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Abstract

Many machine learning classification tasks involve imbalanced datasets, which are often sub-
ject to over-sampling techniques aimed at improving model performance. However, these
over-sampling methods are prone to generating unrealistic or infeasible samples. Further-
more, they often function as black boxes, lacking interpretability in their procedures. This
opacity makes it difficult to track their effectiveness and provide necessary adjustments,
and they may ultimately fail to yield significant performance improvements. To bridge
this gap, we introduce the Decision Predicate Graphs for Data Augmentation (DPG-da), a
framework that extracts interpretable decision predicates from trained models to capture
domain rules and enforce them during sample generation. This design ensures that over-
sampled data remain diverse, constraint-satisfying, and interpretable. In experiments on
synthetic and real-world benchmark datasets, DPG-da consistently improves classification
performance over traditional over-sampling methods, while guaranteeing logical validity and
offering clear, interpretable explanations of the over-sampled data.

1 Introduction

A recurring challenge in supervised classification is the presence of imbalanced datasets, where one or more
classes are represented by significantly fewer samples than others. This imbalance can significantly create
biases in the learning algorithms toward the majority class, leading to poor generalization on minority classes.
As a result, classifiers may achieve high overall accuracy while systematically misclassifying rare but critical
events, a limitation that is particularly problematic in high-stakes domains such as fraud detection (Makki
et al., 2019; Rubaidi et al., 2022; Silva et al., 2023) and clinical diagnosis (Roy et al., 2024; Ejiyi et al., 2025),
where correct classification of the minority class is often the central goal.

Existing approaches to class imbalance, focusing on tabular data, fall into three categories: problem def-
inition, algorithmic modification, and data-level processing (He & Ma, 2013; Weiss, 2013; Haixiang et al.,
2017). The first reformulates evaluation metrics or tasks to emphasize minority performance but does not
alter the data or model. The second, often referred to as cost-sensitive or cost-adjusted learning, integrates
class-specific misclassification penalties directly into the loss function (Cao et al., 2013; Hu et al., 2017), but
its effectiveness hinges on defining appropriate costs and often results in more complex models. The third,
and most widely adopted, modifies the data distribution directly, either by under-sampling the majority
class or over-sampling the minority class. Under-sampling, as in Random Under-Sampling (RUS)(Weiss,
2013), risks discarding informative instances(He & Ma, 2013), while over-sampling techniques like Random
Over-Sampling (ROS)(Chawla et al., 2002), which simply duplicate existing minority instances, may induce
overfitting(Dixit et al., 2023).

More sophisticated over-sampling methods, such as the interpolation-based SMOTE (Chawla et al., 2002) and
generative approaches like GANs (Goodfellow et al., 2020) and VAEs (Xu et al., 2019), aim to generate diverse
synthetic samples. However, these methods face three key limitations: (i) interpolation-based techniques can
generate infeasible instances that violate domain constraints (Matharaarachchi et al., 2024; Yang et al., 2023),
(ii) generative models may suffer from instability and provide no guarantees of logical validity (Di Liello et al.,
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2020; Tarawneh et al., 2022), and (iii) both approaches offer little transparency into how synthetic samples
are produced, limiting their usefulness in sensitive domains.

These issues are particularly acute in high-stakes applications, where synthetic data must not only improve
classifier performance but also remain valid, auditable, and interpretable. Interpretability, in contrast to
post-hoc explainability, refers to methods whose internal logic and outputs can be directly understood
without approximation layers (Ross & Doshi-Velez, 2018; Rudin, 2019). In the context of data augmentation,
the process of generating synthetic samples from a query sample to expand or balance existing datasets,
interpretability requires not only that the generated records respect domain-specific constraints, but also
that users gain insight into how these synthetic samples are produced and in what ways they differ from the
original data they are derived from.

To address these challenges, we propose DPG-da, a constraint-aware augmentation method guided by De-
cision Predicate Graphs (DPGs) (Arrighi et al., 2024). DPGs provide a global, interpretable representation
of decision logic, from which class-specific predicates are extracted and enforced during generation. In our
framework, interpretability arises in two complementary ways: (i) constraints define a transparent and au-
ditable valid region for minority augmentation, offering users an explicit understanding of the problem space;
and (ii) the evolutionary transformation process from query samples to synthetic samples makes it possible to
trace which features changed most during augmentation, thereby explaining how new instances were created.

The contributions of this work are:

e A novel augmentation framework, DPG-da, that integrates constraint discovery and enforcement
directly into sample generation, ensuring validity and interpretability of synthetic data.

o A systematic violation analysis across three complementary groups of datasets (handcrafted rule-
based, high-stakes real-world, and synthetic overlapping) and over 10 baseline over-samplers, showing
that existing interpolation- and generative-based methods frequently produce infeasible samples,
whereas DPG-da guarantees strict constraint adherence.

e A comprehensive performance evaluation on 27 benchmark datasets, demonstrating that DPG-
da consistently outperforms interpolation and generative over-sampling methods in classification
performance while avoiding violations and providing interpretability into the augmentation process.

Experiments confirm that DPG-da outperforms state-of-the-art over-sampling techniques in both accuracy
and reliability, while eliminating infeasible samples. Although this comes with higher computational cost,
the trade-off is justified in domains where validity and interpretability of augmented data are as critical as
predictive accuracy.

The remainder of this paper is organized as follows: Section 2 provides the necessary background, Section 3
reviews related work, Section 4 presents the DPG-da framework, Section 5 details the experimental design,
Section 6 reports results and discussion, and Section 7 concludes with contributions and future directions.

2 Background

2.1 Violation Space

Let X' denote the problem space, i.e., all possible combinations of x feature values (e.g., X C R? for d
features). Not every point in X represents a feasible or meaningful instance in reality.

The violation space V- C X is the subset of points that break one or more domain-specific constraints, such as
physical laws, regulatory requirements, or common-sense rules. For example, a record describing a patient
with negative blood pressure, or a loan applicant under 18 years old, belongs to V. These samples are
numerically valid but semantically invalid.

Formally, let C be the set of Boolean-valued constraints over X. Then:

V={xeX|3IceC:c(x)=TFalse}.
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Its complement, the feasible region, consists of instances that satisfy all constraints. The literature sometimes
refers to V' as the infeasible region (Peres et al., 2018; Alsouly et al., 2022) or the constraint violation
region (Bernardo et al., 2011).

