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ABSTRACT

Extreme Classification (XC) architectures, which utilize a massive One-vs-All
(OvA) classifier layer at the output, have demonstrated remarkable performance
on problems with large label sets. Nonetheless, these architectures falter on tail la-
bels with few representative samples. This phenomenon has been attributed to fac-
tors such as classifier over-fitting and missing label bias, and solutions involving
regularization and loss re-calibration have been developed. This paper explores
the impact of label variance - a previously unexamined factor - on the tail perfor-
mance in extreme classifiers. It also develops a method to systematically reduce
label variance in XC by transferring the knowledge from a specialized tail-robust
teacher model to the OvA classifiers. For this purpose, it proposes a principled
knowledge distillation framework, LEVER, which enhances the tail performance
in extreme classifiers with formal guarantees on generalization. Comprehensive
experiments are conducted on a diverse set of XC datasets, demonstrating that
LEVER can enhance tail performance by around 5% and 6% points in PSP and
coverage metrics, respectively, when integrated with leading extreme classifiers.
Moreover, it establishes a new state-of-the-art when added to the top-performing
Renée classifier. Extensive ablations and analyses substantiate the efficacy of our
design choices. Another significant contribution is the release of two new XC
datasets that are different from and more challenging than the available bench-
mark datasets, thereby encouraging more rigorous algorithmic evaluation in the
future. Code for LEVER is available at: aka.ms/lever.

1 INTRODUCTION

Extreme Classification (XC) addresses tasks where a data point is mapped to the most relevant sub-
set of labels from a large label space. Deep architectures that comprise a neural network encoder
followed by a massive One-vs-All (OvA) classification layer at the output have become the de-facto
standard for contemporary XC algorithms and have demonstrated remarkable results on several
large-scale applications (Agrawal et al., 2013; Yadav et al., 2021; Chang et al., 2020; Beygelzimer
et al., 2009; Babbar & Schölkopf, 2017). Despite this progress, such over-parameterized OvA classi-
fication layers has also been known to overfit and underperform on labels with limited representative
samples, also known as the tail labels (Wei et al., 2021). As a result, bulk of such tail labels, which
often provide niche and highly informative results for a test sample (Jain et al., 2016), are incorrectly
classified thus diminishing their aggregate utility for a practical application.

The challenge of enhancing the tail performance of extreme OvA classifiers has been the focus
of some recent studies. These investigations have identified multiple factors that contribute to the
hardness of tail labels and proposed solutions to alleviate them. Some works have addressed the
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concern of overfitting to data-scarce tail labels by constraining the capacity of tail classifiers through
regularization tricks (Guo et al., 2019). A separate line of work has studied the effects of false
negatives, also known as missing labels, on the tail performance and proposed to appropriately
amend the classifier training loss through propensity-scoring techniques (Qaraei et al., 2021).

This paper brings to light another important yet previously unexamined factor behind the under-
performance of tail OvA classifiers, namely label variance (Sec. 3). Typically, the ground truth of
an XC dataset is constructed by approximating a complex label distribution that arises in a source
application with a discrete sample of labels. For example, in a recommendation task, the ground
truth is defined as the set of items clicked by each user within a specified time period. However,
in general, the ground truth can vary from one data sampling period to another, as a user’s interests
can fluctuate with time. Similarly, in expert annotation based data, employing fewer experts to
reduce annotation costs can introduce variance in the ground truth (aka. label variance) owing to
inter-annotator disagreements. Large label variance is particularly harmful for the tail classifiers’
performance as they have to rely on sparse ground truth and the approximation errors can have a
drastically magnified effects with low sample counts.

In a recent work, Menon et al. (2021a) studied the problem of label variance in the context of multi-
class classification and retrieval, and further note that a teacher-to-student knowledge distillation
strategy can be used to improve the generalization performance of the student model. This paper
borrows the basic ideas from Menon et al. (2021a) and extends them to the more challenging
Extreme Classification setting through several key innovations. First, it theoretically formalizes
the performance degradation in OvA classifiers owing to label variance, specifically quantifying
the magnified effect on the tail classifiers. Second, whereas Menon et al. (2021a) assumes the pre-
existence of a teacher, this paper learns its own Siamese-style teacher model that is optimized for tail
performance, and further develops a principled knowledge distillation strategy to effectively teach
the downstream OvA classifiers. The resulting approach, LEVER, is demonstrated to improve tail
classifiers’ performance by around 5% and 6% points in terms of PSP and coverage metrics, which
also advances the state-of-the-art in XC.

Another independent contribution of this paper is the public release of two new datasets for algo-
rithmic benchmarking in XC. Traditionally, performance in XC is mostly assessed on the public
datasets available from (Bhatia et al., 2016). These datasets appear to share a common property
that the data points associated with a label are fairly similar to each other in their semantic intents,
making these datasets less challenging to learn. In contrast, the real-world applications of XC can
be more diverse in their properties and complexity. To encourage more rigorous algorithmic eval-
uation, the new datasets are constructed with the property that a label can be associated with data
points of vastly different intents. These datasets, termed as multi-intent datasets, are inspired by real
applications, are more challenging, and can unlock exciting research problems in the future.

This paper makes the following key contributions: 1 . Identifies the problem of label variance which
adversely affects the performance of tail classifiers in XC. 2 . Proposes a principled LEVER ap-
proach to mitigate the label variance effects on tail classifiers in XC (Sec. 3.2). 3 . Develops an
effective Siamese-style model as a tail teacher with LEVER (Sec. 3.3). 4 . Conducts extensive ex-
perimentation using multiple state-of-the-art baselines and diverse benchmarks to demonstrate the
utility and generality of the proposed approach (Sec. 5). 5 . Releases two new multi-intent datasets
for robust experimentation in XC (Sec. 4).

2 RELATED WORK

2.1 EXTREME CLASSIFICATION

Recent advancements in XC have leveraged deep network-based representations like LSTM (You
et al., 2018), Transformer (Zhang et al., 2021; Jiang et al., 2021) or customized architectures (Dahiya
et al., 2021b) to generate rich semantic representations of inputs. These are then assigned to ap-
propriate labels via an OvA classifier layer. To facilitate efficient learning with large label sets,
techniques such as multi-staged encoder refinement (Dahiya et al., 2021a; Zhang et al., 2021; Jiang
et al., 2021), hierarchical label search, and hard-negative sampling (Dahiya et al., 2023a; 2021b;
Zhang et al., 2021; Jiang et al., 2021; Mittal et al., 2021a) have been introduced. Furthermore,
simultaneous training of the deep encoder and OvA classifiers has been demonstrated to boost per-
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formance in leading XC approaches like DEXA (Dahiya et al., 2023b), ELIAS (Gupta et al., 2022),
CascadeXML (Kharbanda et al., 2022) and Renée (Jain et al., 2023). However, despite these ad-
vancements, many of these approaches share a common limitation: a decline in performance for tail
labels, which is the primary focus of this paper.

2.2 ENHANCING TAIL PERFORMANCE IN XC

Extreme classifiers have been observed to under-perform on tail labels with limited representative
samples. This phenomenon has been attributed to various factors, and several approaches have been
proposed to address them.

Over-fitting of OvA Classifiers: OvA classifiers, which employ a distinct classifier for each label,
are massively parameterized in scenarios with large label sets. Consequently, they are susceptible
to overfitting on tail labels with scarce representative samples. In response, various classifier reg-
ularization techniques have been introduced. For instance, ProXML (Babbar & Schölkopf, 2019)
employs an L1-regularizer, and GLaS (Guo et al., 2019) uses a label-decorrelation based regularizer.

Bias due to Missing Labels: In XC datasets, which are often too large for exhaustive labeling,
missing or false negative labels are a frequent issue. These missing labels introduce systematic
biases into the ground truth and are known to significantly impact tail labels. Strategies to address tail
labels typically involve estimating the missing propensities for labels first and then recalibrating the
loss through simple weighting (Jain et al., 2016; Wei et al., 2021; Wydmuch et al., 2021; Schultheis
et al., 2022). The phenomenon of missing label bias is distinct from that of label variance.

Data Scarcity in Tail Labels: XC datasets contain tail labels with a limited number of positive
data samples. To mitigate this scarcity, data augmentation techniques like TAUG (Wei et al., 2021)
and Gandalf (Kharbanda et al., 2024) have been proposed. However, these methods lack formal
guarantees and do not perform consistently across different datasets as shown in this paper (Ta-
ble 2). Another line of work leverages label-side features to improve the tail label prediction per-
formance (Xiong et al., 2020; Dahiya et al., 2021a; 2023a; Jain et al., 2023). Approaches like
NGAME (Dahiya et al., 2023a) share information between semantically similar labels by placing
them close to each other in a dense embedding space using a Siamese encoder. However, these
methods primarily focus on enhancing encoder robustness and do not explicitly address the qual-
ity of subsequent OvA classifiers. Our proposed model shares similarities with these approaches
through its use of a Siamese teacher but distinguishes itself by learning a specialized teacher model
suitable for distillation and developing a principled approach to improve tail OvA classifiers.

In addition to these known issues, this paper introduces label variance as an additional, but impor-
tant, consideration pertaining to tail performance in XC. A closely related work is the study around
uncertainty quantification in extreme classification (Jiang et al., 2023) because variance can intrin-
sically be viewed as an uncertainty measurement. But in this work, we attempt to mitigate variance
rather than just estimate it. It is important to differentiate the label variance discussed here from the
variance described in (Babbar & Schölkopf, 2019). The latter addresses variance from the perspec-
tive of lack of commonality between the features of train and test instances. In contrast, our focus
on label variance pertains to inaccuracies in the ground truth relevance scores.

3 LEVER: LABEL VARIANCE REDUCTION IN EXTREME CLASSIFICATION

Label variance is a measure of approximation errors introduced in the ground truth of a dataset due
to the discrete data sampling process. These errors can negatively impact the performance of trained
classifiers, particularly those on the tail. This section introduces LEVER, a principled approach
based on knowledge distillation designed to alleviate label variance and enhance the generalization
capabilities of One-vs-All (OvA) classifiers. An effective teacher model for distillation based on a
Siamese-style encoder is also proposed.

3.1 PRELIMINARIES

Extreme Classification (XC) maps a data point space X onto a label space represented as Y =
{0, 1}L, where L is the number of labels, potentially reaching into the millions. A deep extreme
classification architecture typically includes a deep encoder Eθ which generates a semantically rich
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representation Eθ(x) for any given input data point x ∈ X . This is followed by a One-vs-All
classifier layer {wl}Ll=1 which sorts the labels based on w⊤

l Eθ(x) scores and predicts the highest
scoring labels as the most relevant ones for x.

Different strategies have been employed for training such a deep architecture including stagewise
training where encoder and classifiers are optimized in two successive stages, and end-to-end train-
ing where both are optimized jointly. For this paper, we assume a stagewise training schedule.
Furthermore, the focus will be primarily on the second stage of OvA classifier training during which
encoder is assumed to be already trained and held fixed. As a result, each OvA classifier is trained
independently of others which also simplifies the theoretical analysis. For brevity, we drop the en-
coder symbol Eθ and directly use x to refer to a data point’s embedding from the encoder over which
OvA classifiers are applied.

For a data point x, let P(Y (x) = y|x)) ∀y ∈ {0, 1}L represent the true and complete distribution
of label relevance which accurately captures the stochasticities inherent in the user preferences or
annotator judgments. Note that this distribution sums up to 1 over all label subsets. Unfortunately,
the full relevance distribution is seldom available and is instead approximated with a discrete sample
of labels y ∼ P(Y (x) = y|x). The approximation error due to this sampling is captured by the
following expression for label variance:

Vy|x[y] = Ey|x[y − E[y]]2

Vyl|x[yl] = Eyl|x[yl − E[yl]]2 = P(yl = 1|x)(1− P(yl = 1|x)) (1)

The second expression denotes the variance in the marginal relevance of a label l to point x, a term
that is particularly useful in analyzing One-vs-All classifiers. A larger variance indicates that the
imprecision in a sampled label is more.

To train the classifier for label l, we first construct a training set denoted as D = {xi, yil}Ni=1 and
solve a binary classification problem with yil as the target label for xi. For simplicity, we present
the analysis for a single classifier, with the understanding that the same holds for all classifiers. To
avoid confusion, we omit subscript l where it is not necessary. The binary classification objective
minimizes the following empirical risk of classification:

R̂ = min
w

1

N

N∑
i=1

L(yi,w⊤xi)

with, L(y,w⊤x) = Cyf(1,w⊤x) + (1− y)f(0,w⊤x) (2)

Here, f represents a convex classification surrogate such as hinge loss or logistic loss (Qaraei et al.,
2021). Using a weight factor C > 1 is standard practice in imbalanced classification to appropriately
balance the relative importance of positive and negative samples for a label. This is particularly
important for a tail label with a few positives, denoted by number S where:

Ex[px] ≈
S

N
≪ 1 where, px = P(y = 1|x) (3)

Following the standard practice (Kakade et al., 2008), we assume that the norms of the weight vector
w and the input vector x are bounded by ∥w∥ ≤ W and ∥x∥ ≤ B respectively. Additionally, we
assume that the function f exhibits Lipschitz continuity with a Lipschitz constant L.

