing models lack robustness. To address
these problems, we propose a multi-dimensional evaluation model for more effective assessment of epidemic prevention policies
in post-epidemic era. The proposed model consists of two modules: (1) A multi-dimensional objective-programming module is
raised to evaluate the policy effect comprehensively, where vaccination, policy stringency, economy indicators, confirmed cases,
and reproductive rate are taken into account; (2) A vaccine-dependent parameter learning (VDPL) module based on Bayesian
deep learning (BDL) models a vaccine-dependent parameter which indicates the relationship between vaccination and policy
stringency. The module also strengthens the robustness of the proposed model with the help of BDL since BDL can adapt the data
of different regions better through resampling the probability distribution of network weights. Finally, We evaluate our model on the
data of the US. The results demonstrate that the proposed approach performs better in depicting the spread of COVID-19 under

the influence of policy.
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OVID-19, a pandemic caused by the SARS-CoV-2 virus,
( has spread around the globe since 2020". In order to

tackle the outbreaks of COVID-19, the governments of
almost every countries have adopted many kinds of measures to
delay the spread of COVID-19". For the sake of assessing policy
effect and making adjustments promptly, a large amount of
researches on COVID-19 policy effect evaluation have been
conducted.

Early in 2020, COVID-19 policies are evaluated by means of
constructing counterfactual, which is the prediction of confirmed
cases or reproductive rate of COVID-19 in a given policy and time
scenario”. Various methods®” ranging from difference equation
to machine learning (ML) are applied to evaluate the effect of
COVID-19 policies more accurately. With further researches,
more detailed indicators like age, medical facilities, income, and so
on are considered to study the relation between these indicators
and the effect of policies”. In 2021, Center for Disease Control
and Prevention (CDC) put forward the concept of vaccine-
differentiated policies® 7, which means vaccinated people can
access greater freedoms due to their vaccination status, and are
subject to less stringent restrictions.

Though previous works have achieved initial success, there still
exists some deficiencies. Firstly, the existing works fail to consider
the impact of vaccination on policy effect and the impact of
policies on economy. While entering the post-epidemic era,

controlling the confirmed cases only seems to be short-sighted.
More attention is supposed to be paid to the recovery of economy.
The more people get vaccinated, the fewer people will be infected
and the more labor force available. Hence, new factors like
vaccination and adjustment of policies are required imminently.
Secondly, the existing models have disadvantages of being
subjective and in short of robustness. For example, the age-
dependent parameter in the age-structured model” is determined
on the basis of real statistics artificially rather than being inducted
by algorithms. Most of the works"* only discuss case study at the
level of the whole country or just in a fixed region, which lacks in
enough robustness while evaluating in different states.

To solve the challenges above, a multi-dimensional evaluation
model is proposed in this article for more efficient assessment of
epidemic policy effect. The whole model consists of a vaccine-
dependent parameter learning (VDPL) module and an objective-
programming module. Considering that the spread of COVID-19
is a complicated process, the VDPL module is designed based on
the architecture of Bayesian deep learning (BDL) to learn a
vaccine-dependent parameter in a more robust way. In the
proposed BDL architecture, policy stringency is imported as the
prior probability, and Monte Carlo (MC) dropout method is used
to determine the relationship between vaccination and policy
stringency. In addition, an objective-programming module is
applied to give a more comprehensive evaluation of policy effect.
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The objective function is to minimize the confirmed cases, and the
constraints are composed of economic indicators, policy
stringency, vaccination, etc. The confirmed cases, reproductive
rate, and policy stringency are linked with a velocity formula®.
Hence, the optimized policies in post-epidemic era can be
described quantitatively.

Through extensive experiments, the proposed model has
successfully evaluated the policy effect. Furthermore, the common
characters and particularity of each policy in each state are
discussed in detail, which provides significant supplementary for
policy-making in post-epidemic era. The main contributions of
this paper are as follows:

(1) We take the impact of vaccine-differentiation into
consideration in epidemic prevention policy effect evaluation for
the first time, and a vaccine-dependent parameter is
correspondingly designed to describe the impact, which optimizes
the existing method of policy effect evaluation.

