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Abstract

Contrastive learning methods are widely used to learn general-purpose representations from un-
labeled data. However, they often exhibit a bias toward simple, easily learnable features—many
of which may be spuriously correlated with downstream labels. This bias can limit performance,
particularly for underrepresented or complex concepts. In this work, we study how such spurious
correlations influence the spectral dynamics of the learned feature representations—that is, how
the eigenspectrum of the feature covariance matrix evolves during training. We provide empirical
and theoretical evidence that spurious features tend to dominate early spectral modes, leading to
collapsed or low-rank representations that restrict downstream flexibility. To mitigate this effect,
we propose a simple spectral regularization strategy that promotes high-rank representations by
flattening the feature spectrum. Our method integrates seamlessly with SimCLR and improves ro-
bustness across a range of spurious correlation benchmarks. These findings highlight the importance
of spectral diversity for effective self-supervised learning and suggest new directions for improving
contrastive objectives.

1. Introduction

Neural networks tend to learn simple, easily detectable features in the early stages of training, a
property often described as simplicity bias [8, 13, 20]. While such features may be predictive within
the training distribution, they are often spurious—i.e., correlated with the labels for incidental reasons
rather than semantic relevance [14, 24]. As a result, models that rely on these features may generalize
poorly, especially on rare or distribution-shifted examples.

Contrastive learning (CL) has emerged as a powerful paradigm for self-supervised representation
learning [5, 9, 12]. By encouraging agreement between augmented views of the same instance, CL
aims to learn features that generalize across tasks. However, recent work suggests that CL models
are not immune to simplicity bias and can also overfit to spurious signals present in the data [10, 32].
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Because the training objective lacks knowledge of downstream labels, it may amplify correlations
that are shared across augmentations but irrelevant for generalization.

In this work, we explore how spurious correlations manifest in the spectral structure of learned
representations. Specifically, we study the eigenspectrum of the feature covariance matrix over the
course of contrastive training. We show that dominant spectral directions often align with simple,
spurious features that are learned early and reinforced disproportionately. This spectral imbalance
results in collapsed or low-rank representations that constrain the flexibility of downstream classifiers.

To address this, we propose a spectral analysis framework and a lightweight regularization
strategy that promotes a flatter spectrum. Our method increases the effective rank of representations
by penalizing over-concentration in top eigenvalues, encouraging more diverse and transferable
features. The regularizer is model-agnostic and integrates easily into standard contrastive pipelines.

Through a combination of theory, synthetic experiments, and real benchmarks, we analyze how
spurious features shape spectral dynamics and how spectral regularization can improve robustness.

Related Work. Neural networks are known to rely on spurious features—simple patterns correlated
with labels but unrelated to the task—Ieading to poor generalization under distribution shift [8, 23, 24,
31]. Worst-group accuracy has emerged as a key robustness metric in this context. Recent work has
shown that contrastive learning and other self-supervised representation learning (SSRL) methods
are also vulnerable to such spurious correlations [10, 29, 32], as they often emphasize dominant or
shortcut features [5, 6, 12, 16, 30]. While some studies improve group robustness using group labels
or adversarial objectives [21, 26, 27], they typically require supervision. In parallel, several works
have explored the spectral properties of learned features, showing that early training emphasizes
low-frequency components [13, 20, 28], and that spectral imbalance can hurt generalization [4, 11].
Although flat spectra have been linked to adversarial robustness [7], flatness alone does not guarantee
transferability [1]. Our work bridges these lines by showing that reshaping the spectral dynamics
of contrastive learning—toward more balanced, high-rank spectra—can mitigate spurious feature
reliance without requiring group labels.

Contributions: (i) We empirically characterize how spurious correlations influence the spectral
dynamics of contrastive representations and reduce effective rank, through a controlled synthetic
dataset. (ii) We provide a theoretical justification for why a uniform feature spectrum minimizes gen-
eralization error over random downstream tasks. (iii) We introduce a simple spectral regularizer that
improves representation diversity and downstream robustness without requiring labels or architecture
changes.

2. Spectral Imbalance Limits Downstream Flexibility

Neural networks tend to prioritize simple, easy-to-learn features during training [8, 20]. In self-
supervised learning, this can lead to spurious features dominating the learned representations—especially
when they are shared across augmented views but are semantically irrelevant. These features often
occupy top directions in the feature covariance matrix, shaping the spectral structure in ways that
reduce diversity and downstream generalization.

