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ABSTRACT

Image restoration poses a garners substantial interest due to the exponential surge
in demands for recovering high-quality images from diverse mobile camera de-
vices, adverse lighting conditions, suboptimal shooting environments, and fre-
quent image compression for efficient transmission purposes. Yet this problem
gathers significant challenges as people are blind to the type of restoration the
images suffer, which, is usually the case in real-day scenarios and is most urgent
to solve for this field. Current research, however, heavily relies on prior knowl-
edge of the restoration type, either explicitly through rules or implicitly through
the availability of degraded-clean image pairs to define the restoration process, and
consumes considerable effort to collect image pairs of vast degradation types. This
paper introduces DreamClean, a training-free method that needs no degradation
prior knowledge but yields high-fidelity and generality towards various types of
image degradation. DreamClean embeds the degraded image back to the latent of
pre-trained diffusion models and re-sample it through a carefully designed diffu-
sion process that mimics those generating clean images. Thanks to the rich image
prior in diffusion models and our novel Variance Preservation Sampling (VPS)
technique, DreamClean manages to handle various different degradation types at
one time and reaches far more satisfied final quality than previous competitors.
DreamClean relies on elegant theoretical supports to assure its convergence to
clean image when VPS has appropriate parameters, and also enjoys superior ex-
perimental performance over various challenging tasks that could be overwhelm-
ing for previous methods when degradation prior is unavailable.

1 INTRODUCTION

Image Restoration (IR), which is a classic ill-posed inverse problem, aims to recover a clean ver-
sion from a degraded observation. Currently, deep learning-based IR techniques have demonstrated
promising performance and dominated this field, which could be broadly categorized into supervised
and unsupervised paradigms.

Supervised-based IR solutions usually rely on large-scale pre-collected paired datasets to train their
models. A major challenge is that they implicitly assume training and testing data should be identi-
cally distributed. As a result, these methods often deteriorate seriously in performance when testing
cases deviate the pre-assumed distribution. In addition, once the underlying degradation model is
changed, a new dataset needs be re-collected and a new model has to be re-trained, which can be
both time-consuming and costly.

Another prevailing research line is unsupervised-based IR approaches. They explicitly make use
of the degradation model to produce a clean image by solving a maximum a posterior problem or
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Figure 1: Results of JPEG artifacts correction. The image is degraded by multiple non-align JPEG
compression with QF = {5, 10, 20} and shift {0, 3, 6}. FBCNN is a supervised method and DDRM-
JPEG is an unsupervised solution using the worst QF = 5 as the degradation model. Our Dream-
Clean is blind to the degradation model. DreamClean can still recover a 1024× 1024 high-quality
image given the extremely destroyed image based on the advanced Stable Diffusion XL.
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Figure 2: We propose DreamClean to solve various image restoration problems without task-specific
re-training or assuming the known degradation model. DreamClean can resort to the inherent prior
of diffusion models to tackle with linear degradation, noisy linear degradation, non-linear degrada-
tion and complex bad weather degradation. y: the degraded image, x: our result.

a posterior sampling problem. For example, DDRM (Kawar et al., 2022a) hypothesizes the linear
degradation model and relies on the desirable property of linear formulation to sample from posterior
distribution. In practice, however, the underlying degradation model may be too complex to estimate
or computationally prohibitive to apply (Ongie et al., 2020). In addition, these approaches may not
be ready to be equipped with diffusions trained in VAE-encoded space (Rombach et al., 2022) since
VAE projection may complicate the entanglement between degraded and clean information 1.

To release the generative power of diffusion models from the heavy degradation prior, we propose
a novel training-free and unsupervised framework, dubbed DreamClean, for general IR problems.
DreamClean bypasses the requirement of paired dataset and can generate samples without explicit
or implicit assumptions about the specific degradation model, resulting in strong robustness to vast
degradation types. As shown in Figure 2, DreamClean can tackle with various types of degradation,
ranging from typical linear degradation (image coloration, super-resolution, deblurring), noisy linear

1e.g., the linear form y = Hx of the degradation model in pixel space will not hold in the encoded space.
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Figure 3: Overview of DreamClean. DDIM and its inversion can reconstruct the input image, thus
providing informative latents. VPS can guide low-probability latents to move towards vicinal high
probability region, which produces clean image samples while maintaining similarity with input
degraded images. (Best viewed on screen.)

degradation (Poisson noise, SR with Gaussian and Poisson noise), non-linear degradation (multiple
non-align JPEG artifacts correction (Jiang et al., 2021)), to complex bad weather degradation (rain,
snow, raindrop). DreamClean works by, like an experienced human, “imagining” the potential clean
image purely based on an input degraded observation.

The key idea behind DreamClean is to search in clean image distribution, which is represented by
a diffusion prior, to find the clean image while being faithful to the input degraded image. Conse-
quently, the first core ingredient of our framework is a pre-trained diffusion model. We treat such a
diffusion model as a solution for an extreme IR problem: it can generate clean images even if all in-
formation about the clean image is lost 2. Another key issue to be addressed is to ensure faithfulness
to the degraded image. We resort to the inversion of ODE sampling algorithm (e.g., DDIM (Song
et al., 2021a)) of diffusion model to accomplish this goal. As illustrated in Figure 3, through re-
constructing the degraded image, DDIM inversion algorithm can produce a series of latents which
preserve information about the input image. These latent variables locate in low-probability re-
gion since sampling from the diffusion model generally produces clean images rather than degraded
ones. Although these latents cannot restore the clean image directly, they can inherit information
from the input image, providing good initializations for subsequent sampling. Inspired by this, we
propose Variance Preservation Sampling (VPS) to guide these corrupted low-probability latents to-
wards nearby high-probability region from which clean samples can be generated. In this way, VPS
functions as a general solution to ensure faithfulness even without knowing the specific degradation
model. It is also noteworthy that i) DreamClean does not assume specific form for the underlying
degradation model. Therefore, it can be integrated with diffusion models pre-trained in pixel space
as well as VAE-encoded space. As shown in Figure 1, DreamClean can still accomplish the chal-
lenging multiple non-align JPEG artifacts correction when applied in the encoded space of Stable
Diffusion XL (Podell et al., 2023); ii) DreamClean is orthogonal to previous works which exploit
the degradation model to sample from posterior distribution. DreamClean can also make use of
the degradation model to produce more faithful results. Our method enjoys both elegant theoretical
guarantees in convergence and superior performance in many challenging scenarios.