(2) We model the uncertainty of epidemic data through
Bayesian deep learning and a variational,gg,.,, module is designed
while coding, which improves the robustness of the proposed
model.

(3) Economic indicators are considered as constraints of the
objective-programming part of our model, which make the
criteria of policy effect evaluation more comprehensive and
reasonable in the post-epidemic era.

The rest of the paper is as follows. The related literature and
current works about the topic are discussed in Section 1. Section 2
describes the whole model and introduces the principles in detail.
In Section 3, the experimental results are displayed and detailed
analyses are also performed. Finally, Section 4 concludes the
whole passage and gives some inspirations for further researches.

1 Related Work

The topic of COVID-19 policies evaluation has harvested
immense interest and spawned various literature. The methods
and focus of current studies varied as research progresses.

Specifically, the approaches of studying COVID-19 policies’
effect can be divided into 3 groups, that is traditional method, ML-
based method, and other methods.

1.1 Traditional method

Traditional method includes difference equation”’, markov
process, statistical inference, etc. These models have the advantage
of: (1) The architecture is easy to understand and operate. (2) No
demanding requirements for hardware like CPU or GPU. Vokd
and Pitter"" applied the method of interrupted time series analysis
to discuss the effect of social distance measures on COVID-19
epidemics in Europe. Berry et al.” proposed a difference-in
difference (DID) model to assess the effects of shelter-in-place
policies. Bonacini et al.” used panel data model to fitting the trend
of the spread of COVID-19 and analyzed the effect of lockdown
measures in Italy. However, since there are fewer parameters used
to describe the spread of COVID-19, the counterfactual predicted
by traditional method was not accurate enough to give
governments any effective guidelines. And therefore, ML-based
method plays a more and more significant role in later work.

1.2 ML-based method

ML-based method applies neural networks (NN) like artificial
neural network (ANN)", gate recurrent unit (GRU), long-short-
time-memory (LSTM), etc. to predict the confirmed cases at given
policies. Ghamizi et al.™ combined susceptible-infected-recovered
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(SIR) model with Deep Neural Network (DNN), and
epidemiological model’s parameters were learnt by DNN. Genetic
algorithm was also applied to search for optimal exit strategies.
Arora et al" compared 3 types of LSTM’s variants, that is deep
LSTM (DLSTM), cached LSTM (CLSTM), and bidirectional
LSTM (BiLSTM) to predict the positive cases in India. Luo et al."
combined LSTM with XGBoost algorithm to determine the
optimal non-pharmacological interventions. Tayarani-Najaran"”
integrated 9 kinds of ML-based models including K-nearest
neighbor (KNN), probabilistic neural networks (PNN),
feedforward neural networks (FNN), etc. to search for the optimal
epidemic prevention policies.

Recent studies focus on producing more precise results. In the
early stage of research, what experts discussed was the types of
polices, the duration, the starting time, etc. Sun et al."! quantified
the effect of public activity intervention policies in 145 countries
and found that earlier implementation and longer duration were
able to reduce the infections of COVID-19. Subsequently, detailed
indicators like policy stringency, age, vaccine, etc. were taken into
account. Grundel et al."’ and Canabarro et al.” determined age-
dependent social-distancing policies with the assistance of a model
predictive control framework. Chen et al.”” discussed the vaccine
allocation problem based on the structural properties of
individuals’ underlying social contact network. Li et al.™
investigated how policy stringency affect the spread of COVID-19
pandemic and provided cases study on the US, the UK, Italy, and
Turkey.

