
Pruning for GNNs: Lower Complexity with Comparable Expressiveness

Dun Ma 1 Jianguo Chen 2 3 Wenguo Yang 3 Suixiang Gao 3 4 Shengminjie Chen 5

Abstract

In recent years, the pursuit of higher expressive
power in graph neural networks (GNNs) has of-
ten led to more complex aggregation mechanisms
and deeper architectures. To address these issues,
we have identified redundant structures in GNNs,
and by pruning them, we propose Pruned MP-
GNNs, K-Path GNNs, and K-Hop GNNs based
on their original architectures. We show that 1) Al-
though some structures are pruned in Pruned MP-
GNNs and Pruned K-Path GNNs, their expres-
sive power has not been compromised. 2) K-Hop
MP-GNNs and their pruned architecture exhibit
equivalent expressiveness on regular and strongly
regular graphs. 3) The complexity of pruned K-
Path GNNs and pruned K-Hop GNNs is lower
than that of MP-GNNs, yet their expressive power
is higher. Experimental results validate our refine-
ments, demonstrating competitive performance
across benchmark datasets with improved effi-
ciency.

1. Introduction
Currently, most GNNs (Kipf & Welling, 2017; Duvenaud
et al., 2015; Hamilton et al., 2017; Veličković et al., 2018;
Li et al., 2015; Zhang et al., 2018; Xu et al., 2019a) fol-
low a framework that iteratively aggregate information
from neighboring nodes and updates node representations.
Since the message passing procedure is similar to the 1-
dimensional Weisfeiler-Lehman (1-WL) test (Weisfeiler &
Lehman, 1968), the expressive power of message-passing
GNNs is also limited by the 1-WL test (Xu et al., 2019a;

1School of Advanced Interdisciplinary Sciences, University
of Chinese Academy of Sciences 2Academy of Mathematics
and Systems Science, Chinese Academy of Sciences 3School
of Mathematical Sciences, University of Chinese Academy of
Sciences 4Zhongguancun Laboratory.Beijing, China 5State Key
Lab of Processors, Institute of Computing Technology, Chi-
nese Academy of Sciences. Correspondence to: Wenguo Yang
<yangwg@ucas.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Morris et al., 2019). Specifically, GNNs cannot distinguish
between non-isomorphic graph structures that the 1-WL
test cannot differentiate. To address this, many works ex-
tend message passing to K-Hop (Abu-El-Haija et al., 2019;
Nikolentzos et al., 2020; Wang et al., 2021; Chien et al.,
2021; Brossard et al., 2020) or K-Path (Zhang et al., 2023;
Michel et al., 2023; Ma et al., 2020) message passing, which
enhances the framework’s expressive power. In K-Hop and
K-Path GNNs, node representations are updated by aggre-
gating information not only from neighbors but also from
all nodes within K-hop and K-path distances. Despite the
great success of GNNs in handling graph data, they still
have some deficiencies: (1)Expressive power restricted by
the number of layers. (2) Excessive depth hinders GNN’s
performance due to nonlinearity. (3) Redundant structure
of GNNs. (4) Growing complexity with the increase in ex-
pressive power. Those deficiencies might impact their per-
formance.

To address these deficiencies, we theoretically character-
ize the expressive power of MP-GNN, K-Hop, and K-
Path message passing GNNs by utilizing matrix language
tool (Brijder et al., 2019; Geerts, 2021). Surprisingly, we
discovered the redundant structures in all three types of
GNN frameworks. We "cut off" the redundant structures in
MP-GNN, K-Hop, and K-Path message passing GNNs,
and therefore propose the pruned MP-GNN, pruned K-
Hop, and pruned K-Path frameworks. We prove the equiva-
lence of expressive power between MP-GNN, K-Hop, and
K-Path message-passing GNNs and the matrix language
L1 = {.,⊤ ,1, diag}, therefore we are able to demonstrate
that the pruned frameworks are as powerful as the origi-
nal frameworks for MP-GNN and K-Path message passing
GNNs, and show the equivalence between pruned K-Hop
frameworks and K-Hop frameworks for distinguishing reg-
ular and strongly regular graphs by utilizing the matrix
language tool. Additionally, we show that the complexity of
pruned K-Path GNNs and pruned K-Hop GNNs is lower
than the complexity of MP-GNNs, yet they can distinguish
more non-isomorphic graphs that MP-GNN cannot.

The proposed pruned frameworks have several additional
advantages. (1) Unlike MP-GNNs, the range of neighbor
information aggregation in the pruned MP-GNNs grows
exponentially with the number of layers. Therefore, the
pruned MP-GNN does not require many layers to obtain a

1

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

vast amount of neighbor information. (2) Pruned MP-GNNs
do not need to pile up many layers as MP-GNNs, hence the
nonlinearity which hinders GNN’s performance of node rep-
resentations is restricted. (3) In our pruned framework, the
redundant structure of GNNs has been "cut off", therefore
the framework is easier to train and optimize. (4) In large
graphs, our pruned K-Path and K-Hop GNNs, compared
to MP-GNNs, can distinguish more non-isomorphic graphs
that MP-GNNs cannot while maintaining the lower com-
plexity. We conduct both synthetic and real experiments,
which demonstrate the superior performance of our pro-
posed pruned framework and validate our theoretical find-
ings.

2. Preliminaries
In this section, we present some basic notations and concepts
of the matrix language and the message passing framework.

2.1. Notations

Denote a graph as G = (V,E), where V = {1, 2, ..., n} is
the node set and the edge set is denoted as E ⊆ V × V .
The adjacency matrix is denoted by A ∈ {0, 1}n×n. The
notation [m,n] represents the integers from m to n, and [n]
represents [1, n].

We define the k-length walk (v, u1, · · · , uk) as k-walk
neighbor of v, its representation is the same as that of
node u′

ks. Similarly, we can define k-path neighbor of v, if
(v, u1, · · · , uk) is a path. The set of k-walk\path neighbors
is denoted as Nk

walk(v)\Nk
path(v). Note that the element

Ak(i, j) equals the number walk from vi to vj with length
k. Hence, we denote Ak as graph G′s k-walk adjacency
matrix. Denote Pk ∈ Nn×n as k-path neighbor matrix. The
element Pk(i, j) represents the number of k-length paths
from vi to vj . Node u is called node v′s k-hop neighbor:
u ∈ Nk

hop(v), if the length of shortest path from v to u equal
to k. Denote Ok as the k-hop matrix, it’s worth noticed that
Ok ∈ {0, 1}n×n

A is a graph isomorphism algorithm, (G,G′) is a pair of
graphs and L ∈ N+, we denote (G,G′) ∈ GILA, if algo-
rithm A decides (G,G′) is isomorphic at Lth iteration. In
this paper, we assume that the aggregation and combination
functions of all the mentioned GNNs are injective, making
their expressive power equivalent to the corresponding WL
Test. In this paper, we only consider necessary graph iso-
morphism algorithms, which means that the isomorphism
to algorithm is only a necessary but not sufficient condition
for graph isomorphism. Therefore, given two graph isomor-
phism algorithm, A and B, if GILA ⊆ GILB , then algorithm
A is regarded to be more powerful than B.

2.2. Matrix Language

Recently, Brijder (Brijder et al., 2019) and Geerts (Geerts,
2021) proposed a new matrix language called MATLANG.
Matrix languages can be formalised through composition of
linear algebra operations. Intuitively, a linear algebra opera-
tion takes a number of matrices as input and returns another
matrix(or vector or scalar). We employ MATLANG as a
theoretical tool for our proofs, with its detailed formulation
provided in Appendix D.

2.3. Graph Neural Networks

The WL algorithm is a heuristic method for graph isomor-
phism testing that iteratively refines vertex labels based on
their neighbors’ labels, which is specifically introduced in
Appendix B. MP-GNNs match the expressive power of WL
when their feature aggregation and combination functions
are injective. Most GNNs use a message passing framework,
where the features of a node’s neighbors are first aggregated
and then combined with the node’s own features. In this
subsection, denote H l

v as the output representation of node
v at layer l.

Message Passing Framework. In the standard message
passing framework, the update rules are typically written as:

M l
v = AGGl({{H l−1

u |u ∈ N(v)}}) (1)

H l
v = COBl(H l−1

v ,M l
v) (2)

where M l
v represents the message received by node v at

layer l, AGGl and COBl are the aggregation and combi-
nation functions, respectively. After L layers of message
passing, HL

v is the final representation of node v. According
to Theorem 3 in (Xu et al., 2019a), nodes receive the same
feature representations if and only if they receive the same
labels in the corresponding WL test.

K-Path Message Passing Framework. The K-Path
GNN extends the standard message passing to consider
paths of length k (1 ≤ k ≤ K). Specifically, each k-path
neighbor set Nk

path(v) is aggregated independently and then
combined. Specifically,

M l,k
v = AGGl

k

(
{{H l−1

u | u ∈ Nk
path(v)}}

)
, (3)

Ml
v = (M l,1

v ,M l,2
v , · · · ,M l,K

v) (4)

H l
v = COBl

(
H l−1

v ,Ml
v

)
(5)

A node can appear multiple times as a k-path neighbor of v,
allowing the algorithm to capture repeated walks of length
k. We use (G,G′) ∈ GILK−P to denote that the K-Path WL
test decides G and G′ are isomorphic after L iterations.

K-Hop Message Passing Framework. The K-Hop GNN
differs by focusing on shortest-path neighbors. Each node

2

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

u belongs to Nk
hop(v) if the shortest path from v to u has

length k. Importantly, a node can be a k-hop neighbor of v
at most once. The update process is similar to the K-Path
Message Passing framework, but the aggregation process
equation 3 is replaced by the following steps:

M l,k
v = AGGl

k

(
{{H l−1

u | u ∈ Nk
hop(v)}}

)
(6)

Likewise, we denote by (G,G′) ∈ GILK−H the event that
the K-Hop WL test deems G and G′ isomorphic after L
iterations.

By introducing K-path or K-hop neighbors, these frame-
works can potentially enhance the expressive power of
GNNs relative to the standard 1-Hop message passing, albeit
with higher computational cost.

2.4. Deficiencies of Graph Neural Networks

Despite the great success of GNNs in handling graph data,
they still have some deficiencies that might impact their
performance as follows.

Expressive power restricted by the number of layers: An
MP-GNN with L layers can aggregate information from at
most L-walk neighbors. Therefore, the expressive power
of GNNs is particularly limited by the number of layers,
especially on large graphs.

Excessive depth hinders GNN’s performance. Suzuki
(2020) points out piling up many layers does not improve
GNN’s performance (or sometimes worsens it). The core
reason is that each layer’s iteration increases the nonlinearity
of node representations, causing the differences between
node representations to diminish over layers.

Redundant structure of GNN: The redundant structure
of GNNs will lead to reduced computational efficiency, an
increased search space during optimization, and, in some
cases, a decline in the model’s generalization ability. In the
section 4, we will demonstrate the redundant structure in
GNNs.

Growing Complexity with the increase in expressive
power: Since Xuet al. (2019b) pointed out that MP-GNNs
might suffer from insufficient expressive power, many GNN
variants with higher expresive power have been proposed.
However, as their expressive power increases, both time and
space complexity usually also grows.

3. Pruned Message Passing Framework
In order to address the shortcomings of GNNs mentioned
in previous section, we propose pruned frameworks for MP-
GNN and its variants, including K-path and K-hop message
passing frameworks. These pruned frameworks have stream-
lined structures, resulting in lower computational complex-
ity compared to the original frameworks.

3.1. Pruned (ak-walk) Message Passing Framework

Figure 1. Comparison of MP-GNN and pruned MP-GNN: Blue
and Green represents structure information node v has aggregated
at 1st and 2nd iterations respectively. The overlap in the MP-GNN
indicates computational redundancy.

Given a sequence of positive integers ak, we propose a new
framework called the ak-walk message passing framework
like as Fig. 1. The key difference from the standard MP
framework is that, at the kth layer, node v aggregates fea-
tures from its ak-walk neighbors, rather than just its direct
neighbors. Specifically, Hk

v is computed as follows:

Mk
v = AGGk({{Hk−1

u |u ∈ Nak

walk(v)}}) (7)

Hk
v = COBk(Hk−1

v ,Mk
v) (8)

We point out the aggregation of k-walk neighbors’ features
can be computed as

Mk
v = AGGk({{Hu|u ∈ Nak

walk(v)}}) =
AGG(· · ·AGG︸ ︷︷ ︸

ak times

({{Hu|u ∈ N(v)}})). (9)

Hence the computation complexity of AGG({{Hu|u ∈
Nak

walk(v)}}) will not exceed ak times of the computational
complexity of AGG({{Hu|u ∈ N(v)}}). We provide a long-
refinement graph example for comparison in Appendix C.4.

We refer to the ak-walk message passing framework when
ak = 2k−1 as the pruned message passing framework.
Additionally, we denote (G,G′) ∈ GILPr if the pair of
graphs (G,G′) gets the same representation in pruned MP-
GNN frameworks. We also provide Pruned Message Passing
Framework’s corresponding WL Test in C.1.

3.2. Pruned K-Path Message Passing Framework

In Figure 2, the K-path message passing framework exhibits
redundant computations as certain structural information is
repeatedly encoded into nodes’ features across iterations. To
address this, we propose the pruned K-path message pass-
ing framework. Unlike the standard K-path framework, the
pruned version aggregates features from the l-path neigh-
bors N l

path to the K-path neighbors NK
path at the lth layer

(l ≤ K), rather than from the 1-path neighbors N1
path to the

3

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Figure 2. Comparison of 2-path and pruned 2-path frameworks,
where colors denote aggregated structure information for node v:
Blue (1st iteration, 1-path neighbors), Green (1st iteration, 2-path
neighbors), Red (2nd iteration, 1-path neighbors), and Yellow (2nd

iteration, 2-path neighbors). The range of Red is covered by Blue,
Green, and Yellow.

K-path neighbors NK
path. Let H l

v denote the feature of node
v at the lth layer. When l ≤ K, the pruned K-path message
passing framework is defined as follows:

M l,k
v = AGGl

k({{H l−1
u |u ∈ Nk

path(v)}})(k ≤ l ≤ K)

(10)

Ml
v = (M l,l

v ,M l,l+1
v , · · · ,M l,K

v) (11)

H l
v = COBl

(
H l−1

v ,Ml
v

)
(12)

else when l > K, the K-path pruned Message passing
framework can be defined as follows:

M l,K
v = AGGl

K({{H l−1
u |u ∈ NK

path(v)}})
H l

v = COBl(H l−1
v ,M l,K

v)
(13)

Denote (G,G′) ∈ GILPRK−P , if the pruned K-Path frame-
work’s corresponding WL test decides G and G′ are isomor-
phic after L iterations.

3.3. Pruned K-Hop Message Passing Framework

Figure 3. Comparison of 2-hop and pruned 2-hop frameworks. Col-
ors indicate aggregated structure information for node v: Blue (1st

iteration, 1-hop neighbors), Green (1st iteration, 2-hop neighbors),
Red (2nd iteration, 1-hop neighbors), and Yellow (2nd iteration,
2-hop neighbors). The range of Red is covered by Blue, Green,
and Yellow.
In figure 3, at the iteration of K-hop message passing frame-
work, there’s also specific node structure information which

has been repetitively encoded into nodes’ features which
will cause redundant computations. Therefore, we propose
the pruned K-hop message passing framework. Different
from K-hop message passing framework, when l ≤ K, the
K-hop pruned message passing framework is similar to the
K-path pruned message passing framework, but the aggre-
gation process equation 10 is replaced by the following:

M l,k
v = AGGl

k({{H l−1
u |u ∈ Nk

hop(v)}}) (14)

else when l > K, the K-hop pruned message passing frame-
work can be defined as follows:

M l,K
v = AGGl

K({{H l−1
u |u ∈ NK

hop(v)}})
H l

v = COBl(H l−1
v ,M l,K

v).
(15)

Denote (G,G′) ∈ GILREK−H , if the pruned K-Hop frame-
work’s corresponding WL test decides G and G′ are iso-
morphic after L iterations. We also provide k-path GNN’s
corresponding WL Test in Appendix C.3.

4. Pruned Framework’s Equivalent
Expressiveness Solving GNNs’ Deficiencies

In this section, we theoretically analyze the expressive
power of the message passing framework, K-Path and K-
Hop frameworks and their pruned frameworks. We also
demonstrate how our pruned frameworks

We assume there are no edge features and all nodes in the
graph have the same feature, which means that GNNs can
only distinguish two nodes based on local structure of nodes.
Let aggregation and combination functions be injective. We
will show that the pruned message passing framework is as
powerful as 1-WL test and pruned K-Path is as powerful
as K-Path framework. As for pruned K-Hop framework, it
is as powerful as K-Hop framework when distinguishing
regular or strong regular graphs.

4.1. Expressive power of Pruned Message Passing
Framework

In this subsection, we delve into a theoretical analysis of
the expressive power of an-walk (pruned) message passing
framework. Xu et al. (2019a) have proven that the expressive
power of 1-hop message passing is bounded by the 1-WL
test.

