
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

METATOOL: FACILITATING LARGE LANGUAGE MOD-
ELS TO MASTER TOOLS WITH META-TASK AUGMEN-
TATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Utilizing tools with Large Language Models (LLMs) is essential for
grounding AI agents in real-world applications. The prevailing ap-
proach involves few-shot prompting with demonstrations or fine-tuning
with expert annotations. However, mere in-context demonstrations may
fail to cover sufficient knowledge for complex tools and tasks. Training
on solution paths is also hindered by the high cost of expert annotations
and generalizing to new tools. A core challenge of generalizable tool
use lies in understanding the “meta”, or fundamental natures of tools
that are transferable across tasks, such as causality and constraints. In
this paper, we present MetaTool, a novel tool learning methodology de-
signed to generalize across any reusable toolset. Our approach incor-
porates a self-supervised augmentation technique derived from a series
of meta-tasks. This involves predicting masked elements in the tool
execution process. The self-supervised procedure enables scalable gen-
eration of high-quality QA data, which is handy for supervising tool
understanding. By incorporating meta-task data into task-oriented train-
ing, our method significantly enhances the performance of open-source
LLMs, achieving results comparable to ChatGPT in both tool-based
planning and chatting scenarios. Through large-scale instruction tuning,
the MetaTool model demonstrates impressive zero-shot generalizability
on new tasks.

1 INTRODUCTION

Distinguished from other species, a unique characteristic of human advanced intelligence is using
complex tools, which expands the frontiers neural intelligence can reach. With the advent of power-
ful foundation models, AI has the potential to solve complex tasks with these external mechanisms.
LLMs have been majorly oriented towards either tool-augmented chatbots equipped with retrievers
and search engines, or tool-oriented agents (e.g. web navigation Rawles et al. (2023); Hong et al.
(2024), embodied manipulation Chi et al. (2023)) that achieve task objectives through tool output
Qin et al. (2023b). While the former emphasizes generalizing to various tools, the latter focuses on
complex tools and scenarios.

To efficiently integrate LLMs with tools, a mainstream way relies on in-context learning (ICL). The
model is provided with the “cookbook” of tools in zero-shot prompting or demonstrations in few-
shot prompting Xu et al. (2023); Paranjape et al. (2023); Brown et al. (2020). It may work well
on simple tools with frameworks like LangChain Chase (2022). However, for complex tasks with
sophisticated tools, in-context learning is limited that demonstrations can not exhaust all scenarios,
and manuals are also limited in length. Ultimately, it’s impractical to expect LLMs to be intelligent
enough to master any tool without the experience of using it. On the other side, training-based
methods Qin et al. (2023c); Patil et al. (2023); Dubey et al. (2024) mainly adopt supervised fine-
tuning with annotated expert solutions. Despite the difficulties in scaling up the optimal annotation,
supervision with task solutions has limitations. Task-agnostic knowledge of tools can be neglected,
which hinders the generalization to diverse scenarios or new tools. Self-play training methods like
Toolformer Schick et al. (2024) and TALM Parisi et al. (2022) integrate the inference process with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Paradigm comparison between existing tool learning methods and proposed meta-task
augmentation. While the prevailing methods are limited in generalizing to complex scenarios or new
tools, MetaTool enables gaining transferable tool understanding from task-agnostic knowledge.

self-supervised tool calling data. Although such a manner maintains the generality of tool calling,
it’s constrained in question-answering scenarios.

Empirically, human learners get familiar with tools such as hammers (e.g., for nailing and smash-
ing) before engaging in complex construction. Generalizable tool use should be achieved based on
the fundamental understanding of tools themselves that holds stable for different objectives, namely
task-agnostic (illustrated in Figure 1. Naturally the formation of tool understanding can be disentan-
gled from the learning of task solving. In this paper, we introduce MetaTool, a general methodology
that enables both complex tool mastery and unseen tool generalization on top of task-agnostic tool
understanding. We design a set of meta-tasks inquiring about the causality of the toolset as an au-
tonomous system and its functionality as a function. Given a callable toolset (e.g. APIs, functions),
meta-task data is constructed in a scalable self-supervised way based on unsupervised or self-play
tool executions. Augmenting task-oriented training with meta-task data, LLMs learn to solve prob-
lems while deepening the mastery of tools. We conduct experiments on both complex tool-oriented
tasks and tool-augmented benchmarks, demonstrating that MetaTool significantly exceeds models
trained merely on annotated solutions in both worlds and is competitive with the latest LLMs (Chat-
GPT) with the size of 8B. The overall contribution can be summarized in three-folds:

• We introduce a new tool learning method that facilitates LLMs to master tools with task-
agnostic tool understanding.