2.2 Decision Predicate Graphs

DPGs (Arrighi et al., 2024) are graph-based structures that capture decision logic in an interpretable and
compact form. A predicate p = (f,0,t) encodes a simple test over a feature f with operator o € {<,<,>,>}
and threshold ¢ € R. Nodes correspond to predicates or leaf outcomes; edges connect predicates that co-
occur along decision paths, with weights indicating their frequency. Figure 1 shows an illustrative binary-class
example.
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Figure 1: DPG structure showing predicates as nodes and class leaves.

DPGs are typically extracted from surrogate ensemble models trained to approximate a base classifier.
Formally, a DPG for model M,, is a directed weighted graph DPG(M,,) = (P, E), where P is the set of
predicates and E the edges weighted by co-occurrence frequency. Leaf nodes ¢, € P denote final class labels.

From a DPG, one can derive class-bound predicates, i.e., conjunctions of rules that consistently lead to a
given class. These yield explicit descriptions of feasible regions, such as 18 < Age < 65 (Loan requirement
for approval) or Glucose < 140 (Diabetes diagnosis). In our setting, these constraints serve two roles: they
restrict augmentation to the feasible region, preventing violations, and they provide interpretable insights
into the structure of class-specific domains.

3 Related Works

Data augmentation for tabular data has been widely studied, primarily to mitigate class imbalance. Early
over-sampling methods such as SMOTE and its variants (Han et al., 2005; Kovacs, 2019) interpolate between
minority instances, while generative models such as GANs and VAEs (Ding et al., 2024; Ai et al., 2023;
Tian et al., 2024; Stocksieker et al., 2024; Yadav et al., 2025; Berti et al., 2025) attempt to learn full
data distributions. Although effective at enlarging datasets, both families often yield implausible or noisy
samples, as they lack mechanisms to enforce domain-specific constraints and operate largely as black-box
processes (Thekumparampil et al., 2018; Sakho et al., 2024).

To improve trust and transparency, researchers have paired augmentation with XAI. Prior work combined
SMOTE with post-hoc explanation tools such as SHAP, LIME, or LRP in domains including fraud de-
tection, diabetes prediction, and student performance forecasting (Patil et al., 2020; Nayan et al., 2023;
Sahlaoui et al., 2024). While these studies demonstrate the value of combining over-sampling with inter-
pretability, augmentation itself remains unconstrained and prone to producing unrealistic samples. More
recent domain-specific frameworks embed interpretability directly into augmentation pipelines, for example
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using model explanations to guide low-resource NLP augmentation (Mersha et al., 2025) or steering over-
sampling with feature-importance signals in healthcare (Ejiyi et al., 2025). These methods, however, remain
tied to particular data modalities.

A related line of work employs counterfactual explanations to generate locally plausible alternatives (Mo-
hammed et al., 2022; Temraz & Keane, 2022; Panagiotou et al., 2024). Counterfactual augmentation improves
minority coverage and interpretability, but is inherently instance-specific, sensitive to learned decision bound-
aries, and not designed for large-scale rebalancing. Manifold-based approaches such as TabMDA (Margeloiu
et al., 2024) address augmentation at the dataset level by leveraging pre-trained tabular models, but they
lack transparency and do not enforce domain-specific constraints, limiting their applicability in sensitive
domains.

In summary, existing methods trade off between diversity (e.g., generative, manifold) and plausibility or
interpretability (e.g., counterfactuals, XAl-assisted over-sampling). Our framework, DPG-da, bridges this
gap by embedding model-derived constraints directly into the augmentation process, ensuring that generated
samples are both semantically valid and interpretable.

4 Proposed Approach

DPG-da consists of two key components: (i) extraction of class-specific constraints using Decision Predicate
Graphs (DPGs) and (ii) augmentation of minority samples via a heuristic optimization process of a query
sample. The framework ensures that generated data points are both diverse and strictly confined to feasible
regions defined by the DPG, addressing limitations of SMOTE-based and generative approaches that may
produce infeasible or overlapping samples (Figure 2).
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Figure 2: Workflow of the proposed DPG-da. Constraints extracted from DPGs guide the optimization for
valid and diverse synthetic samples.

4.1 Surrogate Model

The original imbalanced dataset is first used to train a Random Forest, which can be substituted with
any ensemble-based algorithm. This Random Forest ensemble acts as a surrogate model to approximate
the decision boundaries of the base classifier. The surrogate then enables the systematic extraction of
decision predicates, which are subsequently used to construct the DPG. These predicates define class-specific
constraints that delimit feasible regions for synthetic sample generation, thereby ensuring interpretability
through explicit, data-driven rules.



Under review as submission to TMLR

4.2 Heuristic Optimization

To generate augmented samples confined to the valid class-bound regions ( constraints) identified by the DPG,
we employ a heuristic optimization strategy based on Genetic Algorithms (GAs). Each augmentation begins
from a query or seed sample z? drawn from the minority class, which serves as a reference for generating
new candidates. We selected GAs for their simplicity and robustness: although faster or more sophisticated
optimization methods exist, our focus is on constraint-guided augmentation rather than optimizing the search
process itself.

Each individual in the GA represents a candidate augmented sample z%, initialized by uniform sampling
within the DPG-defined bounds for the target class. Candidates are evaluated using a composite fitness
function that captures multiple objectives:

« Classification validity V(z®, z9): A binary indicator that evaluates whether the candidate sample
z® and the query sample x? are assigned to the same target class, thereby validating semantic
alignment with the intended class label.

o DPG-constraint adherence A(z%, P): Rewards candidate samples that satisfy class-specific pred-
icates, remaining strictly within the feasible region defined by the DPG class bounds. This prevents
over-generalization and preserves the structure of the original data manifold.

o Distance from the query sample D(z% z9): Promotes diversity among the augmented samples
by maximizing the distance between each new augmented sample and the reference query sample.
Distance is measured using Euclidean distance for continuous features.

o Augmentation sparsity S(z% z?): Encourages minimal and interpretable modifications by pe-
nalizing candidates that differ significantly from the query sample. Sparsity is quantified using
the ¢y norm, which counts the number of feature changes, thereby promoting localized, meaningful
transformations.

The overall fitness of a candidate x®, with respect to the query sample x? and the class-bound predicates P
(obtained from the DPQG), is computed by weighting the contributions of multiple objectives. Specifically,
the fitness is defined as:

fitness(z®, 29, P) = V (2%, 29) x (wy - A(z*, P) + w2 - D(2, 29) + w3 - (1 — S(z%,29))) (1)

where w1, wsy, w3 control the relative importance of each objective. Higher fitness scores guide the GA toward
candidates that best satisfy all objectives.