Given a positive integers sequence ak, Sk =
∑

t∈[k] at. We
say that a sequence ak is viewable if ∀k ∈ N+, r ∈ [Sk],
there exists a subset T ⊆ [k], such that

∑
t∈T at = r. We

will prove that if ak is viewable, then ak-walk message
passing framework is at least as powerful as 1-WL test. The
theorem is as follows:

Theorem 4.1. Given a positive integer sequence ak and a
pair of graphs (G,G′), Sk =

∑
t∈[k] at, if ak is viewable,

4

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

then ∀l ∈ N+ GI lak−walk ⊆ GISl

WL.

The following lemma and theorem are meant to explain why
we chose 2k−1-walk as the pruned framework:

Lemma 4.2. Given a positive integer sequence ak, Sk =∑
t∈[k] at, if Sk > 2k − 1, then ak is not viewable.

Theorem 4.3. Given a positive integer sequence ak, if ak is
not viewable, then there’s a pair of non-isomorphic graphs
(G,G′) that (G,G′) ∈ GI lak−walkWL but (G,G′) /∈
GISl

WL.

The proof of Lemma 4.2, Theorem 4.1 and Theorem 4.3
is provided in Appendix E. Lemma 4.2 indicates that
when ak = 2k−1, the pruned MP-GNN framework can
collect information from the most distant nodes while main-
taining an expressive power comparable to that of MP GNNs.
Theorem 4.3 provides an example to demonstrate that if
ak is not viewable, then the expressive power of ak-walk
framework will be diminished.

Despite the expressive power of an-walk message passing
framework is bounded by 1-WL test, we are able to "cut
off" the number of GNN’s layers and parameters to reduce
computational complexity.

We now show why 2k−1-walk message passing framework
is more effective than message passing framework. As the
proof of Theorem 4.1 shows, for an unlabeled graph, the
determining factor of label that node v gets in 1-WL test
is the cardinality of v′s l-walk neighbor |N l

walk(v)|. As
Figure 1 suggests, there’s an overlapping part between the
blue rectangle and green rectangles, which implies cardinal-
ity information has been repetitively encoded into node v.
However, the pruned WL test, as the figure shows, makes
sure that every l-walk neighbor’s cardinality information
will be encoded into node v without repetition. This makes
the pruned framework more effective than message passing
framework.

4.2. Expressive Power of Pruned K-Path and K-Hop
Message Passing Framework

In this subsection, we conduct a detailed analysis of the
expressive power of K-Path and K-Hop GNNs and their
pruned frameworks. We will show that, although the pruned
K-Path GNNs message passing framework does not aggre-
gate as much graph structure information as K-Path frame-
work, this does not diminish the expressive power of pruned
K-Path framework. The theorem is as follows:

Theorem 4.4. Given a pair of graphs (G,G′) and K ∈
N+, the expressiveness of pruned K-Path framework is as
powerful as K-Path framework. In other words, ∀L ∈ N+

GILPRK−P = GILK−P

The proof of Theorem 4.4 is provided in the Appendix.

We indicate the core of the proof of Theorem 4.4 is trans-
forming the expressiveness problem of K-Path GNN into
an algebraic problem through MATLANG. Specifically, we
identify a matrix language that is expressively equivalent
to the K-Path framework and proved that the pruned K-
Path framework has the same expressiveness as this matrix
language.

As for the pruned K-Hop framework, unfortunately, we
have to point out the difficulty in proving the equivalent
expressive power between the pruned K-Hop framework
and K-Hop framework. We emphasize the main reason
can be traced back to the proof of Theorem E.10 in the
Appendix: during the process of generating K-hop matrices
from K-path matrices, the matrix language has removed
two critical structural pieces of information (1): the number
of shortest paths between two nodes. (2)the number of paths
which are longer than shortest paths between two nodes.

On the other hand, the K-Hop GNN was proposed largely
to compensate for the inability of MP-GNN to distinguish
regular graphs. Let RG denote the set of pairs of regular
graphs, and SRG denote the set of pairs of strong regular
graphs. We show that pruned K-Hop GNN has comparable
expressiveness as K-Hop GNN in distinguishing strong
regular graphs, as well as for for regular graphs when K = 2.
In other words:

Theorem 4.5. ∀L,K ∈ N+, (RG∩GILPR 2−H) ⊆ (RG∩
GIL2−H) and (SRG ∩GILREK−H) ⊆ (SRG ∩GILK−H).

4.3. Pruned Frameworks Address Deficiencies of GNNs

In this subsection, we demonstrate how pruned frameworks
address deficiencies of GNNs. Regarding the limited ex-
pressive power restricted by the number of layers, unlike
MP-GNNs the range of neighbor information aggregation in
the pruned MP-GNNs grows exponentially with the number
of layers. Therefore, the pruned MP-GNN does not require
many layers to obtain a vast amount of neighbor informa-
tion. Meanwhile, the pruned MP-GNNs do not need to pile
up as many layers as MP-GNNs, thus the nonlinearity of
node representations is restricted.

We now show the redundant structure of MP-GNNs along
with a comparison to pruned MP-GNNs through a example.
Given a connected graph with at least 3 nodes, while some
nodes are specially marked, we consider a simple node-level
task for GNNs. We want node v’s 1-dimensional representa-
tion Hv outputs 1 if and only if v is marked or there’s node
u marked while the distance between v and u is less than or
equal to 3, and outputs 0 otherwise. We consider a 3-layer
MP-GNNM, the initial representation H0

v = 1 if and only
if v is marked and H0

v = 0 otherwise, its representation is

5

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Table 1. Simulation dataset result. The best is highlighted.

Method Node Properties Graph Properties Counting Substructures (MAE)

SSSP Ecc. Lap. Connect. Diameter Radius Tri. Tailed Tri. Star 4-Cycle

GIN -2.1476 -1.9038 -1.6000 -1.9239 -3.3079 -4.7584 0.3306 0.1534 -0.8716 0.1176
PR GIN -1.9202 -1.6817 -1.7772 -1.7342 -3.2023 -4.9635 0.2893 0.3737 -0.9309 0.1260

K-Path -2.7063 -2.4900 -4.9596 -4.3159 -3.8475 -5.2038 -1.3566 -1.2709 -0.9342 -0.4936
PR K-Path -2.7833 -2.5977 -5.284 -4.4239 -3.9324 -5.2983 -1.4588 -1.3839 -1.0391 -0.6070

K-Hop -2.8152 -2.5963 -4.6254 -2.1877 -3.9683 -5.2923 0.1919 0.0637 -1.0043 0.0960
PR K-Hop -2.7785 -2.6672 -4.9970 -2.1472 -3.7005 -5.0619 0.0499 0.0091 -1.3141 0.0665

Table 2. TU dataset (Yanardag & Vishwanathan, 2015) evaluation result. The top three are highlighted with bold text and marked in red,
blue, and black, respectively.

Method MUTAG D&D PTC-MR PROTEINS IMDB-B

WL 90.4±5.7 79.4±0.3 59.9±4.3 75.0±3.1 73.8±3.9

GraphSAGE 91.7±6.5 78.1±2.6 66.5±4.0 76.5±4.6 76.4±2.7
GraphSNN 91.2±2.5 82.4±2.7 66.9±3.5 76.5±2.5 76.9±3.3

GIN 88.4±5.2 76.3 ±1.2 63.6 ±5.0 74.9 ±1.9 74.1±3.5
PR GIN 89.7±3.0 77.2 ±0.3 64.7 ±1.3 75.8 ±2.0 75.2±3.4

K-Hop 92.1±2.0 81.9±3.4 64.2±2.5 75.0±1.2 74.5± 1.0
PR K-Hop 91.8±4.3 84.1 ±0.9 65.5 ±4.1 77.0±3.4 76.2±0.6

K-Path 91.7±1.7 82.1±3.4 65.9±5.1 78.6±1.8 76.8±3.2
PR K-Path 92.6 ±3.3 83.3 ±0.4 67.5 ±3.5 79.1 ±2.1 74.9±2.9

updated as follows:

H l
v = σ(H l−1

v ·W l
1 +

∑
u∈N(v)

H l−1
u ·W l

2), (16)

where σ(x) = min(max(0, x), 1) parameter matrix W l
i ∈

{(0), (1)}(i ∈ [2], l ∈ [3]). There are 4 parameter config-
urations forM, one of them is setting all W l

i = 1, while
the remaining three are to set one of these parameter con-
figurations W l

1 = 0 for l ∈ [3]. We prove that among all
the parameter settings ofM, only these four are capable
of handling this task in the Appendix. In other words, we
can randomly choose one of the parameters W l

1 equal to 0,
the structure of MP-GNN will represent the same outcome.
We can observe the redundant structure of GNNs from the
randomness in the selection of W l

1.

However, for the pruned MP-GNN, we consider 2-layerM′

as

H l
v = σ(H l−1

v ·W l
1 +

∑
u∈N2l−1

walk (v)

H l−1
u ·W l

2). (17)

Except for setting all parameters equal to 1, there is only
one parameter configuration for M′, as setting W 2

1 = 0,
which means that we have pruned this redundant structure,
reducing the cardinality of the parameter space from 26 in
MP-GNN to 24 in pruned MP-GNN.

As for the high expressive power accompanied with higher
complexity, we refer our pruned framework: pruned K-Path
and K-Hop GNN. When layer l > K, the complexity of
pruned K-Path and K-Hop GNN is the same as MP-GNN,
but the breadth of neighbor information obtained in each
iteration of pruned K-Path and K-Hop GNN is equivalent
to that of MP-GNN after K iterations. Hence in a large
graph, K-Path and K-Hop GNN can reduce complexity by
decreasing the number of layers while still distinguishing
graphs that MP-GNN cannot.

To demonstrate the efficiency of the pruned framework, we
provide the iteration process of the WL Test (MP-GNN),
the pruned WL Test (PR MP-GNN), and the pruned 2-Hop
WL Test (PR 2-Hop GNN) on the long-refinement graph
in Appendix C.4. We can see both pruned WL Test and
pruned 2-Hop WL Test terminate at 4th iteration while WL
Test at the 11th iteration.

5. Time and Space Complexity
In this section, we discuss the time and space complexity
of MP, K-path, K-hop, and their pruned frameworks. We
assume a graph has n nodes, every framework is designed to
gather nodes information at a distance of L, and we assume
(n≫ L≫ K). The time and space complexities are listed

6

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Table 3. QM9 results. The best is highlighted.

Target GraphSAGE GIN PR GIN K-Hop PR K-Hop K-Path PR K-Path

µ 0.369 0.355 0.422 0.301 0.303 0.311 0.268
α 0.308 0.258 0.277 0.384 0.282 0.274 0.291
εHOMO 0.00382 0.00427 0.00335 0.00266 0.00276 0.00221 0.00197
εLUMO 0.00492 0.00644 0.00264 0.00294 0.00275 0.00281 0.00279
∆ε 0.01187 0.00419 0.00430 0.00379 0.00396 0.00357 0.00316
⟨R2⟩ 16.38 20.97 20.69 16.13 20.44 17.66 15.70
ZPVE 0.001747 0.001262 0.001537 0.000220 0.000141 0.000174 0.000159
U0 2.05 2.05 2.31 0.0690 0.0629 0.0571 0.0502
U 2.05 2.02 2.00 0.0650 0.0593 0.0637 0.0527
H 2.05 2.02 2.00 0.0589 0.0604 0.0533 0.0552
G 2.05 2.02 2.00 0.0663 0.0574 0.0543 0.0559
Cv 0.2716 0.2170 0.2262 0.0841 0.0847 0.0878 0.0847

Table 4. Verification on the equivalence of the expressive power.

Method K EXP (ACC) SR (ACC) CSL (ACC)

SPD GD SPD GD SPD GD

GIN 50 50 6.67 6.67 12 12
PR GIN 50 50 6.67 6.67 12 12

K-Path
K=2 50 50 73.33 73.33 52.7 52.7
K=3 100 100 73.33 73.33 90 90
K=4 100 100 73.33 73.33 100 100

PR K-Path
K=2 100 100 73.33 73.33 52.7 52.7
K=3 100 100 73.33 73.33 90 90
K=4 100 100 73.33 73.33 100 100

K-Hop
K=2 50 50 6.67 6.67 32 22.7
K=3 100 66.9 6.67 6.67 62 42
K=4 100 100 6.67 6.67 92.7 62.7

PR K-Hop
K=2 50 50 13.33 13.33 32 22.7
K=3 100 66.9 13.33 13.33 62 62.7
K=4 100 100 13.33 13.33 62 62.7

in Table 5

Further discussion is provided in Appendix F .

6. Experiment
In this section, we conduct extensive experiments to evaluate
the performance of the pruned frameworks. Specifically, we
focus on answering the following three questions:

• Q1: Do the pruned frameworks have the same expres-
sive power as the original frameworks?

• Q2: Does the pruning improve the frameworks’ perfor-
mance?

To verify the expressive power of the pruned frameworks,
we empirically evaluate them on three simulation datasets:
(1) EXP (Abboud et al., 2021), (2) SR25 (Balcilar et al.,

Table 5. Time and Space Complexity

Method Time Space

MP Θ(n ·L) Θ(n ·L)
PR MP Θ(n · log(L)) Θ(n · log(L))
K-Hop Θ(n ·L) Θ(n ·L)
PR K-Hop Θ(n · LK) Θ(n · LK)

K-Path Θ(n ·L) Θ(n ·L)
PR K-Path Θ(n · LK) Θ(n · LK)

2021), and (3) CSL, comparing them with their original
frameworks (Murphy et al., 2019). We use node properties
(such as single-source shortest path, eccentricity, and Lapla-
cian feature) and graph property regression (connectivity,
diameter, radius), as well as graph substructure counting
(triangle, tailed triangle, star, and 4-cycle) to demonstrate
expressive power.

we also perform the original and pruned WL test on each
graph to test whether pruned WL test produces the same
number of node classes as the original WL test we conclude
that the pruned WL test is consistent with the original WL
test on that graph. The WL Test algorithm applies the hashed
and power iterated color refinement algorithm proposed by
Kersting K(Kersting et al., 2014), and others are derived
from it. The algorithm is provided in appendix G:

To verify whether pruning improves the frameworks’ per-
formance, we evaluate the pruned frameworks’ perfor-
mance on 8 real-world datasets: MUTAG (Debnath et al.,
1991), DD (Dobson & Doig, 2003), PROTEINS (Dob-
son & Doig, 2003), PTC-MR (Toivonen et al., 2003),
and IMDB-B (Yanardag & Vishwanathan, 2015) from TU
database, as well as QM9 (Ramakrishnan et al., 2014;
Wu et al., 2018) and ZINC (Dwivedi et al., 2020) for
molecular property prediction. The results are shown

7

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

in Tables 1 to 3 and 6. And all the experimental ma-
terials in provided in https://anonymous.4open.
science/r/PrunedGNN-AC61/README.md

To assess the improvement in the effectiveness of the pruned
frameworks, we compare the running time and the number
of parameters of the pruned frameworks with the original
ones. Detailed dataset statistics and results are provided in
the Appendix G.

Verification of Equivalence of Expressive Power: To ver-
ify the equivalence of expressive power, we evaluate both
pruned and original frameworks, implementing GIN as the
base encoder for each. The results in Table 4 lead to the
following conclusions: (1) For both K-Path and K-hop
frameworks, expressive power improves as K increases. (2)
The expressive power of pruned frameworks is comparable
to that of the original frameworks, as evidenced by their
equally excellent performance. (3) While ensuring equiva-
lent expressive power, the pruning framework significantly
improves efficiency compared to the original.

Effectiveness on Node/Graph Properties and Substruc-
ture Prediction: We compare the pruned frameworks with
their original counterparts to evaluate their effectiveness and
expressive power on node/graph properties and substructure
prediction. GIN is used as the base encoder for all frame-
works. Pruned K-hop and K-path frameworks achieve the
best performance on most tasks. Moreover, the performance
between pruned and original frameworks is highly consis-
tent, indicating their equivalent expressive power.

Table 6. ZINC result.
Method # param. test MAE

GraphSAGE 480805 0.143±0.01

GIN 356406 0.134±0.007
PR GIN 256406 0.136±0.012

K-Hop 574613 0.079±0.015
PR K-Hop 476615 0.077±0.009

K-Path 581659 0.082±0.011
PR K-Path 456414 0.079±0.004

Evaluation on TU and QM9 Datasets: For the TU datasets,
we select the graph kernel-based method (WL subtree ker-
nel) and advanced GNN methods (GraphSNN (Wijesinghe
& Wang, 2022) and GraphSAGE (Hamilton et al., 2017))
as baseline models. For both the pruned and original frame-
works, we use GIN (Xu et al., 2019a) as the base encoder.
The results, shown in Table 3, indicate that the pruned frame-
works achieve the best performance on almost all tasks. For
the QM9 dataset, except for Cv, both K-path and K-hop
pruned frameworks outperform the others across all tasks.
The ZINC dataset results, shown in Table 5, reveal that K-

hop pruned frameworks achieve the best performance, and
the pruned frameworks perform as well as the originals but
with fewer parameters. Overall, on all real-world datasets,
pruned frameworks outperform their original counterparts.