1.3 BDL-based method

Considering the spread of COVID-19 is a complicated process,
which is a result of collective effect of virus, prevention policies,
economy, etc. BDL has been demonstrated to perform well in
estimating the uncertainties in the spread of COVID-19. BDL was
a principled probabilistic framework that integrate deep learning
with probabilistic graphical models (PGM), which had two
seamlessly integrated components: a perception component for
understanding the task’s component (e.g., text, image, etc.) and a
task-specific component for describing the probabilistic
relationship among different variables™ *). Normally, deep
learning was adept at perception tasks while PGM specialized in
probabilistic reasoning tasks. BDL took the advantage of the two
models, and therefore, it works effectively in assessing uncertainty
of a complicated tasks and avoiding over-fitting. This method has
been applied in the researches of COVID-19 prediction. Cabras™
applied BDL in estimating COVID-19 evolution in Spain, and a
comparison between LSTM and BDL was also discussed in this
paper.

Our approach combines the characteristics and superiority of
BDL and objective-programming, which leads to a multi-view
evaluation of COVID-19 policies and proposes the optimal one in
vaccine-differentiated scenario.

2 Method

The architecture of our model is shown in Fig. 1, which is
composed of 2 main modules. The COVID-19 confirmed cases
data, vaccine-differentiated data, and policy stringency data are
adopted as the input of our model. A VDPL module applies BDL
architecture to determine the parameter, which will be used in the
next module. Following this, an objective-programming module
sets the objective function as minimizing confirmed cases. Some
hard constraints like Gross Domestic Product (GDP),
unemployment rate, etc. are taken into consideration to give a
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Fig.1 Achitecture of our model. NV is short for non-vaccinated, V is short for vaccinated, and NA is short for not available.

more comprehensive evaluation of policy effect and suggestions
on policy-making. And epidemic velocity formula is used to
bridge the parameter and confirmed cases. In this section, we
firstly introduce the basis theories of BDL and the VDPL module
in Section 2.1. Furthermore, a complete description of the
objective-programming part is shown in Section 2.2.

2.1 VDPL module

According to existing researches™, policy stringency can be
affected by many factors like vaccination, environment,
population, etc. The relationship between vaccination and policy
stringency can be interfered by other uncertainties. Moreover, the
vaccine-differentiated data have the characteristic of sparsity and
volatility since the vaccination policy is changing in different
regions all the time. Therefore, a VDPL module based on BDL is
applied to learning the vaccine-dependent parameter.

2.1.1 Basic framework of BDL

Before introducing the framework of BDL, let us have a brief
retrospect of the Bayes’ formula in probability theory™.

_ped) _ pltp(a)
PER =T = .

where p(z|x) is referred to as the posterior, p(x,z) is the joint
probability, p(x|z) is the likelihood probability, p(z) is the prior
probability, and p(x) is called evidence. Considering total
probability formula, that is:

p(x) = [ plal2)p(z)dz )
Equation (1) can be represented in the following form:
p(x|2)p(2)
= RO 3
PR = Tpalzipla)az ®

Based on Bayes’ formula and relative theories, PGM especially
directed PGM is proposed and applied to describe random
variables and relationships among them”. A brief example of
PGM for BDL is shown in Fig. 2, where the red part on the left is

Fig.2 Brief example of PGM for BDL.
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the perception component and the blue part on the right indicates
the task-specific component.

The variables in the red rectangle in Fig. 2 is named as
perception variable ,, the blue ones are task-specific variables
Q,, and another type of variable is hinge variable 2, which
associates perception component with task-specific component. In
our BDL architecture, perception variables are composed of the
weights and neurons in the probabilistic formulation of the deep
learning network, which means all quantities (e.g, weights,
neurons, bias, etc.) are displayed as probability distributions rather
than point estimates in BDL, just like the network architecture in
BDL module shown in Fig. 1.

Getting back to the Bayes’ formula, prior probability
distributions have close associations with model parameters and
are applied to describe their relationships to the data. With the aid
of probability theory, uncertainties in these data can be inferred.
By transforming the prior probability distributions (determined
before training) into posterior distributions (defined after
observing data), features and parameters of the observed data (e.g,
confirmed cases) can be learnt.

2.1.2 Method of training BDL

In Section 2.1.1, we have an understanding that BDL can be
applied by sampling the distribution of weight and bias, which
contributes to making the results more robust. However, a critical
problem is how to train the network in BDL.