The GA iterates until a stopping criterion is met: either the best fitness plateaus for a fixed number of
generations or a maximum number of generations is reached. This ensures efficient exploration of feasible
regions while generating diverse and interpretable samples without excessive computational overhead.

4.3 Interpretability of Augmentation

Our proposed DPG-da method introduces a novel form of intrinsic interpretability by tracking the entire
augmentation process. It leverages interpretable the evolutionary trajectory of each augmented sample
produced via a GA. To facilitate analysis and interpretation, we generate feature-level analysis that visualize
how candidate solutions evolve over successive generations. Various XAI methods have been developed,
with many producing visual outputs (e.g., heatmap) to highlight important features in image classification
tasks (Richard et al., 2024; Sawada & Toyoda, 2019). Inspired by these approaches, the heatmap and
barplot represent the magnitude and direction of changes in each feature dimension for the best-performing
individuals at each step, exposing the dynamics of the optimization process.

For example, consider a binary loan approval classification problem with four numerical features: z1 (Age in
years), T (Annual Income in thousands of USD), 3 (Credit Score ranging from 300 to 850), and x4 (Number
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of Children). Let x(0) = [45, 50, 620, 2] be a query instance from the minority class (i.e., approved loans).
The DPG derived from the surrogate model defines the feasible region for synthetic instances through the
following class-specific constraints: x; > 30, xo > 45, x3 > 600, and x4 < 3. The goal of DPG-da is to
generate synthetic instances x(9) at each generation g of the GA, following the constraint adherence.

In this example, the evolutionary process considers x(0) = [45, 50, 620, 2] and produces the best individuals
over three generations as follows: x(1) = [47, 52, 610, 2], x®) = [50, 55, 605, 3], and x®) = [52, 60, 590, 3],
with the last instance being invalid due to violation of constraint C'3. The algorithm adjusts x; and z2 to
explore the feasible region and promote diversity, while the violation of constraint C3 in generation 3 (where
23 = 590 < 600) results in penalization and exclusion of the candidate, highlighting the interpretable and
traceable nature of the evolutionary trajectory for post-hoc validation of synthetic data feasibility. The
change in feature values between successive generations as visible in Tablel.

Table 1: Feature-wise changes (Ax;) between successive generations of the GA in the DPG-da augmentation
process. A violation of constraint Cs occurs in generation 3 (signed by x).

Feature AO=L Al=2 A28
x1 (Age) +2 +3 +2
z2 (Income) +2 +3 +5
x3 (Credit Score) —10 -5 —15 (%)
x4 (Number of Children) 0 +1 0

5 Materials and Methods

To evaluate the proposed DPG-da framework, we designed a comprehensive experimental protocol combining
violation-prone, synthetic imbalanced, and benchmark datasets. Our methodology aims to test (i) data
realism through adherence to domain constraints, (ii) classification performance under varying augmentation
levels, and (iii) interpretability of synthetic samples. This section details the DPG-da implementation,
baseline over-sampling algorithms and datasets.

5.1 DPG-da Implementation

The implementation of DPG-da is publicly available!. The codebase provides a reproducible workflow for
generating realistic, constraint-compliant synthetic samples in imbalanced tabular datasets. To avoid data
leakage, all augmentation procedures were applied exclusively to the training set; the surrogate model was
trained only on training data, and augmented samples were added back to this set before classifier training.
The test set remained untouched to ensure fair evaluation.

The stages of the implementation are as follows:

1. Surrogate Model Training: A tree-based ensemble (Random Forest) is trained to approximate
the classification behaviour of the dataset, providing interpretable decision predicates.

2. DPG Construction: Decision predicates are extracted from the surrogate model to delineate
class-specific feasible regions, supported by the DPG library 2.

3. GA-Based Augmentation: Synthetic samples are generated by evolving a population of candidate
solutions through a GA.

4. Fitness Function and Optimization: The GA is guided by a composite fitness function promot-
ing (i) strict adherence to DPG-derived constraints, (ii) diversity among synthetic samples, and (iv)
sparsity of modifications relative to a query sample. In the current implementation, these objectives
are combined via a weighted sum with (wy, ws, w3) = (2.0,1.0,3.0) (see Appendix C).

1 Anonymized
?https://github.com/LeonardoArrighi/DPG
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5.2 Baseline Algorithms

We compared it against 12 established over-sampling techniques: classical interpolation-based methods
(SMOTE, SMOTE-ENN, SMOTE-SVM), advanced variants from the smote-variants library (DE, SMOTE-
POLYNOM, MSMOTE, SMOTE-LVQ), generative approaches for tabular data (CTGAN, TVAE, COPULA-
GAN) and ROS. Baselines were run with standard hyperparameters to ensure fair comparison. A summary
is provided in Table 2 in the Appendix.

5.3 \Violation-Prone Datasets

To evaluate DPG-da under constraint-sensitive scenarios, we curated three types of violation-prone datasets:

Synthetic violation-prone datasets: We synthesized a set of datasets covering domains such as health-
care, finance, manufacturing, fraud detection, energy grid, and education. Features were sampled from
plausible distributions, and domain-specific rules were encoded to evaluate violation-space adherence.

Real-world imbalanced datasets: Tabular datasets from the KEEL repository (Derrac et al., 2015) with
imbalance ratios between 1.5 and 9 (e.g., Wisconsin and Pima) (Ferndndez et al., 2008). These allow testing
on naturally occurring imbalances.

Synthetic imbalanced datasets with noise and borderline examples: From Napierala et al. (2010),
including three minority-class shapes (subclus, clover, paw) to simulate challenging scenarios with noise and
non-linear decision boundaries.

These datasets allow us to evaluate the over-sampling techniques ability to ensure generated data realism,
by verifying that synthetic samples respect domain-specific constraints and remain semantically valid. A
complete summary of the data and their valid feature ranges is provided in Appendix D.1.

5.4 Benchmarking Datasets

Furthermore, to evaluate the classification performance on augmented data from these over-samplers, we
also selected 27 benchmark datasets from (Ding, 2011) and the imbalanced-learn library, spanning diverse
domains, imbalance ratios, sample sizes, and feature dimensionalities. These datasets allow comprehen-
sive assessment of method performance under realistic, challenging conditions. A summary is provided in
Appendix D.2.

