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Abstract

Neural video compression (NVC) models recently outperformed traditional meth-
ods. They typically include an I-Frame codec for Intra-Frames and a P-Frame
codec for P-frames. However, their performance may be far from optimal with
data outside the training set. We propose domain adaptation (DA) in NVC using
lightweight convolutional adapters inserted in the I-Frame decoder of a pre-trained
NVC model, which are then fine-tuned. These adapters shift knowledge to a spe-
cific domain without altering the architecture or causing catastrophic forgetting.
They enhance compression for both I-frames and P-frames while using minimal
parameters with respect to the entire architecture, improving NVC robustness.

1 Introduction

Neural video compression (NVC) has attracted significant attention because it can outperform
standardized codecs like H.266-VTM [3] in terms of compression efficiency. These models typically
comprise two primary learnable networks, namely the I-frame and P-frame networks. The purpose
of the I-frame network is to encode and decode the IntraFrames (I-Frames) independently form the
other frames in the video. In contrast, the P-frame network uses previously reconstructed frames to
learn contextual features that help minimize temporal redundancy. I-frames, though less frequent
than P-frames, occupy more bitstreams due the fact that they cannot exploit any temporal context,
so they are encoded as single images. Recent NVC advances focus on extracting a better spatial
and temporal context to reduce redundancy [14, 23, 13, 15] in the P-frame model, leaving the latter
almost unchanged. The framework uses backpropagation to minimize the rate-distortion (RD) loss
L = λD +R, employing D for distortion, R for rate, and λ to balance the trade-off.

With hand-crafted modules replaced by learnable ones, NVC models heavily depend on their training
datasets, limiting their adaptability to different contents. The limitation of handling off-domain
content makes NVC models less attractive, jeopardizing their possible usage in a real scenario. A
first naive method could involve fine-tuning the model using a dataset from a particular domain,
thereby achieving optimal outcomes in that specific semantic content; however, this approach has
two significant problems: finding the right hyperparameters for fine-tuning is complex, and there
is a risk of catastrophic forgetting, where the network cannot solve the original task properly. A
second approach involves the use of adapters [25, 5], small modules added to a pre-trained model
and fine-tuned for a specific domain without altering the rest of the network. Although used in image
compression domain adaptation [21, 26], they have not been exhaustively studied in NVC.

Accepted to the Neural Compression Workshop at the 38th Conference on Neural Information Processing Systems
(NeurIPS 2024).



In this paper, we propose a hybrid approach in which we achieve domain adaptation in NVC through
Convolutional Adapters (CADs) applied only at the decoder of the I-Frames model. The term hybrid
means that we modify only the decoder of the I-frames model, leaving the P-frame one untouched
and allowing P-frames encoding refinements based on I-frames. This approach offers several benefits.
First, since we add adapters on the main architecture, we do not modify or replace any parameters,
preventing catastrophic forgetting Second, focusing only on the decoder of I-frame model, we
removed the rate term in the loss function, simplifying the optimization process.

Third, modifying only the I-Frames model improved coding efficiency in both I- and P- frames
across various domain-specific datasets, underscoring the importance of a robust Intra model. This
pioneering work in domain adaptation for NVC may inspire future advances.

2 Related work
Neural image compression (NIC) models use a hyperprior framework [2] to improve entropy
parameter estimation by assuming a Gaussian distribution. Models employ autoregressive entropy
estimation [19, 20] to capture spatial correlations and extract global and local contexts using attention
modules, Transformers, or graphs with convolution [31, 32, 17, 24]..

Neural video compression (NVC) has also made significant improvements. Early works employed
residual coding, leveraging the predicted, exploiting residuals to reduce redundancy. DVC [18]
employs an optical flow network to produce the prediction frame, after which the residual between this
frame and the current frame is encoded; This approach is improved by adding motion prediction [16,
22], scale-space optical flow estimation [1], and recurrent autoencoder [30]. Conditional coding [10,
11] implicitly learns contexts in the feature domain without being confined to the residuals of earlier
frames in the pixel domain; in particular, the condition can be defined and learn, carrying richer
information to improve efficiency. [10] introduced a single coder for both intra- and inter-frames
using two subnets: the first transmits motion information and a coding mode that either performs
actual coding with the second subnet or handles temporal prediction.