To understand this, we analyze the optimization dynamics of a linear predictor trained on
frozen representations from a pretrained encoder, f(-). Given a training set {z;}!" ;, define the
corresponding feature matrix as F' = [f(x1),..., f(x,)]" € R™ 9, We train a linear predictor
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Figure 1: Spurious correlations collapse the spectrum and harm generalization. SimCLR trained
on SpurCIFAR-10 learns low-rank representations (a) and suffers in classification accuracy (b),
compared to CIFAR-10. This supports a link between spectral diversity and downstream robustness.
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Figure 2: Impact of spectral manipulations on SimCLR features (SpurCIFAR-10). We progressively
remove low-variance components (0-512 singular values) with (left) and without (right) flattening
the remaining spectrum. Flattening leads to robust gains in worst-group accuracy (from 30% to
40%) even without truncation. Specifically, to observe this gain, compare the worst-group accuracy
at ¢ = 0 in Figure (b) (no flattening, baseline at 30%) with £ = 0 in Figure (a) (flattening only,
40%). This highlights that flattening alone—without truncation—improves robustness. Shaded bands
indicate worst- and best-group accuracies.

dw

g(f(x)) = (f(x), w) using gradient flow to optimize a loss function ®, i.e. ¥ = —5—3 Using the
chain rule of differentiation, we investigate the change of g over time:
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where FFT =3 )\,-vivz-T is the eigendecomposition of the feature covariance matrix, and vy, - -+ , v, €
R™. Larger eigenvalues dominate learning dynamics, biasing downstream predictors toward dominant
directions—regardless of whether they are semantically useful. Spurious features, being easier to
learn, often dominate early and persist.

To quantify spectral imbalance, we use the effective rank, a principled measure based on the
entropy of the singular value spectrum:

Definition 1 (Effective Rank [22]) Ler A € R™*? have singular values o1, . .. ,0Q, With QQ =
min(n, d). Define:

__ %%
= =0 ,
Zj:l gj

A high effective rank indicates a flatter spectrum and greater diversity of informative directions.
A low effective rank implies that variance is concentrated in a narrow subspace—often aligned with
spurious features—limiting downstream flexibility.

To illustrate this, we train SImCLR on CIFAR-10 and SpurCIFAR-10 (which introduces spurious
correlations via class-specific overlays at 0.95 correlation strength). The latter produces a significantly
lower effective rank and reduced test accuracy, confirming that spectral collapse accompanies
overreliance on spurious cues (see Fig. 1).

In settings with spurious correlations, standard accuracy metrics can be misleading, as they are
often dominated by majority or easy subgroups. To address this, we use worst-group accuracy (WG
accuracy), which evaluates the model’s performance on the most challenging subgroup—i.e., the
group where accuracy is lowest. This metric captures robustness and fairness by revealing failure
modes that are hidden by average accuracy.

We further evaluate two spectrum manipulation strategies: (1) truncating low singular values and
flattening the rest, and (2) truncating without flattening. Flattening refers to reducing the disparity
among the singular values of the feature matrix—i.e., making the spectrum more uniform—thereby
increasing its effective rank. This encourages the representation to retain diverse informative
directions rather than concentrating variance in a few dominant (and potentially spurious) components.
In both strategies, we directly manipulate the feature matrix after training to achieve this uniform
spectrum; importantly, this is distinct from the spectral regularizer introduced later in the paper, which
encourages flattening during training. While both strategies improve worst-group (WG) accuracy,
only flattening consistently enhances robustness. Even without truncation, flattening alone boosts
WG accuracy from 30% to 40%. In contrast, truncation without flattening is unstable and highly
sensitive to the choice of which singular values are removed (see Fig. 2).

These results support the hypothesis:

Q
P rf(A) =exp | = prlogps
k=1

Hypothesis 2 (Spectral Diversity and Learnability) The number of significant singular values in
the feature matrix governs downstream task learnability. Higher effective rank supports more robust
generalization.

Together, these findings indicate that spectral balance is key to robust contrastive representa-
tions. Our results align with prior work on rank and robustness [1, 7, 25], while highlighting a
unique trade-off: contrastive learning benefits from maintaining a well-spread spectrum that pre-
serves both core and task-relevant signals. Flattening the spectrum encourages richer, more flexible
representations—mitigating spurious bias without requiring group labels or supervision.
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3. Theory: Spectral Structure and Generalization

We now formalize the connection between the spectral structure of learned representations and
generalization in downstream tasks. Building on our empirical observations, we aim to understand
why contrastive learning may overrepresent spurious features, and how spectral diversity can improve
downstream robustness.