The key issue of solving this problem is uncertainty (e.g.
aleatory uncertainty, epistemic uncertainty, and ontological
uncertainty) estimation. Some variables need to be defined. We
denote by W the weight and bias of our network, by
X=x,%,....%,n €Z the input of network (e.g., confirmed
cases and  vaccine-differentiated  data)), and by
Y=y,%,...,¥n,n € Z the actual data (e.g., policy stringency).
Our goal is to minimize the loss between prediction and actual
policy stringency values {(y;,y,,i € Z). y,i€Z means the
predicted stringency value and £(-) is the loss function. And
therefore, Eq. (3) can be written as

p(Y]X, W)p(W)

PWIXY) = o X Wip(Widw @

Generally speaking, the prior probability p(W) is initially
defined as the distribution of the policy stringency in our model,
and the likelihood probability p(Y|X,W) is a function of W.
Assuming that X and Y are given, the posterior probability
distribution of weight p(W|X,Y) can be determined easily.
However, our goal is to calculate the probability distribution of W,
which means the denominator of Eq. (4) need to be solved. It is a
barrier that p(Y|X) can not be solved analytically and some
approximation techniques are required like: (1) Approximating
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the integral with Markov chain Monte Carlo (MCMC); (2) Using
black-box variational inference; and (3) Using MC dropout
sampling. Because the COVID-19 data and policy data are so
large that make our network complex, and dropout is superior to
preventing over-fitting. In our experiments, we adapt a BLITZ
module to build the BDL network.

When we assume that P(w) is set as probability density
function (pdf). As the prior distribution of weights, Q(w|0) is the
posterior empirical distribution pdf of sampling weights. By
combining the derivation with Kullback-Leibler divergence,
that is:

Dy (p(2lx) lla(2lx)) = Y., p(alx) log(p(2]x)/(a(zlx) )~ (5)

We can find that for each sample, complexity cost can be
expressed as

C.(w(n),0) =logQ(w(n),0) —log P(w(n)) (6)
Finally, the loss function of the NTH weight sample is

L,(w(n),0) = C,(w(n),0) — P,(w(n),0) (7)

By doing so, we ensure that while optimizing computational
complexity, the differences between our model and its predictions
will be reduced. Therefore, the variational.ym.,, module is built
into the BLiTZ framework to do this. Bayesian neural networks
are typically optimized by sampling losses from the same batch
several times before, which is to compensate for the randomness
of the weights while avoiding optimizing them on losses affected
by outliers. Given the input, output, criterion, and sample,,
BLITZ calculates the sample,, loss and its mean during the
iteration, and finally returns the sum of the complexity loss and
fitting loss.

In this way, the weight and bias of the network are sampled in a
more accurate way, and therefore the uncertainty of network and
prediction of output can be estimated more robustly.

2.2 Objective-programming module

In order to provide policymakers with more useful and proper
suggestions on policy making, an objective-programming module
is formulated. Thus we can explore the optimized measures that
satisfy our requirement of both controlling confirmed cases and
economy recovery. Before we present the specific formula, some
parameters that are selected as constraints are introduced.

The criterion we opt for these constraint parameters is that they
should have direct or obvious relationship with not only the
spread of COVID-19 but also the economy. Population density,
hospitalization, unemployment rate, Gini coefficients, and GDP
are selected.

2.2.1 Population density

According to the report published by CDC™, COVID-19
transmission occurs when people breathe air contaminated by
droplets and small airborne particles containing the virus.
Therefore, a positive correlation between infection rate and
population density can be confirmed. The more crowded the
population is, the higher the chance of infection will be. Moreover,
denser population can bring more labor force that will directly
contribute to the economic resurgence.

2.2.2 Population density

Hospitalization gives a rough estimation of the capacity of the
hospital to receive patients with severe symptoms. if the number
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of patients with severe symptoms exceeds the limit of
hospitalization, it will cause serious problems in society. Hence,
keep the number of confirmed cases under control can be
estimated by hospitalization. Furthermore, countries or regions
with good economic conditions are more likely to conduct more
investment on the construction of medical infrastructure like
hospital.

