
DISTRIBUTEDANN: Efficient Scaling of a Single DISKANN Graph Across
Thousands of Computers

Philip Adams 1 Menghao Li 2 Shi Zhang 1 Li Tan 1 Qi Chen 3 * Mingqin Li 4 † * Zengzhong Li 1 *

Knut Risvik 5 * Harsha Vardhan Simhadri 1 *

Abstract
We present DISTRIBUTEDANN, a distributed
vector search service that makes it possible to
search over a single 50 billion vector graph index
spread across over a thousand machines that of-
fers 26ms median query latency and processes
over 100,000 queries per second. This is 6×
more efficient than existing partitioning and rout-
ing strategies that route the vector query to a
subset of partitions in a scale out vector search
system. DISTRIBUTEDANN is built using two
well-understood components: a distributed key-
value store and an in-memory ANN index. DIS-
TRIBUTEDANN has replaced conventional scale-
out architectures for serving the Bing search en-
gine, and we share our experience from making
this transition.

1. Introduction
Approximate Nearest Neighbor (ANN) search is a common
retrieval technique in web search, multimedia search, and
new scenarios like Retrieval-Augmented Generation (Lewis
et al., 2020). Given a set of data vectors X , and a query
vector q, the goal of an ANN search system is to quickly
find as many of the k vectors in X that are nearest to q as
possible. ANN search is a classic problem and researchers
have developed many techniques, including algorithmic
approaches (Malkov & Yashunin, 2018; Andoni & Indyk,
2008; Subramanya et al., 2019; Wang., 2018; Babenko &
Lempitsky, 2014), compression techniques (Jegou et al.,
2010; Ge et al., 2014; Gao & Long, 2024), and specialized
indexes targeting GPUs, flash storage, or external memory
(Johnson et al., 2019; Ootomo et al., 2024; Wang, 2021; Jang

*Listed alphabetically by surname †The work was done at Mi-
crosoft. 1Microsoft, Redmond, United States 2Microsoft, Bejing,
China 3Microsoft Research Asia, Vancouver, Canada 4Shopify,
Bellevue, United States 5Microsoft, Trondheim, Norway. Corre-
spondence to: Philip Adams <philipadams@microsoft.com>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

et al., 2023). The performance of these techniques is closely
tracked by benchmarking efforts like ANN-Benchmarks
(Aumüller et al., 2018) or Big-ANN-Benchmarks (Big-ANN
Benchmarks, 2023).

However, the majority of research effort has been focused
on datasets small enough to fit in a single machine’s memory
or disk. For larger datasets, like searching over hundreds of
billions of web documents, the standard approach is to split
the corpus into smaller partitions1. An independent index
is built for each partition, and each partition is hosted on a
different machine so that the entire corpus can be searched
in parallel. The main downside of this approach is efficiency:
inside a single ANN index, query cost scales with log|X|
(as empirically measured), while across many partitions
(assuming a fixed partition size) the cost will scale with
the number of partitions. In other words, a system with P
partitions has a search complexity of P log |X|

P , which is
much worse than the complexity of one index over the entire
dataset X . Even techniques aimed at improving this tradeoff,
like using clustering to assign vectors to partitions (Wang,
2021), face scalability challenges and complex tradeoffs.

In this paper, we argue that state-of-the-art performance
on very-large-scale datasets can be achieved through a sin-
gle large logical index stored in a distributed key-value
store. DISTRIBUTEDANN begins with the abstraction
of the key-value store as a large shared disk, and then
makes modifications to the data and compute placement
choices of DISKANN indices in order to make it practical
to serve them in this setting. We explore the tradeoffs com-
pared to a traditional approach, and present experimental
results demonstrating the scalability of this approach on
a fifty-billion vector subset of a web search dataset. DIS-
TRIBUTEDANN has already been deployed in Microsoft
Bing to support search over hundreds of billions of vectors.
Compared to the previous production system, it delivered
over 6× headroom in query throughput with the same
machine footprint, and 7.8 and 4.5 percentage point im-

1For online systems, it is often necessary to choose a partition
size much smaller than the total space available on a machine,
in order to be able to bring a new replica online quickly enough
should a host fail.