2 METHOD

2.1 PRELIMINARY

Denoising diffusion probabilistic models (DDPMs) are latent variable models aiming to learn a
model distribution p(x0) to approximate the data distribution q(x0) (Ho et al., 2020). DDPMs
comprise T -step forward diffusion process, which disturbs data by slowly adding Gaussian noise
and T -step reverse generative process, which samples data by progressively removing noise. The

2A diffusion model can generate a clean image from a standard Gaussian noise.
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Figure 4: Illustration of the proposed Variance
Preservation Sampling algorithm.

Figure 5: VPS drives latent variables to high prob-
ability region.

forward process is a Markov chain which is of the form

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

where {βt}Tt=0 is the variance schedule. {xt}Tt=0 are latent variables, which we refer to as latents
below. A property of diffusion process is that the conditional distribution of xt given x0 is of form

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), where αt = 1− βt, ᾱt =

t∏
i=0

αt. (2)

The reverse generative process proceeds by sampling from a Markov chain starting at Gaussian noise
p(xT ) = N (xT ;0, I)

pθ(xt−1|xt) ≈ q(xt−1|xt,x0) = N (xt−1;µθ(xt,x0), σ
2
t I), (3)

with reparameterization, µθ(xt,x0) and σ2
t have the closed form

µθ(xt,x0) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, σ2

t =
1− ᾱt−1

1− ᾱt
βt. (4)

Song et al. (2021b) demonstrate the aforementioned reverse process is a discretization of a
continuous-time stochastic process, described by the following reverse-time stochastic differential
equation (SDE)

dxt =
[
f(t)xt − g2(t)∇xt

log pt(xt)
]
dt+ g(t)dw̄t, (5)

where w̄t is a standard Wiener process in the reverse time, f(t) = 1
2
d log ᾱ(t)

dt , g(t) = (1 −
ᾱ(t)) d

dt
1−ᾱ(t)
ᾱ(t) , and ᾱ(t) is a continuous version of ᾱt. For the reverse-time SDE, Song et al. (2021b)

further prove that there exists a corresponding probability flow ODE that shares the same marginal
distribution:

dxt =

[
f(t)xt −

1

2
g2(t)∇xt log pt(xt)

]
dt. (6)

With this probability flow ODE, one can generate an image from a Gaussian noise and vice versa.

2.2 DREAMCLEAN

DreamClean focuses on exploiting image priors captured by diffusion models pre-trained on large-
scale diverse-distributed images. DreamClean restores a degraded image y by finding a clean
sample x which simultaneously satisfies i) it is faithful to the degraded image; ii) it conforms model
distribution of pre-trained diffusion models. Below are our strategies towards these constraints.

Faithfulness by ODE Inversion. ODE sampling algorithm is approximately invertible, that is, for
a given image, one can find a series of latents, any of which can reproduce the input image along
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the ODE sampling trajectory (as shown in Figure 3). This property implies that these inverse latents
should contain desirable information about the input image. On the other hand, high quality images
are generated when we sample from pre-trained diffusion models, which means these latents lie in
low probability region. Inspired by this, as illustrated in Figure 3, we propose to utilize the inverse
latents as initialization and design a correcting algorithm to guide these latents towards nearby high
probability region. In this work, we choose DDIM (Song et al., 2021a) as the default ODE sampling.
Assume the degraded image is y, we can find a latent yτ by the DDIM inversion

yτ = DDIM−1 (y) , (7)

where DDIM−1 (·) is the inversion of DDIM and 0 < τ ≤ T denotes the strength of ODE inverse.

Realness by Variance Preservation Sampling. After getting the informative latent yτ , We can
correct the low-probability latent and gradually denoise it to get the clean image. We conduct the
following two steps at each timestep t ∈ [τ, 0)

ym
t = ym−1

t + ηl∇ log pt(y
m−1
t ) + ηgϵ

m
g ,

m = 1, · · · ,M,y0
t = yt,

(Variance Preservation Sampling)

yt−1 = DDIMStep(yM
t ), (Denoise Sampling)

(8)

where ηl and ηg are required to satisfy the constraint:

ηl = γ(1− ᾱt), ηg =
√
γ(2− γ)

√
1− ᾱt. (9)

0 < γ < 1 is a scalar determining the step size and ᾱt is the noise schedule defined in Equation (2).
Such setting of ηl and ηg is vital to restore a clean image, which we will discuss later in Theorem 2.2.
Intuitively, as shown in Figure 4, given the initial latent which lies in low-probability region, VPS
guides the latent to move towards its vicinal high-probability region. The high-probability region
conforms the normal sampling formulation of diffusion models. Therefore, by correcting latents
progressively, VPS can produce high quality images. In practice, ∇ log p(ym−1

t ) can be computed
by a pre-trained diffusion models (Hyvärinen & Dayan, 2005; Karras et al., 2022). Specifically, the
gradient term has the relation with the predicted noise by a pre-trained diffusion model ϵθ:

∇ log pt
(
ym−1
t

)
= −

ϵθ
(
ym−1
t , t

)
√
1− ᾱt

. (10)

We argue that when ηl and ηg is subject to Equation (9), VPS converges to a nearby high probability
set, which in turn generates a potential clean image x. Since latents of diffusion models are typical
of high dimensionality, inspired by the concept of typical set in information theory (Shannon, 1948;
Cover & Thomas, 2006), we define the set that gathers most density of x0-induced latents as the
following High Probability Set, where x0 is a clean image.
Definition 2.1 (High Probability Set). For δ > 0, t > 0 and potential clean image x0 ∈ RN , High
Probability Set T N

t (x0; δ) is defined as follows

T N
t (x0; δ) =

{
xt :

∣∣∣∣− 1

N
log pt (xt|x0)−H

∣∣∣∣ ≤ δ

}
. (11)

where pt (xt|x0) =
∏N

i=1 pt (xt,i|x0,i), xt,i and x0,i denote the i-th elements of xt and x0 respec-
tively, and H is the Shannon entropy of N (0, 1− ᾱt).