2.2.3 Unemployment rate

The definition of unemployment rate is the percentage of people
above a specified age (usually 15) not being in paid employment
or self-employment but currently available for work during the
reference period”. Since the outbreak of COVID-19, it has been
reported that many infectious people were fired by the company
and became unemployed. To some degree, unemployment rate
can reflect the development of economy.

2.2.4 Gini coefficient

Gini coefficient is a measure of statistical dispersion intended to
represent the income inequality or the consumption inequality
within a nation or a social group’. Many researches have revealed
the inequality problem in medical resources allocation like
vaccine, mask, etc. For the sake of providing optimized policies in
a fairer way, Gini coefficient is under consideration.

225 GDP

GDP is the final result of the production activities of all resident
units in a country (or region) within a certain period of time®),
which can reflect the condition of economic rebound in the most
apparent way. The last 3 years have witnessed a sharp decline in
GDP of all countries or regions around the globe. One of the most
significant goals of economic recovery is to stimulate the increase
of GDP.

Here, we can give a complete description of our objective-
programming module:

min N(t) (8)
s.t., log R(t) = N(t) + 8, logR(t—1) 4 €(1),
R(#) € (0,1),
B, €10,4],(B, € Z), ©)
():F( (t),9.),
[ |‘ﬂdX]

where N(t) refers to the number of confirmed cases. Our goal is
to minimize the value of N(t), which is also the traditional
standard of policy effect evaluation. In order to establish the
association with N(t) and f3, learnt by BDL, epidemic velocity
formula in Formula (9)” is applied. R(t) stands for the
reproductive rate of COVID-19, which is a common-used
parameter. It is generally believed that the reproductive rate R(t)
is the result which historical reproductive rate R(t—1) and new
infections N(t) affect together. The effect of policy stringency has
a direct impact on historical reproductive rate R(t—1). €(t) is a
perturbation term to depict potential noise. According to
researches home and abroad, R(¢) is less than 1 when the spread
of COVID-19 is well controlled, while R(f) is larger than 1 when
COVID-19 tends to spread continuously. For the purpose of
controlling COVID-19, the range of R(#) is set between 0 and 1.
The range of 8, is given by the reports published by the Oxford
COVID-19 Government Response Tracker (OXCGRT)", and the
specific definition is shown in Table 1. The larger the number is,
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Table1 Policies and stringency definition.

Stringency definition

Policy

Stringency=0 Stringency=1

Stringency=2

Stringency=3 Stringency=4

Recommend closing or all
schools open with alterations
resulting in significant
differences compared to non-
COVID-19 operations

School closing ~ No measures

Require closing (only some
levels or categories, e.g., just
high school, or just public

Require closing all levels —

schools)

Public event cancel No measures ~ Recommend cancelling

Require cancelling — —

Require not leaving house
with exceptions for daily
exercise, grocery shopping,
and “essential” trips

Stay-at-home
requirement

Recommend not leaving

No measures
house

Require not leaving house
with minimal exceptions (e.g.,
allowed to leave once a week, —
or only one person can leave
at a time, etc.)

Restrictions on very large
No measures gatherings (the limit is above
1000 people)

Restriction on
gatherings

Restrictions on gatherings
between 101-1000 people

Restrictions on
gatherings of 10 people
or less

Restrictions on gatherings
between 11-100 people

the stricter the policy implementation will be. The specific
relationship between confirmed cases and economic indicators
will be fitted in our experiment and I'(-) denotes the mapping
function. The value of ¢, is also constrained by the real situation.
For example, the capacity of a hospital can be calculated by the
value of ICU occupancy, and therefore, we can constrain the
confirmed cases through the mapping function between
confirmed cases and @, . ..., t0 Prevent healthcare system from
collapsing.