1

DISTRIBUTEDANN

Clustered Partitioning DISTRIBUTEDANN

Select best N partitions

Cache Cache Cache
Graph

partition
(M SSD IO)

Graph
partition

(M SSD IO)

Graph
partition

(M SSD IO)

. . .

Orchestration Service

Head
Index
Search

Global
Graph nodes

(BW SSD IO)

H graph hop
batches

Figure 1. High-level architecture comparison between a conventional system using clustered partitioning and DISTRIBUTEDANN.

provements in recall@5 and recall@200 respectively.

2. DISTRIBUTEDANN
Existing ANN indices like DISKANN are optimized for
tiered storage by reducing the number of round-trips to SSD.
Therefore, DISKANN is well suited for adaptation to a dis-
tributed serving environment, since the main drawback of
accessing a networked disk is added access latency. How-
ever, directly serving a multi-hundred-terabyte DISKANN
graph from network-attached storage encounters new bottle-
necks:

• The memory-resident portions of the index are too
large to fit in a single machine, and accessing them
over the network would incur significant overhead.

• As the diameter of the graph grows, more hops are
needed to traverse it, increasing latency.

• Transmitting the full graph node data over the network
requires too much serial compute per query and con-
sumes excessive network bandwidth.

In the rest of this section, we first review the data layout
of DISKANN, and then discuss how we adapt the index to
overcome these scaling bottlenecks.

2.1. DISKANN Index Layout

A DISKANN index has 3 components:

1. An array of compressed (PQ or OPQ2) representations
of all vectors in the index, stored in memory.

2. An array of graph nodes, one per vector, stored on SSD.
Each node stores the full precision vector and a list of
IDs representing out-neighbors.

2Product Quantization and Optimized Product Quantization,
described in detail in (Jegou et al., 2010; Ge et al., 2014).

3. An in-memory cache of frequently-accessed graph
nodes.

Searching this index begins at a fixed point, and scores
neighbor candidates of each visited node using their in-
memory compressed representations to determine which
nodes to visit in the next iteration of beam search. De-
pending on the index size and the recall required, tens to
hundreds of nodes may be read (depending on I , the limit
on the total amount of IO), and for each node many candi-
date neighbors (depending on R, the graph degree) will be
considered.

2.2. Index Layout Modifications

Compressed Vectors Duplicated into Graph Nodes.
Our first modification is based on the observation that, for
a sufficiently large index, the array of compressed vectors
will not be able to fit in a single machine. One option would
be to store these compressed vectors in a memory-based
key-value store. However, due to the large number of can-
didates that must be considered (I × R may be tens of
thousands of lookups per search for typical parameters) and
the latency implications of doing an extra network hop per
beam search iteration, we instead decide to duplicate the
compressed representation of each vector into all the graph
nodes it is a neighbor of. This introduces a significant space
amplification3 of

(1 +R) sizeof(id) + d+RdOPQ

R sizeof(id) + d
, (1)

but it reduces the number of read operations per search to
I . This approach mirrors that of (Tatsuno et al., 2024; Pan
et al., 2023).

3For parameters of R = 100, d = 384, dOPQ = 64 and using
8-byte IDs instead of 4-byte IDs to allow an index of more than 4
billion vectors, this is approximately a 10x amplification.

2

DISTRIBUTEDANN

In-Memory Head index. We also observe that while a
node cache in the key-value store still has the benefit of
reducing IO operations, it does not provide the same la-
tency benefit as in single-machine DISKANN because even
cached nodes will still incur network hop latency when
read. This is a major issue, since the shortest path to the
furthest node from the starting point of the graph has at least
logR|X| edges. In conventional DISKANN, the first few
beam search iterations almost always hit the node cache,
reducing the number of round trips to disk and thus the
latency. To achieve a similar effect in DISTRIBUTEDANN,
we introduce a dense cache of the top layers of the graph.
We first conduct a breadth-first traversal to collect C vectors
from the top layers of the DISKANN graph. We then build
a conventional sharded in-memory ANN index over these
vectors. We call this smaller index the head index. At search
time, we first search in the in-memory head index, and then
use the results as the starting points for beam search of the
DISKANN graph.