According to law of large numbers, the probability of xt ∈ T N
t (x0; δ) gets close to 1 for sufficiently

large N (see Appendix A.2 for details). In other words, T N
t (x0; δ) is a set comprising of latents of

a clean image x0 whose probability can be sufficiently large. We can prove that VPS drives latents
of degraded images to High Probability Set of a nearby clean image under appropriate ηl, ηg .
Theorem 2.2. For δ > 0 and the potential image x0, when ηl and ηg satisfy the constraint in Equa-
tion (9), there exists an inverse time τ such that yM

τ by Variance Preservation Sampling converges
to T N

τ (x0; δ) when M →∞.

We delay proof to Appendix A.1. Satisfying Equation (9) is vital for clean image restoration, which
is demonstrated theoretically in Appendix A.1 and empirically in Section 3.6. Theorem 2.2 implies
that at timestep τ , VPS is capable of correcting latents of a degraded image to a nearby High Proba-
bility Set, which then generates the clean image following sampling dynamics of diffusion models.
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𝑡 = 0 𝑡 = 400

(a) latents of an degraded image

(b) VPS boosted latents

Figure 6: Visualization of latents of different timesteps. VPS changes original degraded artifacts to
Gaussian-like noise, which conforms the formulation of diffusion models.

In implementation, we fix the inverse strength τ (e.g., 300 for T = 1000), and take 1-step VPS
correction before each DDIM step.

Put them together. In conclusion, DDIM inversion finds an informative latent as the initialization
and VPS corrects it towards the High Probability Set of a nearby clean image. These two mecha-
nisms cooperate to achieve the goal of realness and faithfulness.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experiments consist of: i) verifying that DreamClean optimizes latents to higher probability
region (Section 3.2); ii) quantitative comparison with previous methods (Sections 3.3 and 3.4); iii)
presentation of visual results across multiple degradation types to demonstrate its strong robustness
and generality (Section 3.4); iv) exploiting the degradation model (Section 3.5); We demonstrate
that DreamClean is orthogonal to prior works, which can exploit the underlying degradation model
to achieve challenging inverse problem (e.g., phase retrieval); v) ablation study on the different
schedules of ηl and ηg .

3.2 MOVING TO HIGHER PROBABILITY

For the latent variable xt, we evaluate its probability under a pre-trained diffusion model by
log pθ (xt). Given x0, we can approximate it by the alternative score log qt (xt|x0). We use the
noisy SR as the default IR task and record the average score and the standard deviation on CelebA
1K. Figure 5 shows that latents of degraded images locate in low-probability region when compared
with clean images and VPS gradually promotes their probability. We also provide a more intuitive
visualization of latents with different timesteps in Figure 6. We can find that driven by VPS, latents
with unexpected artifacts are transformed to the appearance of a clean image with Gaussian-like
noise, which conforms the sampling dynamics (Equation (2)) of diffusion models.

3.3 QUANTITATIVE EXPERIMENTS

We validate the efficacy of DreamClean using the diffusion models (Ho et al., 2020; Dhariwal &
Nichol, 2021) trained on CelebA (Karras et al., 2018), LSUN bedroom (Yu et al., 2015) and Im-
ageNet (Deng et al., 2009). For quantitative comparison with previous methods, we perform ex-
periments on the classic IR tasks, including linear degradation (noisy image super-resolution) and
complex non-linear degradation (multiple non-align JPEG compression artifacts correction). We
use the average peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM)
to measure faithfulness and Learned Perceptual Image Patch Similarity (LPIPS) as the perceptual
metrics. Following (Kawar et al., 2022a), we also report number of function evaluations (NFEs) for
each experiment to compare efficiency.

We use ImageNet 1K (Deng et al., 2009), CelebA 1K (Karras et al., 2018), and validation set of
LSUN bedroom (Yu et al., 2015) with image size 256 × 256 for validation. We perform com-
parison with RED (Romano et al., 2017), DGP (Pan et al., 2021), SNIPS (Kawar et al., 2021),
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Table 1: Quantitative results of 4×SR with Gaus-
sian noise σ = 0.05 on CelebA.

Method PSNR ↑ SSIM ↑ LPIPS ↓ NFEs ↓

Baseline 23.64 0.51 0.64 0
DGP 18.40 0.40 0.70 1500
SNIPS 26.38 0.74 0.20 1000
DPS 24.42 0.70 0.17 1000
DDRM 29.21 0.83 0.09 100
DDNM 29.17 0.82 0.09 100
GDP 24.38 0.71 0.15 1000
Ours 27.23 0.77 0.12 90
Ours* 30.19 0.84 0.08 60

Table 2: Quantitative results of 4×SR with Gaus-
sian noise σ = 0.05 on ImageNet.

Method PSNR ↑ SSIM ↑ LPIPS ↓ NFEs ↓

Baseline 21.85 0.47 0.58 0
DGP 9.50 0.12 0.93 1500
RED 22.90 0.49 NA 100
DPS 24.42 0.70 0.36 1000
DDRM 25.67 0.73 0.30 100
DDNM 25.56 0.72 0.30 100
GDP 24.33 0.67 0.39 1000
Ours 24.31 0.67 0.40 90
Ours* 25.84 0.74 0.23 60

Table 3: Quantitative results of JPEG compres-
sion artifacts correction on CelebA.