• We propose an integral set of self-supervised meta-tasks that dissect the tool execution
process. Meta-tasks enable expert-free data generation and augmentation across tool-
augmented and tool-oriented scenarios.

• Extensive evaluation on both tool-oriented tasks and tool-augmented benchmarks demon-
strates the effectiveness and generality of MetaTool, narrowing the gap between open-
source models and state-of-the-art LLMs.

2 APPROACH

In this section, we first formalize the task of using a close toolset and define 6 general meta-tasks that
are key to tool understanding. Then we show how to construct datasets in an integral self-supervised
way covering different scenarios. In the end, we describe several schemes to augment tool learning
with meta-tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Illustration of developing self-supervised meta-tasks from unsupervised tool execution
process.

2.1 SELF-SUPERVISED META-TASKS FOR TOOL UNDERSTANDING

Problem formalization. A tool-use task can be generally defined as a Markovian tuple ⟨S,A, T , g⟩,
where S,A, T is the state space, action space, and toolset, and g is the goal state of the task. Toolset
T = {t}N consists of N tools, each as a state transition function s′ = t(s, θ) that formalizes the
outcome of state change when feeding the input parameters θ into the tool. An action a = ⟨t, θ⟩ ∈ A
specifies the tool and its input. As an autonomous agent, an LLM should iteratively respond with
tool calling and inputs according to the state until it reaches the goal. A solution path leading to the
goal can be defined as a sequence of actions and states p = {s1, a1, ..., sT , aT } ∈ P . Broadly, when
the tools can not alter any external state, tool output like retrieval results can be regarded as the state,
and the desired information is the goal g.

We enhance the tool understanding of the model with self-supervised surrogate (pretext) tasks in-
stead of in-context descriptions or demonstrations. Formally, we regard tools as external systems
that implement state transition mappings. Tool understanding, therefore, involves comprehending
the perception-action process of these systems (referred to as tool execution) and should be general-
izable to various task objectives.

Meta-task definition. We begin with single-step tool execution D = {s, a, s′}, peeling off the task
goal g context, which results as unsupervised data. Six surrogate tasks (meta-tasks) are designed
based on the dataset D. Basically, the model is required to predict masked elements of the execution
process. It’s similar with the idea of masked language models Devlin (2018) in a broader and
structural granularity to learn the lurking knowledge beneath the unsupervised data. We define the
meta-tasks as below (Figure 2):

• Effect: The model predicts the outcome state P(s′|a, s) given the initial state and the ac-
tion.

• Decision-making: The model decides a feasible action P(a|s, s′) given the initial and
outcome state.

• Reversion: The model deduces the initial state P(s|a, s′) given the action and the outcome
state.

• Input Boundary: The model determines whether an action can be successfully exe-
cuted, namely whether the action falls in the valid action space, given the current state:
P(1s′ ̸=s|a, s).

• Output Boundary: The model determines whether a state can be reached with any action
given the current state: P(1∃(t,θ),s′=t(s,θ)|s, s′).

• Counterfact: The model predicts the new outcome state P(s′′|a, s′, a′) if a new action a′

were executed given that the current action a results in the current outcome s′.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Two-step approach to construct metaset. We illustrate two exemplified processes of
both tool-oriented and tool-augmented scenarios, which don’t require any expert annotation. xD

i , yDi
denotes the i-th question-answer pair of decision-making meta-task, et cetera.