2.3. Near-data Computation

Our next modification is also motivated by latency. While
log scaling within a single index is favorable compared to
linear scaling across indices, it will still require log 100 ≈ 6
times as much computation to achieve similar quality search-
ing a 50-billion vector index as a 500-million vector one.
If we treat the key-value store purely as a virtual disk
and do this work sequentially in a single machine like in
DISKANN, there will be a corresponding increase in la-
tency. We instead introduce a near-data node scoring service
running on each key-value host, described in Algorithm 1.

Algorithm 1 Node Scoring Service
Input: Node keys {ki}, threshold score t, candidate limit
l, full-dimension query q, SDC encoded query qSDC

Static Data: OPQ distance table
Output: Sorted result IDs and distances R, sorted candi-
date IDs and distances C
Initialize R← ∅, C ← ∅
Batch read the node entries ni for all ki
for all ni do

Compute d(q, v) for full-dimension vector v ∈ ni and
insert v into R
for all OPQ candidate p ∈ ei do

if dOPQ(qSDC, p) < t then
Insert p into C

end if
end for

end for
Sort R and partial-sort C up to l
Truncate C to l

This change has the benefit of parallelizing the computation,

while also allowing resources to be consumed in small uni-
form chunks (each key read will incur a similar amount of
scoring work4) that work well with existing resource man-
agement/load balancing systems5. Additionally, since we
only transmit scores over the network instead of full nodes,
we achieve a bandwidth savings6 of

(1 +R) (sizeof(id) + sizeof(score)) + d+ dOPQ

(1 +R) sizeof(id) + d+RdOPQ
(2)

compared to a naive virtual disk approach.

2.4. Orchestration Service

The final component of DISTRIBUTEDANN is an orchestra-
tion service that maintains lists of the best seen results and
candidate vectors. This service will first issue a search in
the head index, and then issue H rounds of calls to the node
scoring service before returning a final set of results to the
caller, described formally in Algorithm 2. Because this ser-

Algorithm 2 Orchestration Service
Input: Full dimension query vector q. Beam width BW.
Beam iterations (hops) H . Result count k. Head index
result count khead. Candidate size L ≥ max(BW, k).
Static Data: OPQ distance table, OPQ codebooks
Output: Sorted result IDs and distances R
Initialize result heap HR of size k, candidate heap HC of
size L.
Encode OPQ query qSDC using the codebooks.
Search for khead results in the head index, and insert into
HC

for i = 1 to H do
Let t = peekworst(HC)
Take best BW candidates from HC as keys K.
Let {Ri}, {Ci} = NodeScoring(K, t, L, q, qSDC).
Partially merge-sorted-lists of {Ri} upto k and {Ci}
upto L, then insert into respective heaps.

end for
Sort HR into R

vice has a small amount of persistent state, it can be hosted
on many machines with low overhead, ensuring that the load

4We observe that due to the high ratio of shards to BW, the
typical batch size of this service is 1, resulting in very predictable
resource usage.

5Multiple scenarios search the web index, and each has a dif-
ferent ideal resource vs. quality tradeoff. By consuming resources
in roughly equal chunks, the existing key-value store load balancer
can transparently accommodate different search parameters. In a
partitioned index, different search parameters required separate
benchmarking to set appropriate load factors for each scenario.

6Using the same parameters as in Footnote 3, this is approx-
imately a 6x saving. We increase the savings further by pruning
any neighbors that are worse than the current worst member of the
candidate heap before returning to the orchestration service.

3

DISTRIBUTEDANN

is evenly distributed. This service is also able to use hedged
requests (Dean & Barroso, 2013), track replica health across
requests, and allow partial failures of batches of node reads
in order to reduce the tail latency normally associated with
a high-fanout system like DISTRIBUTEDANN.