6 Results and Discussions

Following the experimental protocol described in Section 5, we compare our method against established over-
sampling baselines, spanning both classical interpolation-based techniques and recent generative models. The
evaluation focuses on three complementary aspects: (i) the realism of augmented data, i.e., adherence to do-
main constraints; (ii) classification performance across multiple augmentation levels; and (iii) interpretability
of the generated instances. This approach enables a holistic assessment of predictive performance alongside
the plausibility and transparency of synthetic samples.

6.1 Ensuring generated data realism

We evaluate DPG-da alongside baseline over-sampling methods using three widely adopted classifiers: Lo-
gistic Regression, k-Nearest Neighbors (kNN), and Decision Trees. These classifiers represent a spectrum of
model complexities and inductive biases: Logistic Regression assumes linear separability, KNN relies on local
neighborhoods and is sensitive to sample distribution, and Decision Trees capture non-linear relationships
but can overfit to noisy or artificially augmented instances.

Each method is applied at three augmentation levels (15%, 30%, and 50% minority class proportion relative to
the total dataset), and classifiers are trained on the resulting augmented datasets. To account for variability
introduced by the random nature of over-sampling and model initialization, each experiment is repeated ten
times per dataset and classifier combination.
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To assess data realism, we check whether augmented samples adhere to the inherent constraints of each
dataset. A violation is defined as any synthetic instance with feature values that are unrealistic or seman-
tically inconsistent with the dataset domain. The number of violations serves as a quantitative measure of
how well each method respects dataset constraints.

Figure 3 presents a heatmap of the average violation number across the over-sampling methods (Appendix 2)
and representative datasets (Table 3). Interpolation-based methods are the primary source of constraint
breaches. SMOTE-LVQ shows the highest number of violations, with 98.6 in Wisconsin, 53.3 in Pima, 10.4
in Fraud Detection, and roughly 5 in Quality Control, Finance, Clover, and Iris. DE also generates violations,
though generally at lower rates (e.g., 18.1 in Wisconsin, 26.9 in Pima, 26.5 in Fraud Detection, and smaller
counts elsewhere). SMOTE-SVM exhibits moderate violations, particularly in Wisconsin (14.9) and Fraud
Detection (16.3), while SMOTE-POLYNOM is mainly problematic for Pima (40 violations). All remaining
datasets and methods show no violations.

To illustrate these violations in detail, Appendix E.1 shows a pair-wise plot of the Wisconsin dataset aug-
mented with SMOTE-LVQ. Several synthetic samples lie outside valid ranges, particularly in features such as
Mitoses, NormalNucleoli, and MarginalAdhesion, highlighting the practical impact of constraint violations.

Wisconsin 98.6 18.1 0.0 14.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pima 26.9 40.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Fraud Detection 10.4 26.5 0.0 16.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80
Quality Control 39 9.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Finance 3.9 5.8 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60
Clover 4.9 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IrisO 6.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Education 0.3 19 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Energy 0.0 11 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Healthcare 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -20
Subcl 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Paw 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Datasets
Avg. Violations

SMOTE-LVQ
SMOTE-POLYNOM
SMOTE-SVM
COPULA-GAN
SMOTE-ENN
SMOTE-EENN

Methods
Figure 3: Heatmap of violations per over-sampling method and dataset.

These findings demonstrate that some widely used over-sampling techniques can produce semantically in-
valid samples, especially in datasets with complex feature interdependencies. In contrast, DPG-da, which
incorporates constraint-awareness into the augmentation process, avoids such violations, underscoring the
importance of enforcing data realism when generating synthetic minority-class instances in sensitive domains.

6.2 Performance Analysis

6.2.1 Classification improvement

We assess classification performance using the macro F1l-score and runtime, reporting the average across 10
repetitions. The Fl-score is particularly suitable for imbalanced classification as it balances precision and
recall, offering a more informative metric than accuracy when class distributions are skewed.

Across 27 imbalanced datasets, evaluated at three augmentation levels, Figure 4 summarizes the results.
Most methods showed a gradual decline in F1-score as augmentation increased, indicating that over-sampling
primarily introduced non-descriptive or noisy instances.

Among the evaluated methods, DPG-da, SMOTE-SVM, and TVAE consistently maintained high F1-scores
across all augmentation levels, while also outperforming the baseline performance of 71%. This demonstrates
their robustness to increasing amounts of synthetic data and highlights their suitability for imbalanced
classification tasks under varying augmentation conditions. In contrast, MSMOTE exhibited moderate
sensitivity to augmentation, while SMOTE and SMOTE-ENN showed notable performance degradation at
higher sampling percentages.
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Figure 4: Mean classification performance across augmentation methods and sampling percentages. Red
background areas indicate methods that violated constraints (DE, SMOTE-LVQ, SMOTE-POLYNOM, and
SMOTE-SVM). The dashed line indicates the average performance of the datasets before any augmentation
(71%).

To determine whether the differences in terms of predictive improvements were statistically significant, we
conducted a Friedman test (o« = 0.05) followed by a Nemenyi post-hoc test (Demsar, 2006). The Friedman
test confirmed significant differences among the eight populations (p < 0.001), providing formal evidence
that performance varies across augmentation methods. Appendix Table 7 reports each method’s median
(MD), median absolute deviation (MAD), and mean rank (MR).

We considered only methods that did not produce violations (described in Section 6.1). The critical difference
(CD) diagram (Figure 5) shows the post-hoc analysis (CD = 1.167). DPG-da (MR = 2.531) achieves the
highest overall rank and is statistically superior to all other methods. TVAE (MR = 3.704) and ROS (MR
= 3.975) form a high-performing cluster with SMOTE (MR = 4.506), where differences within the group
are not statistically significant. MSMOTE (MR = 5.494), SMOTE-ENN (MR = 5.494), CTGAN (MR =
5.272), and COPULA-GAN (MR = 5.025) form a lower tier, with no significant differences observed within
this cluster. These results reinforce the earlier observation that DPG-da consistently outperforms competing
over-sampling techniques, demonstrating that constraint-aware augmentation produces both realistic and
effective synthetic samples for imbalanced classification.

CDh
—

8 7 6 5 4 3 2 1

L !