Effect, decision-making, reversion meta-tasks emphasize the causality of a tool, regarding the action
as the intervention to the state Pearl (2009); Pearl & Mackenzie (2018) and the outcome as the causal
effect is determined by the tool mechanism. On top of that, counterfact task is the composition of
reversion and effect, further imagining the outcome altered from the fact in effect task. This meta-
task raises higher requirements on counterfactual reasoning Bareinboim et al. (2015); Zhang &
Bareinboim (2016), an advanced form of causal reasoning that humans use to contemplate ’what if’.
Moreover, tools implemented as APIs may receive non-executable inputs and result in ineffective
outcomes. Thus the input and output domains are also unique features of a tool as a function. We
consider input boundary meta-task that emphasizes the tool affordance that refers to what actions can
be executed considering the situation and the precondition. output boundary meta-task emphasizes
the functionality of tools, that is, what goals can and cannot be achieved given the current state.

2.2 METASET CONSTRUCTION

Based on the definitions, the dataset of meta-tasks (referred to as metaset) is generated as question-
answering pairs to maintain the conversational skills of LLMs. To answer the meta-task questions,
the trained model needs to understand the toolset mechanisms from the corresponding aspects.
Given a set of reusable and callable tools T , the metaset M = {xm

n , ymn }Nn=1 can be constructed
in two steps, as illustrated in Figure 3, where xm

n , ymn is the n-th question-answer pair of meta-task
m. First, we generate tool execution data D with the toolset. For a limited amount of tools and
state space, stochastic sampling can be applied to initialize state s ∼ P(S) and action a ∼ P(A),
and obtain the tool output s′. For large toolsets and diverse task scenarios that are hard to enu-
merate, we incorporate LLMs with self-play or tree search techniques to reduce redundant trials
a, s′ ∼ P(LLM(s, g)). We prompt the LLM to also generate a ”thought” analyzing the situation
and what to do for each action following ReAct Yao et al. (2022), to elicit the reasoning ability.
Thus an action includes the tuple of thought-tool-input. Note that the LLM does not need to be pro-
ficient in tool tasks, as the execution data D is irrelevant to the task performance. Non-executable
actions also contain valuable knowledge and can be transferred as invalid samples in input boundary
meta-task. The tool execution data should be sufficient to cover the various scenarios that may arise
during the tasks.

Second, for the n-th sample and meta-task m, we insert the variables of states and actions into K
sets of templates (diversified with GPT-4) to obtain diverse QA data.

(xm
n , ymn ) = Mask(an, sn, s

′
n,Φ

m
k ), (1)

where Φm
k is the sampled template for meta-task m. Particularly, in tool-augmented scenarios,

predicting the output of tools such as QA systems can be impractical. Nonetheless, the retrieval
result itself is inherently meaningless (e.g., ’sunny’); however, it gains complete significance when
combined with the context of tool calling (e.g., ’the weather in New York is sunny’), as showcased in
Figure 3. Thus we modify the context into a more informative state in such scenarios by prompting

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LLMs s∗n = LLM(s′n, an, t), which is trivial for most language models. At last, we arrange multiple
metaset pairs of the same toolset into multi-turn QA data as the metaset M, in order to maintain
multi-turn dialogue capacity.

2.3 TOOL LEARNING AUGMENTED WITH META-TASKS

By incorporating meta-task data, we explore several approaches to augment the tool learning for the
purpose of achieving task objectives: a) In-context learning: We randomly sample several demon-
strations of each meta-task and add them to the system prompt to facilitate tool understanding in
a training-free manner. Such task-agnostic knowledge includes the interpretation of rules, supple-
menting the solution demonstrations. b) 2-stage learning: Since we aim to build the model’s tool
understanding as the foundation of tool-oriented learning, an intuitive idea is to train the LLM first
on the metasets as the surrogate tasks and then on the solution data P . In order to maintain the
general ability of the model in the first stage, only the parameters of the query and value projection
layers of the Transformer are updated instead of targeting all modules. c) Data augmentation: In
this approach, we utilize the metaset as the augmented data of conventional instruction tuning meth-
ods that the metasets are mixed with solution data and the model is trained uniformly. The model
trained on the mixed data is referred to as MetaTool.