The generalization performance of a trained classifier w is evaluated by its true population risk. A
lower value of this risk indicates superior predictive capability:

R = Ex,y[L(y,w⊤x)] (4)

3.2 LEVER FRAMEWORK

The deviation between empirical and true risks formally measures a classifier’s generalization gap,
with smaller values indicating better test-time generalization. Following (Maurer & Pontil, 2009),
we express the generalization gap in terms of data-dependent bounds based on label variance. Ap-
plying Bennett’s inequality, as suggested in the reference, with simplifications relevant to the prob-
lem at hand, provides us with the following result. Note that all the proofs are available from the
supplementary Sec. A.
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Theorem 1. Let MN be the uniform covering number (Menon et al., 2021a) corresponding to
the classification loss L. Then, given the definitions established earlier, For any δ ∈ (0, 1), with
probability at least 1− δ over sampling the data points {x}Ni=1,

R ≤ R̂+O
(√

Vx[L(px,w⊤x)] + Ex[Vy|x[y|x]](CLWB)2

√
log(MN/δ)

N
+

log(MN/δ)

N

)
(5)

where, VxL(px,w⊤x) and Vy[y|x] are the variances in the loss function contributed by x, and
conditional variance of y respectively.
Lemma 1. Assuming the loss weighting factor C defined in Eq. 2 as C = N

S , where S is
the threshold defined in Eq. 3 and N is the number of training points, the variance term V =

Ex[Vy[y|x]](CLWB)2 in Theorem 1 is bounded by N(LWB)2

S .

Theorem 1 establishes a strong dependence between the classifier performance and the variance in
labels Vy|x[y|x] with larger values of the latter degrading the effectiveness of the trained classifiers.
Furthermore, Lemma 1 shows that a smaller positive sample count S can amplify the adverse effect
of label variance which makes the tail classifiers more prone to label variance-related degradation.
Now, if we have access to precise estimates of marginal relevance, denoted by px = E[y|x], we can
replace y with px, effectively reducing the label variance term to 0. This forms the intuition behind
LEVER which employs an additional teacher network to provide accurate estimates of px.

In practice, however, obtaining a perfect teacher is infeasible both due to modeling and compu-
tational hardness issues. As a result, the ability to robustly leverage a partially biased teacher to
improve the target student model is essential for the practical utility of LEVER. To enable this, we
propose the following variant of LEVER where an imperfect teacher’s relevance estimates are used
for regularizing the original loss with discrete labels:

min
w

λ

N

N∑
i=1

L(yi,w⊤xi) +
1− λ

N

N∑
i=1

L(p̂i,w⊤xi) (6)

where p̂i are the relevance estimates outputted by the teacher model, and λ is a regularization hyper-
parameter. The above formulation aims to trade off variance errors due to yi with the bias errors
due to p̂i to attain the lowest overall generalization error. The following theorem shows that, for an
appropriate choice of λ, the risk of the resulting classifier is lower than when trained on either yi or
p̂i alone:
Theorem 2. Let R, R̂ be the population risk and empirical risk for a binary classification loss L.
Let MN be the uniform covering number (Menon et al., 2021a) corresponding to L. Also, let the
teacher be imperfect with maximum possible error in relevance estimates bounded by E = ∥px −
p̂x∥∞. Then, by solving the regularized optimization problem R̂s = min

w

λ
N

∑N
i=1 L(yi,w⊤xi) +

1−λ
N

∑N
i=1 L(p̂i,w⊤xi) and setting λ to minimize population risk- for any δ ∈ (0, 1), the following

inequality holds with probability at least 1 − δ over sampling the data points {x}Ni=1 under the
assumption of a reasonably small teacher error (E):

λ =
c

b

√
a

b2 − c2
; R ≤ R̂s +

√
a− a

c2

b2
+ c+

log(MN/δ)

N
(7)

where, a = Vx
log(MN/δ)

N
; b =

√
S log(MN/δ)

CLWB

N
; c = ECLWB (8)

Note that when c = 0, λ = 0 which is equivalent to training on pure teacher estimates. Also, when

0 < c ≤ b,
√

a− a c2

b2 +c ≤ min{
√
a+ b2,

√
a+c}. In other words, the bound over population risk

is tighter than when λ = 0 or λ = 1. Therefore, trading off the teacher’s bias with label variance
by setting an appropriate 0 < λ < 1 can lead to better generalization than pure training with either
original ground truth or biased teacher estimates as label targets.

3.3 A SIAMESE-STYLE TEACHER FOR LEVER

Recent studies have shown that Siamese Networks, when used as input encoders, exhibit strong
performance on tail labels (Dahiya et al., 2021a; 2023a; Jain et al., 2023). This success can be
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attributed to the ability of Siamese encoders to leverage label correlations by utilizing label-side
features. These features, often presented as descriptive text or structured graphs over labels, are
commonly found in XC applications. In fact, most recent XC datasets have started to incorporate
them (Bhatia et al., 2016). Consequently, this allows for the sharing of information between se-
mantically similar labels, effectively addressing the problem of data scarcity in tail labels. It is
important to note, however, that a standalone Siamese model is insufficient as it tends to under-fit
data-rich head labels, thereby compromising overall prediction quality. This paper, therefore, pro-
poses the use of Siamese Networks as teachers within the LEVER framework to enhance the tail
performance of one-vs-all classifiers. By employing LEVER, we can improve the tail performance
of one-vs-all classifiers without compromising their already excellent head accuracies.

A Siamese encoder, Eθ, is trained to map the features of data points, denoted as {xi}Ni=1, and label
features, represented as {zl}Ll=1, into a common embedding space. The objective of this mapping
is to ensure that labels relevant to a given data point are positioned closer in the embedding space,
while those that are irrelevant are distanced. Typically, this is achieved by minimizing a triplet loss
[z⊤l xk − z⊤l xi + ∆]+, where k and l are a negative and a positive samples, respectively, for label
l and ∆ is a margin enforced for better generalization (Dahiya et al., 2021a; 2023a). However, the
triplet-loss is not probabilistically calibrated and does not provide reliable marginal relevance targets
for training a student. To address this, we leverage a logistic-loss based objective that is found to be
well-calibrated:

min
θ

∑
l∈L

∑
k∈X−
i∈X+

log(1 + ez
⊤
l xk−z⊤

l xi+∆) (9)

The following theorem demonstrates the calibration property of Eq. 9 assuming that the loss can be
fully minimized, i.e., loss between each positive-negative pair is minimized.
Theorem 3. Consider a label z, and a pair of data points xa,xb. Let pa, pb be the probabilities
that the label is relevant to points a, b respectively. Then, assuming that Eq. 9 is fully minimized, the
expected loss in Eq. 9 is minimized for pa = 1/(1 + e−(z⊤xa+c)), pb = 1/(1 + e−(z⊤xb+c)).

The above result shows a direct connection between the Siamese model’s scores and relevance prob-
abilities, which can be exploited as teacher targets. The parameter c is a hyper-parameter, and it is
fitted by cross-validation. While the above strategy provides well-calibrated scores, we empirically
observe that simple score mapping strategies, such as pa = cos Sim(z,xa)+1

2 , where cosSim represents
the cosine similarity, also work equally well.
To make training tractable, we follow the negative mining strategy used in NGAME (Dahiya et al.,
2023a). Motivated by recent works that under-sample (or oversample) model inputs (Menon et al.,
2021b) to address dataset imbalance, we modify NGAME’s point-wise sampling strategy to a label-
wise approach, in which mini-batches are made from labels rather than points. This adjustment
leads to the up-sampling of tail labels, thereby increasing their importance during training. Empiri-
cally, we find that a teacher trained via this strategy exhibits better tail performance. Subsequently,
the one-vs-all (OvA) classifier distilled from this teacher outperforms the OvA classifier distilled
from the Siamese teacher trained with point-wise sampling, both in precision (+0.37% on average
in P@1) and in PSP (+1.7% on average in PSP@1), as detailed in Table 12 in the appendix.

4 CONTRIBUTED DATASETS

Motivation Performance evaluation of XC algorithms has largely relied on public benchmark
datasets available from (Bhatia et al., 2016). In these datasets, the data points associated with a
label tend to be fairly similar to each other in their semantic intents. We refer to these as single-
intent datasets. For example, in LF-AmazonTitles-131K, the label “clothing for men” might be
associated with “formal shirts for men” or “casual shirts for men”. In contrast, several real-world
XC applications belong to a multi-intent setting where the label can be associated with data points of
vastly different intents. For instance, in query auto-completion (Yadav et al., 2021) where the prefix
of a search query needs to be mapped to its completing suffixes, a suffix “..book” might start with ei-
ther “face..” or “note..” as prefix thus leading to completely different final queries. Such multi-intent
datasets can be challenging for XC but are under-represented among existing benchmarks. Addition-
ally, the datasets we release exhibit significant imbalances compared to existing benchmarks, with

6



Published as a conference paper at ICLR 2024

7 − 11% of the labels accounting for 80% of the positive instances (refer Table 3). This imbalance
poses multiple challenges. First, methods like GLaS (Guo et al., 2019) and Gandalf (Kharbanda
et al., 2024), which depend on label correlations for regularization or data augmentation, struggle
due to the sparse correlations among tail labels when imbalance is high (refer Table 2). Second,
classifier-based methods may achieve high precision by focusing on the head labels, but this results
in poor performance on tail metrics such as coverage (refer Table 2). We believe that the contributed
datasets will promote further study into developing methods that are robust across various dataset
settings.

Contributed datasets: Two new datasets, LF-AOL-270K and LF-WikiHierarchy-1M are curated.
LF-AOL-270K involves the query auto-completion task of matching a query prefix with complet-
ing suffixes. It is curated from publically available AOL search logs (Pass et al., 2006). LF-
WikiHierarchy-1M involves the taxonomy completion task (Benaouicha et al., 2016) of matching
a Wikipedia category to its parent categories (Zesch & Gurevych, 2007). This dataset is motivated
by the real-world application of query-to-ad keyword matching where a keyword can subsume the
intent of its query thus giving rise to hierarchical association structures. Complete dataset creation
details and dataset statistics are provided in appendix Sec. B.3.

5 EXPERIMENTS AND RESULTS

Datasets: LEVER was evaluated on a diverse set of datasets, encompassing both full-text and
short-text feature scenarios, as well as novel multi-intent datasets. Specifically, we utilized three
full-text datasets (LF-Amazon-131K, LF-Wikipedia-500K, LF-WikiSeeAlso-320K), two short-text
datasets (LF-AmazonTitles-131K, LF-AmazonTitles-1.3M), and two new multi-intent datasets (LF-
WikiHierarchy-1M and LF-AOL-270K). For detailed dataset statistics, please refer to Table 3 in the
appendix. Additionally, we evaluate LEVER on a large proprietary query-to-keyword matching
dataset with 20M labels (refer Sec. B.2 in the appendix for more details).

Evaluation Metrics: To assess the test-time performance, standard evaluation metrics were used,
namely precision@k (P@k, k= 1, 3, and 5) and its propensity-weighted variant PSP@k (with k=1,
3, and 5). Detailed definitions for these metrics can be found in (Bhatia et al., 2016). Additionally,
following the recommendations in (Schultheis et al., 2022), we also included coverage@k (C@k) as
an important metric to evaluate the tail performance.

Baselines We applied LEVER to improve multiple strong OvA-based baselines, including Cas-
cadeXML (Kharbanda et al., 2022), ELIAS (Gupta et al., 2022), and Renée (Jain et al., 2023), for
demonstrating its effectiveness and generality. We also compared LEVER to other competing tail-
enhancement techniques including regularization-based methods such as GLaS (Guo et al., 2019)
and L2-regularization, data augmentation methods like TAUG (Wei et al., 2021) and Gandalf (Khar-
banda et al., 2024), and propensity weighting approaches such as Re-rank (Wei et al., 2021). For
comprehensive details on model hyper-parameters, please refer to Sec. D in the appendix.

LEVER Implementation Details As discussed in Sec. 3, LEVER uses a Siamese teacher to obtain
relevance estimates, p̂. Using the relevance estimates an augmented dataset Daug is created by
adding each label as a document, resulting in a dataset comprising N + L documents and L labels.
Document and label embeddings from the Siamese teacher are then used to add τl nearest labels, and
τd nearest documents for a particular label. In total, τ = τl + τd elements are added for each label.
Empirically, we find that not adding documents (τd = 0) leads to performance similar to that of
adding documents in most cases. For more details on LEVER’s hyper-parameters refer Sec. D.7.1
in the appendix.