We consider a standard self-supervised setup where inputs x &€ R? contain both core and
spurious features. An encoder f : RY — R4 maps inputs to d-dimensional feature representations.
During contrastive training, a projection head h(x) = Wayo (W7 f(x)) is appended to the encoder,
where W € R% <4 W, € R%*% and o is a nonlinearity (e.g., ReLU). The encoder and projection
head are jointly trained in an end-to-end manner using a contrastive loss, such as InfoNCE [19].

After training, the projection head is discarded, and the final learned features are stored in the
matrix, F = [f(x1),..., f(x,)]" € R™*4,

To evaluate the quality of the representations, we freeze f and train a linear classifier gy (x) =
(f(x), w) using labeled data {(x;,y;)}"_,, where y; € {—1,+1}, and w € R? is optimized using
the downstream loss, £(y, gw(f(x))).

Recent results (e.g., Arora et al. [3]) show that the generalization error of gy, trained via gradient
descent, is governed by the spectral structure of F'F'". Specifically:

. T(FFT)-1
Lo(ow) <& ( Y<>Y> |
n
where y = (y1,. .. ,yn)T € R™. Learning is biased toward the top eigendirections of F'F'"; if these

are aligned with spurious features, downstream robustness suffers.

Since the target task is unknown at pretraining time, we model transferability using a distribution
over downstream tasks. Each task is defined by a latent direction v € R?, drawn from a distribution
p. The label probabilities are given by P(Y; = +1 | v) = %FV)’ andP(Y; =—-1|v) = 1_(2&)’

We consider the expected loss over this task distribution

L(F) :=Eyy YT(FFT)—IY] .
Our main result shows that this expected loss is minimized when FF'" has a uniform spectrum:

Theorem 3 (Informal) Among all feature matrices with fixed total variance (i.e., fixed trace of
FFT), the expected generalization loss L(F) is minimized when all eigenvalues of F'F T are equal.

Intuitively, a uniform spectrum spreads information equally across all directions, ensuring that
downstream tasks—no matter which direction they rely on—can be learned efficiently. The formal
statement and proof are provided in Appendix B. Appendix A also gives an illustrative example
involving spurious correlations, which further motivates the benefits of a uniform spectrum.

This result complements our empirical findings and motivates spectral flattening as a regular-
ization strategy: by promoting high-rank, balanced feature spaces, we can improve robustness to
spurious signals and enable broader generalization across tasks.
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4. Spectral Regularization for Robust Representation Learning

Building on our theoretical and empirical findings, we introduce a simple regularization method that
promotes spectral diversity during contrastive learning. We then evaluate its performance across five
benchmark datasets designed to test robustness under spurious correlations.

Regularization Strategy. Let F' € R™* be the encoder output. We flatten the spectrum of FF' ' to

2
increase its effective rank by introducing a regularizer: RspeC(FFT) = ZzQzl ( A 1) , where

)\max

)\; are the eigenvalues of FF', Q = min(n, d), and Apay is the largest eigenvalue. This penalizes
overconcentration in top directions. The final loss becomes £ = Lgssri. + aRspec(F'F' T), where
a € R, controls regularization strength. The regularizer is applied to each mini-batch and integrates
seamlessly with SimCLR.

Evaluation Setup. We apply our method to five benchmarks spanning synthetic and real-world
spurious correlations: C-MNIST [2], SpurCIFAR-10 [18], CelebA [17], MetaShift [15], and Water-
birds [23]. Models are trained using the SImCLR framework with ResNet-18 or ResNet-50 encoders.
After pretraining, we freeze the encoder and train a linear classifier on top using cross-entropy loss.
Group-balanced training is used for the classifier to control bias, and we report both average and
Wworst-group accuracies.

Baselines. We compare against SimCLR and SimSiam, as well as LateTVG [10], a recent SSRL
method targeting spurious robustness. All values for our method are averaged over five random
seeds.

Results. Our method improves both worst-group and average accuracy across all benchmarks, out-
performing LateTVG when applied to SimCLR despite using lower-dimensional (512) embeddings.
It remains competitive with LateTVG on SimSiam, while requiring no architecture-specific changes.
Baseline results are taken from Hamidieh et al. [10]; all our results are provided in Appendix D.
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Appendix A. Example Motivating Importance of Uniforming the Spectrum

We present a simple example to highlight the role of the eigenspectrum of the feature matrix. Let F'
be a fixed feature matrix with orthonormal eigenvectors v+, v™, and v*, corresponding to eigenvalues
AT, A7, and \%, respectively. Here, v+ and v~ represent class-discriminative directions for labels
+1 and —1, while v® is a spurious direction with spurious correlation strength a.