SMOTE-ENN —— ——— DPG-da
MSMOTE —MMM—— —  TVAE
CTGAN ROS

COPULA-GAN SMOTE

Figure 5: Critical difference diagram for Fl-score performance. Methods not connected by a bar differ
significantly (Nemenyi test, « = 0.05, CD = 1.167).
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6.2.2 Runtime

Figure 6 shows the log-scaled average runtime for generating synthetic samples across all evaluated over-
sampling methods.

Average Runtime per Augmentation Method (Log Scale)
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Figure 6: Log scaled Time performance of the augmentation methods.

The interpolation-based methods, ROS, SMOTE, and SMOTE-POLYNOM, are extremely fast, with run-
times below 0.060 seconds. MSMOTE (0.072 seconds), SMOTE-ENN (0.740 seconds), and SMOTE-LVQ
(2.520 seconds) require slightly more time due to additional operations such as noise filtering or SVM-based
boundary computation.

Generative approaches, CTGAN (1.410 seconds), TVAE (1.120 seconds) and COPULA-GAN (5.240 seconds),
introduce moderate overhead from model fitting and sample generation, but remain practical for typical
tabular datasets. DE and SMOTE-SVM similarly incur small additional costs (0.950 and 1.250 seconds,
respectively).

By contrast, DPG-da is substantially slower (1,809.45 seconds) due to its genetic algorithm optimization and
the need to enforce DPG-derived constraints. This clearly illustrates the trade-off: DPG-da delivers highly
realistic and interpretable synthetic data, but at the cost of considerably longer runtime, whereas all other
methods remain extremely fast and scalable. We discuss the limitations of our proposal in the Appendix A.

6.3 Interpreting augmentation

The final part of our analysis examines the interpretability of the proposed DPG-da augmentation method,
which we define as the traceability and interpretation of the synthetic data generation process. Since DPG-
da is grounded in the DPG framework, it inherits a transparent mechanism that reveals how new samples
are produced.

To illustrate this property, we first present a heatmap (Figure 7) showing the average change (A) in feature
values between consecutive generations for the best individual in each generation of the evolutionary process
on the Abalone dataset. Each cell reflects the magnitude of change for a specific feature, highlighting which
attributes were most actively modified during the search.

The query sample, represented by the vector:
x? = [5.00, 1.00, 1.00, 4.00, 2.00, 1.00, 3.00, 1.00, 1.00] (2)

Was augmented into a synthetic sample:

x* = [5.98, 2.56, 2.58, 3.49, 1.65, 2.92, 2.30, 3.15, 4.05] (3)

corresponding to the features: Clump Thickness, Cell Size, Cell Shape, Marginal Adhesion, Epithelial Size,
Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses.
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Figure 7: Heatmap of the evolutive process in the Wisconsin dataset. Showcasing the change (A) in feature
values between generations in the GA.

All features were potentially adjusted by the GA, with the largest changes occurring in the most discrimina-
tive attributes for the target class. Clump Thickness, Cell Size, and Cell Shape are moderately modified to
remain consistent with the DPG constraints. Continuous features such as Bare Nuclei, Normal Nucleoli, and
Mitoses experience larger adjustments, reflecting targeted exploration of the feasible minority-class region.
This pattern demonstrates how DPG-da selectively modified key features in this run while preserving the
overall structure of the query sample, ensuring realistic and interpretable synthetic data.

We now turn to examples that trace how a single query sample is augmented into a synthetic counterpart.
Figure 8 shows this process for three datasets: Pima, Ecoli, and Wisconsin. Each subplot visualizes the
cumulative change applied to each feature across generations of the GA.

Pima. The Pima Indian Diabetes dataset describes patient medical measurements used for diagnosing dia-
betes. In our example, the query sample is already from the minority (diabetes) class, and the augmented
instance remains almost identical, differing only in the Glucose feature. This adjustment is clinically plau-
sible: blood glucose is one of the most discriminative variables for diabetes diagnosis, and a shift still yields
a sample consistent with the minority class. Importantly, other attributes such as Age and (number of)
Pregnancies remain unchanged, showing that DPG-da preserves the original patient profile while exploring
variability within the minority region.

Ecoli. The Ecoli dataset concerns protein localization sites. Features such as LIP (signal peptide), GVH
(Von Heijne signal sequence), and MCG (McGeoch method for signal sequence recognition) describe bio-
chemical properties relevant to protein sorting. Here, the minority-class query is augmented with only small
perturbations to LIP and MCG, while all other features remain unchanged. These modifications are subtle
but biologically meaningful: since signal peptide properties are highly influential for localization, adjusting
them slightly generates a new synthetic protein record that stays within the minority localization class but
introduces plausible diversity.

Waisconsin. The Wisconsin Breast Cancer dataset encodes cytological measurements of cell nuclei obtained
from fine needle aspirates. In this case, the minority-class query is augmented with broader changes. Features
such as Clump Thickness, Cell Size, and Cell Shape are moderately adjusted, while continuous variables like
Bare Nuclei, Normal Nucleoli, and Mitoses undergo larger shifts. These modifications are biologically inter-
pretable: nuclei with irregular shapes, prominent nucleoli, and increased mitotic activity are characteristic
of malignant tumors, the minority class in this dataset. The augmented sample thus represents a realis-
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tic new patient record that preserves minority-class pathology while exploring alternative manifestations of
malignancy.

pima (aug=0.15) ecoli (aug=0.15)

Age 0ens 129.00 - 29.00] MCG 1 gens 10,63+ 0.64]

0.gens| 0375037
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0720721
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Figure 8: Interpretable feature changes during the genetic algorithm evolution. The top row shows Pima
(left) and Ecoli (right), while the bottom row shows Wisconsin. Each horizontal bar represents the absolute
difference of a feature from the first to the last generation. The white numbers inside the bars indicate
the magnitude of the change, the black numbers outside the bars indicate the number of generations with
non-zero change, and the text to the right shows the query-to-augmented transformation for each feature.

Together, these three examples highlight how DPG-da adapts its augmentation strategy to the context of
each dataset, only small feature changes are introduced. When larger structural differences are needed
(Wisconsin), the method applies broader but still interpretable modifications. In all cases, the augmentation
remains transparent and traceable, producing synthetic data that not only looks realistic but also aligns with
the underlying semantics of the domain.