7. Conclusion
In this work, we proposed pruned versions of MP-GNN,
K-Hop, and K-Path frameworks by removing redundant
structures, thereby improving efficiency. Our theoretical
analysis confirmed that these pruned MP-GNN and K-Hop
frameworks retain the expressive power of their original
counterparts, with the added benefit of reduced computa-
tional complexity, and K-hop MP-GNNs and their pruned
architecture exhibit equivalent expressiveness on regular and
strongly regular graph. Specifically, the pruned frameworks
use fewer parameters, making them more computationally
efficient and easier to optimize and train. Through exten-
sive experiments, we demonstrated that the pruned frame-
works outperform the original ones in terms of runtime and
memory usage, while maintaining competitive performance
on various benchmark datasets. These results validate the
practical advantages of using pruned frameworks without
sacrificing expressive power.

8

https://anonymous.4open.science/r/PrunedGNN-AC61/README.md
https://anonymous.4open.science/r/PrunedGNN-AC61/README.md

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This work is supported by the National Key R&D Program
of China under grant 2022YFA1003900 and National Natu-
ral Science Foundation of China under Grant T2341006.

References
Abboud, R., Ceylan, t. t., Grohe, M., and Lukasiewicz,

T. The surprising power of graph neural networks
with random node initialization. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 2112–2118, 8 2021. doi:
10.24963/ijcai.2021/291. URL https://doi.org/
10.24963/ijcai.2021/291.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In in-
ternational conference on machine learning, pp. 21–29.
PMLR, 2019.

Azizian, W. and Lelarge, M. Expressive power of invariant
and equivariant graph neural networks. In International
Conference on Learning Representations, 2021.

Balcilar, M., Héroux, P., Gaüzère, B., Vasseur, P., Adam,
S., and Honeine, P. Breaking the limits of message pass-
ing graph neural networks. In Proceedings of the 38th
International Conference on Machine Learning (ICML),
2021.

Barceló, P., Geerts, F., Reutter, J., and Ryschkov, M. Graph
neural networks with local graph parameters. In Advances
in Neural Information Processing Systems, volume 34,
pp. 25280–25293, 2021.

Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai,
C., Balamurugan, G., Bronstein, M. M., and Maron,
H. Equivariant subgraph aggregation networks. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=dFbKQaRk15w.

Bodnar, C., Frasca, F., Otter, N., Wang, Y. G., Liò, P., Mont-
ufar, G., and Bronstein, M. M. Weisfeiler and lehman go
cellular: CW networks. In Advances in Neural Informa-
tion Processing Systems, volume 34, 2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,
Lio, P., and Bronstein, M. Weisfeiler and lehman go
topological: Message passing simplicial networks. In
International Conference on Machine Learning, pp. 1026–
1037. PMLR, 2021b.

Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein,
M. Improving graph neural network expressivity via
subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Brijder, R., Geerts, F., Bussche, J. V. D., and Weerwag, T.
On the expressive power of query languages for matrices.
ACM Transactions on Database Systems (TODS), 44(4):
1–31, 2019.

Brossard, R., Frigo, O., and Dehaene, D. Graph convolu-
tions that can finally model local structure. arXiv preprint
arXiv:2011.15069, 2020.

Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equiv-
alence between graph isomorphism testing and function
approximation with gnns. In Advances in Neural Infor-
mation Processing Systems, pp. 15894–15902, 2019.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? Advances in neural
information processing systems, 2020.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=n6jl7fLxrP.

Cotta, L., Morris, C., and Ribeiro, B. Reconstruction
for powerful graph representations. In Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=ZKbZ4mebI9l.

Debnath, A. K., Lopez, d. C. R., Debnath, G., Shusterman,
A. J., and Hansch, C. Structure-activity relationship of
mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydropho-
bicity. Journal of medicinal chemistry, 34(2):786–797,
1991.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, pp. 2224–2232, 2015.

9

https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://openreview.net/forum?id=dFbKQaRk15w
https://openreview.net/forum?id=dFbKQaRk15w
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=ZKbZ4mebI9l
https://openreview.net/forum?id=ZKbZ4mebI9l

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982, 2020.

Frasca, F., Bevilacqua, B., Bronstein, M., and Maron, H.
Understanding and extending subgraph gnns by rethink-
ing their symmetries. arXiv preprint arXiv:2206.11140,
2022.

Geerts, F. On the expressive power of linear algebra on
graphs. Theory of Computing Systems, 65:179–239, 2021.

Geerts, F. and Reutter, J. L. Expressiveness and approxima-
tion properties of graph neural networks. In International
Conference on Learning Representations, 2022.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1025–1035, 2017.

Horn, M., De Brouwer, E., Moor, M., Moreau, Y., Rieck, B.,
and Borgwardt, K. Topological graph neural networks. In
International Conference on Learning Representations,
2022.

Jokić, I. and Van Mieghem, P. Number of paths in a graph.
arXiv preprint arXiv:2209.08840, 2022.

Keriven, N. and Peyré, G. Universal invariant and
equivariant graph neural networks. arXiv preprint
arXiv:1905.04943, 2019.

Kersting, K., Mladenov, M., Garnett, R., and Grohe, M.
Power iterated color refinement. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28,
2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
Gated graph sequence neural networks. arXiv preprint
arXiv:1511.05493, 2015.

Ma, Z., Xuan, J., Wang, Y. G., Li, M., and Liò, P. Path
integral based convolution and pooling for graph neural
networks. Advances in Neural Information Processing
Systems, 33:16421–16433, 2020.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman,
Y. Provably powerful graph networks. In Advances in
Neural Information Processing Systems, pp. 2156–2167,
2019a.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. In-
variant and equivariant graph networks. In International
Conference on Learning Representations, 2019b.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. On the
universality of invariant networks. In International con-
ference on machine learning, pp. 4363–4371. PMLR,
2019c.

Michel, G., Nikolentzos, G., Lutzeyer, J. F., and Vazirgian-
nis, M. Path neural networks: Expressive and accurate
graph neural networks. In International Conference on
Machine Learning, pp. 24737–24755. PMLR, 2023.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4602–4609, 2019.

Morris, C., Rattan, G., and Mutzel, P. Weisfeiler and le-
man go sparse: Towards scalable higher-order graph em-
beddings. Advances in Neural Information Processing
Systems, 33:21824–21840, 2020.

Morris, C., Rattan, G., Kiefer, S., and Ravanbakhsh, S. Spe-
qnets: Sparsity-aware permutation-equivariant graph net-
works. In International Conference on Machine Learning,
pp. 16017–16042. PMLR, 2022.

Murphy, R., Srinivasan, B., Rao, V., and Ribeiro, B. Re-
lational pooling for graph representations. In Interna-
tional Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M. k-hop
graph neural networks. Neural Networks, 130:195–205,
2020.

Papp, P. A. and Wattenhofer, R. A theoretical compari-
son of graph neural network extensions. arXiv preprint
arXiv:2201.12884, 2022.

Qian, C., Rattan, G., Geerts, F., Morris, C., and Niepert, M.
Ordered subgraph aggregation networks. arXiv preprint
arXiv:2206.11168, 2022.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Suzuki, T. Graph neural networks exponentially lose
expressive power for node classification. ICLR2020,
8, 2020. URL https://cir.nii.ac.jp/crid/
1010290617313162497.

Thiede, E., Zhou, W., and Kondor, R. Autobahn:
Automorphism-based graph neural nets. In Advances
in Neural Information Processing Systems, volume 34,
pp. 29922–29934, 2021.

10

https://cir.nii.ac.jp/crid/1010290617313162497
https://cir.nii.ac.jp/crid/1010290617313162497

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
learning with 1d convolutions on random walks. arXiv
preprint arXiv:2102.08786, 2021.

Toivonen, H., Srinivasan, A., King, R. D., Kramer, S., and
Helma, C. Statistical evaluation of the predictive tox-
icology challenge 2000–2001. Bioinformatics, 19(10):
1183–1193, 2003.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Vignac, C., Loukas, A., and Frossard, P. Building powerful
and equivariant graph neural networks with structural
message-passing. arXiv e-prints, pp. arXiv–2006, 2020.

Wang, G., Ying, R., Huang, J., and Leskovec, J. Multi-hop
attention graph neural networks. In International Joint
Conference on Artificial Intelligence, 2021.

Weisfeiler, B. and Lehman, A. A reduction of a graph
to a canonical form and an algebra arising during this
reduction. Nauchno-Technicheskaya Informatsia, 2(9):
12–16, 1968.

Wijesinghe, A. and Wang, Q. A new perspective on ”how
graph neural networks go beyond weisfeiler-lehman?”. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=uxgg9o7bI_3.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019a. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019b.

Yanardag, P. and Vishwanathan, S. Deep graph kernels.
In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1365–1374. ACM, 2015.

You, J., Gomes-Selman, J. M., Ying, R., and Leskovec, J.
Identity-aware graph neural networks. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(12):
10737–10745, May 2021.

Zhang, M. and Li, P. Nested graph neural networks. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W. (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/
forum?id=7_eLEvFjCi3.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-
end deep learning architecture for graph classification. In
AAAI, pp. 4438–4445, 2018.

Zhang, S., Zhang, J., Song, X., Adeshina, S., Zheng, D.,
Faloutsos, C., and Sun, Y. Page-link: Path-based graph
neural network explanation for heterogeneous link predic-
tion. In Proceedings of the ACM Web Conference 2023,
pp. 3784–3793, 2023.

Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars to sub-
graphs: Uplifting any gnn with local structure awareness.
In International Conference on Learning Representations,
2022.

11

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=uxgg9o7bI_3
https://openreview.net/forum?id=uxgg9o7bI_3
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=7_eLEvFjCi3
https://openreview.net/forum?id=7_eLEvFjCi3

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Appendix
A. Related Work
Following the pioneering studies of Xu et al. (2019b); Morris et al. (2019), a substantial body of research has focused on
designing novel GNN architectures that surpass the expressiveness of the 1-WL test. Broadly, these approaches can be
categorized as follows.

Higher-order GNNs. Unlike traditional GNNs, higher-order GNNs compute representations for multi-tuples of nodes and
employ tensor operations to aggregate features across these tuples (Morris et al., 2019; Maron et al., 2019b;c;a; Keriven &
Peyré, 2019; Azizian & Lelarge, 2021; Geerts & Reutter, 2022). However, the computational complexity of higher-order
GNNs increases exponentially with the number of tuples, making them unsuitable for large-scale graphs. This challenge
has motivated research into localized variants of higher-order GNNs, which leverage the sparse and local nature of graphs
to reduce complexity at the cost of some expressiveness. Notable models include the 1-2-3 GNN (Morris et al., 2019),
PPGN (Maron et al., 2019a), and Ring-GNN (Chen et al., 2019), which aim to approximate higher-order WL tests while
maintaining computational efficiency. For example, Morris et al. (2020; 2022) introduced methods that localize k-WL
aggregation to exploit graph sparsity (see Appendix B.2), while Vignac et al. (2020) proposed a localized 2-order GNN
whose expressive power aligns with 3-IGN (Maron et al., 2019c). These developments illustrate how localized higher-order
GNNs strike a balance between expressiveness and scalability, enabling their practical use in real-world applications.

Substructure-based GNNs. Chen et al. (2020) showed that standard message passing GNNs fail to detect or count common
substructures such as cycles, cliques, and paths. Building on this insight, another approach to enhancing GNN expressiveness
involves leveraging substructure information within graphs. For example, Bouritsas et al. (2022) proposed the Graph
Substructure Network (GSN), which integrates substructure counting into node features via a preprocessing. This idea was
further extended by Barceló et al. (2021) through homomorphism counting. Additional progress has been made by Bodnar
et al. (2021b;a); Thiede et al. (2021); Horn et al. (2022), who introduced novel WL aggregation strategies that incorporate
specific substructures like cycles and cliques. Moreover, Toenshoff et al. (2021) employed random walk techniques to
generate small substructures for GNNs.

Subgraph GNNs. Recent approaches have explored breaking graph symmetry to better distinguish highly symmetric
structures. These methods generate subgraphs according to predefined policies and then aggregate features across all
subgraphs. Various subgraph generation strategies have been investigated. For instance, (Cotta et al., 2021) proposed a node
deletion strategy, while (Bevilacqua et al., 2022) studied an edge deletion method. Additionally, node marking techniques
have been explored by (Papp & Wattenhofer, 2022), and ego-network-based approaches have been examined in (Zhao
et al., 2022; Zhang & Li, 2021; You et al., 2021). ID-GNN (You et al., 2021) extracts ego-networks and labels the root
node to break symmetry, while NGNN (Zhang & Li, 2021) uses subgraph pooling to encode rooted subgraphs, improving
expressiveness for distinguishing regular graphs. For the aggregation mechanisms of subgraphs, some methods have been
explored to improve expressiveness by leveraging structural information. For instance, ESAN (Bevilacqua et al., 2022),
performs layer-wise aggregation across subgraphs, enhancing expressive power. Building on this, Frasca et al. (2022)
proposed a relaxed symmetry analysis, demonstrating that the expressiveness of such approaches is bounded by 3-WL.
Furthermore, Qian et al. (2022) established connections between subgraph GNNs and k-FWL, introducing a learnable
subgraph generation policy for improved flexibility.

Multi-aggregation GNNs. Several existing works have been developed to instantiate the K-hop or K-path message passing
framework. For instance, MixHop (Abu-El-Haija et al., 2019) applies message passing on each hop using a graph diffusion
kernel, then concatenates the representations across all hops to form the final output. K-hop sequentially executes message
passing from hop K to hop 1 to compute the central node’s representation, though its computational procedure limits
parallelizability in (Nikolentzos et al., 2020). MAGNA (Wang et al., 2021) incorporates an attention mechanism into
K-hop message passing. Similarly, GPR-GNN (Chien et al., 2021) employs a graph diffusion kernel to perform graph
convolution on K-hop neighborhoods and aggregates the results using learnable parameters. However, these approaches
do not provide a formal definition of K-hop message passing or analyze its theoretical representational capabilities and
limitations. Additionally, PathNNs (Michel et al., 2023) introduces a model that updates node representations by aggregating
paths originating from the nodes. Path Integral-Based Convolution and Pooling for GNNs (Ma et al., 2020) proposes a

12

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

framework called PAN, which leverages path integrals to enhance GNN expressiveness and pooling mechanisms.

B. The Weisfeiler-Lehman (WL) Algorithm and Its Variants
In this section, we describe the existing WL algorithm and its some variants.

B.1. Weisfeiler-Lehman Algorithm

The 1-dimensional Weisfeiler-Lehman algorithm (1-WL), also known as the color refinement algorithm, iteratively computes
a color mapping χG for a graph G = (V,E), where each vertex v ∈ V is assigned a color χG(v) ∈ C, with C denoting the
set of colors. The pseudo-code for 1-WL is presented in Algorithm 1. Initially, all vertices are assigned the same color. At
each iteration l, the algorithm updates the color of each vertex v by combining its current color with the multiset of colors of
its neighbors by a hash function, denoted as ml(v). Then the hash function is then applied to produce the new color χl(v).
This procedure is repeated for a predefined number of iterations L or until convergence.

Algorithm 1 The 1-WL Algorithm
1: Input: Graph G = (V,E) and the number of iterations L.
2: Initialize: Choose a fixed (arbitrary) element c0 ∈ C, and set χ0(v) := c0 for all v ∈ V .
3: for l← 1 to L do
4: for each v ∈ V do
5: ml(v) = Hash({{χl−1(u)|u ∈ N(v)}})
6: χl(v) := Hash

(
χl−1(u),ml(v)

)
7: end for
8: end for
9: Output: Color mapping χ : V → C.

At each iteration, the color mapping induces a partition of the vertex set V . A key property of the 1-WL algorithm is that
each iteration refines this partition, resulting in a progressively finer partition. Since the vertex set V is finite, the algorithm
is guaranteed to reach a stabilization point where the partition no longer changes.

The 1-WL algorithm can be used to determine whether two graphs G and H are isomorphic by comparing their representa-
tions. It is a fast and effective method for many practical applications, particularly when dealing with large graphs or when a
quick approximation is sufficient. If the two representations differ, the graphs are not isomorphic, making 1-WL a necessary
condition for graph isomorphism. However, the 1-WL test may fail to distinguish between two non-isomorphic graphs G
and H . This limitation has motivated the development of more expressive higher-order WL tests, as discussed in the next
subsection.

B.2. The k-dimensional Weisfeiler-Lehman Algorithm (k-WL)

The k-dimensional Weisfeiler-Lehman algorithm (k-WL) extends the 1-WL algorithm by enhancing its expressive power
through the coloring of k-tuples of vertices from V (G)k instead of individual vertices.