3 Experiment

In this section, we back up our model with concrete examples and
a detailed case study in the US is investigated. COVID-19
confirmed cases data from the Center for Systems Science and
Engineering (CSSE) in John Hopkins University (JHU), policy-
related data form OXCGRT, and economy data form World Bank
and World Economy Organization (WEO) are used in our
experiment.

In July 2021, OXCGRT upgraded their datasets to track the
differentiated policies to the vaccinated and non-vaccinated
people®, which brings us great convenience to study the effect of
COVID-19 policies in a vaccine-differentiated scenario. All the
data before “2020-12-31” are set as training set and the data
ranging from “2021-01-01” to “2021-06-30" are set as testing set.
Firstly, four types of policies including school closing, public event
cancel, stay-at-home requirements, and restrictions on gatherings
are taken into account since they involve education, work, public
events, and household that help us to put forward more
comprehensive suggestions. Secondly, in order to make our final
suggestions more general, fine-grained case studies in eight states
(e.g, New York, Massachusetts, California, Kentucky, North
Dakota, Wyoming, Florida, and Texas) all over the US are
conducted.

3.1 Effectiveness of vaccine-differentiated policies

Figure 3 shows the prediction of confirmed cases after applying
vaccine-differentiated policies in eight states in the US in the first
two quarters in 2021. Three types of differentiation ratio including
75%, 50%, and 25% are under estimation.

According to the results in Fig. 3, it is obvious that vaccine-
differentiated policies are effective in controlling the infection of
COVID-19. For instance, the confirmed cases are predicted to
decline by at least 0.5% in California, which means at least 0.3
million people can prevent from being infected. Similarly, the
confirmed cases will decrease by at least 0.2% in Florida, 0.05% in

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150034 | 2024

New York, 0.03% in Kentucky, and so on.

However, vaccine-differentiated policies do not perform well in
all the states in the US. We can easily find that the prediction cases
are almost overlapped with the real data in Wyoming or even
higher than the actual confirmed cases in North Dakota. As far as
we are concerned, these situations have close relations with the
economic state of the region. It is reported that states with better
developments of economy are tend to be equipped with more
adequate medical resources like vaccines, which play a vital role in
immunity. The inequality of medical resources can be regarded as
the major cause of the difference in the effectiveness of same
policies.

Moreover, on the basis of our prediction, there is a trend that
the higher the vaccine-differentiation rate is, the fewer the
confirmed cases are. The cases in Florida, New York, Kentucky,
and North Dakota have demonstrated it. However, there are still
some exceptions like Texas. After searching for related reports and
studies in Texas, we attribute it to the lack of vaccination initiative
by Texas’ government. It is reported that there is no state or local
COVID-19 immunization requirements, and even no government
entity in Texas can mandate the COVID-19 vaccine according to
Governor Abbott’s Executive Order GA-39 in Texas™.

3.2 Evaluation of different policies

In Section 3.1, we have investigated that vaccine-differentiated
policy is effective. Therefore, in this section, we will conduct
further discussion about how vaccine-differentiated policy can
make contributions to economy resurgence and other factors that
may make a difference.

Due to the space constraints, here we take the results of
Massachusetts, New York, and North Dakota as examples.
Obviously, vaccine-differentiated policies stimulate the recovery of
economy. We can conclude some common characters. Firstly, the
implementation of vaccine-differentiated policies in public event
cancel policy is the most effective way to improve the economy
rebound among the four measures. It is because public event has a
tight and direct association with economy. Secondly, gathering
restrictions policy can hardly make contributions to economic
development even though vaccine-differentiated policies are put
into effect, which is caused by consumption restrictions. Thirdly,
the results in Figs. 46 are consistent with the results in Fig. 3. The
better the economic state is, the more vaccine resources they have,
and the higher vaccination rate they can obtain. Therefore,
vaccine-differentiated policies can perform in a more effective way
in these states.
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Fig.3 Confirmed cases prediction after applying vaccine-differentiated policies in (a) California, (b) Texas, (c) Florida, (d) New York, (e) Massachusetts, (f)
Kentucky, (g) North Dakota, and (h) Wyoming in the US in the first two quarters in 2021. The vaccine-differentiated condition is 75% vaccination (green), 50%
vaccination (yellow), and 25% (brown). The actual confirmed cases are shown in a solid line (blue). Time axis corresponds to the days since the first outbreak of

COVID-19.