Method PSNR ↑ SSIM ↑ LPIPS ↓ NFEs ↓

Baseline 24.79 0.69 0.41 0
QGAC 24.28 0.68 0.32 1
FBCNN 26.37 0.77 0.24 1
DDNM 24.40 0.66 0.31 100
DDRM-JPEG 26.41 0.77 0.20 100
Ours 27.58 0.82 0.20 90

Table 4: Quantitative results of JPEG compres-
sion artifacts correction on LSUN bedroom.

Method PSNR ↑ SSIM ↑ LPIPS ↓ NFEs ↓

Baseline 23.39 0.68 0.34 0
QGAC 23.41 0.69 0.34 1
FBCNN 24.10 0.73 0.31 1
DDNM 22.73 0.66 0.33 100
DDRM-JPEG 24.06 0.73 0.32 100
Ours 24.35 0.74 0.31 90

DDRM (Kawar et al., 2022a), DDNM (Wang et al., 2023), and DPS (Chung et al., 2023) for noisy
SR, and QGAC (Ehrlich et al., 2020), FBCNN (Jiang et al., 2021), and DDRM-JPEG (Kawar et al.,
2022b) for multiple non-align JPEG artifacts correction. DDRM is reported using 20 NFEs in the
original paper. For fair comparison, we re-run DDRM for 100 NFEs. We set DDIM inference steps
to 100, the inverse strength to 300, γ to 0.05, and M to 1. Hence, our method requires 90 NFEs
when the degradation model is unknown (30 for DDIM inverse, 30 for DDIM, and 30 for VPS).

For noisy SR, we use 4× average-pooling downsampler and additive Guassian noise with σ =
0.05. For JPEG artifacts correction, we simulate the real world scenario by multiple non-aligned
compression. Specifically, we used cascaded JPEG compression with QF = (10, 20, 40) whose
8×8 blocks are shifted by (0, 3, 6) pixels respectively. We show upscaling by the inverse upsampler
as a baseline for noisy SR and the compressed image itself as a baseline for JPEG artifacts correction.
FBCNN is a supervised method and we use the pre-trained model for inference. For DDRM-JPEG
and DDNM, we choose the worst case (QF = 10) as the degradation model for inference. We use
“Ours” to mark the case without knowing degradation model and “Ours*” to mark the scenario of
leveraging the degradation model.

Tables 1 to 4 show quantitative results. We can find that i) for noisy SR, even without knowing degra-
dation model, DreamClean can be effective in promoting image quality (compared with baseline)
and sometimes surpass those exploiting degradation model (e.g., SNIPS); ii) for complex JPEG arti-
facts correction, DreamClean outperforms both supervised (QGAC and FBCNN) and unsupervised
methods (DDRM-JPEG and DDNM).

3.4 QUALITATIVE EXPERIMENTS

To verify visual results, we conduct qualitative experiments on the various IR tasks using diffusion
models (Ho et al., 2020; Dhariwal & Nichol, 2021), ranging from typical linear degradation (image
coloration, super-resolution, deblurring), noisy linear degradation (Poisson noise, SR with Gaus-
sian and Poisson noise), non-linear degradation (multiple non-align JPEG artifacts correction (Jiang
et al., 2021)), to complex bad weather degradation (rain, snow, raindrop). Figure 2 present visual
results across various IR tasks. We can find that DreamClean can produce visually pleasing results
while maintaining rather similarity with the input degraded image.

We are also interested in integrating DreamClean with the advanced Stable Diffusion XL (Podell
et al., 2023). As shown in Figure 1 and Appendix A.7, although the input images are severely de-
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Figure 7: DreamClean can make use of the degradation model to restore clean images.

Table 5: Ablation study on the ηg schedule.

Schedule PSNR ↑ SSIM ↑ LPIPS ↓

0 26.31 0.75 0.24√
2γ (1− ᾱt) 26.84 0.72 0.16√

γ(2− γ) (1− ᾱt) 27.23 0.77 0.12

input 𝜂! = 0 2𝛾(1 − )𝛼") 𝛾(2 − 𝛾)(1 − )𝛼")

Figure 8: Comparison of different ηg schedules.

stroyed, DreamClean can still generate high-quality images while keeping similar with input images.
Please refer to Appendix A.7 for more visual results.

3.5 EXPLOITING DEGRADATION MODEL

Like previous works, DreamClean can also make use of the degradation model to initialize the
latents, which is more faithful to the input observation. To validate that, we include experiments on
the noisy SR task and challenging Fourier phase retrieval, which aims to restore a clean image based
on the magnitude of Fourier transformation of an image. Since degradation model is known, we
do not require DDIM inverse to keep similarity and instead resort to Equation (2) for fast inverse.
Thus, we only need 60 NFEs. Tables 1 and 2 shows quantitative results and Figure 7 presents
the visual results. Although little perceptual information can be found in observations for phase
retrieval, DreamClean can utilize the degradation model to recover clean images. Please refer to
Appendix A.6 for more quantitative and visual results on other IR tasks, including noisy inpainting,
noisy coloration, and noisy deblurring (Uniform and Gaussian kernel).

3.6 ABLATION STUDY

We here conduct ablation study on the constraint of ηl and ηg in Equation (9). Suppose ηl still has
the form ηl = γ(1 − ᾱt), we investigate two alternate schedules: ηg = 0 and ηg =

√
2γ(1− ᾱt).

The former corresponds to plain gradient ascent and the latter corresponds to vanilla lagevien dy-
namics. We conduct noisy 4× SR on CelebA. Table 5 and Figure 8 present quantitative and visual
comparisons. We can find that the schedule of VPS achieves the best score and visual result. It is
note that plain gradient ascent cannot produce images. This is because it cannot optimize latents to
High Probability Set of a clean image.

4 RELATED WORKS

We briefly summarize dominant deep learning approaches for image restoration problems in two
categories: supervised and unsupervised methods.