To begin, we introduce the concept of a neighborhood in the context of k-WL. For a k-tuple s = (s1, . . . , sk) ∈ V (G)k, the
j-th neighborhood Nj(s) is defined as:

Nj(s) = {(s1, . . . , sj−1, r, sj+1, . . . , sk) | r ∈ V (G)}, (18)

where Nj(s) is formed by replacing the j-th component of s with every vertex r ∈ V (G). This definition enables the
algorithm to explore the structural context of the k-tuple s by systematically iterating over all possible substitutions for its
j-th component.

This algorithm computes a coloring function χl : V (G)k → C at each iteration t. At iteration l = 0, each k-tuple s ∈ V (G)k

is assigned an initial label based on its atomic type. Specifically, two k-tuples s and s′ receive the same color if the map
si 7→ s′i induces an isomorphism between the subgraphs induced by the nodes in s and s′, respectively. For l > 0, the
algorithm updates the label of each k-tuple s by aggregating information from its j-th neighborhoods Nj(s). The pruned

13

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

labels are computed as follows:

Cl
j(s) = Hash

(
{χl−1(s′) | s′ ∈ Nj(s)}

)
, (19)

where Cl
j(s) captures the aggregated information from the j-th neighborhood of s. The final label of s at iteration l is then

computed as:

χl(s) = Hash
(
χl(s), (C

l
1(s), . . . , C

l
k(s))

)
. (20)

This refinement ensures that two tuples s and s′ with identical labels at iteration t− 1 will receive different labels at iteration
t if there exists a j ∈ [1 : k] such that the distribution of j-neighbors with specific colors differs between s and s′. In
summary, the pseudo-code for SC-WL is provided in Algorithm 2.

Algorithm 2 The k-WL Algorithm
1: Input: Graph G = (V,E) and the number of iterations L.
2: Initialize: Define tuples V (G)k, choose a fixed element c0 ∈ C, and set χ0(v) := c0 for all s ∈ V (G)k.
3: for l← 1 to L do
4: for each s ∈ V (G)k do
5: Cl

j(s) = Hash
(
{{χl−1(s′) | s′ ∈ Nj(s)}}

)
6: χl(s) = Hash

(
χl(s), (C

l
1(s), . . . , C

l
k(s))

)
7: end for
8: end for
9: Output: Color mapping χ : V (G)k → C.

By operating on k-tuples of vertices rather than individual nodes, the k-WL algorithm substantially enhances its capability
to distinguish between non-isomorphic graphs. However, this improvement in expressive power comes at the expense of
increased computational complexity, which grows rapidly as k increases. Consequently, practical implementations typically
involve a trade-off between the value of k and the associated computational cost.

B.3. The K-Path Weisfeiler-Lehman Algorithm (K-Path WL)

The K-Path WL algorithm extends the classical WL method by incorporating paths of length K, rather than focusing solely
on the immediate neighborhood of vertices. To begin, we recall the definition of the k-path neighborhood. Let Nk

walk(v)
denote the set of all distinct paths of length k starting from vertex v. A path (v, u1, u2, . . . , uk) is defined as a sequence of
vertices and edges in which no edge or vertex is repeated. We say that a vertex uk is a k-path neighbor of v if there exists a
path (v, u1, . . . , uk) ∈ Nk

walk(v), with uk being the terminal vertex of the path.

At the beginning, each vertex v ∈ V is assigned an initial label χ0(v), typically derived from vertex-specific features such
as its degree or other attributes. In each iteration l, the algorithm updates the label χl

t(v) of each vertex by aggregating
information from the t-path neighborhood for t ∈ [1,K]. Specifically, for each t ∈ [1,K],

χl
t(v) = Hash

(
χl−1(v),

{
χl−1(u) | u ∈ N t

path(v)
})

. (21)

Then, the algorithm updates the original label χl(v) by aggregating the labels from the t-path neighborhoods χl
t(v) for all

t ∈ [1,K]. Specifically,

χl(v) = Hash
({

χl
t(v) | t ∈ [1,K]

})
. (22)

This process of refinement continues until the labels stabilize, meaning no further updates occur during an iteration. The
pseudocode for the K-pWL algorithm is provided in Algorithm 3.

14

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Algorithm 3 The K-Path WL Algorithm
1: Input: Graph G = (V,E), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ L do
4: l = l + 1.
5: for v ∈ V do
6: for t ∈ [1,K] do
7: χl

t(v) = Hash({{χl−1(u) | u ∈ N t
path(v)}}).

8: end for
9: Xl(v) = (χl

1(v), χ
l
2(v), · · · , χl

K(v)).
χl(v) = Hash(χl−1(v),Xl(v)).

10: end for
11: end while
12: Output: Final labels χL(v) for all v ∈ V .

While this method is heuristic and may yield false positives or negatives, it provides a practical tool for many applications.
This extension improves the algorithm’s capacity to differentiate between large and intricate graphs, making it especially
valuable for applications in graph databases and pattern recognition.

B.4. The K-Hop Weisfeiler-Lehman Algorithm (K-Hop WL)

The K-Hop WL algorithm extends the classical WL method by considering the K-hop neighborhoods of vertices, rather
than focusing solely on their immediate neighbors (Nikolentzos et al., 2020). To begin, we recall the definition of the t-hop
neighborhood. Let N t

hop(v) denote the set of vertices that are exactly at a distance of t hops from vertex v, where the distance
is measured by the shortest path between v and each vertex in N t

hop(v). It is important to note that the t-hop neighborhoods
at different hop levels are disjoint, meaning that each vertex belongs to exactly one t-hop neighborhood for a given t.

At the start, each vertex v ∈ V is assigned an initial label χ0(v), typically derived from vertex-specific features such as its
degree or other attributes. In each iteration l, the algorithm updates the label χl

t(v) of each vertex by aggregating information
from its t-hop neighborhood for t ∈ [1,K]. Specifically, for each t ∈ [1,K],

χl
t(v) = Hash

(
χl−1(v),

{
χl−1(u) | u ∈ N t

hop(v)
})

. (23)

Then, the algorithm updates the original label χl(v) by aggregating the labels from the t-hop neighborhoods χl
t(v) for all

t ∈ [1,K]. Specifically,
χl(v) = Hash

({
χl
t(v) | t ∈ [1,K]

})
. (24)

This refinement process continues until the labels stabilize, meaning no further changes occur in an iteration. The pseudocode
for the K-hop WL algorithm is provided in Algorithm 4.

Algorithm 4 The K-Hop WL Algorithm
1: Input: Graph G = (V,E), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ L do
4: l = l + 1.
5: for v ∈ V do
6: for t ∈ [1,K] do
7: χl

t(v) = Hash({{χl−1(u) : u ∈ N t
hop(v)}}).

8: end for
9: Xl(v) = (χl

1(v), χ
l
2(v), · · · , χl

K(v)).
χl(v) = Hash(χl(v),Xl(v)).

10: end for
11: end while
12: Output: Final labels χ(v) for all v ∈ V .

15

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

C. The Pruned Weisfeiler-Lehman Algorithm and Its Variants
In this section, we present our pruned versions of the WL algorithms and provide an intuitive comparison between the
standard WL and the pruned WL, highlighting their performance differences.

C.1. The Pruned Weisfeiler-Lehman Algorithm (PR WL)

The Pruned Weisfeiler-Lehman (PWL) algorithm builds upon the standard WL method by introducing additional steps that
refine the label update process using hierarchical hashing. Unlike the original WL algorithm, PWL employs a hierarchical
approach for label refinement. Initially, each vertex v is assigned an initial label χ0(v). During the l-th iteration, each vertex
aggregates the labels of its 2l−1-walk neighbors, specifically:

ml
2l−1(v) = Hash

(
{{χl−1(u) : u ∈ N2l−1

walk(v)}}
)
. (25)

Subsequently, each vertex updates its label by applying a hash function to both its previous label and the aggregated
neighborhood information, as follows:

χl(v) = Hash
(
χl−1(v),ml

2l−1(v)
)
. (26)

The pseudocode for the Pruned WL algorithm is provided in Algorithm 5.

Algorithm 5 The PR WL Algorithm
1: Input: Graph G = (V,E), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ L do
4: l = l + 1, t = 1.
5: ml

1(v) = Hash({{χl−1(u) : u ∈ N(v)}}).
6: for ∀v ∈ V do
7: while t < 2l−1 do
8: t = t+ 1.
9: ml

t(v) = Hash({{ml
t−1(u) : u ∈ N(v)}}).

10: end while
11: χl(v) = Hash(χl−1(v),ml

2l−1(v)).
12: end for
13: end while
14: Output: Final labels χL(v) for all v ∈ V .

C.2. The Pruned K-Path Weisfeiler-Lehman Algorithm(PR K-Path WL)

To address the computational overhead of the K-path WL algorithm, a pruned version is proposed, which selectively reduces
the complexity by focusing on relevant paths at each iteration.

Unlike the standard K-path WL, the pruned version aggregates features from the l-path neighbors N l
path to the K-path

neighbors NK
path at the lth layer (l ≤ K), rather than from the 1-path neighbors N1

path to the K-path neighbors NK
path. Let

χl
v denote the feature of node v at the lth layer. When l ≤ K, the pruned K-pWL is defined as follows:

χl,t
v = Hash(χl−1(v), {{χl−1(u)|u ∈ N t

path(v)}})(l ≤ t ≤ K) (27)

χl
v = Hash({{χl,k(v)|k = l, · · ·K}}) (28)

else when l ≥ K, the K-path pruned Message passing framework can be defined as follows:

H l
v = Hash(χl−1(v), {{χl−1(u)|u ∈ NK

path(v)}}) (29)

The pruned algorithm is outlined in Algorithm 6.

16

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Algorithm 6 The Pruned K-Path WL Algorithm
1: Input: Graph G = (V,E,X), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ K do
4: l = l + 1.
5: for v ∈ V do
6: for t ∈ [l,K] do
7: χl

t(v) = Hash({{χl−1(u) : u ∈ N t
path(v)}}).

8: end for
9: Xl(v) = (χl

l(v), χ
l
l+1(v), · · · , χl

K(v)).
χl(v) = Hash(χl−1(v),Xl(v)).

10: end for
11: end while
12: while l ≤ L do
13: l = l + 1.
14: for v ∈ V do
15: χl(v) = Hash(χl−1(v), {{χl−1(u) : u ∈ NL

path(v)}}).
16: end for
17: end while
18: Output: Final labels χL(v) for all v ∈ V .

Compared to the standard K-Path WL algorithm, the pruned version achieves greater computational efficiency by dynami-
cally adjusting the paths considered at each iteration. This reduction in complexity makes it more suitable for large-scale
graphs while preserving much of the discriminative power of the original algorithm.

C.3. The Pruned K-Hop Weisfeiler-Lehman Algorithm (PR K-Hop WL)

To further enhance computational efficiency, a pruned version of the K-hop WL algorithm is introduced. Unlike the standard
K-hop WL, the pruned version aggregates features from the l-hop neighbors N l

hop to the K-hop neighbors NK
hop at the lth

layer (l ≤ K), rather than from the 1-hop neighbors N1
hop to the K-hop neighbors NK

hop. Let χl
v denote the feature of node

v at the lth layer. When l ≤ K, the pruned K-hWL is defined as follows:

χl,t
v = Hash(χl−1(v), {{χl−1(u)|u ∈ N t

hop(v)}})(l ≤ t ≤ K) (30)

χl
v = Hash({{χl,k(v)|k = l, · · ·K}}) (31)

else when l ≥ K, the K-Hop WL can be defined as follows:

H l
v = Hash(χl−1(v), {{χl−1(u)|u ∈ NK

hop(v)}}) (32)

The pruned algorithm is outlined in Algorithm 7.

17

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Algorithm 7 The Pruned K-Hop WL Algorithm
1: Input: Graph G = (V,E), number of iterations L.
2: Initialization: ∀v ∈ V , χ0(v), l = 0.
3: while l ≤ K do
4: l = l + 1.
5: for v ∈ V do
6: for t ∈ [l,K] do
7: χl

t(v) = Hash({{χl−1(u) : u ∈ N t
hop(v)}}).

8: end for
9: Xl(v) = (χl

l(v), χ
l
l+1(v), · · · , χl

K(v)).
χl(v) = Hash(χl−1(v),Xl(v)).

10: end for
11: end while
12: while l ≤ L do
13: l = l + 1.
14: for v ∈ V do
15: χl(v) = Hash(χl−1(v), {{χl−1(u) : u ∈ NL

hop(v)}}).
16: end for
17: end while
18: Output: Final labels χL(v) for all v ∈ V .

Compared to the standard K-Hop WL algorithm, the pruned version significantly reduces computational overhead by dynam-
ically adjusting the neighborhoods considered during early iterations. This approach maintains much of the expressiveness
of the original algorithm while being more scalable for large graphs.

C.4. Process of WL Test, Pruned WL Test and Pruned 2-hop WL Test on Long-refinement Graph

Long-refinement graphs are a class of graphs for which the WL test does not terminate until it has iterated |V | − 1 times. As
shown in Table 7, the adjacency lists of the long-refinement graph G are provided. The Figures 4 and 5 illustrate the process
of the WL test and the pruned WL test applied to graph G. During these processes, the WL test requires 11 iterations to
terminate, whereas the pruned WL test and 2-Hop WL test only needs 4 iterations to achieve the same result as the WL test.
Therefore, the pruned WL test and 2-Hop WL test is more efficient than the standard WL test.

v N(v) v N(v)
0 1 6 3,7,8,9,11
1 0,2,3,4,5 7 2,6,8,9,10
2 1,3,5,7,10 8 5,6,7,10,11
3 1,2,4,6,10 9 4,6,7,10,11
4 1,3,5,9,11 10 2,3,7,8,9
5 1,2,4,8,11 11 4,5,6,8,9

Table 7. Adjacency lists of long-refinement graph G

The Figure 6 illustrates the process of the pruned WL test applied to graph G. The results illustrate the process of the WL test
and the pruned 2-hop WL test applied to graph G. During these processes, the WL test requires 11 iterations of aggregation
and combination to terminate, whereas the pruned 2-hop WL test only needs 11 iterations of aggregation and 4 iterations
of combination to achieve the same result as the WL test. Therefore, the pruned 2-hop WL test is more efficient than the
standard WL test.

D. Detail of Matrix Language
Recently, Brijder (Brijder et al., 2019) and Geerts (Geerts, 2021) proposed a new matrix language called MATLANG. Matrix
languages can be formalized as compositions of linear algebra operations. Intuitively, a linear algebra operation takes a

18

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Figure 4. Process of WL test on Long-refinement Graph

Figure 5. Process of pruned WL test on Long-refinement Graph

19

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Figure 6. Process of pruned 2-hop WL test on Long-refinement Graph

number of matrices as input and returns another matrix (vector or scalar). More specifically, for linear algebra operations
op1, . . . , opk, the corresponding matrix query language is denoted by ML(op1, . . . , opk). This language includes various
operations on matrices and establishes explicit connections between specific sets of operations and the WL tests, including
the 1-WL and 3-WL tests. The expressive power of MATLANG varies depending on the operations included in each set.

Definition D.1. ML(L) is a matrix language with an allowed set of operations L = {op1, . . . , opn}, where opi ∈
{.,+,⊤ ,diag, tr,1,⊙,×, f}. The possible operations are introduced in the Appendix.

Definition D.2. A scalar sentence e(X) ∈ R in ML0(L) consists of any possible consecutive operations in L being applied
to a given matrix X , resulting in a scalar value. Similarly, a vector sentence e(X) ∈ Rn in ML1(L) results in a vector, and
a matrix sentence e(X) ∈ Rn×n in ML2(L) results in a matrix.