Majority of NVCs struggled to extract context due to their reliance only on optical flow for temporal
correlation; in this sense a major effort has been made by the DCVC series [12, 13, 23, 14, 15],
where higher dimension context is exploited. [12] initially explores methods to utilize, understand
and establish a condition on NVC, introducing a high-dimensional feature domain context for the
first time. [23] learned multiscale contexts from propagated features without relying on an auto-
regressive entropy model, while [13] introduced a latent prior and dual spatial prior to efficiently
capture temporal and spatial dependencies, reducing redundancy. [14] improved NVC by extracting
diverse temporal and spatial contexts and using a quadtree-based partition for better entropy coding,
while [15] improved quality by modulating latent features with a learnable quantizer and periodic
refreshing for temporal feature regulation.

Domain adaptation (DA) has not been exhaustively studied in NIC and NVC. In [9], the generalized
divisive normalization layers and the entropy model are fine-tuned with custom filters for the new
dataset, requiring many parameters and challenging integration into a general architecture. [26]
trained for each single image a tiny adapter, whose parameters must be sent with the bitstream, to
perform single image optimization; despite the efficacy, this increases the time and computational
complexity, jeopardizing its possible usage in NVC. [21] employed compact linear adapters, each
dedicated to a specific target domain and utilizing 3× 3 convolutions. Gating networks control these
adapters for DA, boosting target domain performance and preventing catastrophic forgetting.

Most of the DA research on videos has focused on various topics, such as action recognition [28] or
3D segmentation [4]. However, NVC remains unexplored, prompting our research. Starting from the
foundational DCVC models, this work seeks to tailor these codecs for specific domains, aiming to
enhance the results even further.

3 Method

3.1 General architecture

Fig. 1 shows a blueprint of the NVC model. As mentioned in Sect. 2, it is formed by two submodels,
namely the I-frame and the P-frame; the latter is depicted by the pink box in the figure.
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Figure 1: I-Frames network architecture. E-RB, D-RB, and U-RB denote encoder, decoder, and
U-Net residual block respectively, while CAD stands for convolutional adapters, highlighted in
dark-blue. Light-blue box denotes the entire I-frames Decoder.

P-Frame model learns and propagates temporal and spatial context to improve the encoding, decod-
ing, and entropy modeling of the P-frames, exploiting both the I-frames and the information already
collected. As this study intends to examine the impact of DA adapters within the I-frame model, we
do not perform any modification of such architecture.

I-Frame model is designed to handle I-frames, which are frames encoded or decoded independently
of any previous temporal context. Once reconstructed, these frames are utilized as input for the
P-frame model to process additional frames.

We start from the model used in [14], which in turn is based on [27]. Denoting by xin
t the intra frame

at time t, it is projected to yint with the I-Frame encoder, as shown in Fig. 1. yint is then used as input
for the hyperprior autoencoder to estimate the entropy parameters. Assuming the tensor follows a
Gaussian distribution, µ and σ are determined to estimate the entropy during training and used for
actual encoding during inference, utilizing the same entropy model as in [13]. The encoder also takes
the desired quality qint as input, enabling variable bitrate coding. This allows the hyperprior network
to produce element-wise scales qsint for latent vectors at different target qualities. Once the quantized
tensor ŷint is obtained, it is projected back into the pixel domain by the I-frame decoder (light-blue
box), resulting in the reconstructed x̂in

t . After four decoding blocks where the number of channels is
reduced from 192 to 16 (yellow box in figure), a final U-Net module (green box) and a convolutional
layer are added to further improve the final reconstruction. Fig. 1 shows that we added convolutional
adapters in the three final residual blocks of both the decoder (D-RB) and the U-Net (U-RB) and are
represented by yellow and red boxes, respectively.
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Figure 2: (a) Architecture of the Convolutional adapter (CAD), where Cin and Cout are the input and
output channel dimension respectively, while H and W are the spatial dimensions. (b) Architecture
of the D-RB with the addition of CADs. (c) Architecture of the U-RB with the addition of CADs.
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3.2 Domain adaptation towards convolutional adapters