Supervised Methods. A deep neural network, which can be CNN (Zhang et al., 2017; Dong et al.,
2015; Xia et al., 2023; Ju et al., 2021; Hu et al., 2022), Transformer (Liang et al., 2021; Zamir
et al., 2022; Wang et al., 2022; Zhang et al., 2023), Diffusion (Saharia et al., 2022b;a; Whang
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et al., 2022) models, etc, is trained to learn to map corrupted images to their clean counterparts
under the supervision of a matched degraded-clean dataset (Li et al., 2023). Thanks to powerful
representation ability of DNN, supervised methods typically achieve remarkable performance for
specific degradation. However, the brilliance comes with a high cost of generality: the performance
deteriorates seriously if training samples deviate from the underlying degradation model. Besides,
it is also difficult to collect a high-quality dataset if one does not know the true degradation model.

Unsupervised Methods. Unsupervised methods bypass the obstacle of matched degraded-clean
training pairs by instead exploiting the prior distribution, which can be learned from data or implied
in the intrinsic structure of a generator network (Ulyanov et al., 2018; Jagatap & Hegde, 2019). They
typically weaken the requirements of matched training pairs to unpaired degraded-clean images (En-
gin et al., 2018), only ground truth (Venkatakrishnan et al., 2013) or only degraded images (Lehtinen
et al., 2018; Bora et al., 2018; Quan et al., 2020; Huang et al., 2021; Mansour & Heckel, 2023). Since
the learning is decoupled from specific degradation model, unsupervised methods exhibit high gen-
erality (Ongie et al., 2020). They usually utilize the image prior in an iterative procedure. One
approach (Venkatakrishnan et al., 2013; Romano et al., 2017; Chang et al., 2017; Sun et al., 2019) is
to learn a denoiser from data and apply the denoiser in place of proximal operators in an optimization
algorithm, which needs to know the degradation model at test time. Another approach is to learn a
generative prior based on training samples using generative adversarial networks (GANs) (Goodfel-
low et al., 2014). They (Bora et al., 2017; Daras et al., 2021; Pan et al., 2021) optimize the latent
input or GAN’s weight to minimize the distance between the generated image which is corrupted by
the degradation model and input degraded image.

Recently, diffusion models have made significant breakthroughs in image generation. Diffusion
models are also widely used to solve various inverse problems in unsupervised way (Choi et al.,
2021; Kadkhodaie & Simoncelli, 2021; Kawar et al., 2021; Song et al., 2022; 2021b; Murata et al.,
2023). These methods treat a diffusion model as a image prior and exploit desirable property of pre-
assumed degradation model. For instance, DDRM (Kawar et al., 2022a;b) tackles with linear inverse
problems and perform diffusion in the spectral space, where missing information can be identified
and synthesized. Similarly, DDNM (Wang et al., 2023) proposes a zero-shot solver for linear IR
problems by refining only the null-space during the reverse diffusion process. DPS (Chung et al.,
2023) and GDP (Fei et al., 2023) leverage the degradation model to guide latent variables to ensure
consistency with the degraded image for general non-linear degradation. Different from these works,
DreamClean significantly weakens the assumption about the degradation model and is capable of
producing clean images even without knowing specific form of degradation. Due to its generality,
DreamClean can be integrated in the advanced latent diffusion models. In addition, DreamClean in-
herits the inherent advantage, which avoids training on the matched data, of unsupervised methods.
These together constitute the promising prospect of DreamClean.

5 LIMITATION AND DISCUSSION

There still remain some limitations. First, although DreamClean can promote visual quality signifi-
cantly, it can not ensure strict consistency with the input degraded image without knowing degrada-
tion model. An effective mechanism to promote consistency deserves further study. Besides, there
are some degraded cases that DreamClean struggles to tackle with. For instance, Appendix A.8 pro-
vides such a failure case. DreamClean when using diffusion models pre-trained on ImageNet can
not remove haze successfully and tends to generate some unexpected content.

6 CONCLUSION

We propose a novel unsupervised method named DreamClean for general IR problems. Dream-
Clean figure out a novel avenue to tackle with various degradation types even without supervised
training on paired images or assuming specific form of degradation model. DreamClean enjoys ele-
gant theoretical guarantees and achieves remarkable performance across various degradation types,
especially for extremely destroyed scenarios. Thanks to its generality, DreamClean also makes it
possible to harness the advanced generative models such as Stable Diffusion XL.
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J.H. Rick Chang, Chun-Liang Li, Barnabás Póczos, B.V.K. Vijaya Kumar, and Aswin C. Sankara-
narayanan. One network to solve them all — solving linear inverse problems using deep projec-
tion models. In International Conference on Computer Vision, 2017.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR:
Conditioning method for denoising diffusion probabilistic models. In International Conference
on Computer Vision, 2021.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In International Conference
on Learning Representations, 2023.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, 2006.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing,
2007.

Giannis Daras, Joseph Dean, Ajil Jalal, and Alexandros G Dimakis. Intermediate layer optimization
for inverse problems using deep generative models. In International Conference on Machine
Learning, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, 2021.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.

Max Ehrlich, Larry Davis, Ser-Nam Lim, and Abhinav Shrivastava. Quantization guided JPEG
artifact correction. In European Conference on Computer Vision, 2020.
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A APPENDIX

A.1 PROOF TO THEOREM 2.2

Proof. In each iteration of VPS defined by Equation (8), ym−1
t is updated by a gradient term

ηl∇ log pt(y
m−1
t ) and a noise term ηgϵ

m−1
g . Note that the gradient ∇ log pt(yt) for any yt ∈ RN

can be written as

∇ log pt(yt) =
∇pt(yt)

pt(yt)
(A1)

=
1

pt(yt)

∫
∇ytpt(yt|x)p0(x)dx (A2)

=
1

pt(yt)

∫ √
ᾱtx− yt

1− ᾱt
pt(yt|x)p0(x)dx (A3)

=
1

1− ᾱt
(
√
ᾱtE[x|yt]− yt), (A4)

where pt(yt|x) = N (yt;
√
ᾱtx, (1−ᾱt)I), p0(x) is the density of clean image distribution, E[x|yt]

is the expectation of clean image x conditional on yt, and it can be expressed as