For example, if A is the adjacency matrix of a graph G, then e(A) = 1⊤A1 is a scalar sentence in ML0(L) with
L = {.,⊤ ,1}, computing the number of edges in G. Additionally, e(A) = A1 is a vector sentence in ML1(L), computing
the number of neighbors for each node in G. Geerts (Geerts, 2021) demonstrated that the languages L1,L2, and L3 can
characterize the WL test. The results are summarized as follows:
Remark D.3. Two adjacency matrices are indistinguishable by the 1-WL test if and only if e(AG) = e(AG′) for all
e ∈ ML0(L1), where L1 = {.,⊤ ,1,diag}. Hence, all possible scalar sentences in ML0(L1) are identical for 1-WL
equivalent adjacency matrices. Thus, G ≡1−WL G′ ↔ AG ≡ML0(L1) AG′ . (See Theorem 7.1 in (Geerts, 2021).)
Remark D.4. Denote the operation ⊙v as pointwise vector multiplication on vector sentences. The expressive power of
ML0(L1) is equivalent to that of ML0(L5), where L5 = {.,⊤ ,1,⊙v}. Thus, for any two adjacency matrices AG and
AG′ , they are indistinguishable by all possible scalar sentences in ML0(L1) if and only if they are indistinguishable by all
possible scalar sentences in ML0(L5): AG ≡ML0(L5) AG′ ↔ AG ≡ML0(L1) AG′ . (see Proposition 8.1 in (Geerts, 2021))
Remark D.5. Two adjacency matrices are indistinguishable by the 3-WL test if and only if they are indistinguishable by
any scalar sentence in ML0(L3), where L3 = {.,⊤ ,1,diag, tr,⊙}. Thus, G ≡3−WL G′ ↔ AG ≡ ML0(L3)AG′ . (see
Theorem 9.2 in (Geerts, 2021))
Remark D.6. Enriching the operation set to L+ = L∪{+,×, f}, where L ∈ {L1,L2,L3}, does not improve the expressive
power of the language. Thus, AG ≡ML0(L) AG ↔ AG ≡ML0(L+) AG. (see Proposition 7.5 in (Geerts, 2021))

For any two vectors H1, H2 ∈ Rn, we denote H1 ∼σ H2 if there exists a permutation σ such that ∀i ∈ [1, n], H1(i) =
H2(σ(i)). For any two matrices A1 and A2, we denote A1 ∼σ A2 if there exists a permutation σ such that ∀i, j ∈ [1, n],
A1(i, j) = A2(σ(i), σ(j)). We denote AG ≡ML1(L) AG′ if there exists a permutation σ such that for all e ∈ ML1(L),
e(AG) ∼σ e(AG′). Similarly, we denote AG ≡ML2(L) AG′ if there exists a permutation σ such that for all e ∈ML2(L),
e(AG) ∼σ e(AG′). In this research, we propose the language ML(L4) with L4 = {.,⊤ ,1,diag,⊙} and prove the
equivalence between ML(L4) and ML(L3) as follows:

Lemma D.7. For all i ∈ {0, 1, 2}, AG ≡MLi(L3) AG ↔ AG ≡MLi(L4) AG′ .

Lemma D.8. For all L ∈ {L1,L2,L3,L4}, AG ≡ML2(L) AG′ → AG ≡ML1(L) AG′ → AG ≡ML0(L) AG′ .

Proofs are provided in the Appendix E.

The list of operations in Table 8 differs slightly from the list presented in Brijder Brijder et al., 2019: Instead of denoting

20

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Cm×n e(ν(X))∗ = A∗ ∈ Cn×m (A∗)ij = Aji

one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Cm×n 1(e(ν(X)) = 1 ∈ Cm×1 1i = 1
diagonalization of a vector (op(e) = diag(e))

e(ν(X)) = A ∈ Cm×1 diag(e(ν(X)) = diag(A) ∈ Cm×m diag(A)ii = Ai,
diag(A)ij = 0, i ̸= j

matrix multiplication (op(e1, e2) = e1 ·e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X)) ·e2(ν(X)) = C ∈ Cm×o Cij =
∑n

k=1 Aik ×Bkje2(ν(X)) = B ∈ Cn×o

matrix addition (op(e1, e2) = e1 + e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X)) + e2(ν(X)) = C ∈ Cm×n Cij = Aij +Bije2(ν(X)) = B ∈ Cm×n

scalar multiplication (op(e) = c× e, c ∈ C)
e(ν(X)) = A ∈ Cm×n c× e(ν(X)) = B ∈ Cm×n Bij = c×Aij

trace (op(e) = tr(e))
e(ν(X)) = A ∈ Cm×m tr(e(ν(X)) = c ∈ C c =

∑m
i=1 Aii

pointwise vector multiplication (op(e1, e2) = e1 ⊙v e2)
e1(ν(X)) = A ∈ Cm×1

e1(ν(X))⊙v e2(ν(X)) = C ∈ Cm×1 Ci = Ai ×Bie2(ν(X)) = B ∈ Cm×1

pointwise matrix multiplication (Schur-Hadamard) (op(e1, e2) = e1 ⊙ e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X))⊙ e2(ν(X)) = C ∈ Cm×n Cij = Aij ×Bije2(ν(X)) = B ∈ Cm×n

pointwise function application (op(e1, . . . , ep) = apply[f](e1, . . . , ep)), f : Cp → C ∈ Ω
e1(ν(X)) = A(1) ∈ Cm×n

apply[f]
(
e1(ν(X)), . . . , ep(ν(X))

)
= B ∈ Cm×n Bij = f(A

(1)
ij , . . . , A

(p)
ij)...

ep(ν(X)) = A(p) ∈ Cm×n

Table 8. Linear algebra operations supported in MATLANG and their semantics. In the last column, ¯, + and × denote complex
conjugation, addition and multiplication in C, respectively. Brijder et al., 2019

ML(op1, . . . , opk) as every matrix language which returns vector, we denote ML2(op1, . . . , opk) or ML1(op1, . . . , opk)
as every matrix language which returns another matrix (vector or scalar).

E. Materials Of Proofs
E.1. Proof of lemma D.7

Lemma E.1. For all i ∈ {0, 1, 2}, AG ≡MLi(L3) AG ↔ AG ≡MLi(L4) AG′ .

Proof. Note that equation
e(A) = 1T ·(A⊙ diag(1)) ·1 = tr(A). (33)

Hence we have e ∈ML0(L4) that e(A) = tr(A), which implies ∀i ∈ {0, 1, 2},MLi(L)3 = MLi(L4).

E.2. Proof of Lemma D.8

Lemma E.2. For all L ∈ {L1,L2,L3,L4}, AG ≡ML2(L) AG′ → AG ≡ML1(L) AG′ → AG ≡ML0(L) AG′ .

Proof. Since every vector or scalar value is generated by operation {.,+,⊤ , diag, tr,1,⊙,×, f}. Hence if ∀op ∈
{.,+,⊤ , diag, tr,1,⊙,×, f}, op is permutation σ preserved, then we can prove the lemma.

• Multiplication operation · :

21

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

For all vectors H1, H2, T1, T2 ∈ Rn, if H1 ∼σ H2 and T1 ∼σ T2, then

H1 ·T1 =
∑
i

H1(i) ·T1(i) =
∑
i

H2(σ(i)) ·T2(σ(i)) =
∑
i

H2(i) ·T2(i) = H2 ·T2. (34)

For all vectors H1, H2 ∈ Rn and matrices A1, A2 ∈ Rn×n, if H1 ∼σ H2 and A1 ∼σ A2, then

A1 ·H1(i) =
∑
j

A1(i, j) ·H1(j) =
∑
j

A2(σ(i), σ(j)) ·H2(σ(j)) = A2 ·H2(σ(i)). (35)

For all matrices A1, A2, B1, B2 ∈ Rn×n, if A1 ∼σ A2 and B1 ∼σ B2, then

A1 ·B1(i, j) =
∑
k

A1(i, k) ·B1(k, j) =
∑
k

A2(σ(i), σ(k)) ·B2(σ(k), σ(j)) = A2 ·B2(σ(i), σ(j)). (36)

Hence multiplication operation · is σ preserved.

• Operation trace tr:

For all matrices A1, A2 ∈ Rn×n, if A1 ∼σ A2, then

tr(A1) =
∑
i

A1(i, i) =
∑
i

A2(σ(i), σ(i)) = tr(A2) (37)

by lemma D.7, there’s the corresponding indicator vector of tr, e(A) = (A⊙ diag(1)) ·1, that e(A1) ∼σ e(A2)→
tr(A1) = tr(A2), hence the trace operation tr is σ-preserved.

• Pointwise matrix (vector) multiplication (Schur-Hadamard) ⊙:

For all matrices A1, A2, B1, B2 ∈ Rn×n, if A1 ∼σ A2 and B1 ∼σ B2, then

A1 ⊙B1(i, j) = A1(i, j)⊙B1(i, j) = A2(σ(i), σ(j))⊙B2(σ(i), σ(j)) = A2 ⊙B2(σ(i), σ(j)). (38)

For all vectors H1, H2, T1, T2 ∈ Rn, if H1 ∼σ H2 and T1 ∼σ T2, then

H1 ⊙ T1(i) = H1(i)⊙ T1(i) = H2(σ(i))⊙ T2(σ(i)) = H2 ⊙ T2(σ(i)). (39)

hence the pointwise matrix (vector) multiplication operation ⊙ is σ-preserved.

• Operation of the one-vector 1: For all vectors H1, H2 ∈ Rn, if H1 ∼σ H2, then:

1(i) = 1 = 1(σ(i)). (40)

Hence the operation of the one-vector 1 is σ-preserved.

It’s obvious that operation {+,⊤ ,×, f} is σ-preserved, hence AG ≡ML2(L) AG′ → AG ≡ML1(L) AG′ → AG ≡ML0(L)

AG′ .

E.3. Proof of Lemma 4.2

Lemma E.3. Given a positive integer sequence ak, Sk =
∑

t∈[k] at, if Sk > 2k − 1, then ak is not viewable.

Proof. We first will prove Sn ≤ 2n − 1: when n = 1, if an = 1, then Sn = 1 ≤ 21 − 1. If an ̸= 1, then Sn = 0 ≤ 21 − 1.
Hence the lemma is true when n = 1.

Assume that the lemma is not true, hence there is a positive integer sequence atn and a positive integer nt, where atn
′s length

of view St
n ≥ 2n. Define a vector Xnt ∈ {0, 1}nt(Xnt

̸= {0}nt). We can establish a mapping f : {0, 1}nt −→ N:

f(Xnt) =
∑

1≤i≤nt,Xnt (i)=1

ati. (41)

22

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

By the definition of the viewed integer sequence, ∀1 ≤ l ≤ Sn, there exists an Xnt ∈ {0, 1}nt(Xnt
̸= {0}nt) such that

f(Xnt) = l. Since St
n ≥ 2n, the cardinality of the image of f : |Im(f)| ≥ 2n. However, on the other hand, the cardinality

of f ’s domain: |{0, 1}nt\{0}nt | = 2n − 1, which induces a paradox because the cardinality of the image of the mapping is
less than or equal to the cardinality of its domain. Hence, ∀n ∈ N+, Sn ≤ 2n − 1.

We now prove the equation holds iff an = 2n−1: ∀1 ≤ l ≤ 2n−1, l has a corresponding vector Xn ∈ {0, 1}n(Xn ̸= {0}n),
such that f(X) = l, hence the 2n−1′s length view is 2n − 1. If there is another positive integer sequence bn, its length view
S′
n is 2n − 1, n0 is the smallest positive integer such that an0 ̸= bn0 , if bn0 ≤ 2n0−1 − 1, then∑

i∈{1,··· ,n0}

bi ≤ 2n0 − 2. (42)

Hence the length of the view of bn, S′
n0
≤ 2n0 − 2. If bn0 ≥ 2n0−1 + 1, since∑

i∈{1,··· ,n0}

bi ≥ 2n0 , (43)

if S′
n0

= 2n0 − 1, the cardinality of the image of f : |Im(f)| = 2n0 − 1 +
∣∣∣∑i∈{1,··· ,n0} bi

∣∣∣ ≥ 2n0 , but the cardinality of
f ’s domain: |{0, 1}n0\{0}n0 | = 2n0 − 1, which induces a paradox because the cardinality of the image of f exceeds the
cardinality of its domain. Hence the equation holds iff an = 2n−1.

E.4. Proof of Theorem 4.1

Theorem E.4. Given a positive integer sequence ak and a pair of graphs(G,G′), Sk =
∑

t∈[k] at, if ak is viewable, then

∀l ∈ N+ GI lak−walk ⊆ GISl

WL.

Proof. Since the sentences in ML1(L1) produce a scalar value which can be reached in the graph readout layer as a sum
thanks to 1⊤H(lend), we need to show that if ak is viewable, the eq.8 can produce all possible vectors in ML1(L1) on the
last node representation layer. Since every vector in ML1(L1) can be formed as:

Ak1, Aei, diag(ei)ej(ei, ej ∈ML1(L1)). (44)

We can define the degree of those vectors :

deg(Ak1) = k, deg(Akei) = k+deg(ei), deg(diag(ei)ej) = max(deg(ei), deg(ej))(ei, ej ∈ML1(L1), k ∈ N). (45)

Then we have the following conclusion:

Lemma E.5. Given two adjacent matrices A and A, k ∈ N+, if there’s permutation σ, ∀1 ≤ t ≤ k, At1 ∼σ A′t1, then
∀e ∈ {e|e ∈ML1(L1), deg(e) ≤ k}, then e(A) ∼σ e(A′).

Proof. The lemma holds if e = Ak1, since every vectors in ML1(L1) can be formed as:

Ak1, Aei, diag(ei)ej(ei, ej ∈ML1(L1)). (46)

Notice diag(ei)ej is equivalent to ei ⊙ ej , therefore every vectors e ∈ML1(L1) can be reformed as:

t∏
i=1

⊙v(A
ki1). (47)

Where ki ∈ N+. By the definition of degree, degree(
∏m

i=1⊙(Aki1)) = max{ki|i ∈ [1,m]}. Let k = max{ki|i ∈ [1,m]}.
Then if ∀1 ≤ t ≤ k, At1 ∼σ A′t1, then ∀1 ≤ q ≤ n

t∏
i=1

Aki1(q) =

t∏
i=1

A′ki1(σ(q)). (48)

Therefore,∀e ∈ {e|e ∈ML1(L1), deg(e) ≤ k}, e(A) ∼σ e(A′). Thus, we have proved the lemma.

23

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Lemma E.6. Given a pair of unlabeled graphs (G,G′), A and A′ are their corresponding adjacency matrices, then if
there’s permutation σ, ∀e ∈ML1(L1) that deg(e) ≤ k, e(A) ∼σ e(A′), then the kth feature Hk

G ∼σ Hk
G′ .

Proof. Since the pair of unlabeled graphs are unlabeled, their nodes’ feature can be represented as 1, hence when k=1, the
feature is updated as following:

H1 = MLP (1, A ·1). (49)

Hence if there’s permutation σ, ∀e ∈ML1(L1) that deg(e) ≤ 1, e(A) ∼σ e(A′), then H1
G ∼σ H1

G′ . Assume it holds when
k = k0, the feature is updated as following:

Hk0+1 = MLP (Hk0 , A ·Hk0). (50)

Since by assumption if ∀e ∈ ML1(L1) that deg(e) ≤ k0, e(A) ∼σ e(A′), then we have Hk0

G ∼σ Hk0

G′ . Notice ∀e ∈
ML1(L1) that deg(e) ≤ k0, deg(Ae) ≤ k0 + 1, hence if ∀e ∈ ML1(L1) that deg(e) ≤ k0 + 1, e(A) ∼σ e(A′), then
AHk0

G ∼σ AHk0

G′ . Since MLP(WL test) can be regarded as apply[f], by remark D.6, Hk0+1
G ∼σ Hk0+1

G′ . The lemma holds
when k = k0 + 1.

Now we can prove theorem 4.1: by lemma E.5 and lemma E.6, to prove GItak−walkWL ⊆ GISt

WL, we only need to prove
that ∀Ai1(0 ≤ i ≤ St), there’s ak − walk GNN with t layers is able to generate:

When t = 1, if a1 ̸= 1 then S1 = 0, in this case, ak − walk GNN is able to generate vector 1. if a1 ̸= 1 then S1 = 1, in
this case, ak − walk GNN is able to generate vector 1 and A1. Hence it theorem 4.1 holds when t1.

Assume 4.1 holds when t = t0. Then there’s ak−walk GNN with t0 layers is able to generate vector Ai1(0 ≤ i ≤ St0). By
lemma 4.2, ∀j, St0 + 1 ≤ j ≤ St0+1, there’s subset of N+: L ⊆ {1, · · · , t0, t0 + 1}, where t0 + 1 ∈ L, that

∑
l∈L al = j.

Since 0 ≤ j − at0+1 ≤ St0 , by assumption, there’s ak − walk GNN with t0 layers which is able to generate vector
Aj−at0+11. By eq.7

Ht0+1 = MLP (Ht0W (t0+1,1) +Aat0+1 ·Ht0W (t0+1,2)). (51)

Hence there’s ak − walk GNN with t0 + 1 layers which is able to generate vector Aat0+1Aj−at0+11 = Aj1. Hence
∀Ai1(0 ≤ i ≤ St), there’s ak − walk GNN with t layers is able to generate, therefore GItak−walkWL ⊆ GISt

WL. Now we
have proved theorem 4.1.

E.5. Proof of Theorem 4.3

Theorem E.7. Given a positive integer sequence ak, if ak is not viewable, then there’s a pair of non-isomorphic graphs
(G,G′) that (G,G′) ∈ GI lak−walkWL but (G,G′) /∈ GISl

WL.

Figure 7. (G,G′) ∈ GISn
WL while (G,G′) /∈ GInan−walk WL

Given a positive integer sequence an, Sn is the length view of an. If there’s positive integer S′
n > Sn that can be formed as∑

t∈T at where T is subset of integer set {1, 2, · · · , n}, observe that the counterexample graphs G and G′ in figure 7, both
G and G′ have 4S′

n nodes, the edge set of G is E(G) = {(i, i+1)|i ∈ [1, 4S′
n − 1]} ∪ {(4S′

n − 2, 1)} ∪ {(4S′
n, 2S

′
n − 2)}

and the edge set of G′ is E(G) = {(i, i+ 1)|i ∈ [1, 4S′
n − 1]} ∪ {(4S′

n − 2, 1)} ∪ {(4S′
n, 2S

′
n − 1)}.