Performance on SOTA OvA methods Table 1 demonstrates LEVER’s effectiveness when applied
to leading classifier-based XC methods, including CascadeXML, ELIAS, and Renée. LEVER con-
sistently improves P@1 and PSP@1 on average by 2% and 5%, respectively, across all base models
and datasets. When applied to Renée, LEVER achieves new state-of-the-art, increasing PSP@1
by up to 5% while maintaining comparable precision. Notably, LEVER proves highly effective
on smaller datasets (LF-AmazonTitles-131K, LF-Amazon-131K), highlighting its importance when
data is limited. Table 13 in appendix further illustrates LEVER’s gains on a proprietary dataset con-
taining 20M labels. Larger improvements in ELIAS and CascadeXML are attributed to these models
not explicitly utilizing label features during training or initialization. In contrast, Renée, which uses
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Table 1: LEVER can be applied to improve any OvA-based approach. When used with leading
OvA approaches LEVER consistently boosts tail performance across all benchmarks, increasing
PSP on average by 5.3% while maintaining comparable precision (1.4% gain on average). Coverage
metrics (reported in Table 5 in the appendix) show similar trends with an average gain of 6.5%.

Model LF-AmazonTitles-131K LF-Amazon-131K

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

ELIAS 37.28 25.18 18.14 28.95 34.45 39.08 43.03 29.27 21.20 33.49 40.80 46.76
ELIAS + LEVER 42.86 28.37 20.16 36.30 41.05 45.43 47.38 32.24 23.22 38.97 46.74 52.79

CascadeXML 36.28 24.88 18.18 26.50 33.21 38.81 43.76 29.75 21.58 34.05 41.69 47.96
CascadeXML + LEVER 43.58 28.79 20.63 36.24 41.83 46.95 48.24 32.82 23.73 39.09 47.55 54.18

Renée 46.05 30.81 22.04 38.47 44.87 50.33 48.05 32.33 23.26 39.32 47.10 53.51
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 50.31 49.19 33.30 24.04 40.64 48.48 54.87

LF-Wikipedia-500K LF-AmazonTitles-1.3M

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

ELIAS 81.94 62.71 48.75 33.58 43.92 48.67 47.48 42.21 38.60 18.79 23.20 26.06
ELIAS + LEVER 82.44 63.88 50.03 36.94 49.28 55.03 48.91 43.17 39.28 23.68 27.43 29.72

CascadeXML 77.00 58.30 45.10 31.25 39.35 43.29 47.14 41.43 37.73 15.92 20.23 23.16
CascadeXML + LEVER 80.10 60.41 46.44 36.79 46.65 50.99 47.98 42.02 38.12 20.06 24.51 27.28

Renée 84.95 66.25 51.68 37.10 50.27 55.68 56.10 49.91 45.32 28.56 33.38 36.14
Renée + LEVER 85.02 66.37 51.98 42.93 55.00 60.29 56.01 49.43 44.85 33.55 36.82 38.81

LF-AOL-270K LF-WikiHierarchy-1M

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

ELIAS 40.83 22.33 14.91 13.29 21.46 25.22 95.27 94.25 92.45 17.15 24.41 30.01
ELIAS + LEVER 40.85 22.83 15.57 13.68 24.30 30.43 94.02 91.97 89.50 28.27 36.80 42.13

CascadeXML 41.20 22.12 14.82 12.58 19.53 23.19 94.88 93.69 91.79 16.03 22.87 28.17
CascadeXML + LEVER 39.41 21.78 14.99 11.96 21.30 27.59 94.77 93.54 91.56 20.14 27.49 33.01

Renée 40.97 23.34 15.85 14.76 26.45 32.19 95.01 93.99 92.24 19.69 27.36 33.20
Renée + LEVER 41.70 24.76 17.07 20.38 37.07 45.13 95.19 93.91 92.07 24.76 32.63 38.15

Table 2: Comparison of LEVER with other tail specific XC approaches. LEVER outperforms
regularization and augmentation-based methods by an average of 4% in coverage and 3% in PSP.

LF-AmazonTitles-131K LF-AOL-270K

C@1 C@3 C@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5 PSP@1 PSP@3 PSP@5

Renée 31.31 53.50 61.03 38.47 44.87 50.33 12.40 29.77 36.53 14.76 26.45 32.19
Renée +TAUG 29.47 51.52 58.68 36.49 42.83 47.85 12.46 29.26 35.88 15.72 26.74 32.35
Renée + BoW 30.03 51.78 59.17 36.96 42.86 48.09 12.67 34.32 43.45 15.58 30.28 37.90
Renée + L2Reg 31.66 53.65 60.80 38.74 44.53 49.49 8.67 21.07 26.27 12.21 20.09 24.36
Renée + GLaS 31.90 54.02 61.15 38.74 44.53 49.49 12.36 29.41 36.06 14.67 26.11 36.75
Renée + Gandalf 33.17 55.36 62.22 40.49 45.83 50.96 12.63 29.82 36.31 15.10 26.64 32.17
Renée + LEVER 32.50 54.59 61.42 39.70 45.44 50.31 17.43 42.54 52.01 20.38 37.07 45.14

LF-Wikipedia-500K LF-WikiHierarchy-1M

Renée 22.90 50.08 61.59 37.10 50.27 55.68 6.72 11.49 14.65 19.69 27.36 33.20
Renée + TAUG 19.88 44.74 56.13 33.76 46.54 52.16 3.59 7.19 9.94 16.95 24.06 29.69
Renée + BoW 22.92 49.64 61.40 36.66 49.79 55.55 7.84 14.77 18.39 24.25 31.10 36.30
Renée + L2Reg 26.52 53.95 65.14 39.55 52.42 57.43 5.61 9.96 12.98 18.56 25.90 31.49
Renée + GLaS 23.43 52.02 63.90 37.27 51.54 57.15 6.89 11.82 15.08 20.07 27.82 33.70
Renée + Gandalf 23.09 49.87 61.24 37.05 49.94 55.31 6.92 13.17 17.52 21.84 30.05 36.09
Renée + LEVER 29.46 58.53 70.29 42.93 55.00 60.29 9.32 16.41 20.29 24.76 32.63 38.15

the NGAME encoder for initialization, shows comparatively modest gains with LEVER. More-
over, Table 4 in the appendix illustrates the performance of LEVER when combined with XReg
(Prabhu et al., 2020), an extension of Parabel, showcasing that LEVER can effectively combine
with non-DNN-based methods too.

Comparison with Tail Extreme Classification Methods: In Table 2, we present a comparative
analysis of Renée + LEVER against leading tail label-specialized methods. Note that these ap-
proaches can be easily integrated with OvA classifiers without any architectural modifications.
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These methods can be broadly categorized into two classes: (1) regularization-based, such as GLaS
and L2-regularization. GLaS promotes the proximity of classifiers for labels with similar ground
truths, while L2-regularization introduces an additional L2 loss between tail expert label embed-
dings and label classifiers. (2) Augmentation-based, such as TAUG and Gandalf, which introduce
additional training data for labels. Detailed comparisons with other prominent Extreme Classifica-
tion methods, including XR-Transformer (Zhang et al., 2021), ELIAS, CascadeXML, NGAME, and
ECLARE (Mittal et al., 2021b), are provided in Table 7 within the appendix. Our primary focus here
is on tail label performance, hence we report PSP and coverage metrics.

LEVER consistently outperforms the second-best method by an average margin of 4% in coverage
and 3% in PSP. Notably, on datasets characterized by significant skew and multi-intent scenarios,
LEVER exhibits substantial gains in comparison to approaches like GLaS and Gandalf, which rely
on ground truth data to model label correlations. For example, in the query completion task on the
AOL dataset, the label “who wrote To Kill a Mockingbird” co-occurs with labels like “wholesale
t-shirts” or “who am I” as they share the prefix “who”. Training classifiers with such diverse targets
can lead to associations between dissimilar labels, hampering classifier training. Using Bag of Words
(BoW) features from label text to model label connections alleviates the multi-intent and skew issue
to some extent, as observed when Renée+ BoW performs better than Renée+ GLaS/Gandalf in
LF-AOL-270K and LF-WikiHierarchy-1M. However, LEVER goes further by learning semantic
associations between labels and documents through a tail-expert Siamese network, surpassing raw
text-based methods.

Comparison with Siamese Teacher: Table 15 in the appendix compares LEVER against its cor-
responding Siamese encoder-based teacher. LEVER utilizes the teacher to improve OvA perfor-
mance on the tail without degrading the classifier performance on the head labels. As a result, the
student model in LEVER can surpass its own teacher in overall performance since it outperforms
the Siamese teacher on the head labels while more-or-less equalizing on the tail.

Comparison with an ensemble of OvA classifier and tail-expert: To combine the strengths of
OvA classifiers and encoder, another option might be to consider an ensemble model that uses
predictions from the OvA model for head labels and the encoder predictions for the tail labels.
Table 8 in the appendix compares LEVER with an ensemble of OvA (Renée) and Siamese Encoder.
LEVER outperforms the ensemble on both precision and tail metrics. A more detailed discussion
of this is provided in Sec. C.3 of the appendix.

Choice of expert encoder: LEVER utilizes a 6-layer DistilBert as an expert encoder. In Table 11 in
the appendix we show results for two other light-weight encoders: a 3-layer MiniLM (Wang et al.,
2020) and Astec Encoder (Dahiya et al., 2021b). We observe that a superior expert encoder leads to
improved performance in both P and PSP.

Effect of varying τ : Table 21 and Figure 7 in appendix shows effect of varying τ on LEVER’s
performance. Increasing τ improves performance on tail, while it hurts head and torso labels.

LEVER Computational Cost: Since LEVER is a training time-only modification, it leaves the
inference costs unchanged while increasing the training time on average by 3.1x. Table 23 in the
appendix shows the training time for different models and datasets when combined with LEVER.
Note that in ELIAS and CascadeXML, where the train times increase by a greater margin, the gains
provided by LEVER are also higher (avg. +6.1% increase in PSP and +2% increase in P). Tables
24, 25 and 26, in the appendix show the break down of the train times for Renée, ELIAS, and
CascadeXML respectively.

6 CONCLUSIONS

This paper presented a novel approach to address the challenges of tail performance in Extreme Clas-
sification (XC) by focusing on label variance, a previously unexplored factor. It proposed LEVER
framework for leveraging a tail-robust teacher model to systematically reduce label variance, thereby
enhancing the performance of one-vs-all classifiers. It further developed an effective instantiation
of this framework using a specialized Siamese teacher model. Experimental results on various XC
datasets demonstrated significant improvements in tail performance metrics when LEVER was in-
tegrated with leading extreme classifiers, and advanced the state-of-the-art in XC. Finally, this paper
also released two new and multi-intent datasets for robust benchmarking in XC.
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A THEORETICAL PROOFS

Theorem 1. Let R, R̂ be the population risk and empirical risk for a binary classification loss L.
Let MN be the uniform covering number (Menon et al., 2021a) corresponding to L. Then, given
the definitions established earlier, for any δ ∈ (0, 1), the following inequality holds with probability
at least 1− δ over sampling the data points {x}Ni=1:

R ≤ R̂+O
(√

Vx[L(px,w⊤x)] + Ex[Vy[y|x]](CLWB)2]

√
log(MN/δ)

N
+

log(MN/δ)

N

)
(10)

where, VxL(px,w⊤x) and Vy[y|x] are the variances in the loss function contributed by sampling
of data points {x}Ni=1, and conditional sampling of labels {y}Ni=1, respectively.

Proof. Applying Proposition 2. from (Menon et al., 2021a) to our setting gives the following initial
result:

R ≤ R̂+O
(√

Vx,yL(y,w⊤x)
√
log(MN/δ)/N + log(MN/δ)/N

)
(11)

The following simplifications can be made by leveraging basic probabilistic calculus:

Vx,y[L(y,w⊤x)] = Vx[Ey[L(y,w⊤x)|x]] + Ex[Vy[L(y,w⊤x)|x]] (by law of total variance)

= Vx[Ey[L(y,w⊤x)|x]] + Ex[Vy[Cyf(1,w⊤x) + (1− y)f(0,w⊤x)|x]]
= Vx[L(px,w⊤x)] + Ex[Vy[y|x](Cf(1,w⊤x)− f(0,w⊤x))2]

= Vx[L(px,w⊤x)] + Ex[Vy[y|x]d2x] (12)

where, dx = (Cf(1,w⊤x)− f(0,w⊤x))

d2x = C2f2(1,w⊤x) + f2(0,w⊤x)− 2C.f(1,w⊤x).f(0,w⊤x)

Since f ≥ 0 we get,

d2x ≤ C2f2(1,w⊤x) + f2(0,w⊤x) (13)
Using 13 in 12 gives,

Vx,y[L(y,w⊤x)] ≤ Vx[L(px,w⊤x)] + ExVy[y|x](C2f2(1,w⊤x) + f2(0,w⊤x))] (14)

Assuming f(0, 0) = f(1, 0) = f0 (a small constant), and applying the Lipschitz continuity of f
gives,

|f(y,w⊤x)− f(y, 0)| ≤ L|w⊤x| ≤ LWB ∀y ∈ {0, 1}
f(y,w⊤x) ≤ LWB + f0 (15)

Using 15 in 14 gives,

Vx,y[L(y,w⊤x)] ≤ Vx[L(px,w⊤x)] + ExVy[y|x](C2 + 1)(LWB + f0)
2

≈ O
(
Vx[L(px,w⊤x)] + ExVy[y|x](CLWB)2

)
(16)

Using 16 in 11 completes the proof,

R ≤ R̂+O
(√

Vx[L(px,w⊤x)] + ExVy[y|x](CLWB)2]

√
log(MN/δ)

N
+

log(MN/δ)

N

)
(17)
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Lemma 1. Assuming the loss weighting factor C is defined in Equation 2 as C = N
S , where S

is the threshold defined in Equation 3 and N is the number of training points, the variance term
V = Ex[Vy[y|x]](CLWB)2 in Theorem 1 is bounded by N(LWB)2

S .