However, there are still some diversities in different states.
Firstly, different types of policies have various contributions to the
economy. For instance, implementation of vaccine-differentiated
policies in school closing has achieved great success in our
prediction. That is because there are plenty of universities and
like Harvard University and

colleges in Massachusetts

6

Massachusetts’ Institution of Technology, and there are many
students and scholars from all over the world. Vaccine-
differentiated policies in school closing means travel restrictions
on students could be relaxed and the economy will be resuscitated
gradually. Unlike Massachusetts, public event cancel policy out-
stands in New York since New York is a cosmopolitan city, and
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Fig.4 Predictive increasing ratio of GDP in Massachusetts after applying different vaccine-differentiated policies.
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Fig.5 Predictive increasing ratio of GDP in New York after applying different vaccine-differentiated policies.

business issues are active there. Secondly, vaccine-differentiated
policies does not perform well in North Dakota in comparison
with that in New York and Massachusetts, which owes it to the
economic underdevelopment in North Dakota, and it is similar to
the circumstances in Texas.

According to the concept of vaccine-differentiated, different
vaccination rate correspond to various policy stringency.
Generally speaking, the higher the vaccination rate is, the lower
the policy stringency will be. For instance, vaccination rate of 75%
corresponds to policy stringency of 0 or 1, and vaccination rate of

CAAI Artificial Intelligence Research | VOL. 2 Article No. 9150034 | 2024

25% or even lower corresponds to policy stringency of 3 or 4. We
highlight the most effective policy stringency in Fig. 7 with red
edge. On the whole, more accommodative policies are
recommended in the post-epidemic era. Moreover, we appeal to
allocate more medical resources like vaccine, mask, etc. to
economically underdeveloped areas. It will improve the overall
effect of policy.

3.3 Robustness of model

In previous work, case studies are almost conducted at the level of
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Fig.6 Predictive increasing ratio of GDP in North Dakota after applying different vaccine-differentiated policies.

a country or just in a fixed area. Thus the models are more likely
to perform well in a fixed region only. The robustness of model
can not be guaranteed in researches of other regions. In order to
demonstrate that our model has improved the robustness of
results in comparison with existing work, we draw a boxplot of
the mean absolute percentage error (MAPE) value of our
experiments in eight states. A comparison with the robustness of
LSTM model is also shown in Fig. 7. Generally speaking, the more
centralized the data, the higher the robustness of the model.
According to Fig. 7, we can conclude that the MAPE data of
Florida, New York, California, and Wyoming are centralized, the
difference among data is less than 0.1. Moreover, except Kentucky,
the difference among data is less than 0.2 in the rest of the three
states. Compared with the results of LSTM model, the MAPE
value are more likely to be centralized in all 8 states. And the
MAPE value in our model are much smaller than that of LSTM.
Therefore, we can conclude that our model performs well in the
accuracy and robustness of results.

3.4 Performance comparison

In existing works of policy effect evaluation, most of the results are

North Dakota | —] N —

Kentucky | —— . —
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Wyoming —_— s —
Florida - e

California b

New York [ {] 1

Massachusetts ! N ! . . .
21 22 23 24 25 26 27 28
MAPE

(a) Our model

compared with real observed data. Generally speaking, as long as
the prediction results are lower than the real data, the model can
be regarded as effective. However, if the prediction performance of
the model is not accurate, it can hardly give the proper suggestions
on policy-making. Hence, there is a lack of comparing the
predictive performance of different policy effect evaluation model.
According to the related work, various models ranging from
traditional method of difference and fitting to ML-based
approaches are applied in policy effect evaluation. The core idea of
this subject is to construct counterfactual based on prediction
model. Therefore, to make our results more convincing, we
compared our model with some classic prediction model like
ANN, LSTM, and LSTM+Transformer. The confirmed cases data
from JHU ranging from “2020-01-22” to “2021-12-31” are
regarded as the input of all the models. The data before “2021-11-
30” are set as training data while the rest are set as test data to be
predicted. The evaluation metrics we used for performance
comparison are MAPE and R?, which can be defined as