7 Conclusion

We introduced DPG-da, a novel data augmentation method for imbalanced classification that integrates pre-
dictive performance with inherent interpretability. By leveraging decision pattern graphs to define rule-based
boundaries, DPG-da generates instances that are semantically valid and transparent, avoiding the unreal-
istic samples often produced by traditional over-sampling techniques. Empirical results across benchmark
and violation-prone datasets demonstrate that DPG-da consistently outperforms widely used over-sampling
methods, achieving higher F1 scores. Future work may explore scalability to larger datasets, integration
with deep learning pipelines, and incorporation of domain-specific constraints for high-stakes applications.
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A Limitations

Although DPG-da demonstrates notable improvements over conventional over-sampling approaches, certain
limitations should be acknowledged.

First, the method introduces a higher computational burden. The extraction of decision predicates from
a surrogate model, followed by the use of a GA for optimization, increases runtime compared to classical
interpolation-based methods. This effect is particularly evident in large-scale or high-dimensional datasets,
which may limit the applicability of the method in time-constrained scenarios. While we used a vanilla
GA to provide a straightforward understanding of our approach, this step could be replaced with a more
lightweight optimization method to reduce computational costs.

Second, the effectiveness of the extracted constraints depends directly on the quality of the surrogate model.
If the surrogate does not approximate the original decision boundaries with sufficient accuracy, the derived
constraints may either be too restrictive or misrepresent the structure of the data. This dependence is
particularly critical in problems with highly non-linear or complex decision boundaries, potentially limiting
the validity of the generated samples.

Third, the procedure introduces an additional level of methodological complexity. The framework ensures
that generated samples adhere to identified constraints, but the implementation requires more effort and
expertise than simpler alternatives. This complexity is further compounded by the design of the fitness
function used in the GA. While our current approach provides a straightforward mechanism to balance
multiple objectives, it relies on manually chosen weights, which may affect the quality of the generated data.
A more principled multi-objective optimization method (e.g., NSGA-II) could address this limitation, but
would introduce additional complexity and computational cost.

Despite these limitations, several aspects of DPG-da mitigate their impact. The higher computational
cost may be acceptable in application domains where the validity and consistency of augmented data are
critical. Surrogate-derived constraints ensure that new samples remain coherent with the learned decision
logic, reducing the risk of unrealistic or infeasible instances. Additionally, the structured nature of the
augmentation process facilitates transparency and auditability, which are increasingly important in contexts
requiring reliability and compliance. Overall, DPG-da represents a trade-off between computational efficiency
and the assurance of constraint-adherent, consistent data augmentation.

B Baseline Over-sampling Methods

The baseline over-sampling methods considered in this work, along with the proposed DPG-da, are summa-
rized in Table 2, highlighting their main features and objectives.

Table 2: Summary of over-sampling methods compared in this study. Methods range from classical
interpolation-based techniques to recent generative approaches.

Method Description

ROS Random over-sampling; simple, replicates existing minority instances.

SMOTE Interpolation-based over-sampling (Chawla et al., 2002); improves class balance.

SMOTE-ENN SMOTE followed by Edited Nearest Neighbors (Batista et al., 2004); reduces noise.

SMOTE-SVM Focuses augmentation near decision boundaries (Bunkhumpornpat et al., 2009).

MSMOTE Targets difficult minority regions for improved discrimination (Hu et al., 2009).

SMOTE-POLYNOM  Captures non-linear feature relationships (Gazzah & Essoukri Ben Amara, 2008).

DE Differential evolution-based over-sampling (Chen et al., 2010); enhances diversity.

SMOTE-LVQ Selects informative minority prototypes for over-sampling (Nakamura et al., 2013).

CTGAN GAN-based model for tabular data; learns conditional distributions (Xu et al., 2019).

TVAE Variational Autoencoder for tabular data; handles mixed feature types (Xu et al., 2019).

COPULA-GAN Combines copula modeling with GANs; balances flexibility and statistical fidelity (Xu et al.,
2019).

DPG-da Ensures domain constraint adherence, interpretable, avoids over-generalization.
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C Ablation Study

We conducted a systematic ablation study by evaluating all 3 x 3 x 3 = 27 possible combinations of the
three weighting factors from 1.0 to 3.0: distance (w;), sparsity (ws), and constraints (ws). Figure 9 reports
the top-performing configurations ranked by macro Fl-score. While some configurations with higher values
of w; (distance factor) consistently appear near the top, the overall differences among the ten best settings
are relatively small. This indicates that performance is not overly sensitive to any single factor, and instead
depends on a balanced interaction between distance, sparsity, and constraints.

w1 2.0jw2 1.0|w3 3.0

w1 3.0/w2 1.0|w3 2.0

w1 3.0w2 1.0|w3 3.0

w1 1.0/w2 1.0jw3 2.0

w1l 1.0|w2 1.0|w3 3.0

w1 2.0{w2 1.0|w3 2.0

w1 2.0|w2 2.0|w3 3.0

Configuration (w1l-w2-w3)

w1 3.0lw2 1.0|w3 1.0

w1 3.0/w2 2.0|w3 3.0

w1 3.0/w2 2.0w3 2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Avg F1 macro

Figure 9: Top-performing ablation weight configurations for the optimization function, ranked by macro
Fl-score. Each configuration is denoted by its (wl,w2,w3) tuple corresponding to distance, sparsity, and
constraints factors. The results indicate which combinations yield the highest predictive performance across
all datasets.

D Datasets

D.1 Violation Benchmark

Table 3 provides an overview of the violation-prone datasets used in this study. Each dataset includes clearly
defined feature ranges and domain-specific constraints, allowing systematic evaluation of whether synthetic
samples generated by augmentation techniques respect valid and feasible values.

D.2 Classification Benchmark
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Table 3: Qverview of datasets curated for the benchmark of violations

Name Ratio #Samples #Features
Healthcare 3:1 1,000 4
Finance 1:1 1,000 4
Quality Control 2:1 1,000 4
Fraud Detection 3:1 1,000 4
Energy 1:1 1,000 3
Education 1:1 1,000 3
Wisconsin 2:1 683 9
Pima 2:1 768 8
IrisO 2:1 150 4
Subclus 5:1 600 2
Clover 5:1 600 2
Paw 5:1 600 2

Table 4: Summary of the UCI imbalanced benchmarking datasets used in the experiments on Classifier
performance. Ratio refers to the imbalance level.