We inserted adapters only in the I-Frame decoder for two main reasons. First, by adding adapters for
each domain, we avoid significantly increasing the number of parameters, in order not to overburden
the model, keeping it manageable even with multiple domains. Furthermore, small adapters are easier
to encode and transmit; for example, an adapter system with fewer than a million parameters can
be sent in a 3.9 MB bitstream using 32-bit floats. Second, we simplified the resulting optimization
problem as we do not need to address the rate minimization typically faced in NVC.

Convolutional adapters. Unlike [21], we implemented non-linear convolutional autoencoders (CAD)
for each adapter, following [5]. Fig. 2a shows the structure of the adapters. When a tensor with Cin

channels is input, it is projected into a latent space, reducing the number of channels to Cin/γ. In
this context, γ is a hyperparameter: a larger γ results in a smaller latent space of the adapter, thus
decreasing the number of required parameters, but also limiting its adaptability. We exploited 3× 3
convolution in the CAD encoder since 1× 1 convolution can result in suboptimal transferability due
to different receptive fields [5], and a larger filter size in the CAD encoder preserves local sensitivity.
We instead use 1× 1 convolution in the CAD decoder to decrease parameters and maintain the same
spatial dimension. Once the output with Cout channels is obtained, it is multiplied by the learnable
parameters α regulating the importance of the adapters obtained.

CAD in the main architecture. Figures 2b and 2c show our integration of CADs within the residual
blocks of both the deconvolutional decoders (D-RB) and U-Net (U-RB). Regarding the former (Fig.
2b), we integrated three CAD modules with identical values γd, one per residual sub-block, using
a residual parallel strategy [5]. This setup enables CAD to fine-tune each component in parallel,
balancing effectiveness and parameter efficiency. We follow the same strategy for the U-RB (Fig. 2c)
where we inserted five CADs, with a γu independent of the one related to the D-RB blocks.

3.3 Training and inference

Given a fixed content-based domain D, we integrate CADs into selected positions of a pre-trained
I-Frame codec and only fine-tune those specific parameters, leaving the remainder of the model
unchanged. Since we only introduced adapters in the decoder of the I-frame model, the optimized
loss function turns out to be only the distortion between the original I-frame and its reconstruction,
denoted by L = D(xin

t , x̂in
t ). In our case, we optimize the CADs for mse and ssim separately,

as maintaining this separation is a common practice in both NIC and NVC. Once we complete the
fine-tuning of the adapters, we used the obtained network as I-Frame codec in a pre-trained NVC; to
perform actual entropy coding, we exploit an ANS codec [6].

4 Experiments
4.1 Training setup

To validate our methods, we used two domain-specific datasets. NSVA [29] with high-quality NBA
(national basketball association) basketball videos, and DFL [7] with high-quality German soccer
league videos (Bundesliga). We selected these datasets because they are high-resolution, feature long
sequences (hundreds of frames), and represent realistic scenarios for real-time streaming services.

We set (γu,γd) to (4,8), assigning more parameters and greater transferability to the decoder rather
than the U-Net, demonstrating its potential for improved outcomes. We trained our adapters for 50
epochs, using Adam as an optimizer with an initial learning rate of 10−4, halving it when reaching
a plateau with patience in 5 epochs. We tested our methods on two NVC models, namely DCVC-
HEM[13] and DCVC-DC[14], which are part of the SOTAs on this topic, and we consider PSNR vs.
Bits per pixel (bpp) as standard metrics. We encode an I-frame for every 32 P-frames, that is, we
fixed a group of pictures (GOP) of 32. We used both DCVC-DC and DCVC-HEM I-frame models;
the latter closely follows the one in sect 3, except for some channel dimensions.