1 & F—A

MAPE = N;' e | (10)
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Fig.7 MAPE value of our model and LSTM model in eight states in the US.
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where R is the sum of squares of residuals and T, is the total
sum of squares. F' and A’ are the predicted results and actual data
of confirmed cases, respectively. The performance index of each
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Fig.8 Prediction performance comparison among LSTM, ANN, LSTM+Transformer, and our model in 2021 in (a) California, (b) Florida, (c) Kentucky, (d)
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(11) model is shown in Fig. 8 and Table 2.

According to Table 2, our model have the best performance
followed by LSTM, LSTM+Transformer, and ANN, which can
demonstrate that all the results discussed in our paper above are

reliable and can provide proper and dependable guidance for
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Massachusetts, (e) New York, (f) North Dakota, (g) Texas, and (h) Wyoming.
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Table2 Model performance comparison.

State Index LSTM ANN LSTM+Transformer Our model

MAPE 101.78 74.71 23.69 2.12

California
R2 -0.31 —-0.43 0.68 0.98
MAPE 85.34 59.38 36.77 4.03

Florida

R? -0.11 -0.14 0.74 0.85
MAPE 86.25 65.27 29.78 3.26

Kentucky
R? -0.17 -0.33 0.88 0.95
MAPE 79.32 40.98 24.66 3.33

Massachusetts

R? -0.97 -1.01 0.79 0.94
MAPE 79.44 76.45 13.87 3.15

New York
R? -0.83 -0.83 0.81 0.96
MAPE 69.83 32.87 31.25 3.28

North Dakota
R? -0.17 -0.04 0.90 0.97
MAPE 58.99 37.39 19.96 3.11
Texas

R2 -0.91 -0.71 0.86 0.95
MAPE 64.31 57.63 14.99 2.34

Wyoming
R? -7.94 -5.21 0.91 0.98

policy-makers. In the future, considering most of the people have Acknowledgment

gotten vaccination and are immune to COVID-19, the stringency
and form of anti-epidemic policies need adjusting timely.

4 Conclusion and Outlook

In this paper, we discuss the effectiveness of vaccine-differentiated
policies and gave a more comprehensive policy evaluation that
satisfied the requirements of both controlling confirmed cases and
stimulate economic resurgence. An extending model that
combines a VDPL module and objective-programming module
has been put forward and put into application. The results have
revealed some important conclusions. Firstly, vaccine-
differentiated policies have been proven to be effective in both
controlling and improving economy. Secondly, different types of
vaccine-differentiated policies make contributions to economy
recovery to varying degrees. Thirdly, responses to vaccine-
differentiated policies vary in different states, and it depends on
the condition of economic development to a large extent. Finally,
a novel comparison mode in the subject of policy effect evaluation
is proposed in our paper. The predictive performance of different
models is compared, which leads to further verification of the
accuracy of our model and the rationality of our results.

Even though our model has been demonstrated to perform well
in the case study in the US, there are still a few limitations. For
example, considering the complexity of model, only five indicators
related to economy and COVID-19 are taken into account. More
indicators involving geographical or climate indexes can be
analyzed in further study. Another limitation is that we only
compare our model with some typical ones like LSTM, ANN, and
so on. Even if we come up with a novel thinking of policy effect
evaluation, more discussion remains to be extended.

While entering the post-epidemic era, previous researches on
policy effect evaluation are outdated, and the standard of
assessment needs adjusting. A new set of opportunities and
challenges has emerged. Apart from the state of economy rebound
that we have discussed in this paper, other scenarios like medical
resource allocation, infrastructure construction, social psychology,
etc. are worth studying.
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