Name Ratio #Samples #Features
ecoli 8.6:1 336 7
optical digits 9.1:1 5,620 64
satimage 9.3:1 6,435 36
pen digits 9.4:1 10,992 16
abalone 9.7:1 4,177 8
sick euthyroid 9.8:1 3,162 25
spectrometer 11:1 531 93
car eval_ 34 12:1 1,728 21
isolet 12:1 7,797 617
us crime 12:1 1,994 100
yeast ml8 13:1 2,417 103
scene 13:1 2,407 294
libras move 14:1 360 90
thyroid sick 15:1 3,772 52
coil 2000 16:1 9,822 85
arrhythmia 17:1 452 278
solar flare mQ 19:1 1,389 32
oil 22:1 937 49
car eval 4 26:1 1,728 21
wine quality 26:1 4,898 11
letter img 26:1 20,000 16
yeast me2 28:1 1,484 8
webpage 33:1 34,780 300
ozone level 34:1 2,536 72
mammography  42:1 11,183 6
protein homo 111:1 145,751 74
abalone 19 130:1 4177 10
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E Constraint Extraction and Guided Augmentation

DPG-da automatically derives constraints from the classifier decision boundaries, which serve as the founda-
tion for generating valid, semantically plausible synthetic samples. Constraints are represented as inequali-
ties over the input features (e.g., bounds on feature combinations, threshold conditions) and are stored in a
structured format (JSON) for programmatic evaluation.

As displayed in 5, for each dataset, we analyse the extracted constraints and report the values and types
of constraints identified, illustrating how the feasible region for augmentation in DPG-da is defined. These
constraints prevent generation of samples violating domain-specific or model-derived rules, ensuring that
synthetic instances remain realistic while enriching minority-class coverage.

Table 5: Model-derived constraints extracted by DPG-da for the violation set of datasets.
Dataset Class Feature Ranges / Constraints
Education negative  Attendance: [50.68, 99.96]; Grades: [52.51, 99.56]; StudyHours: [0.47, 19.72]
positive  Attendance: [50.68, 99.96]; Grades: [52.51, 99.56]; StudyHours: [0.47, 19.72]
Energy negative  Usage: [0.52, 2.47]; Baseline: [103.32, 495.35]; Voltage: [190.39, 249.85]
positive  Usage: [0.52, 2.44]; Baseline: [103.32, 498.23]; Voltage: [191.02, 249.85]
Finance negative  CreditScore: [308.5, 845.0]; Income: [21340.5, 149246.5]; NumChildren: [0.5, 4.5]

Fraud Detection

Healthcare

Quality Control

Wisconsin

Pima

IrisO

Subclus

Clover

Paw

positive  CreditScore: [309.0, 845.0]; Income: [21755.5, 149246.5]; NumChildren: [0.5, 4.5]

negative  TransactionAmount: [134.14, 9884.44]; TransactionTime: [0.89, 29.88]
positive  TransactionAmount: [134.14, 9955.39]; TransactionTime: [0.3, 29.88]

negative BMI: [18.09, 39.81]; Cholesterol: [101.0, 296.0]; Age: [20.5, 88.5]
positive ~ BMI: [18.14, 39.81]; Cholesterol: [101.0, 294.0]; Age: [20.5, 88.5]

negative  Temperature: [80.25, 118.42]; Pressure: [5.17, 14.87]; Speed: [100.5, 298.5]; Vibration:
[1.24, 9.96]

positive ~ Temperature: [80.25, 119.13]; Pressure: [5.17, 14.88]; Speed: [106.5, 298.5]; Vibration:
[1.24, 9.96]

negative  ClumpThickness: [3.5, 8.0]; CellSize: [2.5, 4.5]; CellShape: [1.5, 7.5]; MarginalAdhe-
sion: [1.5, 7.5]; EpithelialSize: [1.5, 5.0]; BareNuclei: [1.5, 8.5]; BlandChromatin: [1.5,
4.5]; NormalNucleoli: [1.5, 8.5]; Mitoses: [4.0, 5.0]

positive  ClumpThickness: [3.5, 8.0]; CellSize: [2.0, 4.5]; CellShape: [2.5, 7.5]; MarginalAdhe-
sion: [1.5, 7.5]; EpithelialSize: [2.5, 6.5]; BareNuclei: [1.5, 8.5]; BlandChromatin: [1.5,
4.0]; NormalNucleoli: [1.5, 7.5]; Mitoses: [1.5, 5.0]

negative  Preg: [0.5, 13.5]; Plas: [42.5, 180.5]; Pres: [25.0, 99.0]; Skin: [3.5, 41.0]; Insu: [34.0,
A71.0]; Mass: [9.65, 47.55]; Pedi: [0.14, 1.31]; Age: [22.5, 66.5]

positive  Preg: [0.5, 13.5]; Plas: [42.5, 178.0]; Pres: [36.0, 93.0]; Skin: [6.0, 40.0]; Insu: [34.0,
235.0]; Mass: [9.65, 47.55]; Pedi: [0.14, 1.31]; Age: [22.5, 66.5]

negative  SepalLength: [4.9, 7.9]; SepalWidth: [2.0, 3.8]; PetalLength: [2.5, 3.5]; PetalWidth:
0.8, 1.8]

positive  SepalLength: [4.3, 5.8]; SepalWidth: [2.3, 4.4]; PetalLength: [1.7, 2.7]; PetalWidth:
0.2, 0.8]

negative  diml: [52.5, 360.0]; dim2: [-118.0, 1312.5]
positive  dim1: [52.5, 360.0]; dim2: [-118.0, 1312.5]

negative  diml: [-335.5, 377.5]; dim2: [-269.0, 402.0]
positive  dim1: [-335.5, 377.5]; dim2: [-367.5, 402.0]

negative  diml: [139.5, 616.5]; dim2: [232.0, 854.0]
positive  dim1: [139.5, 616.5]; dim2: [232.0, 854.0]
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E.1 Case Study: Violations

Figure 10 provides a detailed example of violations generated by an over-sampling method on the Wisconsin
dataset. Many augmented samples fall outside the valid feature space, entering regions that are semantically
invalid. This is particularly evident for features such as Mitoses, NormalNucleoli, and MarginalAdhesion,
which take on negative values, an outcome that is unrealistic and inconsistent with domain knowledge.

Such violations are not only theoretically problematic but can also negatively impact downstream model
performance. Classifiers trained on datasets containing semantically invalid samples may learn spurious
patterns or overfit to unrealistic feature combinations, potentially reducing generalization to real-world data.
This case study highlights the practical importance of constraint-aware augmentation methods like DPG-da,
which systematically avoid these issues by ensuring that all generated samples remain within valid feature
ranges.