24

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Lemma E.8. (G,G′) ∈ GISn

WL while (G,G′) /∈ GInan−walk WL.

Proof. We first will prove (G,G′) ∈ GISn

WL: Let labelnWL(i) denotes the label node i gets at nth iteration, We define the
following permutation σ mapping nodes from G to G′ such as:

σ(i) =

i if i ∈ [1, S′

n] ∪ [3S′
n − 1, 4S′

n]

i+ 1 if i ∈ [S′
n + 1, 3S′

n − 3]

S′
n + 1 if i = 3S′

n − 2

(52)

In this way, we will prove that unravelling tree of node i in G and node σ(i) in G′ at depth S′
n − 1 are isomorphic:

Let dis(v, u) be the distance between node v and u, the k-length distance induced graph of graph G, denoted as G[i, k],
whose node set is V(i,k) = {u ∈ V |dis(v, u) ≤ k} and edge set is E(i,k) = {{u,w} ∈ E|dis(v, u) ≤ k, dis(v, w) ≤ k}.
Let di = min(dis(i, 4S′

n − 1), dis(i, 4S′
n)) − 1, then as for node i ∈ [1, 4S′

n − 2]/{S′
n, 3S

′
n − 1, 3S′

n − 2, 3S′
n − 3} in

graph G, i′s (S′
n − 1)-length distance induced graph G[i, S′

n − 1] is isomorphic to graph H in figure which is a 2S′
n-length

path with an additional node adjacent to one of the nodes in path which is di-length distant from node i.

As for node σ(i)′s(i ∈ [1, 4S′
n − 2]/{S′

n, 3S
′
n − 1, 3S′

n − 2, 3S′
n − 3}) (S′

n − 1)-length distance induced graph in G′,
G′[σ(i), S′

n − 1] is isomorphic to G[i, S′
n − 1], therefore their unravelling tree: Unr

S′
n−1

G (i) and Unr
S′
n−1

G′ (σ(i)) are
isomorphic, node i and σ(i) get same label at S′

n − 1
th iteration in WL test.

For node i ∈ {S′
n, 3S

′
n− 1, 3S′

n− 2, 3S′
n− 3} in graph G, their (S′

n− 1)-length distance induced graphs: G[i, S′
n− 1], are

a 2S′
n-length paths, while their corresponding node σ(i)′s (S′

n − 1)-length distance induced graphs are also a 2S′
n-length

paths, therefore their unravelling tree: Unr
S′
n−1

G (i) and Unr
S′
n−1

G′ (σ(i)) are isomorphic, node i and σ(i) get same label at
S′
n − 1

th iteration in WL test.

For node i ∈ {4S′
n − 1, 4S′

n} in graph G, their (S′
n − 1)-length distance induced graphs: G[i, S′

n − 1], are a 2S′
n − 2-

length paths with additional node i adjacent to the middle node in path. Also, their corresponding node σ(i)′s (S′
n − 1)-

length distance induced graphs are also are isomorphic to G[i, S′
n − 1], therefore their unravelling tree: Unr

S′
n−1

G (i) and

Unr
S′
n−1

G′ (σ(i)) are isomorphic, node i and σ(i) get same label at S′
n − 1

th iteration in WL test.

In conclusion, every node i ∈ [1, 4Sn], i and σ(i) get same label at S′
n − 1

th iteration in WL test, therefore (G,G′) ∈
GI

S′
n−1

WL , since Sn ≤ S′
n − 1, by the definition of WL test we have (G,G′) ∈ GI

S′
n−1

WL .

Next we will prove that (G,G′) /∈ GInan−walk WL: in Wl test only node S′
n, 3S

′
n−1, 3S′

n−2, 3S′
n−3 in graph G and node

S′
n, S

′
n+1, 3S′

n−1, 3S′
n−2 in graph G′ gets the same label at iteration S′

n−1. By theorem 4.1, GInan−walk WL ⊆ GISn

WL,
hence if there’s permutation σ(from G to G′), then σ will map S′

n to S′
n, S

′
n+1, 3S′

n−1 or 3S′
n−2. On the other hand, node

S′
n
′
s S′

n-walk neighbor NS′
n

walk(S
′
n) can be decomposed into two parts:NS′

n

path(S
′
n) and N

S′
n

walk(S
′
n)/N

S′
n

path(S
′
n), while the

second part is determined by N l
walk(l ≤ S′

n−1). Since S′
n in graph G has the same label as node S′

n, S
′
n+1, 3S′

n−1, 3S′
n−2

in graph G′, their cardinality of second part |NS′
n

walk(S
′
n)/N

S′
n

path(S
′
n)| are equal, however cardinality of node S′

n
′
s first part

equal to 4: |NS′
n

path(S
′
n)| = 4 in graph G, while S′

n, S
′
n + 1, 3S′

n − 1, 3S′
n − 2 equal to 2 in graph G′, hence there’s no node

in graph G′ get the same label at nth iteration in an-walk WL test, hence (G,G′) /∈ GInan−walk WL.

E.6. Proof of Theorem 4.4

Theorem E.9. Given a pair of graphs (G,G′) and K ∈ N+, then the expressiveness of pruned K-Path framework is as
powerful as K-Path framework. In other word, L ∈ N+ GILPRK−P = GILK−P

To prove theorem 4.4, we establish a connection with ML1(L1), we now extend the definition of matrix language
e ∈ML1(L1): let P[K] be the set of k-path matrices as P[K] = {Pk|k ∈ [0,K]}, and vector sentence e(P[K]) are formed
by multiple operation on e(X[K]) as follow:

e := {X1, · · · , Xk}| op1
(
e1, . . . , ep1

)
| · · · | opk

(
e1, . . . , epk

)
(53)

where {X1, · · · , Xk} denotes a set of matrix variables from an infinite set, serving as inputs to expressions, and pi denotes
the number of inputs required by operation opi. Therefore e(P[K]) denotes the comprehensive operation on Pk. For example:

25

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

let e(P[2]) = P21 + P11 = P 2
1 1, then vector sentence e(P[2]) denotes each node’s the number of 2-length walks. We

denote the equivalence between two path matrices set P[K] and P ′
[K] as P[K] ≡ML1(L1) P

′
[K], iff there’s permutation σ,

∀e ∈ML1(L1), e(P[K]) ∼σ e(P ′
[K]).

The proof is quite lengthy so we first describe its structure.

(1) First, we prove that P[K] ≡ML1(L1) P
′
[K] is equivalent to G ≡K−P G′.

(2) Second, we find the equivalent matrix language ML(𭟋L
(K,1)) for pruned K-Path framework, where ML(𭟋L

(K,K)) is
equal to ML1(L1).

(3) Finally, we prove the equivalent expressive power for matrix language ML(𭟋L
(K,1)) and ML(𭟋L

(K,K)), therefore K-Path
and its pruned frameworks have the same expressive power.

Regarding the connection between matrix language ML1(L1) and the expressive power of the K-Path framework, we have
the following result:

Theorem E.10. P[K] ≡ML1(L1) P
′
[K] ↔ G ≡K−P G′

Proof. To prove theorem E.10, we will prove any labelli in K-path WL test will has a corresponding index vector sentence
eli(P[K]) ∈ML1(L3) that eli(P[K]) = 1 iff node v gets labeli at lth iteration.

Let LABELl = {labelli} be the set of label nodes get at lth layer in K-path message passing framework’s corresponding
K-path WL test and |LABELl| = κl, hence if labelli(vi) = labelli(vj) then node vi and vj will gets the same feature for any
l-layers K-path message passing framework. If ∀labelli there’s corresponding sentence eli ∈ ml1(L3) that eli(P[K])(i) = 1

if and only if node vi gets labelli at lth iteration, then we can prove the theorem

First of all, since every node is not labeled, we denote the expression e(0)(X) := 1(X) as nodes’ corresponding sentence.
Next, when l = L, suppose by induction that we can have all labelLi

′
s corresponding sentence eLi (P[K]), we will show

that ML1(L3) is able to generate labelL+1
i

′
s corresponding index vector sentence eL+1

i (P[K]). To this aim, we consider
expressions:

mL+1
(i,k)(P[K]) = Pk ·eLi (P[K])

(
1 ≤ k ≤ K

)
. (54)

The process of eq.54 is similar to the first equation in eq.6, ∀r, q ∈ [1, n], we have mL+1
(i,k)(P[K])(r) = mL+1

(i,k)(P[K])(q) iff

ML+1,k
vr

= ML+1,k
vq . Let DL+1,k

i be the set of values occurring in the column vector mL+1
(i,k)(P[K]), for i = 1, 2, · · · , κL.

We can compute, by means of an ML1(L+) expression, an indicator vector which identifies the rows for ML+1,k
v that hold

a specific value c ∈ DL+1,k
i . This expression is similar to the one used in the proof of theorem cite. More precisely, we

consider expressions:

m(L+1,i,k)
=c (P[K]) =

(
1∏

c′∈DL+1,k
i ,c′ ̸=c(c− c′)

)
×
(∏

c′∈DL+1,k
i ,c′ ̸=c

diag
(
mL+1

(i,k)(P[K])− c′ × 1(P[K])
))
·1(P[K]). (55)

for the current iteration L + 1 and value cki ∈ DL+1,k
i . Given these expressions, one can now easily obtain an indicator

vector identifying all labels in ML+1,k
v . Since m

(L+1,i,k)

=cki
(P[K]) and eLi (P[K]) are all 0 − 1 vectors, to have an indicator

vector of HL+1,k
v , define the equation as follow:

m
(L+1,i,k)

=cki ,j
(P[K]) = diag(m

(L+1,i,k)

=cki
(P[K])) ·eLj (P[K])

(
cki ∈ DL+1,k

i , j ∈ [1, κL]
)
. (56)

Then m
(L+1,i,k)

=cki ,j

(
P[K]

)
(r) = 1 iff in K-path WL test node vr get labelL+1

k,j at L + 1 layer for k-path feature. Hence to

have an indicator vector of labelL+1, we define the equation as follow:

26

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

m
(L+1,i)

=c1i ,···cKi ,j
(P[K]) =

(∏
k∈[1,K]

diag(m
(L+1,i,k)

=cki ,j
(P[K]))

)
·1(P[K])

(
cki ∈ DL+1,k

i , j ∈ [1, κL]

)
. (57)

Hence if m(L+1,i)

=c1i ,···cKi ,j
(P[K])(r) = m

(L+1,i)

=c1i ,···cKi ,j
(P[K])(q) = 1 iff node vr and vq get the same label at iteration L + 1.

Hence let WL+1 = |{m(L+1,i)

=c1i ,···cKi ,j
(P[K])|cki ∈ DL+1,k

i , j ∈ [1, κL]}| and κL+1 = |WL+1|, then we have already construct

the L + 1th layer’s the set of vector indicator eL+1
i (1 ≤ i ≤ κL+1). Since every indicator eL+1

i ∈ ML1(L1), if there’s
permutation σ, ∀e ∈ ML1(L1), e(P[K]) ∼σ e(P ′

[K]), then ∀l ∈ N+ and i ∈ κl, {labelli(v)|v ∈ V } = {labelli(v′)|v′ ∈
V ′}, therefore G ≡K−hop G′. Now we have proved the P[K] ≡ML1(L1) P

′
[K] → G ≡K−path G′.

To prove P[K] ≡ML1(L1) P ′
[K] ← G ≡K−path G′., we can derive the proposition from the proof of theorem 4.1 as

following:

Proposition E.11. ∀e ∈M1(L1), e(P[K]) has a equivalent form as

e(P[K]) =

(∏
(i1,···iK)∈NK

+

diag
(
(
∏

k∈[1,K]

P ik
k) ·1

))
·1 (58)

Therefore since the pair of unlabeled graphs are unlabeled, their nodes’ feature can be represented as 1, hence when l=1, the
feature is updated as following:

H1,k = MLP (1, Pk ·1) (59)

hence if there’s permutation σ, ∀e ∈ML1(L1) that deg(e) ≤ 1, e(P[K]) ∼σ e(P ′
[K]), then H1

G ∼σ H1
G′ . Assume it holds

when l = L, the feature is updated as following:

HL+1,k = MLP (HL,k, Pk ·HL,k) (60)

since by assumption if ∀e ∈ ML1(L1) that deg(e) ≤ L, e(P[K]) ∼σ e(P ′
[K]), then we have HL

G ∼σ HL
G′ . Notice

∀e ∈ML1(L1) that deg(e) ≤ k0, then deg(Pk ·e) ≤ L+1, hence if ∀e ∈ML1(L1) that deg(e) ≤ L+1, e(A) ∼σ e(A′),
then Pk ·HL

G ∼σ P ′
k ·HL

G′ . Since MLP(WL test) can be regarded as apply[f], by remark D.6, HL+1,k
G ∼σ HL+1,k

G′ , therefore
HL+1

G ∼σ HL+1
G′ . The proposition holds when l = L+ 1, now we have proved P[K] ≡ML1(L1) P

′
[K] → G ≡K−path G′

To understand why this holds, consider the relationship between node configurations and the first layer of message passing.
In the first layer of K-Hop message passing, each node aggregates information from its 1-path neighbors to its K-path
neighbors. Since we assume no edge features and identical node features across the graph, the GNNs will only consider the
local structural information of nodes, which corresponds to Pk1(1 ≤ k ≤ K). After the first iteration, all this information is
encoded into node features and aggregated through different types of neighbors. Hence P[K] ≡ML1(L1) P

′
[K] implies that all

the structural information extracted by the K-Path message passing framework is equivalent, leading to G ≡K−path G′.

We now present the equivalence in expressive power between the pruned K-Path framework and the original K-Path
framework. By Theorem E.10, to prove this equivalence, we need to show that G ≡REK−path G′ → P[K] ≡ML1(L1) P

′
[K].

Ivan (Jokić & Van Mieghem, 2022) has proved that k-path matrix Pk can be generated by L4 = {.,⊤ ,1, diag,⊙}, the
conclusion can be stated as follow:

Theorem E.12 ((Jokić & Van Mieghem, 2022)). ∀k ∈ N+, A is the adjacent matrix in graph G,there’s ek ∈ML2(L4),
that ek(A) = Pk.

By theorem E.10, to prove theorem 4.4, we only need to prove that G ≡PRK−P G′ → P[K] ≡ML1(L1) P
′
[K], hence we

have following conclusion:

27

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Lemma E.13. Let P[K] and P ′
[K] be two set of k−path matrices(1 ≤ k ≤ K), if there’s a set of vector sentences

E1 ⊂ ML1(L1) = {.,⊤ ,1, diag} and vector sentence e1 ∈ ML1(L1) = {.,⊤ ,1, diag}, if there’s permutation σ,
∀e′ ∈ E1 e

′(P[K]) ∼σ e′(P ′
[K]) will imply e1(P[K]) ∼σ e1(P

′
[K]), then ∀e2 ∈ ML2(L1), if there’s permutation σ,

∀e′ ∈ E1

(
e2(P[K]) ·e′(P[K])

)
∼σ

(
e2(P

′
[K]) ·e

′(P ′
[K])

)
will imply

(
e2 ·(P[K])e1(P[K])

)
∼σ

(
e2(P

′
[K]) ·e1(P

′
[K])

)

Proof. By the condition, there’s function f , e1 = f(e′1, · · · , e′s),(|E1| = s, ei ∈ E1), hence ∀e2 ∈ ML2(L1),
e2 ·e1 = e2 ·f(e′1, · · · , e′s), therefore ∀P[K], P

′
[K], if there’s permutation σ, ∀e′ ∈ E1,

(
e2(P[K]) ·e′1(P[K])

)
∼σ(

e2(P
′
[K]) ·e

′
1(P

′
[K])

)
then

(
e2(P[K]) ·e1(P[K])

)
∼σ

(
e2(P

′
[K]) ·e1(P

′
[K])

)
.

Lemma E.13 for example, since P 2
1 ·1 = P2 ·1 + P1 ·1, hence if there’s permutation σ,

(
P2 ·1

)
∼σ

(
P ′
2 ·1
)

and(
P1 ·1

)
∼σ

(
P ′
1 ·1
)

hold will imply that
(
P 2
1 ·1

)
∼σ

(
P ′2
1 ·1

)
, hence if there’s permutation σ,

(
P l+1
2 ·1

)
∼σ

(
P ′l+1
2 ·1

)
and

(
P l
2 ·P1 ·1

)
∼σ

(
P ′l
2 ·P ′

1 ·1
)

can deduce that
(
P l
2 ·P ′2

1 ·1
)
∼σ

(
P ′l
2 ·P ′2

1 ·1
)

.