3 EXPERIMENTS

In this section, we evaluate our approach in both tool-oriented agent and tool-augmented chatbot
scenarios. On the one hand, we fine-tune the LLM to master a specific toolset for achieving various
complex objectives. On the other hand, we conduct large-scale instruction tuning to enable the
model to generalize to new tasks and understand new tools through zero-shot documentation.

3.1 TOOL-ORIENTED SCENARIOS

3.1.1 TASK SETUP

We adopt 3 tool-oriented tasks that emphasize complex tool execution and sequential plan-
ning. Among them SAW is newly designed while the other two are introduced from PlanBench
Valmeekam et al. (2024). The key challenge of these tasks is to understand the rules (preconditions)
and the environmental dynamics caused by actions. The task definition and dataset construction are
elaborated below.

SpellAnyWord (SAW). In this task, the agent needs to sequentially construct a string that contains
the target string as a continuous substring. The initial state of the task is a void string. Two non-
degradable tools (functions) are avaliable: Add: to add two adjacent letters in the alphabet to the
end of the current string. The tool input θ should be the preceding letter (e.g. passing ’a’ to Add
on current string ” will result in ’ab’). Swap: to swap the position of two adjacent letters in the
current string. The input should be the preceding letter (e.g. passing ’a’ to Swap on ’ab’ will
result in ’ba’). An example task: The target string is ’any’. A successful action sequence can
be [Add(’a’), Add(’n’), Add(’y’), Swap(’a’), Add(’o’)], which will result in a state sequence [’ab’,
’abno’, ’abnoyz’, ’banoyz’, ’banyoz’] and the final string ’banyoz’ has ’any’ as a substring. To
eliminate the basis from tokenization, we format each string as a list of letters in prompts throughout
the task.

BlocksWolrd (BW). In this scenario, the agent needs to stack several blocks on the table into a target
state with one hand. Only one block can be moved at a time. Two tools (functions) are avaliable:
Pick: to pick a block in the hand. The tool input should be the target block indicated by its color
(e.g. Pick(’yellow’)). Blocks cannot be picked if there are blocks on top of them or there’s already
a block in the hand. Stack: to stack the block in the hand onto the target block or table. The input
should be the color of the target block or ’table’ (e.g. Stack(’white’), Stack(’table’)). Blocks cannot
be stacked on a block with another block already on top of it or there’s no block in the hand.

Logistics (LOG). The agent needs to solve a logistics problem by arranging trucks and airplanes to
transport the package to the target location. Locations are grouped by cities. Trucks can be used to
move packages between locations in the same city and planes can be used to move packages between

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Models SAW BW LOG
ChatGPT 22.6 23.3 50.4
ChatGPT-ICL 20.2 20.5 43.6
GPT-4 28.6 43.0 46.6
GPT-4-ICL 27.4 40.0 37.0

Vicuna-7b 4.8 5.5 0.0
LLaMA3-8b-instruct 6.0 6.7 6.0
LLaMA3-solution 9.5 19.2 8.2
LLaMA3-ICL 4.8 17.8 2.0
LLaMA3-2-stage 9.5 21.9 12.3
MetaTool (8B) 32.1 37.5 30.1

Table 1: Results on tool-oriented tasks.
ICL: in-context learning with meta-task
demonstrations. ChatGPT and GPT-4 are
provided with tool documentation and few-
shot demonstrations.

E D R I O C S SAW BW LOG
9.5 27.0 11.0

18.5 29.0 9.0
27.3 35.0 21.0
17.3 32.0 18.0
16.1 32.0 6.0
19.6 37.0 14.0
15.5 31.0 10.0

32.1 37.5 30.1

Table 2: Ablation on tool-oriented tasks. E: ef-
fect meta-set, D: decision-making meta-set, R: Re-
version meta-set, I: input boundary meta-set, O: out-
put boundary meta-set, C: counterfact meta-set, S:
solution dataset. The crossings denote removing the
training data of the corresponding meta-tasks.

cities. Two tools (functions) are available: Truck: to transport the truck and the package (if there is
any) from one location to another. Plane: to transport the airplane and the package (if there is any)
from one location to another. The tool input should be the starting and ending location indicated by
numbers. (e.g. Truck(1,2), Plane(2,4)). An action is invalid when there is no truck or airplane at the
starting location.