® \Valid X \Violation
ClumpThickness vs Mitoses EpithelialSize vs NormalNucleoli CellSize vs MarginalAdhesion
14
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3 5 5 6
g z 6 2 °f
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5.0 x % -2F x 2k
L L 1 1 L L L L L L 1 L L 1 L L 1 1 L L
2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

ClumpThickness EpithelialSize CellSize

Figure 10: Pairwise scatter plots of SMOTE-LVQ augmented samples from the Wisconsin dataset. Blue
circles indicate valid samples within feature constraints, red crosses indicate samples violating at least one
feature range. Green rectangles show the valid region for each feature pair.

F Traceability across generations

To illustrate the traceability of our augmentation process, we track how candidate samples evolve during the
GA. For each dataset, we record the feature-wise differences (A) between successive generations relative to
the initial query sample. This provides an interpretable view of how synthetic samples are formed: which
features are modified, when changes occur, and whether evolution converges to stable solutions.
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0.03
InnerMembrane 0.01 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 11: Heatmap of feature-wise changes (A) during the GA on the Ecoli dataset. Early generations
explore a broad range of features, with substantial variation across most attributes. As evolution proceeds,
the process converges, reflecting stabilization of the candidate samples within the feasible region.
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Figure 12: Heatmap of feature-wise changes (A) during the GA on the Pima dataset. Unlike Ecoli, the aug-
mentation converges rapidly by modifying exclusively the glucose feature. This highlights a highly localized
and interpretable transformation path, where minority samples are generated through a single, domain-
relevant attribute shift.
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G Performance Across Datasets

Table 6 reports the F1-Score for each dataset and over-sampling method, averaged over multiple augmenta-
tion levels. This table provides a detailed comparison of classifier performance under different augmentation
strategies, highlighting both the effectiveness and limitations of each approach. Notably, it allows read-
ers to observe which methods consistently improve classification across datasets and which are less robust,
complementing the violation-focused analyses presented in the main text.

Table 6: F1-Score by dataset and over-sampling method, averaged over augmentation levels. The highest
performance per dataset is in bold.

=
O
Z <
z. o < = =
Z, S ) S N
n & n < n @R
&2 & (] = z. 2 2 (] e
& © & = < & & = E 7
= S & £ & g £ £ &8 £ § %
Dataset A n = n O O n n o = n A
abalone 0.600 0.602 0.614 0.584 0.588 0.599 0.601 0.594 0.593 0.598 0.608 0.566
abalone 19 0.487 0.505 0.535 0.492 0.497 0.525 0.511 0.474 0509 0.505 0.536  0.627
arrhythmia 0.639 0.659 0.590 0.617 0.629 0.672 0.651 0.716 0.617 0.654 0.663 0.860
car_eval 34 0.821 0.829 0.823 0.866 0.874 0.889 0.872 0.870 0.881 0.921 0.882  0.862
car_eval 4 0.853 0.866 0.897 0.885 0.902 0.900 0.895 0917 0.896 0.934 0.907 0.903
coil 2000 0.523  0.522  0.530 0.529 0.520 0.521 0.530 0.537 0.533 0.526 0.534 0.619
ecoli 0.656 0.762 0.733 0.755 0.781 0.751 0.760 0.751 0.722 0.782 0.749 0.842
isolet 0.729 0.810 0.826 0.862 0.872 0.876 0.841 0.870 0.861 0.868 0.849 0.884
letter img 0.866 0.913 0.899 0.907 0.883 0.897 0.917 0.931 0915 0.918 0.899 0.908
libras_move 0.667 0.826 0.833 0.805 0.831 0.862 0.855 0.834 0.840 0.884 0.867 0.857
mammography ~ 0.683 0.740 0.759 0.752 0.721 0.745 0.750 0.732 0.772 0.762 0.794 0.554
oil 0.601 0.602 0.627 0.610 0.600 0.594 0.615 0.624 0.622 0.598 0.638 0.713
optical digits  0.755 0.927 0.921 0.935 0.927 0.930 0.927 0.936 0.928 0.933 0.922 0.937
ozone_level 0.546 0.560 0.554 0.552 0.530 0.517 0.562 0.561 0.564 0.580 0.570 0.682
pen_ digits 0.754 0.946 0.939 0.942 0.908 0.915 0.946 0.903 0.947 0.935 0.931 0.923
protein_homo  0.637 0.701 0.752 0.749 0.850 0.852 0.711 0.846 0.776 0.730 0.789  0.835
satimage 0.674 0.683 0.679 0.695 0.676 0.676 0.695 0.685 0.697 0.693 0.694 0.739
scene 0.572 0.538 0.568 0.573 0.553 0.559 0.561 0.588 0.580 0.574 0.589 0.657
sick_euthyroid 0.715 0.733  0.706 0.726  0.743  0.731 0.754 0.742 0.754 0.763 0.768  0.760
solar flare m0 0.505 0.552 0.536 0.524 0.561 0.553 0.538 0.552 0.540 0.534 0.551  0.520
spectrometer 0.839 0.869 0.886 0.837 0.858 0.876 0.884 0.861 0.884 0.872 0.881 0.900
thyroid_sick 0.722 0.748 0.709 0.730 0.763 0.735 0.769 0.737 0.771 0.781 0.778 0.813
us_crime 0.678 0.681 0.696 0.702 0.704 0.689 0.697 0.701 0.699 0.697 0.720 0.731
webpage 0.731 0.692 0.731 0.808 0.781 0.780 0.746 0.807 0.783 0.753 0.769 0.836
wine _quality 0.558 0.582 0.587 0.563 0.601 0.577 0.591 0.583 0.606 0.580 0.615 0.627
yeast me2 0.553  0.597 0.609 0.591 0.583 0.524 0.602 0.567 0.602 0.612 0.634 0.690
yeast_ ml8 0.495 0.430 0.477 0.500 0.499 0.493 0.481 0.446 0.504 0.504 0.499 0.676
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Table 7: Detailed statistical results (MD, MAD, MR) complementing the CD diagram in Figure 5

Method MD +£ MAD MR
DPG-da 0.757 £ 0.109 2.531
TVAE 0.719 £ 0.144 3.704
ROS 0.728 £ 0.131  3.975
SMOTE 0.708 £ 0.130  4.506
CTGAN 0.722 £ 0.135 5.272

COPULA-GAN 0.691 £ 0.158 5.025
SMOTE-ENN 0.693 £ 0.115 5.494
MSMOTE 0.705 £ 0.120 5.494
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