Specifically, the label generation process is as follows: define v := %(vJr —v7). For each sample
x;, let f; = f(x;), and define the perturbed direction:

v, with probability 1 — «,
v =
" | i(w+wv°), with probability a.

The label y; € {£1} is sampled according to:

1+ fiT V;

Ply; = +11 f;) = 5

Let g; = gw(fi), and consider the squared loss:

n
5 ZZI yzgz

Lemma 4 The expected gradient flow under the randomness of the labels satisfies:

—_

E[FFT - Vg®] = <FFTg - [(1 - %) : %mﬁ - (1 - %) : %xv* + ‘;A%SD .

This result shows that even a weak spurious correlation (o« < 1) can dominate the training
dynamics if A* > AT, A™. In contrast, under a flat spectrum (i.e., uniform eigenvalues), the influence
of the spurious direction scales linearly with o, making the model more robust to such noise.
Proof The first step is to compute the loss with respect to each model output g; which is given by

dd
— = —2yi(1 — ¥igi).
a7, yi(1 — vigi)

The sources of randomness are from sampling both y and the random mixing of the spurious feature.
By the law of total expectation, the expectation with respect to y and v is given by

dd
Uz|fz |: yz‘x'mvz I:dgli|:|

do
By, f:0: [dgj = —2E[y; — v2gi] = 29; — 2, v,

The inner expectation is given by

since E[y; | fi,vi] = f; v; and y? = 1. Further observe
1 « «
Eulol o] = (- af o+ af] (Glo+0) = (1-5) o+ 5170

10
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Combining the above three equations and letting v := (1 — %) v+ Sv%, we get

dd -
Evi,yi |:dg:| = 292 — 2fZTIU
(]

Stacking across all samples, let g = [g1,...,g,]". Then:
Ved = (g — F0).
Applying the data covariance operator FF' | gives:
E[FFT Vg = (FFTg . FFTFTJ) .

By the assumption that v, v~, and v* are orthonormal eigenvectors of F'F'T with eigenvalues

AT, A7, and A°, and v = (v — v7). Then:

and applying FF ":

1 1
FFTFp = (1 - %) . 5)\+v+ - (1 — %) . §>\_v_ + gksvs.

Substituting this expression concludes the proof:

2 « 1 « 1 «
T I Ty It T N o S R T Gt Sys, s
E[FF ng)] - (FF g [(1 2) 2)\ ) (1 2) 2)\ v+ 2)\ v })

Appendix B. Proof of Theorem 3

In this section, we formalize the problem setting, restate Theorem 3 and provide its proof. The
dominant term, y ' (FF ")~ !y, shows that generalization improves when the label vector y aligns
well with the top eigenspaces of F'F'". In contrastive learning, however, the downstream task is not
known during pretraining, so it is unclear which directions in the feature space will ultimately be
important.

To address this, we consider downstream tasks that arise by randomly sampling two latent classes
¢, ¢~ € C according to a distribution p. For each such pair, we assume the existence of class-specific
vectors v+, v.— such that the optimal linear classifier in the feature space is givenby v = v .+ —v.—.
Specifically, the class posterior is given by

14 (Fv); 1—(Fv);

P(Yi = +1|v) = — 2, P(Yi=—1|v) = —5—2,

where F' € R"*? ig the feature matrix.

Since downstream tasks are unknown at pretraining time, designing robust representations for
contrastive learning requires optimizing for generalization over a distribution of tasks. Assuming p

11
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is uniform over class pairs, we study which spectral properties of FF'" lead to improved average
generalization. Specifically, we aim to minimize the expected surrogate loss:

L(F):=Eyy YT(FFT)’lY] ,

where the expectation is over random task vectors v and induced labels Y € {£1}".
The following theorem shows the optimal structure of F' to enhance the generalization on a
general downstream task.

Theorem 4 (Restatement of Theorem 3 (Informal)) Let F' € R™*" be a feature matrix. Then,
under a fixed trace constraint on FF'T, the objective L(F) is minimized when FF" has a uniform
spectrum; that is, all eigenvalues are equal: A\ = A9 = -+ = \,.

Theorem 4 (Formal) Let F € R™ " be full-rank, and define M := FFT € R" ™. Suppose the
trace is fixed, i.e., Tr(M) = " | \; = 7 for some constant T > 0, where \; are the eigenvalues of
M. Then the expected quadratic form

L(F) :=Ey.p [YTM_lY}
is minimized when M = \I,,, i.e., when all eigenvalues are equal.