3. Constructing a Large Graph Index
DISKANN graphs are typically built incrementally by
searching with the vector to be inserted as a query, tracking
all the visited nodes during the search for use as poten-
tial graph neighbors, and then pruning to at most R ac-
tual neighbors. While it is possible to insert vectors into
an DISTRIBUTEDANN graph by this procedure, it would
require significantly more computation than building an
equivalently sized partitioned graph, because the partitioned
approach only needs to search in one smaller partition for
each insertion. To reduce the graph construction cost, we
employ a graph stitching approach similar to the one de-
scribed in (Subramanya et al., 2019). We first build an index
with clustered partitioning, with vectors in the closure of
multiple clusters inserted into all of them as described in
(Wang, 2021). Because these vectors occur in multiple par-
tition’s graphs, we are able to stitch together a unified graph
by taking the union of their neighbors from all the partitions
they are present in, as shown in Figure 2. In order to ensure
that the entire graph is reachable, we build the head index
from the union of the top layers of each partition’s graph,
rather than the top layers of the stitched-together graph. The
quality of a graph built by this stitching process is lower
than one built entirely incrementally, but is sufficient to get
good results and is much faster to build.

Figure 2. A visual depiction of the unified graph construction pro-
cess. Partitions are represented by colored regions, and neighbor-
hoods by dark shading. When points exist in multiple partitions,
their neighborhoods will be merged by taking the union of neigh-
bor lists, yielding a unified graph.

4. Evaluation
The Bing web index is composed of multiple independent
slices to allow portions of the index to be updated atomi-
cally using less capacity than would be required to update
the entire index atomically. Each slice consists of roughly
50 billion 384-dimensional int8 vectors. We compare the
performance characteristics of DISTRIBUTEDANN and a

0 10 20 30 40 50
0

50

100

150

200

250

288
Cluster Index

N
u

m
b

er
of

IO
s

DistributedANN

Clustered Partitioning

IO Distribution by Cluster

Figure 3. IO in each cluster for a single query, as served by DIS-
TRIBUTEDANN and a conventional clustered partitioning index.
DISTRIBUTEDANN is able to implement a much more flexible
traversal strategy, improving efficiency.

traditional clustered partitioning approach (with roughly
200 million vectors per partition) on one slice of the in-
dex. Because of the graph stitching approach described
in Section 3, we are able to ingest identical indexes for
both approaches, though for DISTRIBUTEDANN we only
ingest the first 72 neighbors in each node to reduce stor-
age consumption. All experiments are conducted in a pro-
duction environment which has a mix of host SKUs and
multiple workloads sharing the resources of each host. A
typical host in this environment has 256 to 768 GiB of
memory, 5 to 10 TiB of SSD storage, roughly 200 IOPS
per GiB of SSD storage, 32 to 64 physical cores, and 40
Gbps of network bandwidth. We ensure that the SKU
mix hosting each system is roughly equivalent. The index
parameters are chosen so that each system has a similar
footprint (by bounding resource) at 15k QPS. The con-
ventional index is bound by IO while DISTRIBUTEDANN
is bound by SSD space and can continue scaling to over
100k QPS in the same footprint. Performance data was col-
lected on a set of sampled web search queries, presented
in Table 1. The parameters for DISTRIBUTEDANN are
H = 5,BW = 128, R = 72, k = L = 200, khead = 200,
with a head index size of 2.5 billion vectors. The in-
dex built with clustered partitioning selects the top 40 out
of 203 partitions, and searches in each with parameters
I = 120,BW = 6, R = 106, k = L = 120.

4.1. Scaling

We observe that while DISTRIBUTEDANN does consume
significantly more storage space and has higher latency than
a conventional system, it uses significantly less IO and is
able to achieve higher throughput and recall on the same

4

DISTRIBUTEDANN

Table 1. Performance and accuracy comparison between DISTRIBUTEDANN and conventional approach with 3 replicas

Metric DISTRIBUTEDANN Clustered Partitioning

Recall@5 (%) 90.8 83.0
Recall@200 (%) 71.9 67.4
Latency@50-ile (ms) 26 16
Latency@99-ile (ms) 35 22
SSD Space (TiB) 780 270
Memory (TiB) 42 18
IO per query 640 4800
Network Bandwidth per query (MiB) 1.4 0.3
Throughput (QPS) >100k ∼15k

256 512 1024 2048 4096 8192
IO per Query (log scale)

50

60

70

80

90

R
ec

al
l

(%
)