Datasets collection. For the SAW task, we randomly sample 2k target strings (from 2 letters to 10
letters) as task goals. We modify the BlocksWorld and Logistics tasks from PlanBench into the tool-
use version, thus 2k goals for each task are adopted following the original configuration. Optimal
action sequences are obtained with heuristic strategy as the solution data.

3.1.2 IMPLEMENTATION DETAILS

Our model is fine-tuned based on LLaMA3-8b-instruct AI@Meta (2024) with parameter-efficient
fine-tuning method Qlora Dettmers et al. (2024) on 8 A100 GPUs. We utilize the instruction tuning
version of LLaMA3 since comprehending tool-oriented tasks with specific objectives is the basis
of tool understanding and use. For each task, we train the model on 10k meta-task data and 10k
solution data for 3 epochs with AdamW optimizer and the learning rate of 2e-4. The models are
tested in a simulated environment that receives the action of using a tool and returns the outcome
and current state. We evaluated the model performance on 100 unseen cases of each three tasks.

Baselines. We evaluate several baselines to study the effect of different training approaches (il-
lustrated in Figure 1 and described in Section 2.3).(1) LLaMA3-solution: training the base model
LLaMA3-8B-instruct merely on the solution data P .(2) LLaMA3-ICL: prompting the base model
with few-shot meta-task demonstrations (examples shown in Figure 3 and Figure 4).(3) LLaMA3-
2-stage: training the base model first on meta-tasks data M then on solution data P .

3.1.3 RESULTS ANALYSIS

Overall comparison. We evaluate the success rate (SR%) of completing each task and show the
performances of several models in Table 1. Overall, SOTA closed-source LLMs show impressive
zero-shot performance on tool-oriented tasks compared with open-source LLMs including LLaMA3
and Vicuna. By training on both meta-tasks and solution data, our model MetaTool gains significant
improvement (+20.9%SR on average) compared with mere training on solution data (LLaMA3-
solution). MetaTool also surpasses GPT-4/ChatGPT in the SAW/BW tasks (+3.5%/14.2%SR).
ChatGPT represents the model of GPT-3.5-turbo-16k throughout our experiments. Both GPT and
LLaMA3 show weaker performances when provided with meta-task demonstrations (ICL) since
demonstrating limited cases can be redundant or misleading without proper design. LLaMA3-2-
stage that trained on meta-tasks first gains limited improvement compared with the baseline. We
conjecture that learning meta-tasks without practicing tool use (training on action sequences) cannot

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

effectively facilitate tool-use ability with tool understanding. Also fine-tuning with specific QA data
may affect the basic linguistic ability of the model. The overall results show that LLMs (includ-
ing the most powerful ones like GPT-4) still have difficulties conquering complex tool using tasks,
especially in planning with tools.

Ablation study. We study the ablation of different data components and report the performances in
Table 2. It’s worth noticing that merely training on meta-tasks can improve the model’s zero-shot
performance on tool-oriented tasks (line 7), contrary to providing demonstrations of meta-tasks in
the system prompt (LLaMA3-ICL in Table 1). When removing QA data from each meta-task, the
model performance shows varying degrees of degradation, which verifies the profits of meta-tasks.
The meta-tasks of effect and decision-making have a relatively greater influence on the model’s tool
understanding capability. Theoretically, these meta-tasks emphasize the causal mechanism of tools
that is more fundamental than others.

3.2 TOOL-AUGMENTED SCENARIOS

Among the various tool/function calling benchmarks, we study our method on two of the most
influential ones: ToolBench Qin et al. (2023c) and Berkeley Function Calling Leaderboard (BFCL)
Yan et al. (2024). Training approaches for baselines and implementation details remain the same
with tool-oriented scenarios if not specified.