E[x|yt] =

∫
x
pt(yt|x)
pt(yt)

p0(x)dx (A5)

=

∫
x

N (yt;
√
ᾱtx, (1− ᾱt)I)∫

N (yt;
√
ᾱtx′, (1− ᾱt)I)p0(x′)dx′ p0(x)dx (A6)

=

∫
x

exp
(
− 1

2(1−ᾱt)
∥yt −

√
ᾱtx∥22

)
∫
exp

(
− 1

2(1−ᾱt)
∥yt −

√
ᾱtx′∥22

)
p0(x′)dx′

p0(x)dx. (A7)

Suppose yt is a combination of an image x0 and a Gaussian noise ϵ in the form of yt =
√
ᾱtx0 +√

1− ᾱtϵ, then ∥yt −
√
ᾱtx∥22 in Equation (A7) can be approximated as

∥yt −
√
ᾱtx∥22 = ᾱt∥x0 − x∥22 + (1− ᾱt)∥ϵ∥22 + 2

√
ᾱt(1− ᾱt)ϵ · (x0 − x) (A8)

≈ ᾱt∥x0 − x∥22 + (1− ᾱt)∥ϵ∥22, (A9)

where we reasonably assume that the noise term ϵ is approximately orthogonal to x0−x. Similarly,
we have

∥yt −
√
ᾱtx

′∥22 ≈ ᾱt∥x0 − x′∥22 + (1− ᾱt)∥ϵ∥22. (A10)

Substitute Equations (A9) and (A10) into Equation (A7), we can get an approximation of E[x|yt] as

E[x|yt] ≈
∫

x
exp

(
− 1

2(1−ᾱt)

(
ᾱt∥x0 − x∥22 + (1− ᾱt)∥ϵ∥22

))
∫
exp

(
− 1

2(1−ᾱt)
(ᾱt∥x0 − x′∥22 + (1− ᾱt)∥ϵ∥22)

)
p0(x′)dx′

p0(x)dx (A11)

=

∫
x

exp
(
− ᾱt

2(1−ᾱt)
∥x0 − x∥22

)
∫
exp

(
− ᾱt

2(1−ᾱt)
∥x0 − x′∥22

)
p0(x′)dx′

p0(x)dx (A12)

=

∫
x

N (x0;x,
1−ᾱt

ᾱt
I)∫

N (x0;x′, 1−ᾱt

ᾱt
I)p0(x′)dx′ p0(x)dx (A13)

=
1− ᾱt

ᾱt
∇x0 log rt(x0) + x0, (A14)

where
rt(x0)≜

∫
N (x0;x,

1− ᾱt

ᾱt
I)p0(x)dx. (A15)

From Equation (A14), it is clear that E[x|yt] is approximately only dependent of the image compo-
nent x0 in yt.
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Thus, we can get an approximation of ∇ log pt(yt) by substituting yt =
√
ᾱtx0 +

√
1− ᾱtϵ and

Equation (A14) into Equation (A4)

∇ log pt(yt) ≈
∇x0

log rt(x0)√
ᾱt

− ϵ√
1− ᾱt

. (A16)

With Equation (A16) and the relation ym−1
t =

√
ᾱtx

m−1
0 +

√
1− ᾱtϵ

m−1, we can obtain ym
t from

the updating rule Equation (8) as

ym
t ≈
√
ᾱt

(
xm−1
0 +

ηl
ᾱt
∇ log rt(x

m−1
0 )

)
+ (
√
1− ᾱt −

ηl√
1− ᾱt

)ϵm−1 + ηgϵ
m
g (A17)

=
√
ᾱt

(
xm−1
0 +

ηl
ᾱt
∇ log rt(x

m−1
0 )

)
︸ ︷︷ ︸

xm
0

+
√
1− ᾱtϵ

m, (A18)

where the equality holds because the linear combination of two independent Gaussian noises is still
Gaussian, and their variances satisfies

1− ᾱt = (
√
1− ᾱt −

ηl√
1− ᾱt

)2 + η2g , (A19)

which is guaranteed by the relationship of ηl and ηg defined by Equation (9).

Compare Equation (A18) with ym−1
t =

√
ᾱtx

m−1
0 +

√
1− ᾱtϵ

m−1, we can find that the variance
of the noise component keeps unchanged.

As for the image component xm
0 , the updating rule xm

0 = xm−1
0 + ηl

ᾱt
∇ log rt(x

m−1
0 ) is exactly the

gradient ascent, with the optimization target log rt(x0) and step size ηl

ᾱt
. Thus, xm

0 will converge to
a local maximum of log rt(x0), denoted as x∗

0, that satisfies
∇ log rt(x

∗
0) = 0. (A20)

Note that rt(x0) represents the distribution induced by adding a Gaussian noise with variance 1−ᾱt

ᾱt

to the clean image distribution p0, as defined by Equation (A15). Thus, for small t which cor-
responds to small variance, the maxima of log rt(x0) will coincide with clean images, under the
mixture of Dirac assumption on image distribution.

Finally, we can conclude that yM
t will get into T N

t (x∗
0; |δ±|) for some small δ± and sufficient large

M by verifying that

− 1

N
log pt(y

M
t |x∗

0) (A21)

=− 1

N
log

1

(2π(1− ᾱt))N/2
exp

(
− 1

2(1− ᾱt)
∥
√
ᾱtx

M
0 +

√
1− ᾱtϵ

M −
√
ᾱtx

∗
0∥22
)

(A22)

=
1

2
log 2π(1− ᾱt) +

1

2N(1− ᾱt)
∥
√
ᾱt(x

M
0 − x∗

0) +
√
1− ᾱtϵ

M∥22 (A23)

→1

2
log 2π(1− ᾱt) +

1

2
+ δ±, (A24)

where that last limitation holds because xM
0 → x∗

0 as M increases, δ± = 1
2 (

∥ϵM∥
N − 1) is small

because ∥ϵM∥
N ≈ 1 for large N , which is guaranteed by the high dimensionality of images and the

law of large numbers.