4.2 RD performance

Figure 7 shows the RD performance for all frames (both I and P) in terms of PSNR considering
15 test videos from NVCA (a) and DFL (b), using DCVC-HEM [13], and DCVC-DC [14] as the
starting baseline models; to be fair in comparison, we maintain the same I-Frame codec across
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Figure 3: RD plot (PSNR vs. bpp) for the NVCA (a) and DFL (b) datasets, comparing CAD utilization
with DCVC-HEM, and DCVC-DC. Dotted lines indicate reference results, while the continuous lines
show the results obtained using our method. The MS-SSIM results are inserted in the appendix.

these different NVC models, with and without CADs. As observed from the continuous lines, we
successfully surpassed the baseline results in both datasets and all the two foundational models
evaluated. Although the improvements may appear marginal in the figures, they were achieved
by modifying only a small portion of the I-frame codec, which encodes 1 frame out of every 32.
Consequently, most of the architecture remains unchanged. Table 1 presents the Bjontegaard metrics
[8], using DCVC-* models as baselines; we analyzed three different types of frames, namely intra (I),
predicted (P) and all frames. Even with a slight increase in additional parameters, specifically less
than 2% of the entire NVC network, we observe an improvement in overall performance in the target
datasets. For example, in the NVCA dataset, BD-RATE improves by more than 2%. It is important to
note that we achieved this simply by adding adapters without altering the original parameters, thus
avoiding the issue of catastrophic forgetting. This approach is crucial to preserve robustness and not
jeopardize the usability of such models. It is important to note that the enhancements observed in
the results are attributed not solely to the improvements in the I frames, but also to the P frames,
as evidenced by the negative BD-RATE values in Tab. 1. This indicates that an optimal I-frame
codec can also enhance the efficiency of P-frames. Moreover, our results were achieved by adding a
minimal number of additional parameters, as demonstrated by the final columns of the tab. 1; for
instance, for DCVC-DC, we incorporated 948k parameters, which is less than 2% of the entire NVC
model. This is vital for practical scenarios needing storage of diverse adapters for different domains.

Table 1: Comparison of BD-RATE/PSNR and parameters between our proposed method and state-of-
the-art NVC models. For BD-* calculations, we used DCVC-* as the reference models. Add. pars
(%) represents the additional parameters in percentage added to the main architecture.