3.2.1 TASK SETUP

ToolBench contains diverse user requests with a massive amount (over 16k) of real-world API
tools, which are publicly available on the RapidAPI website. The testset is categorized into six
distinct groups and contains 1200 instructions (200 each): I1-inst., I1-tool, I1-cat., I2-inst, I2-cat.,
and I3-inst. Groups labeled with I1, I2, I3 include single-tool tasks, intra-category multi-tool tasks,
and extra-category multi-tool tasks, respectively. Groups labeled with “inst.”, ”tool”, ”cat.” include
unseen user instructions, unseen tools, and unseen categories (e.g. sports, entertainment) of tools,
respectively. Two evaluation metrics are designed based on ChatGPT: (1) Pass Rate, calculated
by the proportion of instructions successfully completed within a limited budget; (2) Win Rate
measured by asking a ChatGPT evaluator to select its preference for two solution paths. For each
user instruction (e.g. “Can you recommend some popular restaurants within 5km to hold a party?”),
the model calls an API and responds to the query based on the tool output.

ToolBench also provides 126k instruction-solution pairs for training, which are generated with GPT4
and depth-first tree search (DFS). GPT-4 gains access to different reasoning paths by choosing ei-
ther to continue the current node or give up and expand a new node. On top of that, we extract
unsupervised tool execution data and generate 650k self-supervised data of meta-tasks following the
procedure in Figure 3. We then conduct instruction tuning based on the mixed data and LLaMA3-
8B-instruct model, trained for 1 epoch to avoid overfitting. LLaMA3-solution is trained for 2 epochs
following the original configuration in ToolBench. Both the solution data and the meta-task data
share the same loss setting as we construct the metaset as QA pairs. The context-aware states are
generated with the open-sourced LLaMA3-70B-instruct model. All evaluated LLMs are prompted
in the ReAct manner to leverage their reasoning ability. Other model implementation details are in
line with that described in section 4.1.2.

BFCL benchmark is established mainly for the purpose of zero-shot evaluation without holistic
training data. The benchmark contains 4251 testing cases in total and is categorized into non-live
(self-designed), live (user-contributed), multi-turn, and Hallucination (relevance or irrelevance de-
termination) groups. The model performance is measured by action accuracy with Abstract Syntax
Tree (AST) Patil et al. (2023). We test the MetaTool model trained with ToolBench data on BFCL
to evaluate the zero-shot ICL ability and generality of our methodology.

3.2.2 RESULTS ANALYSIS

As the ToolBench results shown in Table 3, MetaTool (8B) achieves the second-best performance
across all groups merely behind GPT-4, superior to other models including ChatGPT (+8.1% pass
rate) and training-based ToolLLaMA-2 (7B) Qin et al. (2023c) (+16.9% pass rate, +8.5% win rate).
Especially, our method significantly improves the performance of LLaMA3 (originally incapable)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Models I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Averages
Pass↑ Win↑ Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

ChatGPT 41.5 - 41.0 - 41.0 - 34.5 - 46.5 - 22.0 - 37.8 -
Claude-2 5.5 31.0 3.5 27.8 5.5 33.8 6.0 35.0 6.0 31.5 14.0 47.5 6.8 34.4
GPT-4 53.5 60.0 50.0 58.8 53.5 63.5 67.0 65.8 72.0 60.3 47.0 78.0 57.2 64.4
ToolLLaMA-2 25.0 45.0 29.0 42.0 33.0 47.5 30.5 50.8 31.5 41.8 25.0 55.0 29.0 47.0

LLaMA3-8B-inst. 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
LLaMA3-2-stage 31.4 43.6 35.6 44.8 40.3 44.0 40.4 48.0 36.1 46.8 28.5 58.0 34.7 47.2
LLaMA3-solution 32.1 45.3 39.0 43.9 36.4 43.0 40.1 52.5 40.1 43.4 35.6 61.8 37.2 48.3
MetaTool (8B) 42.5 52.1 41.8 51.3 43.3 46.1 52.0 54.9 50.0 54.0 45.5 74.5 45.9 55.5

Table 3: ToolBench results. ChatGPT doesn’t have the Win Rate score since all other Win Rates
are measured by comparing with its solution paths.