Proof. Recall from Section 3.1 that px = P(y = 1|x) and Ex[px] ≤ S
N . Using Vy[y|x] = px(1−px)

gives,

V = Ex[px(1− px)](N/S)2(LWB)2 ≤ Ex[px]
(NLWB)2

S2
≤ N(LWB)2

S
(18)

Theorem 2. Let R, R̂ be the population risk and empirical risk for a binary classification loss L. Let
MN be the uniform covering number (Menon et al., 2021a) corresponding to L. Also, let the teacher
be imperfect with maximum possible error in relevance estimates bounded by E = ∥px − p̂x∥∞.
Then, solving the following regularized optimization problem:

R̂s = min
w

λ

N

N∑
i=1

L(yi,w⊤xi) +
1− λ

N

N∑
i=1

L(p̂i,w⊤xi) (19)

and setting λ to minimize population risk will given the following bound for any δ ∈ (0, 1), the
following inequality holds with probability at least 1− δ over sampling the data points {x}Ni=1:

λ =
c

b

√
a

b2 − c2
; R ≤ R̂s +

√
a− a

c2

b2
+ c (20)

where, a = Vx
log(MN/δ)

N
; b =

√
SCLWB

√
log(MN/δ)

N
; c = ECLWB (21)

Proof. Teacher tends to be imperfect with relevance estimates p̂x. In this case, let us train the
classifier using targets sx = λyx + (1− λ)p̂x. Let the corresponding population and empirical risks
when trained on sx be Rs, R̂s respectively. Then, the following holds:

R− R̂s = R−Rs +Rs − R̂s

≤ ∥R−Rs∥+ ∥Rs − R̂s∥

The first term can be bounded as follows:

R−Rs = ExEy|x L(yx,w⊤x)− L(λyx + (1− λ)p̂x,w
⊤x)

= Ex L(px,w⊤x)− L(λpx + (1− λ)p̂x,w
⊤x)

Assuming, L(y,w⊤x) = Cyf(1,w⊤x) + (1− y)f(0,w⊤x)

R−Rs = Ex[(1− λ)(px − p̂x)
(
Cf(1,w⊤x)− f(0,w⊤x)

)
]

≤ (1− λ)∥px − p̂x∥∞ max
x

(
Cf(1,w⊤x)− f(0,w⊤x)

)
≤ (1− λ)E(C + 1)(LWB + f0)

≈ O
(
(1− λ)ECLWB

)
(22)

where E is the upper bound over the error in the teacher’s relevance estimates.

The second term ∥Rs − R̂s∥ can be bounded by applying (A):
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Rs ≤ R̂s +O
(√

Vx + Ex[Vy[λy + (1− λ)p̂x|x]](CLWB)2]

√
log(MN/δ)

N
+

log(MN/δ)

N

)
Now, Vy[λy + (1− λ)p̂x|x] = Vy[λy|x]
= λ2Vy[y|x]

Rs ≤ R̂s +O
(√

Vx + λ2
S(CLWB)2

N
]

√
log(MN/δ)

N
+

log(MN/δ)

N

)
where,

S

N
≈ Expx ≥ ExVy[y|x] (23)

As a result:

R ≤ R̂s +O
(√

Vx + λ2
S(CLWB)2

N
]

√
log(MN/δ)

N
+

log(MN/δ)

N

)
+O

(
(1− λ)ECLWB

)
(24)

As λ is a regularization hyper-parameter, it value needs to be set so as to minimize the generalization
error. Theoretically, this can be achieved by solving:

min
λ

√
a+ λ2b2 + (1− λ)c

where, a = Vx
log(MN/δ)

N

b =
√

S log(MN/δ)
CLWB

N
c = ECLWB (25)

Let’s assume a reasonably small bias in teacher estimate. Specifically, let c < b which means that
the error due to teacher bias is relatively smaller than the error due to label variance.

Now, taking the derivative w.r.t λ and setting it to 0, we get:

λ =
c

b

√
a

b2 − c2
(26)

√
a+ λ2b2 + (1− λ)c =

√
a− a

c2

b2
+ c (27)

Theorem 3. Given a label z, and a pair of data points xa,xb. Let pa, pb be the probabilities that the
label is relevant to points a, b respectively. Then, assuming that (9) is fully minimized, the expected
loss in (9) is minimized for pa = 1/(1 + e−(z⊤xa+c)), pb = 1/(1 + e−(z⊤xb+c))

Proof. The expected loss between the triplet is given by:

pa(1− pb) log(1 + ez
⊤xb−z⊤xa) + pb(1− pa) log(1 + ez

⊤xa−z⊤xb)

Assuming ∆ = z⊤xb − z⊤xa and taking the gradient w.r.t z gives,

= pa(1− pb)
e∆(xb − xa)

1 + e∆
+ pb(1− pa)

e−∆(xa − xb)

1 + e−∆

=
xb − xa

1 + e∆

(
e∆pa(1− pb)− pb(1− pa)

)
(28)
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Setting pa = 1/(1 + e−(z⊤xa+c)), pb = 1/(1 + e−(z⊤xb+c)) in 28 gives,

=
xb − xa

1 + e∆

( (ez
⊤xb−z⊤xa)(e−(z⊤xb+c))

(1 + e−(z⊤xa+c))(1 + e−(z⊤xb+c))
− (e−(z⊤xa+c))

(1 + e−(z⊤xa+c))(1 + e−(z⊤xb+c))

)
= 0 (29)

From 29 we see that the derivative of the loss is 0 when pa = 1/(1 + e−(z⊤xa+c)), pb =

1/(1 + e−(z⊤xb+c)) thus minimizing the expected loss. Note that this calibration strategy is in
line with posthoc calibration strategies discussed in Platt (2000), where a model is learned, and then
a parametrized sigmoid function is fit to learn the relevance probabilities.

B DATASET DETAILS

B.1 DATASET STATISTICS

Table 3 shows the statistics of benchmark datasets including the newly contributed multi-intent
datasets.

Table 3: Dataset Statistics. Pos-80% is an imbalance metric (Schultheis et al., 2022) defined as
minimum fraction of class labels that retain 80% of all positive labels in the dataset. Lower value
corresponds to higher skew.

Dataset Train Docs Test Docs Labels Avg. Labels/Doc Avg. Docs/Label Pos-80%

E
xi

st
in

g

LF-AmazonTitles-131K 294,805 134,835 131,073 2.29 5.15 47.5
LF-Amazon-131K 294,805 134,835 131,073 2.29 5.15 47.5
LF-WikiSeeAlso-320K 693,082 177,515 312,330 2.11 4.68 37.4
LF-Wikipedia-500K 1,813,391 783,743 501,070 4.77 24.75 25.1
LF-AmazonTitles-1.3M 2,248,619 970,237 1,305,265 22.20 38.24 28.9

N
ew LF-AOL-270K 3,922,479 519,352 272,825 2.01 28.83 11.6

LF-WikiHierarchy-1M 1,589,378 397,952 976,214 25.98 42.31 7.3

B.2 QK-20M DATASET

Query Keyword (QK) matching is an essential element in applications such as sponsored search. In
these applications, users express their intent by querying a search engine, while advertisers bid on
relevant phrases from the same domain, referred to as keywords. The retrieval (or matching sys-
tem) is responsible for matching user queries to relevant advertisements. To train a query-keyword
matching system, we build a dataset using click logs from Bing. We begin by considering 20M pop-
ular advertiser bid phrases (or keywords), and then corresponding to each keyword we add relevant
queries to the ground truth based on whether there was a user click on the keyword when the user
searched for that particular query.

B.3 MULTI-INTENT DATASET PREPARATION

B.3.1 LF-AOL-270K

Task Description: Query auto-completion involves matching a query prefix to completing suffixes,
e.g. given a prefix, ‘cheap nike s’ recommending suffix completions like ‘shoes’, ‘shirts’ etc. LF-
AOL-270K is curated from AOL search logs (Pass et al., 2006) for the task of query auto-completion
where (prefix, suffix) pairs are modeled as (doc, label) pairs. Retrieved suffixes from this task can be
combined with user prefixes to get full query completions as proposed in (Mitra & Craswell, 2015).

Dataset generation: The dataset generation process involved three steps (i) Pre-processing, (ii)
Prefix-suffix generation, and (iii) Post-processing.

Pre-processing: Queries in AOL search logs were de-duplicated and non-alphanumeric characters
were removed. Queries with less than three characters were filtered since auto-completion is rarely
required for those. Additionally, steps prescribed in (Kim, 2019) were followed for pre-processing
and train-test splits creation.
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Prefix-suffix generation: After pre-processing, a shortlist of the top 10M popular suffixes was
derived from the train split, based on their frequency in queries. These suffixes are popular n-grams
(word-level) up to 100 characters appearing at the end of queries. Sampling was done to ensure that
each train query has at least one suffix from 10M suffix shortlist. Ground truth suffixes were added
for sampled prefixes yielding 9.3M suffixes and 5.67M distinct prefixes (training points). Using the
10M suffix shortlist, the process of sampling prefixes was repeated in the test split, resulting in 460K
suffixes.

Post-processing: Train-test leakage was avoided by removing all prefixes in the test set that ap-
peared in the train set. The suffix (label) set is derived from the intersection of train and test suffixes
to have a fixed label set. Finally, the dataset contains 272K labels (suffixes), 3.9M training points
(prefixes), and 519K test points (test prefixes).

Code to create the dataset from raw AOL search logs is available here 1 .

B.3.2 LF-WIKIHIERARCHY-1M

Task description: Taxonomy completion task involves matching a category with its generalized
parent categories. LF-WikiHierarchy-1M uses Wikipedia categories to build a taxonomy completion
task where documents are categories and labels are its parent categories. Articles in Wikipedia
are assigned categories, which serve as semantic tags. (e.g. ‘FIFA World Cup 2022’ article has
a category tag of ‘Football’). These categories are arranged in a taxonomy-like structure where
each category is linked to zero or more parent categories. The parent of a category is its direct
generalization, e.g. the category ‘Football’ has direct parent categories ‘Athletic Sports’, ‘Team
sports’ and ‘Ball Games’. This taxonomy-like structure is called Wikipedia Category graph (WCG)
and has been well studied in (Zesch & Gurevych, 2007; Benaouicha et al., 2016).

Dataset generation The dataset generation process involved four steps (i) Raw data collection, (ii)
Pre-processing, (iii) Label set generation from WCG and (iv) Post-processing.

Raw data collection: The WCG is created by using the English Wikimedia dump as of 03/23 2. The
dump contains the list of all Wikipedia categories and their links.

Pre-processing: To create the WCG we first filter out all meta categories used for Wikipedia mainte-
nance, e.g. ‘Wikipedia missing topics’, ‘Wikipedia new articles’, ‘Categories for renaming’ etc. The
complete list of filtered meta-categories are released as part of the code. Post filtering, the resulting
WCG is a directed acyclic graph with 1,993,526 categories (nodes) and 5,781,016 edges. Each edge
is a document-label pair.

Label set generation from WCG: The WCG in its current form only contains direct parents and
misses out on potentially important ground truth information. For example, the category ‘Foot-
ball’ will not have categories like ‘Sports’, ‘Athletic Sports’, and ‘Team activities’ as its labels as
they are not its direct parents. On the other hand, adding all reachable nodes as labels leads to
vague document-label pairs. For example, starting from ‘Football’ one can reach the category ‘Cos-
mopolitan mammals’ as follows: ‘Football’ → ‘Athletic sports’ → ‘Sports by type’ → ‘Sports’ →
‘Entertainment’ → ‘Human activities’ → ‘Humans’ → ‘Cosmopolitan mammals’.

To maximize the relevant ground truth document-label pairs while also avoiding wrong matches
like ‘Football’ → ‘Cosmopolitan mammals’ we limit the traversal to a maximum depth of 3 which
gave the optimal trade-off (i.e. maximize true positives while avoiding false positives). Thus, in
the above example, only categories up to ‘Sports’ are added as labels. Please refer to Fig. 1 for
more clarity. Subsequently, we get 1,987,330 documents and 976,214 labels with 51,643,812 edges
between them. Note that both the number of documents and labels are less than the total number of
categories (1,993,526). Some categories will not have a parent and therefore won’t be added as a
document. Similarly, categories that are not parents of any category will not be added as labels. The
final dataset is created by taking an 80%-20% random train-test split.