Same as theorem 4.1, We can define the degree of those vectors sentence:

deg(1) = 0, deg(Pi ·e) = 1 + deg(e), deg(diag(ei)ej) = max(deg(ei), deg(ej))(ei, ej ∈ L1, i ∈ [1,K]) (61)

Since by theorem E.10, P[K] and P ′
[K] are the set of k−path matrices of graph G and G′, P[K] ≡deg≤l

L1
P ′
[K] implies

G ≡l
K−hop G′, hence to prove the equivalent expressive power of K-hop framework and K-hop refined framework,

we only need to prove that K-hop refined framework is able to generate any vector sentence e(P ′
[K]) ∈ ML1(L1) =

{.,⊤ ,1, diag}(deg(e) ≤ l).

For K-hop framework and K-hop refined framework, we define the multiplicative structure of k-path-matrices set P[K],
denoted as 𭟋L

(K,t), with L layers and t-corner erased(1 ≤ t ≤ K):

P1 P2 P3 · · · Pt · · · PK P0 1st layer

P2 P3 · · · Pt · · · PK P0 2nd layer

P3 · · · Pt · · · PK P0 3th layer

...
...

...

Pt · · · PK P0 tth layer

...
...

...

Pt · · · PK P0 Lth layer

(62)

As 62 shows, when l ≤ t, at lth layer, there are path-matrices from l-path to K-path with extra 0-path matrix(equal to
identity matrix I). when l ≥ t, at lth layer, there are path-matrices from t-path to K-path with extra 0-path matrix(equal to
identity matrix I).

We define vector sentence e(P[K]) as follow: pick up one arbitrary path matrix at every layer, calculate the product of them,
then multiply the result with 1. We denote the set of those vector sentences and the pointwise multiplication of those vector
sentences

∏
⊙vei(P[K]) in 𭟋L

K,t as ML(𭟋L
(K,t)). Therefore, given two graph G and G′, denote G ≡ML(𭟋L

(K,t)
) G

′, if they

are equivalent for any sentence in ML(𭟋L
(K,t))(∀e ∈ 𭟋L

(K,t) there’s permutation σ, e(P[K]) ∼σ e(P ′
[K])), we can conclude

the following proposition from lemma E.13.

Proposition E.14. If t,K1,K1 ∈ N+, t ≤ K1 ≤ K2, then if theorem: for any pair of graph (G,G′), G ≡ML(𭟋L
(K1,t)

) G
′

holds, then theorem: for any pair of graph (G,G′), G ≡ML(𭟋L
(K2,t)

) G
′ holds.

28

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Since if t1 ≤ t2, then ML(𭟋L
K,t2

) ⊆ML(𭟋L
K,t1

). Hence, as suggested below, Proposition E.14 demonstrates that if the
equivalence between ML(𭟋L

(K,t1)
) and ML(𭟋L

(K,t2)
) holds for (t1 ≤ t2), then the equivalence between ML(𭟋L

(K+1,t1)
)

and ML(𭟋L
(K+1,t2)

) holds:

P1 P2 · · · Pt1 · · · Pt2 · · · PK P0

P2 · · · Pt1 · · · Pt2 · · · PK P0

...
...

...
...

Pt1 · · · Pt2 · · · PK P0

...
...

...
...

Pt1 · · · Pt2 · · · PK P0

...
...

...
...

Pt1 · · · Pt2 · · · PK P0

≡

P1 P2 · · · Pt1 · · · Pt2 · · · PK P0 1st layer

P2 · · · Pt1 · · · Pt2 · · · PK P0 2nd layer

...
...

...
...

Pt1 · · · Pt2 · · · PK P0 tth1 layer

...
...

...

Pt2 · · · PK P0 tth2 layer

...
...

...

Pt2 · · · PK P0 lth layer

then we can derive from as:

P1 P2 · · · Pt1 · · · Pt2 · · · PK+1 P0

P2 · · · Pt1 · · · Pt2 · · · PK+1 P0

...
...

...
...

Pt1 · · · Pt2 · · · PK+1 P0

...
...

...
...

Pt1 · · · Pt2 · · · PK+1 P0

...
...

...
...

Pt1 · · · Pt2 · · · PK+1 P0

≡

P1 P2 · · · Pt1 · · · Pt2 · · · PK+1 P0 1st layer

P2 · · · Pt1 · · · Pt2 · · · PK+1 P0 2nd layer

...
...

...
...

Pt1 · · · Pt2 · · · PK+1 P0 tth1 layer

...
...

...

Pt2 · · · PK+1 P0 tth2 layer

...
...

...

Pt2 · · · PK+1 P0 Lth layer

Now we are proving the equivalence between ML(𭟋L
(K,1)) and ML(𭟋L

(K,K)). We first prove it when K = 2, for example.

When L ≤ K − 1, ML(𭟋L
(2,2)) = ML(𭟋L

(2,1)), the equivalence holds.

When L ̸= K, the structures of ML(𭟋L
(K,1)) and ML(𭟋L

(K,K)) are as follow:

P1 P2 P0

P1 P2 P0

...
...

...
P1 P2 P0

≡

P1 P2 P0 1st layer

P2 P0 2nd layer

...
...

P2 P0 Lth layer

Since P 2
1 = P2 + P1, hence ∀i ∈ N+, P i

11, we can descend order of P i
1 by replacing P 2

1 with P2 + P1, hence P i
11 is

determined by P j1
2 ·P11 and P j2

2 1 (0 ≤ j1 ≤ [i12 − 1], 0 ≤ j2 ≤ [i12]). Therefore ∀i1, i2 ∈ N+, P i2
2 P i1

1 1 is is determined
by P i2+j1

2 ·P11 and P i2+j2
2 1 (0 ≤ j1 ≤ [i12 −1], 0 ≤ j2 ≤ [i12]). On the other hand, i2+j1+1 ≤ i2+[i12 −1]+1 ≤ i1+i2,

i2 + j2 ≤ i2 + [i12] ≤ i1 + i2, Which means ∀L ∈ N+, e ∈ ML(𭟋L
(2,1)), there’s subset Ee ⊆ ML(𭟋L

(2,2)) that vector
sentence e is determined by Ee, now we have proved the equivalence between ML(𭟋L

(2,1)) and ML(𭟋L
(2,2)).

29

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Now assume the equivalence between ML(𭟋L
(k,k−1)) and ML(𭟋L

(k,k)) holds when k ≤ K. Therefore, by proposition E.14,
the equivalence between ML(𭟋L

(K+1,K−1)) and ML(𭟋L
(K+1,K)) holds. Hence we only need to prove the equivalence

between ML(𭟋L
(K+1,K)) and ML(𭟋L

(K+1,K+1)). Let e be a sentence, and ω(e(P[k])) denotes the corresponding walk to
e(P[k]), for example, if e(P[k]) = P2, then ω(e(P[k])) denotes all the 2-length path in graph. We first consider ω(P 2

K)/

ω(PK+1 ·PK−1): ω(P 2
K)/ω(PK+1 ·PK−1) is the subset of 2K-length walks in graph but the K + 1th node is recurring

in the walk sequence, hence the number of these walks from every node is determined by PK ·Pi(0 ≤ i ≤ K − 1), in the
same way ω(PK+1 ·PK−1)/ω(P

2
K) is the subset of 2K-length walks in graph but the K + 2th node is recurring in the walk

sequence, hence the number of these walks from every node is determined by PK+1 ·Pj(0 ≤ j ≤ K − 2). Therefore P 2
K1

is determined by PKPi1 and PK+1Pi1(0 ≤ i ≤ K − 1), which means that there’s subset E(P 2
K1) ⊆ ML(𭟋L

(K+1,K+1))

that vector sentence P 2
K1 is determined by E(P 2

K1).

Now we are able to prove the equivalence between ML(𭟋L
(K+1,K)) and ML(𭟋L

(K+1,K+1)):

P1 P2 · · · PK PK+1 P0

P2 · · · PK PK+1 P0

...
...

...
PK PK+1 P0

PK PK+1 P0

...
...

...
PK PK+1 P0

≡

P1 P2 · · · PK PK+1 P0 1st layer

P2 · · · PK PK+1 P0 2nd layer

...
...

...

PK PK+1 P0 Kth layer

PK+1 P0 K + 1th layer

...
...

PK+1 P0 Lth layer

if e ∈ 𭟋L
(K+1,K), but e /∈ 𭟋L

(K+1,K+1), then

• P 2
K is not in e: let iK+1 equal to the order of PK+1 in e and ePK+1

be e with P
iK+1

K+1 erased. Then ePK+1
∈ 𭟋L−iK+1

(K,K−1), by

assumption, ePK+1
is determined by 𭟋L−iK+1

(K,K) , since P 2
K is not in e, P iK+1

K+1 ·ePK+1
= e is determined by 𭟋L−iK+1

(K+1,K+1).

• P 2
K is in e: let P 2

K ·e′ = e, since P 2
K1 is determined by PKPi1 and PK+1Pi1(0 ≤ i ≤ K− 1), we are able to descend

the order of PK , until P 2
K is not in, therefore e are determined by the subset of 𭟋L

(K+1,K) where P 2
K is not in every

vector sentence, from the conclusion above those vector sentences are determined by 𭟋L
(K+1,K+1), therefore we have

proved the equivalence between ML(𭟋L
(K+1,K)) and ML(𭟋L

(K+1,K+1)).

Therefore, we can prove the equivalence between ML(𭟋L
(K+1,1)) and ML(𭟋L

(K+1,K+1)): since ∀k ∈ N+, ML(𭟋L
(k,k−1))

and ML(𭟋L
(k,k)) are equivalent, hence by proposition E.14 ML(𭟋L

(K,k−1)) and ML(𭟋L
(K,k))(1 ≤ k ≤ K) are equivalent,

hence the expressive power of ML(𭟋L
(K,1)) and ML(𭟋L

(K,K))(1 ≤ k ≤ K) are equivalent.

Now that we can prove theorem 4.4: by theorem E.10, P[K] ≡ML(𭟋L
(K,K)

) P
′
[K] ↔ G ≡K−P G′ while P[K] ≡ML(𭟋L

(K,1)
)

P ′
[K] ↔ G ≡PRK−P G′. We already obtain the conclusion that the expressive power of ML(𭟋L

(K,1)) and
ML(𭟋L

(K,K))(1 ≤ k ≤ K) are equivalent, hence we have G ≡K−P G′ ↔ G ≡PRK−P G′, indicating L ∈ N+

GILPRK−P = GILK−P , we have proved the expressiveness of pruned K-Path framework is as powerful as K-Path frame-
work.

E.7. Proof of Theorem 4.5

Theorem E.15. ∀L,K ∈ N+, (RG ∩GILPR 2−H) ⊆ (RG ∩GIL2−H) and (SRG ∩GILREK−H) ⊆ (SRG ∩GILK−H).

To prove theorem 4.5, we connect its equivalence with matrix language. We establish a connection with ML(L1), let us
denote the set of k-hop matrices as O[K] = {Ok|k ∈ [0,K]}. We then arrive at the following conclusion:

30

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Theorem E.16. O[K] ≡ML1(L1) O
′
[K] ↔ G ≡K−Hop G′

To proof if theorem E.16 is same as theorem E.10, just replace P[K] with O[K]. Given a pair of regular graphs (G,G′)
O[K] and O′

[K] are their K-hop matrices set, by theorem E.16, if 2-hop WL test decides that they are isomorphic, then
O[2] ≡ML1(L1

3)
O[2]. Since (G,G′) are regular graphs, each node’s number of neighbors is equal, hence ∀i ∈ N+,

Oi
11 =

∏i
=1⊙v(O11), so Oi

11 is decided by O11. Hence if e(O[2]) /∈ML(𭟋L
(2,2)), then e(O[2]) is formed as the pointwise

multiplication of vector as Oi1
1 Oi2

2 1(i1 + i2 ≤ L), which is determined by O11 and Oi2
2 1, since O11, O

i2
2 1 ∈ML(𭟋L

(2,2)),
hence if (G,G′) is a pair of regular graphs, then O[2] ≡ML(𭟋L

(2,2)
) O

′
[2] → O[2] ≡ML(𭟋L

(2,1)
) O

′
[2].

Before prove the the equivalence of O[K] between ML(𭟋L
(K+1,1)) and ML(𭟋L

(K+1,K+1)) on strong regular graph, we first
start with a lemma:

Lemma E.17. Let G be an (n, r, a, c) strongly regular graph, if c = 0, then G is isomorphic to mKr+1 for some m ̸= 2(Kt

is Complete graph with nodes).

Proof. If c = 0, then any two neighbours of a vertex v must be adjacent, and so a = r− 1, hence the component containing
any vertex must be a complete graph Kr+1 and hence G is a disjoint union of complete graphs.

Since SRG ⊂ RG, we can derive the equivalence of O[2] between ML(𭟋L
(K+1,1)) and ML(𭟋L

(K+1,K+1)) from the
conclusion above, now we prove the equivalence of O[3] between ML(𭟋L

(K+1,1)) and ML(𭟋L
(K+1,K+1)): for each node

v′s 2-hop neighbor N2
hop, if u ∈ N2

hop, then u and v have c common neighbors, hence for every v′s 2-hop neighbor node u,
there are c paths from v to u. Hence cO21 = P21 = P 2

1 1− P11 = r(r − 1)1 = (P11− 1)⊙ P11.

Next we consider the walks in ω(P 2
2), if v and u have a walk in ω(P 2

2) then v and u cannot be adjacent, hence
P 2
2 1 = P21 ⊙ P21, therefore P 2

2 1 is determined by P21, hence if e(O[2]) /∈ ML(𭟋L
(3,3)), then e(O[2]) is formed as

the pointwise multiplication of vector as Oi1
1 Oi2

2 Oi3
3 1(i1 + i2 + i3 ≤ L), which is determined by O11, O21 and Oi3

3 1,
since O11, O21, O

i3
3 1 ∈ ML(𭟋L

(3,3)), hence if (G,G′) is a pair of regular graphs, then O[3] ≡ML(𭟋L
(3,3)

) O′
[2] =⇒

O[3] ≡ML(𭟋L
(3,1)

) O
′
[2].

Now we prove the equivalence of O[K] between ML(𭟋L
(K+1,1)) and ML(𭟋L

(K+1,K+1)) when K ̸= 4: if O31 ̸= 0, then
there is nodes v and u, v and u do not have common neighbor, hence c = 0, therefore by E.17, graph G is isomorphic
to mKr+1, since K-hop pruned WL test is able to output n and r, hence K-hop pruned WL test will decide (G,G′) are
isomorphic iff they are isomorphic to mKr+1(m ̸= 2).

On the other hand, if O31 = 0, then ∀k ∈ N+,K ̸= 3, Ok1 = 0, hence the output of K-hop WL test and K-hop pruned
WL test for (G,G′) are the same, now we have proved the theorem.

E.8. Detail of GNNs’ Redundant Structure Task

For MP-GNNM, the 4 parameter configurations ofM which is competent for the task is listed as follow:

configurations 1 configurations 2 configurations 3 configurations 4
H1

v = σ(H0
v +

∑
H0

u) H1
v = σ(H0

v +
∑

H0
u) H1

v = σ(H0
v +

∑
H0

u) H1
v = σ(

∑
H0

u)
H2

v = σ(H1
v +

∑
H1

u) H2
v = σ(H1

v +
∑

H1
u) H2

v = σ(
∑

H1
u) H2

v = σ(H1
v +

∑
H1

u)
H3

v = σ(H2
v +

∑
H2

u) H3
v = σ(

∑
H2

u) H3
v = σ(H2

v +
∑

H2
u) H3

v = σ(H2
v +

∑
H2

u)

For pruned MP-GNNM′, the 2 parameter configurations ofM′ which is competent for the task is listed as follow:

configurations 1 configurations 2
H1

v = σ(H0
v +

∑
H0

u) H1
v = σ(H0

v +
∑

H0
u)

H2
v = σ(H1

v +
∑∑

H1
u) H2

v = σ(
∑∑

H1
u)

We now prove that those 6 models are competent for the task: It is obvious for both models the configurations 1 is competent
for the task. We will categorize the conditions to discuss the rest configurations can also accomplish the task.

31

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

(1) v is marked: for MP-GNN, since graph is connected with at least 3 nodes, node v has at least one 2-hop neighbor u,
its Hu will be equal to 1 in two iterations such that W l

1 ̸= 0, therefore H3
v = 1. As for pruned MP-GNN, since H1

v = 1,
H2

v = (A2)v ·H1
v = 1.

(2) v′s 1-hop neighbor u is marked: its Hu will be equal to 1 in two iterations that W l
1 ̸= 0, therefore H3

v = 1. As for pruned
MP-GNN, we have H1

v = 1, hence H2
v = 1.

(3) v′s 2-hop neighbor u is marked: its Hu will be equal to 1 in two iterations that W i
1 = 0 and W l

1 = 1, therefore H3
v = 1.

As for pruned MP-GNN, we have H1
u = 1, hence H2

v = 1.

(3) v′s 3-hop neighbor u is marked: it’s obvious since for both model will gather 3-hop-distance node information.

Now that if task outputs 1, iff at least one situation happens, therefore the rest configurations can also accomplish the task.