Models I1-Inst. I1-Tool I1-Cat. I2-Inst. I2-Cat. I3-Inst. Averages
Pass↑ Win↑ Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

2stage-full 24.8 43.0 30.0 43.9 36.0 43.0 29.2 52.1 28.9 37.7 23.7 56.8 28.5 46.1
2stage-qv 31.4 43.6 35.6 44.8 40.3 44.0 40.4 48.0 36.1 46.8 28.5 58.0 34.7 47.2
solution-1epo 30.9 45.0 37.3 44.9 34.1 42.0 39.5 51.3 36.0 42.4 32.8 61.0 35.1 47.8
solution-2epo 32.1 45.3 39.0 43.9 36.4 43.0 40.1 52.5 40.1 43.4 35.6 61.8 37.2 48.3
MetaTool-1epo 42.5 52.1 41.8 51.3 43.3 46.1 52.0 54.9 50.0 54.0 45.5 74.5 45.9 55.5
MetaTool-2epo 35.7 44.2 35.6 43.7 39.0 47.6 45.6 51.5 46.1 49.5 39.5 68.3 40.3 50.8

Table 4: Ablation results on ToolBench. ’2stage-qv’ targets only query and value modules and
’2stage-full’ targets all parameter modules during the first stage training on metasets. ’solution-
xepo’ denotes baseline LLaMA3-solution trained with x epochs.

compared to LLaMA3-solution which is merely trained on solution data (+8.7% pass rate, +7.2%
win rate). The comprehensive advantages show the effectiveness of meta-task augmentation. Be-
sides, the notable superiority of GPT-4 can be partly attributed to the fact that all the training and
testing instructions are generated with itself. Thus GPT-4 may be more familiar with the distribution
and inner motivation of these instructions.

In Table 4, we study the influences of several hyper-settings chosen for our baselines:(1) Compar-
ing with targeting only query and value modules (2stage-qv), The relatively weaker performance
of LLaMA3-2stage-full (-2.2%/-1.1% on average) suggests that training on metasets targeting full
parameter modules may let the model overfit the QA tasks and hinder the subsequent training on
solution data.(2) Results of both LLaMA3-solution and MetaTool trained with 1 epoch or 2 epochs
are shown. While early stopping for training merely on solution data harms the performance (-
2.1%/-0.5% on average ), early stopping for MetaTool improves the performance (+5.6%/+4.7%
on average). The contradiction suggests that training too much on meta-tasks QA data may cause
overfitting and weaken the ability of planning actions. Also, learning meta-tasks can bring suffi-
cient knowledge about tools. That helps the LLMs to understand the expert solutions and learn the
tool-use tasks faster, thus reduce the need for the second epoch training.

Table 5 shows the zero-shot performance on the BFCL benchmark. It’s worth noticing that except
for the sets of non-live simple, live simple, and multi-turn base, zero-shot comparison on other test
sets is less fair, since MetaTool is merely trained in ToolBench scenarios with a unique task pattern
(fixed system prompt) that the model calls a single tool once a time then waits for the tool out-
put. For example, in the ”multiple” tasks LLMs are asked to call multiple tools in one response.
Nonetheless, we modify the parser of MetaTool to continue generating tokens to fit the requirements
of multiple and parallel scenarios. In the ”irrelevance” tasks, LLMs have access to tools irrelevant
to the instruction and should give up calling any tools, which never occurs in ToolBench scenarios.
Therefore in the first place, we count the average accuracy (Simple Ave. in Table 5) of three fair sets
and observe that MetaTool surpasses LLaMA3-8B-instruct (+5.3%), LLaMA3-solution (+3.3%) and
Hermes-2-theta Teknium (+8.1%) which is also trained based on LLaMA3-8B-instruct, and is close
to the latest OpenAI o1-mini (-1.6%). It’s also impressive that MetaTool obtains the highest 78.3%
accuracy on the non-live simple set, 17.7% higher than the 1st rank model GPT-4-turbo. Despite the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Models Non-live Live Multi Turn Hal. Simple
simple multiple parallel M&P simple multiple parallel M&P base rel. irrel. Ave.