Post-processing: The dataset contains categories that occur as both documents and labels. For
example, the category ‘Football’ occurs both as a label (for ‘Football clubs’, ‘History of Football’,
etc), and as a document. Since a category will never have itself as a label we filter off pairs like

1https://github.com/anirudhb11/LEVER/tree/main/datasets/AOL
2https://dumps.wikimedia.org/enwiki/20230301/
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Athletic sports

Football

Team sports Ball game

Sports by type Games by typeTeam activities Balls

SportsTeams Games

Physical Skill

Depth 1

Depth 2

Depth 3

Figure 1: Snapshot of WCG graph starting from category ‘Football’. All categories (nodes) reach-
able from ‘Football’ till the depth of 3 are added to its ground truth label set.
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Figure 2: P@5 comparison of Siamese Encoder (blue) and OvA Classifier Renée (orange) on ho-
mogeneous (LF-AmazonTitles-131K: Fig. 2a, LF-Wikipedia-500K: Fig. 2c) and heterogeneous
datasets (LF-AOL-270K: Fig. 2b, LF-WikiHierarchy-1M: Fig. 2d). Labels are partitioned into
equi-volume bins based on their frequencies along the X-axis. The difference in performance (on
both head and tail) is wider for heterogeneous datasets.

‘Football’→‘Football’ during evaluation so as to not unfairly penalize Siamese-based models that
rank such pairs at the top.

The LF-WikiHierarchy-1M dataset is available here 3

3https://github.com/anirudhb11/LEVER/tree/main/datasets/WikiHierarchy
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C ADDITIONAL RESULTS

C.1 LEVER’S PERFORMANCE ON NON-DNN METHODS

Table 4 illustrates the performance of LEVER when combined with XReg (Prabhu et al., 2020),
an extension of Parabel, showcasing that LEVER can effectively combine with non-DNN-based
methods.

Table 4: Performance Comparison of XReg and XReg + LEVER on LF-AOL-270K and LF-
AmazonTitles-131K

Dataset Model P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

LF-AmazonTitles-131K XReg 33.1 22.3 16.0 24.5 29.4 33.54 20.22 36.63 42.84
XReg + LEVER 38.0 24.7 17.6 31.4 35.1 39.1 25.84 43.47 49.68

LF-AOL-270K XReg 27.0 14.3 9.9 7.0 11.0 14.1 4.18 10.58 14.44
XReg + LEVER 26.1 14.3 10.1 9.2 17.9 24.0 6.79 20.59 28.65

C.2 COMPARISON WITH SOTA AND TAIL XC METHODS

Table 5 demonstrates the enhanced performance achieved by applying LEVER to top-performing
Extreme Classification (XC) methods, including ELIAS, CascadeXML, and Renée. On average PSP
metrics are boosted by 5%, Coverage improves by 6.5% and Precision improves by 1.4%.

Table 7 presents a comparison of LEVER with various OvA-based methods (XR-Transformer,
ELIAS, and CascadeXML) and Siamese encoder methods (NGAME and ECLARE). It’s worth not-
ing that for WikiHierarchy-1M, OvA and Siamese approaches exhibit significant trade-offs between
precision and tail metrics.

C.3 COMPARISON WITH ENSEMBLE BETWEEN TAIL EXPERT AND OVA CLASSIFIER

In the ensemble model, for each data point, the encoder and OvA model provide a shortlist of top-k
labels along with their prediction scores. These two shortlists (containing a total of up to 2k labels)
need to be combined into a single shortlist of k labels by tie-breaking as elaborated below. First, the
labels with a frequency more than the cut-off are considered from the OvA’s shortlist. Similarly, the
labels with a frequency less than the cut-off are considered from the encoder’s shortlist. Cut-offs are
derived on the basis of the cross-over points between Encoder and Renée in the decile wise plots
shown in Fig. 2. Then, the two resulting shortlists are combined by considering the assigned label
scores from both models and retaining only the k overall highest-scoring labels. Table 8 shows that
LEVER clearly outperforms the ensemble model in 3 out of 4 datasets across all metrics. In the
case of LF-WikiHierarchy-1M, the ensemble model shows gains in coverage metrics (∼4-5%), this
comes at the expense of a significant loss in Precision (∼30%). Figure 3 compares the performance
of LEVER with the ensemble model and here we see a clear dip in the torso deciles. To better
understand why the ensemble curve doesn’t exactly mimic the OvA curve before the cutoff and
encoder curve after the cutoff, consider the following toy example:

Assume a dataset D with 8 labels which are partitioned into 3 deciles (head, torso, and tail deciles).
Out of 8 labels, 3 belong to the head decile (H1, H2, H3), 2 belong to the torso decile (O1, O2)
and the remaining 3 belong to the tail decile (T1, T2, T3). The cut-off threshold partitions the
label set into 2 sets: (i) labels with frequency greater than cut-off: (H1, H2, H3, O2) and labels
with frequency less than cut-off: (O1, T1, T2, T3). Assume a data point d has ground truth labels:
(H1, H2, O1, O2, T1).

Below we list the predictions of different models in the format of “label ID:model score”

Top-5 encoder predictions (T1 : 0.8, T2 : 0.6, T3 : 0.4, O1 : 0.2, O2 : 0.1).

Top-5 OvA predictions (H1 : 0.7, H2 : 0.5, H3 : 0.3, O2 : 0.2, O1 : 0.1)

To compute the ensemble model predictions, we first restrict the predictions of the individual models
based on the cutoff frequency, i.e Encoder’s predictions are restricted to (O1, T1, T2, T3) and OvA
predictions are restricted to (H1, H2, H3, O2). This gives the following filtered shortlists:
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Table 5: Using LEVER with leading OvA approaches improves their tail label performance con-
sistently across benchmarks, with an average gain of 5% in PSP and 6.5% in coverage (C), while
maintaining comparable precision (P) with an average gain of 1.4%.

.

Model LF-AmazonTitles-131K
P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

ELIAS 37.28 25.18 18.14 28.95 34.45 39.08 23.73 42.36 49.06
ELIAS + LEVER 42.86 28.37 20.16 36.30 41.05 45.43 29.81 49.88 56.25
CascadeXML 36.28 24.88 18.18 26.50 33.21 38.81 21.38 40.58 48.46
CascadeXML + LEVER 43.58 28.79 20.63 36.24 41.83 46.95 29.43 50.61 57.90
Renée 46.05 30.81 22.04 38.47 44.87 50.33 31.31 53.50 61.03
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 50.31 32.50 54.59 61.42

LF-Amazon-131K
ELIAS 43.03 29.27 21.20 33.49 40.80 46.76 27.04 49.10 57.34
ELIAS + LEVER 47.38 32.24 23.22 38.97 46.74 52.79 31.47 55.27 63.40
CascadeXML 43.76 29.75 21.58 34.05 41.69 47.96 27.30 50.18 58.81
CascadeXML + LEVER 48.24 32.82 23.73 39.09 47.55 54.18 31.26 55.97 64.81
Renée 48.05 32.33 23.26 39.32 47.10 53.51 31.49 55.81 64.61
Renée + LEVER 49.19 33.30 24.04 40.64 48.48 54.87 32.39 56.81 65.20

LF-WikiSeeAlso-320K
ELIAS 41.40 27.36 20.66 23.83 28.38 31.90 13.30 27.72 35.50
ELIAS + LEVER 45.99 30.28 22.78 30.00 34.16 37.52 16.56 33.06 41.34
CascadeXML 30.21 18.72 14.05 12.46 14.15 16.25 6.70 13.38 17.72
CascadeXML + LEVER 38.84 25.43 19.36 21.62 25.85 29.45 12.01 25.12 32.59
Renée 47.79 31.73 23.82 31.13 36.49 40.37 17.02 35.32 44.56
Renée + LEVER 47.89 31.52 23.53 32.44 37.45 40.99 17.78 36.33 45.31

LF-Wikipedia-500K
ELIAS 81.94 62.71 48.75 33.58 43.92 48.67 19.62 41.30 51.36
ELIAS + LEVER 82.44 63.88 50.03 36.94 49.28 55.03 23.55 50.81 63.04
CascadeXML 77.00 58.30 45.10 31.25 39.35 43.29 15.78 33.07 41.46
CascadeXML + LEVER 80.10 60.41 46.44 36.79 46.65 50.99 23.99 49.16 60.13
Renée 84.95 66.25 51.68 37.10 50.27 55.68 22.90 50.08 61.59
Renée + LEVER 85.02 66.37 51.98 42.93 55.00 60.29 29.46 58.53 70.29

LF-AOL-270K
ELIAS 40.83 22.33 14.91 13.29 21.46 25.22 10.46 22.85 27.06
ELIAS + LEVER 40.85 22.83 15.57 13.68 24.30 30.43 10.52 26.33 33.56
CascadeXML 41.20 22.12 14.82 12.58 19.53 23.19 8.73 19.47 23.47
CascadeXML + LEVER 39.41 21.78 14.99 11.96 21.30 27.59 7.86 22.11 29.89
Renée 40.97 23.34 15.85 14.76 26.45 32.19 12.40 29.77 36.53
Renée + LEVER 41.70 24.76 17.07 20.38 37.07 45.13 17.43 42.54 52.01

LF-WikiHierarchy-1M
ELIAS 95.27 94.25 92.45 17.15 24.41 30.01 4.00 7.78 10.49
ELIAS + LEVER 94.02 91.97 89.50 28.27 36.80 42.13 10.78 18.88 23.03
CascadeXML 94.88 93.69 91.79 16.03 22.87 28.17 3.12 6.17 8.52
CascadeXML + LEVER 94.77 93.54 91.56 20.14 27.49 33.01 6.68 11.22 14.13
Renée 95.01 93.99 92.24 19.69 27.36 33.20 6.72 11.49 14.65
Renée + LEVER 95.19 93.90 92.07 24.76 32.63 38.15 9.32 16.14 20.29

LF-AmazonTitles-1.3M
ELIAS 47.48 42.21 38.60 18.79 23.20 26.06 11.53 21.45 27.33
ELIAS + LEVER 48.91 43.17 39.28 23.68 27.43 29.72 15.10 26.65 32.84
CascadeXML 47.14 41.43 37.73 15.92 20.23 23.16 8.65 16.75 21.95
CascadeXML + LEVER 47.98 42.02 38.12 20.06 24.51 27.28 12.36 22.57 28.52
Renée 56.10 49.91 45.32 28.56 33.38 36.14 17.31 30.60 37.59
Renée + LEVER 56.01 49.43 44.85 33.55 36.82 38.81 21.03 35.70 42.78

Encoder: (T1 : 0.8, T2 : 0.6, T3 : 0.4, O1 : 0.2)

OvA: (H1 : 0.7, H2 : 0.5, H3 : 0.3, O2 : 0.2)

Next, we combine and sort the labels based on the scores from both the encoder and OvA as follows:

(T1 : 0.8, H1 : 0.7, T2 : 0.6, H2 : 0.5, T3 : 0.4, H3 : 0.3, O2 : 0.2, O1 : 0.2)

Finally, we retain only the top-5 highest scoring labels as our final ensemble predictions:
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Table 6: Using LEVER with leading OvA approaches improves their tail performance consistently
across benchmarks in Macro-F1 (+4.3% on avg.), Macro-precision (+4.1% on avg.), and Macro-
Recall (+5.49% on avg.). Following Zhang et al. (2023), k values for datasets were chosen based on
average labels per point for the dataset. We use k=3 for LF-AmazonTitles-131K, LF-Amazon-131K,
LF-WikiSeeAlso-320K, LF-AOL-270K, k=5 for LF-Wikipedia-500K, k=25 for LF-AmazonTitles-
1.3M and LF-WikiHierarchy-1M.

Model LF-AmazonTitles-131K LF-Amazon-131K LF-Wikipedia-500K

F1@k P@k R@k F1@k P@k R@k F1@k P@k R@k

ELIAS 24.23 22.82 31.70 28.48 26.46 37.93 27.98 27.97 35.17
ELIAS + LEVER 29.53 27.70 38.21 33.36 31.16 43.35 34.12 33.88 44.68

CascadeXML 22.23 20.80 30.36 28.89 26.74 38.83 20.04 20.13 26.75
CascadeXML + LEVER 29.12 26.91 39.04 33.29 30.76 44.13 31.40 31.61 41.70

Renée 32.19 30.36 41.55 32.55 29.95 43.88 35.94 36.78 43.76
Renée + LEVER 33.35 31.78 42.45 35.69 34.05 45.04 40.54 40.71 51.36

Model LF-AmazonTitles-1.3M LF-AOL-270K LF-WikiHierarchy-1M

F1@k P@k R@k F1@k P@k R@k F1@k P@k R@k

ELIAS 16.43 15.73 24.68 10.69 9.45 16.18 20.71 23.26 22.43
ELIAS + LEVER 18.85 17.92 28.58 13.97 12.87 19.41 26.99 28.75 30.53

CascadeXML 13.58 13.23 22.06 9.00 8.25 13.46 17.73 20.91 19.22
CascadeXML + LEVER 16.02 15.07 27.02 11.59 11.03 15.74 21.17 24.36 22.85

Renée 24.79 24.16 35.42 17.70 16.88 22.53 24.48 27.59 26.04
Renée + LEVER 26.72 25.73 37.04 22.38 20.40 30.18 27.89 30.67 30.23

Model LF-WikiSeeAlso-320K

F1@k P@k R@k

ELIAS 17.67 16.83 22.46
ELIAS + LEVER 22.06 21.21 27.26

CascadeXML 5.86 5.20 9.78
CascadeXML + LEVER 14.81 13.90 20.00

Renée 23.28 22.17 29.30
Renée + LEVER 23.79 22.70 30.12

Ensemble predictions: (T1 : 0.8, H1 : 0.7, T2 : 0.6, H2 : 0.5, T3 : 0.4) Table 9 shows the contri-
bution to P@5 for different models across the three deciles. Note that the example is in line with
our observations in Fig. 3 where (i) Encoder performs better on tail deciles (blue curve), (ii) OvA
models perform better on head deciles (orange), (iii) Ensemble (green) between Encoder and OvA
models perform comparably to Encoders on tail deciles and OvA based models on head deciles but
incurs significant losses in torso deciles, (iv) Performance of the ensemble model can be worse than
the individual models (e.g. ensemble P@5 < OvA P@5 in toy example). If the Ensemble model
were to dominate both Encoder and OvA models it should have achieved decile-wise contributions
of (2/5, 2/5, 1/5) which is not the case. On average, the torso labels are ranked relatively lower by
both models since neither model specializes in them. Further, when combined using the proposed
ensemble these labels get more aggressively down-voted.