Proof Let M = FFT € R™™", and assume M is symmetric positive definite with eigenvalues
Aly--.,An > 0. Suppose that Y € R" is a random label vector with zero mean and isotropic
covariance, i.e.,

E[Y]=0, E[YY']=1I,.

Then the expected loss becomes:
L(F) = Ey [YTM_lY} = Te(MY).

This reduces the problem to minimizing Tr(M ~1) subject to a fixed trace Tr(M) = 7, over
symmetric positive definite matrices M € R™*™,
Let Ay, ..., A, be the eigenvalues of M. Since trace is invariant under orthogonal diagonalization,

we have:
n

1
L(F) = Z o subject to Z)‘i =T.
i=1 "

i=1
This is a classic constrained optimization problem: minimize the sum of reciprocals under a fixed
sum constraint. The function f(\) = 1/X is convex on A > 0, and by **Jensen’s inequality**, the
sum ) . 1/); is minimized when all ); are equal.
Letting A; = 7/n for all 7, we get the unique minimizer:

M=1r,
n

Thus, the spectrum is uniform and equal to 7/n.

12
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Table 1: Hyperparameter settings and encoder architectures for SimCLR pretraining.

Dataset Encoder Learning Rate Batch Size Weight Decay Epochs Regularizer o
celebA ResNet-50 0.01 128 le-4 400 0.01
cmnist ResNet-18 0.01 256 le-4 1000 0.01
metashift ResNet-18 0.01 256 le-4 1000 0.005
spurcifar-10 ResNet-18 0.01 256 le-4 1000 0.01
waterbirds ResNet-18 0.01 256 le-4 1000 0.01

Appendix C. Hyperparameters

We use the SimCLR framework to train ResNet encoders for all experiments. To ensure a fair
comparison, we adopt the same encoder architectures as in Hamidieh et al. [10], using ResNet-18
for all datasets except CelebA, where ResNet-50 is employed. For the spectral regularization loss,
we tune the regularization weight over the set {0.001, 0.005, 0.01,0.05,0.1} and observe that 0.01
consistently yields the best performance. This value is therefore used in all reported experiments. A
complete summary of SimCLR hyperparameters across datasets is provided in Table 1.

Appendix D. Results: Comparing to the Baselines

We report average and worst-group accuracies across five benchmark datasets in Tables 2 and 3. Our
method is applied to SImCLR and compared against SimCLR, SimSiam, and their LateTVG variants.
Results for baselines are taken from Hamidieh et al. [10], while our results are averaged over five
random seeds. In nearly all cases, our approach outperforms SimCLR and SimCLR-LateTVG, and is
competitive with SimSiam-LateTVG despite using a lower-dimensional feature space.

Table 2: Average accuracy (%) for SSRL methods (SimCLR, SimSiam), SimCLR-LateTVG,
SimSiam-LateTVG, and our method, which in this experiment is applied only to SimCLR. Values
are reported as mean + standard deviation across 5 random seeds for our method. Results for other
methods are taken from [10].

Dataset SimCLR SimSiam SimCLR-LateTVG SimSiam-LateTVG Ours

C-MNIST 82.5 82.1 - 80.6 97.0 £ 0.2
SpurCIFAR-10  69.3 75.1 - 76.1 80.1 + 0.4
CelebA 82.1 81.9 - 88.9 88.5+0.2
MetaShift 55.1 55.8 - 70.1 78.1 £ 0.7
Waterbirds 47.5 50.7 - 54.8 579 + 1.3
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Table 3: Worst-group accuracy (%) for SSRL methods (SimCLR, SimSiam), SimCLR-LateTVG,
SimSiam-LateTVG, and our method, which in this experiment is applied only to SimCLR. Values
are reported as mean =+ standard deviation across 5 random seeds for our method. Results for other
methods are taken from [10].

Dataset SimCLR SimSiam SimCLR-LateTVG SimSiam-LateTVG Ours

C-MNIST 81.7 80.7 83.8 83.1 95.1+0.3
SpurCIFAR-10  36.5 43.4 40.4 61.4 59.7+1.0
CelebA 76.7 77.5 82.2 83.1 84.2 + 0.6
MetaShift 45.5 42.3 59.3 79.6 67.4+09
Waterbirds 43.8 48.3 554 56.3 56.7 + 0.6
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