F. Time and Space Complexity
In this section, we discuss more about the time and space complexity of MP, K-Path, K-Hop and their pruned frameworks,
We suppose a graph has n nodes, every framework is designed to gather node’s information at a distance of L, (n≫ L≫ K).

Message Passing Framework:

For WL test(MP-GNN), to gather node’s information at a distance of L, we need set the number of layers equal to L, hence
the space complexity is O(nL) and time complexity is O(n ·L). As for pruned WL test(pruned MP-GNN), to gather node’s
information at a distance of L, we only need set the number of layers at most [log(L)] + 1, hence the space complexity is
O(n · log(L)) and time complexity is O(n · log(L))

K-Path Framework: For K-path WL test (K-Path GNN) to gather node’s information at a distance of L, we need set the
number of layers equal to L

K , at every layer, K-path WL aggregate from 1-Path neighbor to K-Path neighbor, therefore the
space complexity and time complexity for per layer are O(n ·K) O(n ·K), the space complexity and time complexity for
whole model are O(n ·L) and O(n ·L). As for pruned K-Path WL test (pruned K-Path GNN), the number of layers is set
equal to L

K too. Since (n≫ L≫ K), at most layers, the architecture of pruned K-Path WL test is same as WL test, the
space complexity and time complexity for whole model are O(n · LK) and O(n · LK).

K-Hop Framework:

Same as K-Path Framework, at every layer, K-Hop WL aggregate from 1-Path neighbor to K-Path neighbor, the space
complexity and time complexity for whole model are O(n ·L) and O(n ·L). For pruned K-Hop WL test (pruned K-Hop
GNN), the space complexity and time complexity for whole model are O(n · LK) and O(n · LK).

G. Consistency of Expressiveness for Pruned WL Test
To verify the expressive power equivalence between the pruned k-path WL, the WL test and their original algorithms, while
for K-Hop WL, WHETHER loses information about non-shortest paths is critical. We conducted experiments on both
real-world and synthetic datasets. For graph tasks, we perform the original WL test on each graph to assign a classification
label to every node. Subsequently, we execute the pruned WL test on the same graph. If the pruned WL test produces
the same number of node classes as the original WL test(|{Ci

WL}| = |{Ci
PRWL}| = m), and there exists a mapping

f : [m]→ [m] between the classes that |{v|χ(v) ∈ C
f(i)
WL}| = |{v|χ(v) ∈ Ci

PRWL}|, then we conclude that the pruned WL
test is consistent with the original WL test on that graph. we execute both the original and pruned WL tests on each individual
graph for node-level tasks. The WL Test algorithm applies the hashed and power iterated color refinement algorithm proposed
by Kersting (Kersting et al., 2014), and others are derived from it. π(·) denotes the prime number function(π(i) the ith

prime), in multiple aggregations WL test we assign different primes into different aggregation (π((K − l) ·C(l−1) + k ·1)).
This avoids hash collision since if k is different (π((K − l) ·C(l−1) + k ·1)) will be different. The algorithm is as follow:

G.1. Real-World

As shown in Table 9, we conducted comparative experiments between WL and pruned WL on real-world datasets, Acc
denotes the proportion that the pruned variant output coincides with original WL test. Time(s) denotes the time of cost, and
Aver denotes the average number of classes that algorithms assign to node in graph.

32

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Algorithm 8 HCGCR: Hashed CGCR(WL Test Algorithm)
1: Input: Adjacency matrix A, number of iteration L.
2: Output: Nodes corresponding class C(L), number of class m(L)

3: Initialization: C(0) ← 1, m(0) ← 1
4: for l = 1 to L do
5: C(l) ← unique(C(l−1) +A log(π(C(l−1)))
6: m(l) ← max(C(l))
7: end for

Algorithm 9 Pseudocode for the Pruned WL Test Algorithm
1: Input: Adjacency matrix A, number of aggregations of each iteration T, number of aggregation for each iteration L
2: Output: Nodes corresponding class C(L), number of class m(L)

3: Initialization: C(0) ← 1, m(0) ← 1
4: for l = 1 to L do
5: C

(l−1)
0 ← log(π(C(l−1)))

6: for t = 1 to T[l] do
7: C

(l−1)
t ← A ·C(l−1)

t−1

8: end for
9: C(l) ← unique(C(l−1) + C

(l−1)
T[l])

10: m(l) ← max(C(l))
11: end for

Algorithm 10 Pseudocode for the K-Hop(Path) WL Test Algorithm
1: Input:K, k-Hop(Path) Adjacency matrix Ak(k ∈ [K]), number of iteration L
2: Output: Nodes corresponding class C(L), number of class m(L)

3: Initialization: C(0) ← 1, m(0) ← 1
4: for l = 1 to L do
5: for k = 1 to K do
6: C

(l−1)
k ← AK · log(π((K − 1) ·C(l−1) + k ·1))

7: end for
8: C(l) ← unique(C(l−1) +

∑
k∈[K] C

(l−1)
k)

9: m(l) ← max(C(l))
10: end for

Algorithm 11 Pseudocode for the Pruned K-Hop(Path) WL Test Algorithm
1: Input:K, k-Hop(Path) Adjacency matrix Ak(k ∈ [K]), number of iteration L
2: Output: Nodes corresponding class C(L), number of class m(L)

3: Initialization: C(0) ← 1, m(0) ← 1
4: for l = 1 to L do
5: if l ≤ K − 1 then
6:
7: for k = l to K do
8: C

(l−1)
k ← Ak · log(π((K − l) ·C(l−1) + k ·1))

9: C(l) ← unique(C(l−1) +
∑

k∈[l,K] C
(l−1)
k)

10: end for
11: else
12: C

(l−1)
K ← AK · log(π(C(l−1)))

13: C(l) ← unique(C(l−1) + C
(l−1)
K)

14: end if
15: m(l) ← max(C(l))
16: end for

33

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Table 9. Pruned WL Test on real-world dataset.

Model MUTAG PTC NCI1 PROTEINS
Acc Time Aver Acc Time Aver Acc Time Aver Acc Time Aver

WLG.1

100% 1.522 11.196 100% 4.265 11.069 100% 139.715 19.227 100% 98.185 31.622
PRWLG.1 0.557 11.196 1.328 11.069 31.207 19.227 11.340 31.622

WLG.1

98.9% 14.644 14.739 100% 31.912 15.075 99.5% 631.695 40.376 100% 363.649 37.286
PRWLG.1 3.454 14.771 8.624 15.075 145.192 40.319 127.640 37.286

WLG.1

98.9% 25.536 14.803 100% 77.879 15.392 99.5% 916.559 48.259 100% 779.075 41.986
PRWLG.1 7.134 14.795 20.049 15.392 191.903 48.452 178.697 41.986

K −HopG.1

100% 2.175 16.161 100% 6.093 13.394 100% 199.593 44.995 100% 166.914 41.015
PR2−HopG.1 1.903 16.161 5.331 13.394 174.644 44.995 147.712 41.015

2−HopG.1

100% 10.976 17.077 100% 30.845 16.150 100% 295.236 51.155 100% 290.919 43.174
PR2−HopG.1 10.192 17.077 28.642 16.150 274.148 51.155 276.373 43.174

2− PathG.1

100% 2.240 16.324 100% 6.275 13.529 100% 205.581 45.449 100% 171.922 41.429
PR2− PathG.1 1.960 16.324 5.491 13.529 179.883 45.449 152.143 41.429

2− PathG.1

100% 11.306 17.249 100% 31.770 16.314 100% 304.093 51.672 100% 299.646 43.610
PR2− PathG.1 10.498 17.249 29.501 16.314 282.372 51.672 284.664 43.610

The parameter settings for the number of layers are configured as follows:(1)WL(MP-GNN):3 layers,7 layers and 10 lay-
ers.(2)Pruned WL:[1,2]layers,[1,2,4]layers,[1,2,3,4]layers.(3)K-Hop:K=2,3 layers,:K=2,5 layers.(4)Pruned K-Hop: K=2,3
layers,K=2,5 layers.(5)K-Path: K=2,3 layers,K=2,5 layers.(6)Pruned K-Path: K=2,3 layers,K=2,5 layers.

G.2. Synthetic

As shown in Table 10, we conducted comparative experiments between WL and pruned WL on Synthetic datasets for
node-level, Equi denotes the whether the pruned variant output coincides with original WL test. Time denotes the time
of cost, and class denotes the number of classes that algorithms assign to node in graph. Every graph has 200 nodes, and
RANDOM is a random graph with edge generated probability 0.01, based on the principle of preferential attachment
(rich-get-richer effect) with edge generated probability 0.01, and 3-Random Regular is a regular graph where each node has
3 degrees.

The experimental results lead us to the following conclusions:(1)The pruned algorithm almost perfectly matches the original
algorithm, the few mismatches occur because CUDA operations on high-precision data introduce computational errors,
leading the algorithm to (with low probability) classify WL-equivalent nodes into different categories.(2)The complexity
of pruned algorithm is stricly reduced, especially for pruned WL algorithm.(3)Under the same K value and number of
layers, the K-Path method yields more class number than K-Hop. This aligns with the fact that K-Hop pruning loses
information about non-shortest paths. (4)Under the condition of aggregating identical distances greater than K, the pruned
K-Hop/Path WL demonstrates stronger expressive power than WL (classifying nodes into more categories) while requiring
less computation time than WL.(5)The pruned 2-Hop achieves complete expressive equivalence with the original algorithm,
demonstrating that pruned K-Hop can be considered approximately equal to standard K-Hop in terms of expressive power.

G.3. Ablation on Complexity

Table 11 presents a comparison between the pruned and original models in terms of training time, where Acc denotes model
accuracy and Time represents the duration required for one training iteration. Table 12 demonstrate the comparison between
total training time and aggregation time, where the aggregation time accounts for a relatively small proportion of the total
time. The pruned models achieve comparable accuracy to the original model, while most pruned variants demonstrate better
training efficiency than the baseline.

34

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Table 10. Synthetic Data

Model RANDOM Barabási–Albert 3-Random Regular
Equi Time (s) class Equi Time (s) class Equi Time (s) class

WLG.1

✓
0.468 121

✓
0.515 130

✓
0.015 1

PRWLG.1 0.026 121 0.028 130 0.014 1

WLG.1

✓
3.585 145

✓
3.934 155

✓
0.034 1

PRWLG.1 0.721 145 0.794 155 0.030 1

WLG.1

✓
7.327 153

✓
8.009 163

✓
0.051 1

PRWLG.1 1.878 153 2.064 163 0.046 1

K −HopG.1

✓
0.585 141

✓
0.644 151

✓
0.380 12

PR2−HopG.1 0.568 141 0.625 151 0.369 12

2−HopG.1

✓
2.868 153

✓
3.149 163

✓
0.837 23

PR 2-Hop 5 2.940 153 3.228 163 0.812 23

2− PathG.1

✓
0.591 141

✓
0.651 151

✓
0.384 15

PR2− PathG.1 0.574 141 0.631 151 0.373 15

2− PathG.1

✓
2.894 153

✓
3.178 163

✓
0.846 26

PR2− PathG.1 10.498 153 3.257 163 0.820 26

Table 11. Comparison on training efficiency

Model COLLAB NCI1 IMDB-B IMDB-M MUTAG PROTEINS
Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%) Time Acc (%)

GIN(3) 1.104 74.8 ± 1.3 0.480 71.9 ± 0.5 0.251 71.9 ± 0.3 0.304 49.9 ± 0.0 0.889 89.4 ± 0.4 0.268 73.7 ± 0.7
PR GIN(1) 1.060 73.9 ± 0.0 0.461 72.9 ± 1.4 0.209 69.9 ± 2.0 0.284 50.6 ± 0.3 0.886 88.5 ± 0.0 0.233 72.2 ± 1.9

GIN(7) 1.638 77.4 ± 1.6 0.748 71.5 ± 1.4 0.578 72.6 ± 0.3 0.534 51.1 ± 0.3 0.904 89.4 ± 1.0 0.527 76.3 ± 0.2
PR GIN(124) 1.284 76.4 ± 0.7 0.6961 75.4 ± 0.2 0.481 71.7 ± 1.4 0.464 52.0 ± 0.5 0.916 92.0 ± 0.4 0.425 74.1 ± 1.0

GIN(10) 2.142 74.7 ± 0.6 1.122 75.9 ± 1.3 0.948 72.1 ± 2.8 0.898 49.7 ± 1.5 0.874 87.7 ± 0.2 0.867 72.3 ± 0.0
PR GIN(1234) 1.689 75.6 ± 0.3 0.981 74.7 ± 0.2 0.710 71.5 ± 0.5 0.780 51.2 ± 0.9 0.929 90.7 ± 2.1 0.667 72.5 ± 2.2

2-Hop(3) 1.357 76.8 ± 0.8 0.608 73.6 ± 0.9 0.410 71.0 ± 0.7 0.415 50.1 ± 1.5 0.910 91.0 ± 0.0 0.394 69.5 ± 1.3
PR 2-Hop(3) 1.180 75.1 ± 1.1 0.528 76.5 ± 1.6 0.357 71.5 ± 0.5 0.361 52.5 ± 0.7 0.929 91.3 ± 1.5 0.342 73.3 ± 0.3

2-Hop(5) 1.927 74.2 ± 0.5 0.880 70.6 ± 1.7 0.680 68.8 ± 0.8 0.628 49.5 ± 0.6 0.894 88.3 ± 1.0 0.621 71.0 ± 0.8
PR 2-Hop(5) 1.606 74.5 ± 0.4 0.734 71.1 ± 1.5 0.566 69.7 ± 0.2 0.523 48.0 ± 2.2 0.871 88.7 ± 1.5 0.517 72.0 ± 0.3

2-Path(3) 1.385 75.6 ± 0.0 0.620 73.0 ± 0.8 0.418 71.4 ± 0.1 0.423 49.5 ± 1.8 0.9045 88.7 ± 1.7 0.402 72.7 ± 2.0
PR 2-Path(3) 1.385 76.1 ± 0.3 0.632 75.5 ± 0.4 0.488 74.2 ± 1.9 0.451 51.6 ± 0.4 0.915 91.6 ± 0.0 0.446 76.9 ± 0.7

2-Path(5) 2.111 76.0 ± 0.2 0.964 74.2 ± 0.3 0.745 70.0 ± 0.6 0.688 51.3 ± 0.1 0.890 89.4 ± 0.4 0.680 69.3 ± 1.0
PR 2-Path(5) 1.730 72.1 ± 2.0 0.790 70.5 ± 2.3 0.610 71.8 ± 1.5 0.564 50.2 ± 0.2 0.898 88.9 ± 0.8 0.557 71.9 ± 2.4

35

PRUNING For GNNs: HIGHER EXPRESSIVENESS, LOWER COMPLEXITY

Table 12. Comparison on aggregation time

Model COLLAB NCI1 IMDB-B IMDB-M MUTAG PROTEINS
Time Agg. Time Time Agg. Time Time Agg. Time Time Agg. Time Time Agg. Time Time Agg. Time

GIN(3) 1.104 0.091 0.480 0.033 0.251 0.017 0.304 0.021 0.889 0.063 0.268 0.018
PR GIN(12) 1.060 0.087 0.461 0.032 0.209 0.014 0.284 0.020 0.886 0.062 0.233 0.016

GIN(7) 1.638 0.143 0.748 0.052 0.578 0.040 0.534 0.037 0.904 0.064 0.527 0.037
PR GIN(124) 1.284 0.133 0.6961 0.049 0.481 0.033 0.464 0.032 0.916 0.065 0.425 0.029

GIN(10) 2.142 0.215 1.122 0.079 0.948 0.067 0.898 0.063 0.874 0.062 0.867 0.061
PR GIN(1234) 1.689 0.188 0.981 0.069 0.710 0.050 0.780 0.055 0.929 0.065 0.667 0.047

2-Hop(3) 1.357 0.116 0.608 0.042 0.410 0.028 0.415 0.029 0.910 0.064 0.394 0.027
PR 2-Hop(3) 1.180 0.1 0.528 0.037 0.357 0.025 0.361 0.025 0.929 0.065 0.342 0.024

2-Hop(5) 1.927 0.168 0.880 0.062 0.680 0.048 0.628 0.044 0.894 0.063 0.621 0.043
PR 2-Hop(5) 1.606 0.14 0.734 0.051 0.566 0.040 0.523 0.036 0.871 0.061 0.517 0.036

2-Path(3) 1.385 0.118 0.620 0.043 0.418 0.029 0.423 0.029 0.9045 0.064 0.402 0.028
PR 2-Path(3) 1.385 0.12 0.632 0.044 0.488 0.034 0.451 0.031 0.915 0.064 0.446 0.031

2-Path(5) 2.111 0.185 0.964 0.068 0.745 0.052 0.688 0.048 0.890 0.063 0.680 0.048
PR 2-Path(5) 1.730 0.151 0.790 0.055 0.610 0.043 0.564 0.039 0.898 0.063 0.557 0.039

36