Recall Scaling on 50B Index

DistributedANN Recall@5

DistributedANN Recall@200

Clustered Partitioning Recall@5

Clustered Partitioning Recall@200

Figure 4. Optimal Recall/IO frontier for indexing 50 billion vectors.
Grid search of parameters, DISTRIBUTEDANN: H from 4 to 8,
BW = 32i for i from 3 to 6. Clustered Partitioning: selected
clusters N = {20, 25, 30, 40, 50, 60}, IO per cluster M = 32i
for i from 2 to 6.

graph. Because DISTRIBUTEDANN has unified graph, it
can more efficiently allocate its IO budget, both by search-
ing more deeply in relevant clusters and by touching more
total clusters7. In comparison, a traditional clustered par-
titioning approach allocates a fixed amount of IO to each
chosen partition (as shown in Figure 3). This allows DIS-
TRIBUTEDANN to achieve consistently higher recall across
a range of IO budgets, shown in Figure 4.

DISTRIBUTEDANN also enjoys more flexible and efficient
throughput scaling than a conventional system, because the
underlying key-value store can be sharded across more hosts
to increase the available IOPS and CPU. In a conventional ar-
chitecture, increasing the number of partitions would require
more partitions to be searched for each query, increasing
the IO per query. So, the main way to improve throughput
is by increasing the number of replicas, which requires re-

7Note that due to the graph stitching approach described in
Section 3, a single read in DISTRIBUTEDANN may touch multiple
clusters.

sources to be allocated in much coarser-grained chunks and
consumes additional SSD and memory in addition to the
extra IOPS and CPU.

One significant bottleneck we identified in the current imple-
mentation of DISTRIBUTEDANN is the head index, which
at 3 replicas becomes CPU-bound before the node scoring
service. Our solution in the current system is to increase
the number of head index replicas. Due to the relatively
small size of the head index and the bounding resource of
the overall system (SSD space), this does not increase the
number of machines required to serve the index.

4.2. Reliability

One potential concern for a distributed architecture is its
resilience to issues in system components, like network
partition or host failure. Although the mechanics of op-
erating a high-availability distributed key-value store are
well-understood in industry (DeCandia et al., 2007), DIS-
TRIBUTEDANN should still be resilient to partial failures in
the node-storage layer. To test this resilience, we modified
the node scoring service to accept a configurable failure rate
parameter. We then examined the impact on recall@5 and
recall@200 of different failure rates, shown in Table 2.

The service experiences a graceful degradation in recall
roughly proportional to the failure rate. This not only gives
confidence in the reliability of the system, but also the per-
formance stability, as we can safely timeout node scoring
requests experiencing tail latencies without a significant
adverse effect on recall.

We contrast this with our experience operating a conven-
tional partitioned ANN service. In such a service, avail-
ability is more difficult to maintain because of the higher
partition sizes requiring more time to bring a new replica on-
line. When a partition becomes unavailable, a large chunk of
the dataset is missed, causing a dramatic drop in search qual-
ity. Additionally, when vectors are partitioned by clustering
and only a subset of partitions are used for each search, load
becomes imbalanced, as described in Subsection 4.4. The

5

DISTRIBUTEDANN

most popular clusters receive the most traffic and so are
most likely to experience performance degradation, mean-
ing that common queries will have the largest drop in search
quality. In practice, independent partition scaling and heavy
over-provisioning are required to achieve good availability,
leading to lower resource utilization.

Table 2. Recall with degraded node scoring service availability

Availability (%) Recall@5 (%) Recall@200 (%)

100 90.8 71.9
99 89.7 70.1
98 88.8 69.4
97 87.5 68.8
96 87.0 67.8

4.3. Comparison with GPU-based systems

Recent work (Johnson et al., 2019; Zhao et al., 2020;
Ootomo et al., 2024; Khan et al., 2024) has sought to ex-
ploit the massive parallelism of GPUs to greatly increase the
search throughput of a single machine. These systems have
meaningly shifted the tradeoff between vertical and horizon-
tal scaling of ANN search, and offer extremely competitive
price-to-performance for high-throughput, billion-scale in-
dices. However, these systems still have limitations on the
size of index that can fit in a single machine, and eventu-
ally encounter the same linear scaling properties and opera-
tional complexities as other partitioned indices on very large
datasets. For our scenario, the scalability benefits of DIS-
TRIBUTEDANN outweigh the advantages of GPU-based
indices.