All I P # parameters

BD-RATE BD-PSNR BD-RATE BD-PSNR BD-RATE BD-PSNR CAD Add. Pars (%)
NVCA

DC + CAD -2.10 0.07 -7.45 0.41 -1.85 0.05 948k 1.85
HEM + CAD -2.38 0.08 -8.14 0.44 -2.16 0.066 956k 1.96

DFL
DC + CAD -1.98 0.068 -3.60 0.22 -1.94 0.007 948k 1.85

HEM + CAD -3.22 0.11 -8.64 0.48 -1,93 0.06 956k 1.96

4.3 Varying the number of I-frames

We analyzed CADs compression enhancement by varying the GOP. Figure 4a shows how BD-RATE
changes with respect to the GOP, considering DCVC-DC as the base model, and on NVCA dataset;
we also point out that in this experiment we encode only the first 128 frames. As evident, for all
frames (orange) and when considering just P frames (blue), we consistently achieve significant
improvements. Even in the extreme case where only the first frame is encoded as I (GOP = 128), we
achieve a BD-RATE of -0.5 dB. Since we only modify the I-frame model, as the GOP increases, the
performance gap between our method and baseline models decreases due to the increased distance
between improved I-frames. This is shown in Fig. 4b with a sample video from the NVCA dataset,
where we plot the ∆-PSNR (frame-by-frame PSNR difference between reconstructions with and
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without CADs). Moving from GOPs of 32 to GPs of 64 pictures, the difference gradually decreases
until the next I frame is reached. However, it is clear that even if we add a negligible number of
parameters, we managed to obtain remarkable improvements, especially in such situations where it is
necessary to maintain a small value of GOP.
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Figure 4: (a) BD-RATE for various GOP settings on the NVCA dataset using DCVC-DC + CADs,
with DCVC as the baseline model. Here we encoder the first 128 frames for each sample. (b)
∆-PSNR on a video sample from NVCA dataset, considering a GOP of 32 and 64.

4.4 Ablation study
Tab 2 presents BD-RATE, BD-PSNR, trainable parameters, and the percentage of additional parame-
ters (Add. Pars) for different configurations. We modify γd and γu, and compared the CADs with
fine-tuning of the decoder. we exploited DCVC-DC as the base model and the NVCA dataset.

BD-RATE indicates that D-RBs have more adaptation ability than U-RB (BD-RATE of -2.10
versus -1.99); furthermore, reducing both γd and γu decreases parameters, but also performance
improvements. Finding the best configurations means balancing these two factors and it depends on
the practical scenario; for example, a configuration with (γd, γu) = (4, 8) produces a BD-RATE of
−2.1 with training parameters under 2% compared to the base model. Alternatively, fine-tuning the
entire decoder improves performance but leads to catastrophic forgetting by modifying the original
parameters and increases the parameters to nearly 4.5M, making it less efficient than using CADs.

Table 2: Comparison of CADs considering different configurations, different type of adapters, and
the fine-tuning technique. In bold we highlight the default configuration used in Sect. 4.2.

type of adapters (γd, γu) BD-RATE BD-PSNR # pars Add Pars. (%)
CADs (4,8) -2.10 0.07 948k 1.85
CADs (8,4) -1.99 0.068 572K 1.12
CADs (8,8) -1.91 0.064 508k 0.99
CADs (6,6) -1.96 0.067 667k 1.3
CADs (0,8) -1.37 0.047 65K 0.12
CADs (4,0) -1.92 0.065 883K 1.73

Dec + Unet Refine - -2.99 0.1 4.497M 8.81

5 Conclusion
We incorporate convolutional adapters (CADs) into the I-frame decoder for content-based domain
adaptation in NVC. Such models were incorporated into the decoder and U-net architecture and then
fine-tuned for domain-specific reconstruction. These CADs were used solely in the I-frame model,
leaving the rest of the NVC unchanged. The tests in two datasets showed significant compression
improvements with less than 2% additional parameters, enhancing both the I-frame and P-frame
reconstructions; such results suggest that an efficient I-frame codec positively impacts the entire
NVC system, especially with a smaller GOP. This work explores content-based DA in NVC, a
largely unexplored area. Few CADs in the I-frames decoder yield promising results, suggesting
improvements by adding adapters in the P-frames encoding process and extending our experiments to
more NVC models.
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Figure 5: RD plot (MS-SSIM vs. bpp) for the NVCA (a) and DFL (b) datasets, comparing CAD
utilization with DCVC-HEM and DCVC-DC. Dotted lines indicate reference results, while the
continuous lines show the results obtained using our method.
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Figure 6: RD plot (PSNR vs. bpp) for the NVCA (a) and DFL (b) datasets, comparing CAD utilization
with DCVC-HEM and DCVC-DC considering only I-Frames. Dotted lines indicate reference results,
while the continuous lines show the results obtained using our method.
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Figure 7: RD plot (PSNR vs. bpp) for the NVCA (a) and DFL (b) datasets, comparing CAD
utilization with DCVC-HEM, and DCVC-DC considering only P-Frames. Dotted lines indicate
reference results, while the continuous lines show the results obtained using our method.
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