C.4 EFFECT OF RE-RANKING ON LEVER AND OTHER TAIL XC APPROACHES

Table 10 illustrates the impact of post-hoc reranking using inverse propensity scores, on LEVER
and other Tail XC approaches. The application of reranking shows varying degrees of trade-offs
between precision and tail metrics across different models. Notably, while LEVER attains superior
performance in tail metrics for three out of four datasets, there is a trade-off in precision compared
to other methods in the LF-WikiHierarchy-1M dataset.

C.5 ABLATIONS

Effect of Teacher Model: Table 11 demonstrates the impact of employing various encoders as a tail
expert. We conduct a comparison with two alternative encoders: (i) MiniLM, a 3-layer transformer
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Table 7: Comparison between LEVER and leading OvA-based methods such as XR-Transformer,
ELIAS, and CascadeXML, as well as Siamese encoder-based methods like NGAME and ECLARE.
Note that for LF-WikiHierarchy-1M, OvA and Siamese-based methods display significant trade-offs
between precision and tail metrics. Siamese-based methods score much higher in PSP numbers (+16
on average) but lag behind in precision (-14 on average) when compared to OvA-based methods.

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K

SO
TA

X
C

M
et

ho
ds

XR-Transformer 38.10 25.57 18.32 28.86 34.85 39.59 20.24 40.70 48.87
ELIAS 37.28 25.18 18.14 28.95 34.45 39.08 23.73 42.36 49.06
CascadeXML 36.28 24.88 18.18 26.50 33.21 38.81 21.38 40.58 48.46
ECLARE 41.40 27.58 19.82 34.22 39.69 44.63 27.91 48.38 55.48
NGAME 46.58 30.41 21.49 39.54 44.77 49.59 32.35 53.78 60.73
Renée 46.05 30.81 22.04 38.47 44.87 50.33 31.31 53.50 61.03

Ta
il

X
C

M
et

ho
ds

Renée +TAUG 44.34 29.73 21.15 36.49 42.83 47.85 29.47 51.52 58.68
Renée + BoW 42.95 29.18 21.03 36.96 42.86 48.09 30.03 51.78 59.17
Renée + L2Reg 45.19 29.92 21.29 38.47 44.23 49.24 31.66 53.65 60.80
Renée + GLaS 45.35 30.03 21.33 38.74 44.53 49.49 31.90 54.02 61.15
Renée + Gandalf 45.86 30.53 21.79 40.49 45.83 50.96 33.17 55.36 62.22
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 50.31 32.50 54.59 61.42

LF-AOL-270K

SO
TA

X
C

M
et

ho
ds

XR-Transformer 37.56 20.44 13.94 11.76 21.10 26.31 8.83 23.07 29.44
ELIAS 40.83 22.33 14.91 13.29 21.46 25.22 10.46 22.85 27.06
CascadeXML 41.20 22.12 14.82 12.58 19.53 23.19 8.73 19.47 23.74
ECLARE 28.53 16.18 11.55 10.11 18.69 24.58 7.41 20.59 28.11
NGAME 39.44 22.29 15.30 16.33 29.63 37.06 14.28 34.70 43.84
Renée 40.97 23.34 15.85 14.76 26.45 32.19 12.40 29.77 36.53

Ta
il

X
C

M
et

ho
ds

Renée +TAUG 40.40 22.80 15.56 15.72 26.74 32.35 12.46 29.26 35.88
Renée + BoW 41.11 23.91 16.41 15.58 30.28 37.90 12.67 34.32 43.45
Renée + L2Reg 39.83 21.75 14.71 12.21 20.09 24.36 8.67 21.07 26.27
Renée + GLaS 40.91 23.25 15.78 14.67 26.11 31.75 12.36 29.41 36.06
Renée + Gandalf 40.63 23.01 15.58 15.10 26.64 32.17 12.63 29.82 36.31
Renée + LEVER 41.71 24.77 17.07 20.38 37.07 45.14 17.43 42.54 52.01

LF-Wikipedia-500K

SO
TA

X
C

M
et

ho
ds

XR-Transformer 81.62 61.38 47.85 33.58 42.97 47.81 19.05 40.05 50.66
ELIAS 81.94 62.71 48.75 33.58 43.92 48.67 19.62 41.30 51.36
CascadeXML 77.00 58.3 45.10 31.25 39.35 43.29 15.78 33.07 41.46

s NGAME 84.32 65.59 51.41 39.88 50.74 57.09 26.22 51.42 64.79
Renée 84.95 66.25 51.68 37.10 50.27 55.68 22.90 50.08 61.59

Ta
il

X
C

M
et

ho
ds

Renée +TAUG 83.07 64.46 50.32 33.76 46.54 52.16 19.88 44.74 56.13
Renée + BoW 84.43 66.09 51.74 36.66 49.79 55.55 22.92 49.64 61.40
Renée + L2Reg 84.57 66.05 51.50 39.55 52.42 57.43 26.52 53.95 65.14
Renée + GLaS 84.85 66.63 52.09 37.27 51.54 57.15 23.43 52.02 63.90
Renée + Gandalf 84.59 66.07 51.63 37.05 49.94 55.31 23.09 49.87 61.24
Renée + LEVER 85.02 66.37 51.98 42.93 55.00 60.29 29.46 58.53 70.29

LF-WikiHierarchy-1M

SO
TA

X
C

M
et

ho
ds

XR-Transformer 95.33 94.26 92.39 15.96 23.04 28.62 2.98 6.23 8.86
ELIAS 95.27 94.25 92.45 17.15 24.41 30.01 4.00 7.78 10.49
CascadeXML 94.88 93.69 91.79 16.03 22.87 28.17 3.12 6.17 8.52
ECLARE 90.95 89.14 86.90 15.70 22.41 27.65 2.57 5.94 9.30
NGAME 83.16 78.24 73.90 38.43 44.22 47.93 7.83 22.59 29.25
Renée 95.01 93.99 92.24 19.69 27.36 33.20 6.72 11.49 14.65

Ta
il

X
C

M
et

ho
ds

Renée +TAUG 95.34 94.45 92.27 16.95 24.06 29.69 3.59 7.19 9.94
Renée + BoW 93.92 92.04 90.27 24.25 31.10 36.30 7.84 14.77 18.39
Renée + L2Reg 94.68 93.45 91.56 18.56 25.90 31.49 5.61 9.96 12.98
Renée + GLaS 95.01 93.98 92.26 20.07 27.82 33.70 6.89 11.82 15.08
Renée + Gandalf 93.01 90.85 88.16 21.84 30.05 36.09 6.92 13.17 17.52
Renée + LEVER 95.19 93.90 92.07 24.76 32.63 38.15 9.32 16.41 20.29

model, and (ii) Astec, which learns a projection matrix from sparse Bag of Words (BoW) features
to a dense embedding space. The results highlight that the choice of a superior teacher substantially
enhances the performance of LEVER.

Effect of sampling strategy: LEVER makes use of NGAME Module (Dahiya et al., 2023a) trained
using mini-batches of labels instead of documents. The modification helps specialize the Siamese
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Table 8: Comparison of LEVER with an ensemble of OvA and tail expert encoder. LEVER
outperforms the ensemble consistently on all metrics for 3 out of 4 datasets . Note that for LF-
WikiHierarchy-1M even though the ensemble improves coverage, the drop in precision is very large
(31% on average).

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K

Ensemble 42.98 26.84 18.23 37.24 41.58 44.69 30.38 51.57 57.54
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 50.31 32.82 55.11 61.94

LF-AOL-270K

Ensemble 35.20 20.33 13.69 19.43 36.98 44.74 17.19 44.80 54.87
Renée + LEVER 41.71 24.77 17.07 20.38 37.07 45.14 17.43 42.54 52.01

LF-Wikipedia-500K

Ensemble 82.55 61.96 46.65 39.82 51.29 55.76 25.72 58.46 72.17
Renée + LEVER 85.02 66.42 52.05 42.50 54.86 60.20 29.46 58.53 70.29

LF-WikiHierarchy-1M

Ensemble 67.48 62.65 58.39 28.08 31.75 34.01 10.86 20.82 25.89
Renée + LEVER 95.19 93.90 92.07 24.79 32.74 38.29 9.08 16.12 20.02

Table 9: P@5 performance for different models across deciles.

Model Head Decile P@5 Torso Decile P@5 Tail Decile P@5 Overall P@5

Encoder 0/5 2/5 1/5 3/5
OvA 2/5 2/5 0/5 4/5
Ensemble 2/5 0/5 1/5 3/5

Table 10: Performance comparison of LEVER with other tail XC approaches LEVER outperforms
other tail XC methods in tail metrics on 3 out of 4 datasets. while LEVER attains superior perfor-
mance in tail metrics for three out of four datasets, there is a trade-off in precision compared to other
methods in the LF-WikiHierarchy-1M dataset.

Dataset Model P@1 P@3 P@5 Ps@1 Ps@3 Ps@5 C@1 C@3 C@5

LF-AmazonTitles-131K

Renée 46.05 30.81 22.04 38.47 44.87 50.33 31.31 53.50 61.03
+ Rerank 46.16 30.80 22.02 39.99 45.53 50.78 32.90 54.65 61.84
+ L2Reg + ReRank 44.89 29.71 21.14 39.99 44.58 49.29 33.18 54.48 61.19
+ GLaS + ReRank 45.06 29.82 21.17 40.18 44.83 49.49 33.36 54.78 61.48
+ Gandalf + ReRank 44.17 30.29 21.90 40.98 46.09 51.19 33.61 56.27 62.97
+ LEVER + ReRank 45.36 30.67 21.95 41.13 46.00 50.85 33.91 55.79 62.31

LF-AOL-270K

Renée 40.97 23.34 15.85 15.06 26.36 31.97 12.40 29.77 36.53
+ Rerank 41.53 24.11 16.44 20.21 31.11 37.24 20.27 36.13 43.01
+ L2Reg + ReRank 40.25 22.43 15.25 15.16 23.59 28.81 13.69 26.38 32.56
+ GLaS + ReRank 41.41 24.01 16.37 19.93 30.71 36.82 20.05 35.71 42.56
+ Gandalf + ReRank 40.87 23.49 15.94 20.70 30.68 36.22 20.61 35.47 41.65
+ LEVER + ReRank 39.60 24.23 16.92 28.20 41.58 49.33 27.40 48.95 57.62

LF-Wikipedia-500K

Renée 84.95 66.25 51.68 37.10 50.27 55.68 22.90 50.08 61.59
+ Rerank 79.28 63.56 50.80 53.44 56.16 59.06 41.58 59.52 67.17
+ L2Reg + ReRank 79.30 63.64 50.69 57.67 58.06 60.32 45.03 62.90 70.14
+ GLaS + ReRank 80.20 64.74 51.50 53.22 56.85 60.07 41.49 60.17 68.55
+ Gandalf + ReRank 80.58 64.55 51.29 51.03 55.09 58.36 39.07 58.00 66.23
+ LEVER + ReRank 75.34 62.07 50.26 59.15 60.29 62.95 47.24 68.40 75.94

LF-WikiHierarchy-1M

Renée 95.01 93.99 92.24 19.69 27.36 33.20 6.62 11.39 14.56
+ Rerank 89.95 89.94 88.86 44.15 52.89 58.47 18.15 30.53 35.16
+ L2Reg + ReRank 91.18 90.92 89.51 41.22 49.41 55.00 16.34 27.78 32.73
+ GLaS + ReRank 93.09 92.42 91.00 46.38 54.75 60.17 18.78 31.41 36.07
+ Gandalf + ReRank 86.03 83.04 80.88 51.77 57.79 61.37 20.21 34.82 39.73
+ LEVER + ReRank 86.27 84.51 83.69 52.17 58.92 63.59 19.60 34.84 40.58

encoder towards tail labels. Renée + LEVERdoc denotes the model that uses NGAME encoder with
mini-batches of documents to augment the training data. Table 12 shows the effect of sampling
strategy by comparing Renée + LEVERdoc and Renée + LEVER. Renée + LEVER outperforms
Renée + LEVERdoc by upto 2% in PSP while being comparable in precision.
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Figure 3: Performance comparison of a Tail Expert Encoder (blue), an OvA Classifier (orange), an
Ensemble of Expert Encoder and OvA Classifier (Green) and LEVER-based OvA Classifier (red) in
the presence of label skew. Labels are partitioned into equi-volume bins based on their frequencies
along the X-axis. OvA overfits to tail labels with few training points. Encoder leverages label meta-
data to improve on tail but underfits to head. Ensemble mode suffers on torso labels. LEVER
combines the strengths of both OvA and Encoder to perform well on all labels. The macro prefix
has been omitted for the sake of brevity.