4.4. Comparison with Advanced Partitioning Schemes

Recent work such as (Dong et al., 2019; Gottesbüren et al.,
2024) improves the performance of partitioned graph indices
through schemes that reduce the number of cross-partition
edges in an k-NN graph over the dataset. Further work
is needed to compare the empirical performance of these
approaches and DISTRIBUTEDANN. In particular, these
approaches may be preferable in very latency-constrained
scenarios where the multi-hop network overhead of DIS-
TRIBUTEDANN is unacceptable. However, we feel that
DISTRIBUTEDANN has some notable operational advan-
tages:

• DISTRIBUTEDANN can use one algorithm to build the
entire index, rather than separate approaches for coarse-
grained partitioning and fine-grained index building.
Because of the incremental insertion approach of
DISKANN, build and search use the same code and
can be optimized simultaneously.

• Semantic partitioning schemes are difficult to load-

balance. Since queries will only access a subset of par-
titions, efficient serving requires independently scaling
each partition with traffic, which is often difficult due
to the different timescales between query pattern shifts
and replica migration. By contrast, the underlying key-
value store of DISTRIBUTEDANN is randomly sharded
and so receives a predictable traffic distribution.

5. Conclusion
DISTRIBUTEDANN achieves sublinear scaling of ANN
search on very large datasets, in exchange for reasonable
increases in latency and disk space overhead. It also re-
duces operational complexity by reusing existing distributed
key-value store infrastructure. We feel these tradeoffs are fa-
vorable and now use DISTRIBUTEDANN in Microsoft Bing
to enable search volume growth and quality improvements
on the web index.

5.1. Future Directions

We believe significant improvements in latency and space
overhead are possible. Some opportunities include:

• DISTRIBUTEDANN uses traditional kernel-based TCP
networking for remote service calls. Kernel-bypass net-
working would likely reduce the tail latency of these
network calls significantly. More ambitiously, the rela-
tively simple node scoring service logic could be im-
plemented in a computational storage device attached
to the orchestration host.

• As we note in Subsection 4.1, the head index quickly
becomes compute bounded in our tests. It may be
cost-effective to serve this index from GPU rather than
increasing the number of replicas to serve more traffic.

• Because traditional DISKANN does not incur the
space amplification that DISTRIBUTEDANN does
from replicating compressed vectors into each node,
techniques for reducing the average number of graph
edges per vector have not been explored in depth. A
significant reduction in space overhead is likely possi-
ble by placing multiple nearby full-dimension vectors
into a single graph node, but further experimentation
is needed to understand the tradeoffs of this approach.

• DISTRIBUTEDANN was designed to efficiently serve
an index with relatively high traffic. However, further
storage tiering to HDDs may allow efficient search
on datasets with many mostly-cold tenants, such as
per-user indices.

• DISTRIBUTEDANN is deployed across many ma-
chines in a cloud region. Inter-zone latency within
a region can be up to 2ms, and cross-rack bandwidth is

6

DISTRIBUTEDANN

oversubscribed. If DISTRIBUTEDANN were deployed
on a dense cluster of machines with a fully connected
network, performance would improve and it might be-
come feasible to store the compressed vectors in a
shared memory pool to reduce storage amplification.

6. Acknowledgments
We would like to thank Dafan Liu, Gena Tertychnyi, and
Adelin Miloslavov who gave valuable performance advice
about the key-value store, node scoring service, and orches-
tration service.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Andoni, A. and Indyk, P. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions.
Communications of the ACM, 51(1):117–122, 2008.

Aumüller, M., Bernhardsson, E., and Faithfull, A. Ann-
benchmarks: A benchmarking tool for approximate near-
est neighbor algorithms, 2018. URL https://arxiv.
org/abs/1807.05614.

Babenko, A. and Lempitsky, V. The inverted multi-index.
IEEE transactions on pattern analysis and machine intel-
ligence, 37(6):1247–1260, 2014.

Big-ANN Benchmarks. Big-ann benchmarks: Neurips
2023. https://big-ann-benchmarks.com/
neurips23.html, 2023. Accessed: 2025-01-04.