A.2 THE PROPERTY OF HIGH PROBABILITY SET

We define a new variable vt,i = xt,i −
√
ᾱtx0,i. Since elements of xt are conditional independent

given x0, {vt,i} are independent and identically distributed and vt,i ∼ N (0; 1− ᾱt). Suppose H is
Shannon entropy of N (0; 1− ᾱt), according to weak law of large numbers, we have

− 1

N
log pt (xt|x0) = −

1

N
log pt (xt,0, xt,1, . . . xt,N |xt,0, xt,1, . . . xt,N ) (A25)

= − 1

N
log pt (vt,0, vt,1, . . . vt,N ) (A26)

→ H in probability (A27)
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for sufficiently large N . For a high-resolution image, N is typically large. Therefore, High Proba-
bility Set contains most of probability.

A.3 EXTENSION TO REAL-WORLD APPLICATION

We extend DreamClean to more complex real-world applications. First, we perform real-world im-
age denoising on SIDD dataset (Abdelhamed et al., 2018). For quantitative comparison, we test
original unprocessed data scores (Baseline) and evaluate the classic BM3D (Dabov et al., 2007) as
comparison. Table A1 reveals that DreamClean can effectively tackle with real-world noise (+8.26
dB compared with Baseline). Moreover, Figure A1 qualitatively presents results of DreamClean on
more applications, including restoring real-world bad weather corrupted images, old photo restora-
tion, and real-world image denoising.

Table A1: Quantitative results on SIDD.

SIDD PSNR↑ SSIM ↑ LPIPS ↓

Baseline 23.66 0.35 0.58
BM3D 25.65 0.68 N/A
Ours 31.92 0.76 0.23

𝒙𝒚 𝒙𝒚

𝒚 𝒙

𝒙

𝒙

𝒚

𝒚

(a) Bad weather

(b) Old photo restoration

(c) Real-world image denoising

𝒙𝒚

Figure A1: Extension to real-world applications. y: the degraded image, x: our result.

A.4 VISUALIZATION OF DDIM AND VPS

The visualization in Figure A2 intuitively illustrates the respective function of the VPS and DDIM
step respectively. We can find that after VPS correction, the original degraded artifatcs translate
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to Gaussian-like noise. Therefore, VPS step is responsiable for correcting the corrupted low-
probability latents. Moreover, after DDIM step, the amount of noise is decreased progressively.
Thus, DDIM step is responsible for progressively reducing the amount of Gaussian noise contained
in latents.

:DDIM Step :Variance Preservation Sampling

(a) Latents of an degraded image

(b) Visualization of latents of DreamClean

𝑡 = 0 𝑡 = 400𝑡 = 40 𝑡 = 80 𝑡 = 120 𝑡 = 160 𝑡 = 200 𝑡 = 240 𝑡 = 280 𝑡 = 320 𝑡 = 360

Figure A2: Visualization of latents of DDIM and VPS. VPS translates original degraded artifacts to
Gaussian-like noise and DDIM step is responsible for progressively reducing the amount of Gaussian
noise contained in latents.

A.5 ALGORITHM

We present DDIM inversion in Algorithm A1, Variance Preservation Sampling algorithm in Algo-
rithm A2 and DreamClean algorithm in Algorithm A3.

Algorithm A1 DDIM Inversion

Require: y,yτ

Require: a pre-trained diffusion model ϵθ
1: y0 ← y
2: for t = 0 to τ − 1 do
3: yt+1 ←

√
ᾱt+1

(
yt−

√
1−ᾱtϵθ(yt,t)√

ᾱt

)
+
√
1− ᾱt+1ϵθ (yt, t)

4: end for
5: return yτ

Algorithm A2 Variance Preservation Sampling

Require: M,ηl, ηg,yt

Require: a pre-trained diffusion model ϵθ
1: y0

t ← yt

2: for m = 0 to M − 1 do
3: ym+1

t ← ym
t − ηl

ϵθ(y
m
t ,t)√

1−ᾱt
+ ηgϵ

4: end for
5: return yM

t

A.6 EXPLOITING DEGRADATION MODEL

DreamClean is orthogonal to previous works that make use of the degradation model. To validate
that, we perform experiments on classic noisy linear tasks including uniform deblurring, deblur-
ring with Gaussian kernel, inpainting and colorization with Gaussian noise σ = 0.05 on ImageNet
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Algorithm A3 DreamClean

Require: y, τ , M , ηl, ηg
Require: a pre-trained diffusion model ϵθ

1: y0 ← y #DDIM inversion, producing the latent yτ

2: for t = 0 to τ − 1 do
3: yt+1 ←

√
ᾱt+1

(
yt−

√
1−ᾱtϵθ(yt,t)√

ᾱt

)
+
√
1− ᾱt+1ϵθ (yt, t)

4: end for
5: for t = τ to 1 do
6: y0

t ← yt #Variance Preservation Sampling, no change to t
7: for m = 0 to M − 1 do
8: ym+1

t ← ym
t − ηl

ϵθ(y
m
t ,t)√

1−ᾱt
+ ηgϵ

9: end for
10: yt ← yM

t #DDIM Step, from t to t− 1

11: yt−1 ←
√
ᾱt−1

(
yt−
√

1−ᾱt−1ϵθ(yt,t)√
ᾱt

)
+
√
1− ᾱt−1ϵθ (yt, t)

12: end for
13: return y0

1K (Deng et al., 2009) and CelebA 1K (Karras et al., 2018). We conduct Variance Preservation
Sampling on null-space (Wang et al., 2023). Tables A2 and A3 present the quantitative results.
Figure A10 presents visual results.

Table A2: Quantitative results on ImageNet.