Table 11: Comparison of different encoders: a 3-layer MiniLM and Astec, and their effects on
LEVER performance. The Astec encoder learns a projection matrix that maps sparse Bag-of-Words
features to a dense embedding space. A superior teacher leads to improved performance in both
Precision and tail metrics, namely PSP and coverage. Note that for all we add the same number of
neighbours for each label across all teachers.

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5
LF-AmazonTitles-131K

Astec Encoder 19.78 18.28 14.39 16.96 27.38 33.61 14.34 35.77 44.37
MinLM-L3 Encoder 23.86 21.65 16.82 20.22 32.44 39.26 17.20 41.80 50.82
DistilBERT-L6 Encoder 41.33 28.71 20.77 39.24 44.62 49.52 32.83 55.11 61.95
Renée 46.05 30.81 22.04 38.47 44.87 50.33 31.31 53.50 61.03
Renée + LEVER (Astec) 42.76 28.97 20.97 36.09 42.25 47.82 29.54 51.29 59.01
Renée + LEVER (MiniLM-L3) 45.26 30.40 21.82 38.28 44.67 50.09 31.22 53.73 61.11
Renée + LEVER (DistilBERT-L6) 46.44 30.83 21.92 39.70 45.44 50.31 32.82 55.11 61.94

LF-AmazonTitles-1.3M

Astec Encoder 36.14 30.25 26.32 28.12 29.00 29.29 18.38 31.56 37.83
MiniLM-L3 Encoder 32.10 26.86 23.43 25.48 26.20 26.48 16.81 29.32 35.46
DistilBERT-L6 Encoder 42.27 36.16 31.63 35.62 38.11 38.87 22.37 38.93 46.98
Renée 56.10 49.91 45.32 28.56 33.38 36.14 17.61 30.60 37.59
Renée + LEVER (Astec) 49.30 43.12 39.26 30.46 33.83 35.86 18.39 33.10 40.71
Renée + LEVER (MiniLM-L3) 50.24 44.01 40.08 32.73 35.90 37.73 20.09 35.55 43.23
Renée + LEVER (DistilBERT-L6) 56.01 49.43 44.85 33.55 36.82 38.81 21.03 35.70 42.78

Effect of varying τ : The hyperparameter τ is tuned using a validation set that contains 5% of the
training data. The best value of τ obtained is then used to train LEVER on complete training data.
Fig. 7 shows the effect of varying τ on LEVER’s performance. It can be seen that increasing τ
leads to better performance on tail labels, while it hurts the head or torso labels.

Effect of varying λ: The hyperparameter λ controls the importance between the two loss terms.
Table 14 shows the effect of varying λ, and Figures 4, 5 and 6 show their corresponding decile-wise
plots.

D MODEL DETAILS AND HYPERPARAMETERS

D.1 TAIL EXPERT SIAMESE ENCODER

NGAME’s (Dahiya et al., 2023a) hyperparameters include:
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Table 12: Siamese teacher models, when trained with a document-wise sampling strategy (Siamese
Encoderdoc) perform better in P@1 by 3% on average but are inferior in PSP@1 by 10% com-
pared to label-wise trained teachers (Siamese Encoderlbl). However, OvA classifiers, when dis-
tilled from Siamese Encoderlbl (Renée + LEVERlbl), are comparable in Precision while more ac-
curate in PSP@1 by 1.7% compared to OvA classifiers distilled from Siamese Encoderdoc (Renée +
LEVERdoc), thus highlighting the importance of a tail-specialized Siamese teacher model.

Dataset Model P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-AmazonTitles-131K

Siamese Encoderdoc 43.13 28.99 20.73 38.72 43.93 48.81
Siamese Encoderlbl 41.31 28.70 20.77 39.21 44.61 49.51
Renée + LEVERdoc 46.05 30.81 22.04 38.47 44.87 50.33
Renée + LEVERlbl 46.44 30.83 21.92 39.70 45.44 50.31

LF-Wikipedia-500K

Siamese Encoderdoc 81.96 60.72 46.23 48.76 55.87 58.25
Siamese Encoderlbl 67.82 45.66 34.31 60.77 57.26 57.20
Renée + LEVERdoc 85.09 65.94 51.69 40.17 52.65 58.18
Renée + LEVERlbl 85.02 66.37 51.98 42.93 55.00 60.29

LF-WikiHierarchy-1M

Siamese Encoderdoc 59.08 53.96 49.58 50.82 50.20 50.16
Siamese Encoderlbl 66.82 60.64 55.42 75.63 73.02 70.52
Renée + LEVERdoc 95.02 94.06 92.28 23.64 31.28 36.89
Renée + LEVERlbl 95.19 93.90 92.07 24.79 32.74 38.29

LF-AmazonTitles-1.3M

Siamese Encoderdoc 45.83 39.94 35.48 33.04 35.64 36.80
Siamese Encoderlbl 42.27 36.16 31.63 35.62 38.11 38.87
Renée + LEVERdoc 55.02 48.94 44.82 31.86 36.42 38.75
Renée + LEVERlbl 56.01 49.43 44.85 33.55 36.82 38.81

Table 13: P and PSP Comparison of NGAME, Renée, and Renée + LEVER on QK-20M Dataset

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

NGAME 69.94 52.72 44.81 48.24 55.63 58.71
Renée 72.14 54.87 47.02 50.75 58.90 62.56
Renée + LEVER 71.70 54.48 46.56 54.74 63.36 67.14

• cluster-sz: Mini-batches in NGAME are created from clusters of similar documents (or
labels). To build a batch of B documents (or labels) we pick B/cluster-sz clusters.

• cluster-freq: Denotes the frequency of refreshing the clusters using updated embeddings.
• γ: Denotes the margin enforced while training with contrastive loss.
• lr: Learning rate for the encoder.
• bsz: Denotes the size of mini-batches.
• epochs: Denotes the number of epochs for which the NGAME module is trained.

To train the tail-expert NGAME module we closely follow the settings from (Dahiya et al., 2023a).
NGAME utilizes a 6-layer DistilBERT architecture. Table 16 shows the hyperparameters used on
benchmark as well as newly contributed datasets.

D.2 ELIAS

ELIAS’s (Gupta et al., 2022) hyperparameters include:

• C: Denotes the number of clusters in the index graph.
• α: Multiplicative hyperparameter that controls the effective number of clusters that can get

activated for a given input get activated for a given input.
• β: Multiplicative hyperparameter that controls the effective number of labels that can get as-

signed to a particular cluster.
• ρ: Controls the row-wise sparsity of the adjacency matrix.
• λelias: Controls importance of classification loss Lc and shortlist loss Ls in the final loss.
• K: Denotes the shortlist size, label classifiers are only evaluated on top-K shortlisted labels.
• b: Denotes the beam size.
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Table 14: Effect of varying λ when Renée is combined with LEVER. The equal weightage (0.5)
gives the best performance. Increasing λ weighs the hard labels more, resulting in performance that
gets closer to the base classifier, i.e., PSP worsens, and Precision remains more or less unaffected.
Decreasing λ also helps only up to a certain point, i.e., λ=0.5; we believe this is because our teacher
is not perfect, and we strike a balance between hard and soft labels. Figures 4, 5 and 6 show the
decile-wise plots corresponding to these values. Note that for LF-AmazonTitles-131K the effect of
varying λ is minimal.

LF-AmazonTitles-131K

λ P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

0.33 46.15 30.76 21.87 39.7 45.33 50.13 32.56 54.48 61.24
0.50 46.44 30.83 21.92 39.70 45.44 50.31 32.82 55.11 61.94
0.66 46.57 30.87 21.93 39.59 45.46 50.36 32.31 54.49 61.48
0.80 46.58 30.88 21.92 39.37 45.39 50.33 32.06 54.38 61.42

LF-Wikipedia-500K

λ P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

0.33 84.66 65.94 51.54 40.51 53.4 58.75 26.88 56.01 67.94
0.50 85.02 66.42 52.05 42.50 54.86 60.20 29.46 58.53 70.29
0.66 84.96 66.51 52.18 39.34 53.53 59.46 25.66 55.78 68.33
0.80 84.84 66.42 52.14 38.66 53.09 59.16 24.96 55.08 67.79

LF-AOL-270K

λ P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

0.33 41.14 24 16.5 17.24 32.31 40.02 14.14 36.67 45.84
0.50 41.70 24.78 17.07 20.38 37.07 45.13 17.43 42.54 52.01
0.66 41.44 24.41 16.76 16.76 32.69 40.47 14.16 37.38 46.54
0.80 41.17 24.04 16.49 15.59 30.3 37.64 13.16 34.62 43.25

Table 15: Renée (OvA) and Siamese trained encoder exhibit different trade-offs on in precision and
tail-metrics (PSP, Coverage). LEVER improves the tail performance of Renée (+5% on average in
PSP and +3% on average in coverage) while retaining comparable precision.

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

LF-AmazonTitles-131K

Siamese Encoder 41.33 28.71 20.77 39.24 44.62 49.52 32.83 55.11 61.95
Renée 46.05 30.81 22.04 38.47 44.87 50.33 31.31 53.50 61.03
Renée + LEVER 46.44 30.83 21.92 39.70 45.44 50.31 32.50 54.59 61.42

LF-AOL-270K

Siamese Encoder 23.24 15.67 11.68 25.41 36.24 43.43 27.49 47.45 55.58
Renée 40.97 23.34 15.85 14.76 26.45 32.19 12.40 29.77 36.53
Renée + LEVER 41.71 24.77 17.07 20.38 37.07 45.14 17.43 42.54 52.01

LF-Wikipedia-500K

Siamese Encoder 67.81 45.65 34.31 60.76 57.25 57.20 48.76 71.41 78.59
Renée 84.95 66.25 51.68 37.10 50.27 55.68 22.90 50.08 61.59
Renée + LEVER 85.02 66.37 51.98 42.93 55.00 60.29 29.46 58.53 70.29

LF-WikiHierarchy-1M

Siamese Encoder 66.82 60.64 55.42 75.63 73.02 70.54 21.82 42.93 50.62
Renée 95.01 93.99 92.24 19.69 27.36 33.20 6.72 11.49 14.65
Renée + LEVER 95.19 93.90 92.07 24.76 32.63 38.15 9.32 16.14 20.29
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Figure 4: Effect of varying hyperparameter λ on LEVER’s head and tail performance on LF-
Wikipedia-500K
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Figure 5: Effect of varying hyperparameter λ on LEVER’s head and tail performance on LF-
AmazonTitles-127K. Here the choice of λ has minimal affect on the final performance of LEVER
therefore all four plots are closely superimposed.

• epochs: Denotes the total number of epochs (i.e. including stage 1 and stage 2 training).
• LRϕ, LRW : Denotes the learning rate used for the transformer encoder and the rest of the

model.
• bsz: denotes the batch-size of the mini-batches used during training

We closely follow the setting used in (Gupta et al., 2022). ELIAS uses a 6-layer Distil-BERT
encoder. Note that the NGAME encoder is only used to augment the ground truth with labels
similar to a particular label, it is not used in any other way while training ELIAS. Table 17 shows
the hyperparameters used on the benchmark as well as newly contributed datasets.

D.3 CASCADEXML

CascadeXML’s (Kharbanda et al., 2022) hyperparameters include:
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Figure 6: Effect of varying hyperparameter λ on LEVER’s head and tail performance on LF-AOL-
270K

Table 16: Hyperparameters of tail-expert NGAME module. ✕ indicates use of random mini-
batches.

Dataset cluster-sz cluster-freq γ LR bsz Epochs

LF-AmazonTitles-131K 8 5 0.3 2 × 10−4 1600 300
LF-Amazon-131K 512 5 0.3 2 × 10−4 700 400
LF-AOL-270K ✕ ✕ 0.05 2 × 10−4 3200 300
LF-WikiSeeAlso-320K 512 5 0.3 2 × 10−4 1024 300
LF-Wikipedia-500K 16 5 0.3 2 × 10−4 512 40
LF-WikiHierarchy-1M 1024 5 0.3 2 × 10−4 6400 300
LF-AmazonTitles-1.3M 8 5 0.3 2 × 10−4 1600 400

• Ep: Number of epochs CascadeXML is trained for.
• bsz: Denotes the batch size used for training.
• label resolution: Denotes the BERT layers and clustering size used at each resolution.
• dropout: Dropout used at each resolution.
• shortlist size: Cluster size used at each resolution.
• LRϕ, LRW : Denotes the learning rate used for the transformer encoder and weight vectors.