Dean, J. and Barroso, L. A. The tail at scale. Communica-
tions of the ACM, 56(2):74–80, 2013.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., and Vogels, W. Dynamo: Amazon’s highly available
key-value store. ACM SIGOPS operating systems review,
41(6):205–220, 2007.

Dong, Y., Indyk, P., Razenshteyn, I. P., and Wagner, T.
Learning space partitions for nearest neighbor search. In
International Conference on Learning Representations,
2019. URL https://api.semanticscholar.
org/CorpusID:189999681.

Gao, J. and Long, C. Rabitq: quantizing high-dimensional
vectors with a theoretical error bound for approximate

nearest neighbor search. Proceedings of the ACM on
Management of Data, 2(3):1–27, 2024.

Ge, T., He, K., Ke, Q., and Sun, J. Optimized product
quantization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(4):744–755, 2014. doi:
10.1109/TPAMI.2013.240.

Gottesbüren, L., Dhulipala, L., Jayaram, R., and Lacki,
J. Unleashing graph partitioning for large-scale nearest
neighbor search, 2024. URL https://arxiv.org/
abs/2403.01797.

Jang, J., Choi, H., Bae, H., Lee, S., Kwon, M., and Jung, M.
CXL-ANNS: Software-Hardware collaborative memory
disaggregation and computation for Billion-Scale approx-
imate nearest neighbor search. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pp. 585–600,
Boston, MA, July 2023. USENIX Association. ISBN 978-
1-939133-35-9. URL https://www.usenix.org/
conference/atc23/presentation/jang.

Jegou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2010.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with gpus. IEEE Transactions on Big Data, 7
(3):535–547, 2019.

Khan, S., Singh, S., Simhadri, H. V., Vedurada, J., et al.
Bang: Billion-scale approximate nearest neighbor search
using a single gpu. arXiv preprint arXiv:2401.11324,
2024.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on
pattern analysis and machine intelligence, 42(4):824–
836, 2018.

Ootomo, H., Naruse, A., Nolet, C., Wang, R., Feher, T., and
Wang, Y. Cagra: Highly parallel graph construction and
approximate nearest neighbor search for gpus. In 2024
IEEE 40th International Conference on Data Engineering
(ICDE), pp. 4236–4247. IEEE, 2024.

Pan, Y., Sun, J., and Yu, H. Lm-diskann: Low memory
footprint in disk-native dynamic graph-based ann index-
ing. In 2023 IEEE International Conference on Big Data
(BigData), pp. 5987–5996. IEEE, 2023.

7

https://arxiv.org/abs/1807.05614
https://arxiv.org/abs/1807.05614
https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
https://api.semanticscholar.org/CorpusID:189999681
https://api.semanticscholar.org/CorpusID:189999681
https://arxiv.org/abs/2403.01797
https://arxiv.org/abs/2403.01797
https://www.usenix.org/conference/atc23/presentation/jang
https://www.usenix.org/conference/atc23/presentation/jang

DISTRIBUTEDANN

Subramanya, S. J., Devvrit, Kadekodi, R., Krishaswamy, R.,
and Simhadri, H. V. Diskann: Fast accurate billion-point
nearest neighbor search on a single node. Advances in
neural information processing Systems, 32, 2019.

Tatsuno, K., Miyashita, D., Ikeda, T., Ishiyama, K.,
Sumiyoshi, K., and Deguchi, J. Aisaq: All-in-storage
anns with product quantization for dram-free information
retrieval. arXiv preprint arXiv:2404.06004, 2024.

Wang, Q. C. B. Z. H. W. M. L. C. L. Z. L. M. Y. J. Spann:
Highly-efficient billion-scale approximate nearest neigh-
bor search. In 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), 2021.

Wang., Q. C. H. W. M. L. G. R. S. L. J. Z. J. L. C. L. L. Z. J.
SPTAG: A library for fast approximate nearest neigh-
bor search. https://github.com/Microsoft/
SPTAG, 2018.

Zhao, W., Tan, S., and Li, P. Song: Approximate nearest
neighbor search on gpu. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pp. 1033–1044.
IEEE, 2020.

8

https://github.com/Microsoft/SPTAG
https://github.com/Microsoft/SPTAG