ImageNet Deblurring(uniform) Deblurring(gauss) Colorization Inpainting
Method PSNR↑/SSIM↓/LPIPS↓ PSNR↑/SSIM↓/LPIPS↓ LPIPS↓ PSNR↑/SSIM↓/LPIPS↓

Baseline 18.35/0.26/0.87 17.79/0.31/0.71 0.54 12.32/0.46/0.40
DPS N/A 24.64/0.67/0.30 N/A 22.14/0.73/0.26
DDRM 25.09/0.71/0.30 27.82/0.80/0.24 0.25 23.09/0.83/0.13
DDNM 24.28/0.65/0.40 26.43/0.75/0.29 0.33 23.12/0.82/0.13
Ours 26.78/0.75/0.33 28.92/0.82/0.24 0.11 23.18/0.83/0.11

Table A3: Quantitative results on CelebA.

CelebA Deblurring(uniform) Deblurring(gauss) Colorization Inpainting
Method PSNR↑/SSIM↓/LPIPS↓ PSNR↑/SSIM↓/LPIPS↓ LPIPS↓ PSNR↑/SSIM↓/LPIPS↓

Baseline 19.21/0.31/0.86 18.06/0.34/0.73 0.61 12.18/0.40/0.42
DPS N/A 28.83/0.81/0.11 N/A 22.72/0.82/0.13
DDRM 28.06/0.80/0.13 30.52/0.85/0.08 0.13 23.24/0.85/0.09
DDNM 28.98/0.82/0.14 30.37/0.85/0.11 0.13 23.23/0.85/0.09
Ours 31.17/0.88/0.13 32.71/0.91/0.09 0.10 24.71/0.87/0.07

A.7 MORE VISUAL RESULTS

We present more visual results on various IR tasks using diffusion models (Ho et al., 2020; Dhariwal
& Nichol, 2021) in Figure A9 as well as the Stable Diffusion XL (Podell et al., 2023) in Figures A7
and A8. DreamClean exhibits strong robustness about degradation types and compatibility with
diffusion models.

A.8 FAILURE CASE

We present a failure case of in Figure A3. DreamClean fai ls to remove haze and tends to generate
unexpected results using diffusion models (Dhariwal & Nichol, 2021) pre-trained on ImageNet.
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𝒚 𝒚𝒙 𝒙

Figure A3: Failure case of our method.

Input DPS DDRM    Ours    Ours*    ReferenceGDP    

Figure A4: Visual comparison of 4× SR with σ = 0.05.

Input FBCNN DDRM-JPEG Ours Reference

Figure A5: Visual comparison of JPEG artifacts correction.

A.9 ON THE ACCUMULATION OF VPS CORRECTING EFFECT

From the previous deduction in Appendix A.1, we can find that

y1
t ≈
√
ᾱt

(
x0 +

ηl
ᾱt
∇ log rt(x0)

)
︸ ︷︷ ︸

x1
0

+
√
1− ᾱtϵt, (A28)

The denoising process can be written as

yt−1 =

√
ᾱt−1√
ᾱt

(
y1
t −

1− ᾱt

ᾱt−1√
1− ᾱt

ϵθ(y
1
t , t)

)
+ σtϵt−1 (A29)
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DDNM Ours

DPS

Input

Figure A6: Visual comparison of 32× SR with σ = 0.1 using Stable Diffusion XL. DDNM and
DPS generate unrelated content because they use guided-diffusion pretrained on ImageNet.

The denosing network ϵθ(y
1
t , t), by definition, will predict the noise term of y1

t . So we have

ϵθ(y
1
t , t) ≈ ϵt, (A30)

yt−1 ≈
√
ᾱt−1

(
x0 +

ηl
ᾱt
∇ log rt(x0)

)
−
√
ᾱt−1/ᾱt −

√
ᾱt/ᾱt−1√

1− ᾱt
ϵt (A31)

+

√
ᾱt−1

ᾱt
ϵt + σtϵt−1 (A32)

=
√
ᾱt−1

(
x0 +

ηl
ᾱt
∇ log rt(x0)

)
+

√
ᾱt

ᾱt−1

1− ᾱt−1√
1− ᾱt

ϵt + σtϵt−1. (A33)

Now if we take σt =
√

1−ᾱt−1

1−ᾱt
(1− ᾱt

ᾱt−1
), which is the most popular setting, we can find the final

noise strength is

s2 =
ᾱt

ᾱt−1

(1− ᾱt−1)
2

1− ᾱt
+

1− ᾱt−1

1− ᾱt
(1− ᾱt

ᾱt−1
) = 1− ᾱt−1 (A34)

So we can find after a denoising sampling step following the Variance Preservation Sampling, we
have

yt−1 =
√
ᾱt−1

(
x0 +

ηl
ᾱt
∇ log rt(x0)

)
︸ ︷︷ ︸

x0(t)

+
√
1− ᾱt−1ϵt−1 (A35)

=
√
ᾱt−1x0(t) +

√
1− ᾱt−1ϵt−1. (A36)

We can conclude that during the Variance Preservation Sampling and denosing sampling, the yt se-
quence is actually updating an x0 prediction results. In each step, VPS corrects the corrupted x0(t)
component by the gradient term ηl

ᾱt
∇ log rt(x0), while the denoising step preserves the correcting

effect. Thus, the correcting effect of VPS can be accumulated along the sampling process.
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Figure A7: Noisy SR results of DreamClean using Stable Diffusion XL. The image resolution is
1024× 1024. y: the degraded image, x: our result.
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Figure A8: JPEG artifacts correction of DreamClean using Stable Diffusion XL. The image resolu-
tion is 1024× 1024. y: the degraded image, x: our result.
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(a) Possion noise (b) Deblur

(c) JPEG artifacts

(h) Snow

(d) SR

(f) SR with Poisson noise(e) SR with Gaussian noise

(g) SR with Gaussian noise

Figure A9: DreamClean can tackle with linear degradation, noisy linear degradation, non-linear
degradation and complex bad weather degradation in a blind way. r: the reference image, y: the
degraded image, and x: our result.
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(b) Deblur with Gaussian noise(a) Colorization

(d) SR(c) Inpainting

Figure A10: DreamClean can make use of the degradation model to reconstruct clean images. r:
the reference image, y: the degraded image, x: our result.

24