We closely follow the setting used in (Kharbanda et al., 2022). CascadeXML uses a 12-layer BERT
encoder. Note that the NGAME encoder is only used to augment the ground truth with labels similar
to a particular label, it is not used in any other way while training CascadeXML. Table 18 shows the
hyperparameters used on benchmark as well as newly contributed datasets.

D.4 RENÉE

Renée’s (Jain et al., 2023) hyperparameters include:

• epochs: Denotes the total number of epochs for which Renée is trained.
• dropout: Denotes the probability of randomly dropping the encoder outputs in order to

regularise the network.
• warmup: Warmup steps is the number of training iterations over which both the encoder and

the classifier learning rates are linearly increased from 0 to the maximum value.
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Table 17: Hyperparameters of ELIAS

Dataset C α β ρ λelias K b Epochs LRϕ LRW bsz

LF-AmazonTitles-131K 2048 10 150 1000 0.05 2000 20 60 1 × 10−4 2 × 10−2 512
LF-Amazon-131K 2048 10 150 1000 0.05 2000 20 70 7 × 10−5 5 × 10−3 1024
LF-AOL-270K 4096 10 150 1000 0.05 2000 20 70 3 × 10−5 1 × 10−3 8192
LF-WikiSeeAlso-320K 4096 10 150 1000 0.05 2000 20 40 5 × 10−5 5 × 10−3 1024
LF-Wikipedia-500K 8192 10 150 1000 0.05 2000 20 40 5 × 10−5 5 × 10−3 256
LF-WikiHierarchy-1M 16384 10 150 1000 0.05 2000 20 30 5 × 10−5 5 × 10−3 1024
LF-AmazonTitles-1.3M 16384 10 150 1000 0.05 2000 20 40 2 × 10−5 1 × 10−3 1024

Table 18: Hyperparameters of CascadeXML

Dataset Ep bsz Label Resolution Dropout Shortlist-sz LRϕ LRW

LF-AmazonTitles-131K 15 64 {5,6}:210 — {8}:213 — {10}:216 — 12 : 131073 0.2, 0.25, 0.35, 0.5 210, 210, 210 1e−4 1e−3

LF-Amazon-131K 15 64 {5,6}:29 — {8}:212 — {10}:215 — 12 : 131073 0.2, 0.25, 0.4, 0.5 26, 27, 28 1e−4 1e−3

LF-AOL-270K 12 96 {5,6}:210 — {8}:213 — {10}:216 — 12 : 272825 0.2, 0.25, 0.35, 0.5 210, 210, 210 1e−4 1e−3

LF-WikiSeeAlso-320K 12 64 {5,6}:210 — {8}:213 — {10}:216 — 12 : 312330 0.2, 0.25, 0.35, 0.5 210, 211, 212 1e−4 1e−3

LF-Wikipedia-500K 12 256 {5,6}:210 — {8}:213 — {10}:216 — 12 : 501070 0.2, 0.25, 0.35, 0.5 210, 210, 211 1e−4 1e−3

LF-WikiHierarchy-1M 12 96 {5,6}:210 — {8}:213 — {10}:216 — 12 : 976214 0.2, 0.25, 0.35, 0.5 210, 210, 210 1e−4 1e−3

LF-AmazonTitles-1.3M 10 48 {7,8}:213 — {10}:216 — 12 : 1305265 0.2, 0.3, 0.4 210, 211 1e−4 1e−3

• LRϕ, LRW : Denotes the learning rate used for the transformer encoder and the classifier layer.
• bsz: Denotes the batch size of the mini-batches used during training.
• clf-wd: Weight decay for fully connected layer parameters.

Table 19: Hyperparameters of Renée

Dataset Epochs Dropout Warmup LRϕ LRW bsz clf-wd

LF-AmazonTitles-131K 100 0.85 5000 1 × 10−5 5 × 10−2 512 1 × 10−4

LF-Amazon-131K 100 0.85 5000 1 × 10−5 5 × 10−2 512 1 × 10−4

LF-AOL-270K 100 0.60 20000 1 × 10−6 1 × 10−3 1024 1 × 10−4

LF-WikiSeeAlso-320K 100 0.75 5000 2 × 10−4 2 × 10−1 2048 1 × 10−4

LF-Wikipedia-500K 100 0.70 5000 5 × 10−5 4 × 10−3 2048 1 × 10−4

LF-WikiHierarchy-1M 100 0.70 20000 1 × 10−4 2 × 10−3 1024 1 × 10−2

LF-AmazonTitles-1.3M 100 0.70 15000 1 × 10−6 1 × 10−2 1024 1 × 10−4

We closely follow the setting used in (Jain et al., 2023). Renée uses a 6-layer Distil-BERT encoder.
Table 19 shows the hyperparameters used on benchmark as well as newly contributed datasets.

D.5 RERANK + TAUG

ReRank + TAUG (Wei et al., 2021) hyperparameters include:

• ϵsplit: Denotes the proportion of labels that will be considered as head labels. The original
dataset D containing L labels is split into 2 datasets Dh and Dt. Dh contains headmost ϵsplitL
labels and their associated training points, while Dt contains the remaining L− ϵsplitL labels
along with their associated training points.

• n-aug: Denotes the number of additional data points that will be generated for each data point
in Dt.

• pdrop: Denotes the probability of dropping a token from the data point.
• pswap: Denotes the probability of swapping two randomly chosen tokens.
• rerank-strategy: Denotes the multiplicative factor used to re-rank scores. We use the

label inverse propensity factor to perform re-ranking.

D.6 GANDALF

Gandalf’s (Kharbanda et al., 2024) hyperparameters include:
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Table 20: Hyperparameters of Re-rank + TAUG

Dataset ϵsplit n-aug pdrop pswap

LF-AmazonTitles-131K 0.90 8 0.30 0.30
LF-AOL-270K 0.65 6 0.20 0.20
LF-Wikipedia-500K 0.90 4 0.10 0.10
LF-WikiHierarchy-1M 0.90 4 0.20 0.20

• threshold: Denotes the threshold used to filter out labels obtained from the normalized
label correlation graph during augmentation.

We closely follow the settings used in (Kharbanda et al., 2024) and use threshold of 0.1 for all
datasets.

D.7 LEVER

D.7.1 HYPERPARAMETERS

LEVER uses the parameter τ to control the number of entities (data points or labels) that are added
for each label. The hyper-parameter c from Theorem 3 was set to 0, as this value worked consistently
well across datasets. Table 22 displays the values of τ , τd, and τl for both benchmark and newly
contributed datasets. We observed that setting τd = 0 yields satisfactory results for most cases, with
the exception of LF-Wikipedia-500K, for which we set τd = 12. A value of λ = 0.5 was employed
for all experiments. Table 21 illustrates the effect of varying τ , and Table 14 demonstrates the effect
of varying λ.

Table 21: Performance variation in P, PSP and Coverage when as τ is varied in LEVER for LF-
Wikipedia-500K and LF-WikiHierarchy-1M. Figure 7 shows the decile-wise plots corresponding to
these values. As more neighbours are added, the tail metrics (PSP and Coverage) improve while the
Precision remains constant or slightly drops.

LF-Wikipedia-500K

τ PPL P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

1 18.1 84.96 66.26 51.68 37.10 50.27 55.68 22.90 50.08 61.59
20 39.5 85.14 66.90 52.35 38.39 52.33 58.04 24.72 53.45 65.43
45 64.5 85.02 66.43 52.05 42.51 54.86 60.20 29.08 58.28 70.09

LF-WikiHierarchy-1M

τ PPL P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 C@1 C@3 C@5

1 43.3 95.01 93.99 92.24 19.69 27.36 33.20 6.62 11.39 14.56
4 44.8 95.19 93.90 92.07 24.79 32.74 38.29 9.08 16.12 20.02
8 47.7 94.97 93.18 90.98 26.37 34.99 40.51 10.08 18.34 22.74
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Figure 7: Effect of varying hyperparameter τ on LEVER’s head and tail performance on LF-
Wikipedia-500K and LF-WikiHierarchy-1M.
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Figure 8: In ELIAS there is a bigger drop in head performance as compared to Renée when LEVER
is applied. This therefore translates to a much larger increase in ELIAS+LEVER’s tail performance
for this dataset, note that for ELIAS the performance improvement starts from the torso labels itself.

Table 22: LEVER’s Hyperparameter τ on benchmark datasets

Dataset τ τl τd

LF-AmazonTitles-131K 15 15 0
LF-Amazon-131K 20 20 0
LF-AOL-270K 100 100 0
LF-WikiSeeAlso-320K 4 4 0
LF-Wikipedia-500K 75 60 15
LF-WikiHierarchy-1M 4 4 0
LF-AmazonTitles-1.3M 15 15 0

D.7.2 TRAINING TIME

Table 23 shows the training time for different models and datasets when combined with LEVER.
Note that in ELIAS and CascadeXML, where the train times increase by a greater margin, the gains
provided by LEVER are also higher (avg. +6.1% increase in PSP and +2

Table 23: Training time (in hours) for different models on a single NVIDIA V100 GPU. The average
training time increases by 3.1x, and in the worst case, by 8.9x. For LEVER counterparts, this
includes the time for training the teacher model, generating soft labels, and using/training the OvA
classifier.

Dataset Renée Renée+ LEVER ELIAS ELIAS+ LEVER CascadeXML CascadeXML+ LEVER

LF-AmazonTitles-131K 17.59 20.11 4.33 18.82 3.63 17.14
LF-Amazon-131K 42.77 46.51 19.44 65.62 4.60 41.31
LF-AOL-270K 136.22 138.20 60.67 171.20 42.12 152.00
LF-WikiSeeAlso-320K 86.42 95.19 25.33 111.46 12.40 88.52
LF-Wikipedia-500K 154.93 184.05 138.67 226.72 29.58 89.72
LF-WikiHierarchy-1M 31.44 40.15 24.00 61.17 9.85 35.91
LF-AmazonTitles-1.3M 154.39 186.45 40.00 158.23 70.00 202.93

Average Time Inc. 1.14x 3.29x 4.86x

Table 24, 25, 26 show the runtime break down when LEVER. Note that the training time of the
Siamese Teacher is less than what is reported in (Dahiya et al., 2023a) as that includes the time
taken to train both the NGAME Encoder and NGAME Classifier.
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Table 24: Renée + LEVER training time (in hrs) on a single NVIDIA V100 GPU. Training LEVER
involves three steps (a): Time to train the Siamese teacher, (b): Time to construct soft labels and (c):
Time to train the Renée.

Dataset Siamese Teacher Soft Labels Renée Total

LF-AmazonTitles-131K 11.82 0.07 8.22 20.11
LF-Amazon-131K 34.44 0.07 12.00 46.51

LF-AOL-270K 108.00 0.20 30.00 138.20
LF-WikiSeeAlso-320K 69.86 0.25 25.07 95.19

LF-Wikipedia-500K 50.26 0.45 133.33 184.05
LF-WikiHierarchy-1M 19.33 1.04 19.78 40.15
LF-AmazonTitles-1.3M 93.50 0.73 92.22 186.45

Table 25: ELIAS + LEVER training time (in hrs) on a single NVIDIA V100 GPU. Training
LEVER involves three steps (a): Time to train the Siamese teacher, (b): Time to construct soft
labels and (c): Time to train the ELIAS.

Dataset Siamese Teacher Soft Labels ELIAS Total

LF-AmazonTitles-131K 11.82 0.07 6.93 18.82
LF-Amazon-131K 34.44 0.07 31.11 65.62

LF-AOL-270K 108.00 0.20 63.00 171.20
LF-WikiSeeAlso-320K 69.86 0.25 41.33 111.46

LF-Wikipedia-500K 50.26 0.45 176.00 226.72
LF-WikiHierarchy-1M 19.33 1.04 40.80 61.17
LF-AmazonTitles-1.3M 93.50 0.73 64.00 158.23

Table 26: CascadeXML + LEVER training time (in hrs) on a single NVIDIA V100 GPU. Training
LEVER involves three steps (a): Time to train the Siamese teacher, (b): Time to construct soft
labels and (c): Time to train the CascadeXML.

Dataset Siamese Teacher Soft Labels CascadeXML Total

LF-AmazonTitles-131K 11.82 0.07 5.25 17.14
LF-Amazon-131K 34.44 0.07 6.80 41.31

LF-AOL-270K 108.00 0.20 43.80 152.00
LF-WikiSeeAlso-320K 69.86 0.25 18.40 88.52

LF-Wikipedia-500K 50.26 0.45 39.00 89.72
LF-WikiHierarchy-1M 19.33 1.04 15.54 35.91
LF-AmazonTitles-1.3M 93.50 0.73 108.70 202.93
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