GPT-4-turbo 60.6 91.0 90.0 89.0 67.8 74.5 75.0 62.5 33.5 70.7 79.8 54.0
o1-mini 68.9 89.0 73.5 70.5 62.8 65.1 68.8 58.3 16.0 46.3 88.7 49.2
Hermes-2 (8B) 61.3 82.5 75.5 75.0 55.8 53.1 43.8 41.7 1.5 51.2 62.7 39.5

LLaMA3-8B-inst. 63.1 85.5 51.5 44 60.9 60.8 37.5 20.8 3.0 75.6 27.4 42.3
LLaMA3-2-stage 66.8 60.0 5.0 6.0 53.9 33.1 16.8 6.3 5.0 98.1 10.5 41.9
LLaMA3-solution 71.3 64.0 13.5 10.0 56.6 34.9 37.5 12.5 5.0 100.0 8.3 44.3
MetaTool (8B) 78.3 55.0 66.0 63.5 58.1 50.1 18.8 37.5 6.5 100.0 25.4 47.6

Table 5: BFCL results. M&P denotes the test set of multiple parallel. Hal., rel., and irrel. represent
the relevance and irrelevance set of the hallucination group. Simple Ave. denotes the average
accuracy of non-live simple, live simple, and multi-turn for a fair comparison. All scores represent
the success rates for the test sets.

transferring barriers, MetaTool still achieves moderate performance on the other sets (e.g. multiple,
parallel, hallucination) with an average of 52.0% accuracy, significantly higher than the 35.1% of
LLaMA3-solution (+16.9%). Overall, the zero-shot results on BFCL clearly demonstrate the ex-
ceptional generalizability of MetaTool. With additional data augmentation from diverse scenarios,
MetaTool has the potential for significant improvement.

3.3 QUALITATIVE CASE OF META-TASKS

As shown in Figure 4, we showcase a qualitative case of meta-tasks data M . The tool
search by title for MDBList is provided on the real-world API website RapidAPI. The parameters
are named casually and we can hardly derive the function of them just by letters (e.g. ’s’, ’m’). The
meta-tasks help the model learn the function and usage of these parameters. For example, from the
QA pair of Effect meta-task the model observe that feeding ’s’ as ’friends’, ’m’ as ’movie’, and ’l’
as 1 results in a movie titled ’friends’. From the Input boundary meta-task, the model learns that ’tv’
is not a valid value for parameter ’m’. With multiple QA pairs for each tool, our model is able to
learn a more robust tool understanding from actual instances besides descriptions. The tool learning
benefits from this paradigm especially in real-world scenarios where the tool descriptions may be
diverse and noisy.

4 RELATED WORKS

4.1 TOOL LEARNING

Recent studies have shed light on the potential of utilizing tools to augment LLMs with external fac-
tual knowledge Qin et al. (2023a); Nakano et al. (2021); Song et al. (2023); Hao et al. (2024); Shen
et al. (2024); Gao et al. (2023); Wu et al. (2023); Qian et al. (2023); Zhuang et al. (2024); Schick
et al. (2024) which is targeted at tool-augmented question-answering scenarios, towards the ‘tools
for AI’ purpose in general. On the other side, With the burgeoning intelligence in reasoning and
perception, LLMs’ tool-use capability can be widely applied in the automation of various domains
including Embodied AI Wang et al. (2024c;b), web manipulation Rawles et al. (2023); Hong et al.
(2024); Yang et al. (2023); Deng et al. (2024); He et al. (2024); Zhou et al. (2023), and image/video
editing Wang et al. (2024a); Argaw et al. (2022); Hang et al. (2024); Fu et al. (2023).This line of
work is intended for tool-oriented planning scenarios for the ‘AI for tools’ purpose. Effectively mas-
tering complex tools challenges the model to comprehend the precondition and potential outcome
of using tools. In this paper, we aim to facilitate LLMs for both tool-oriented and tool-augmented
tasks by learning robust tool understanding.

4.2 TOOL UNDERSTANDING

As noted by Hernik & Csibra (2009), when learning to utilize a specific tool, children perceive it
as an object with particular functions, engaging in a cognitive process to understand its purpose and
operation. Analogously, a comprehensive understanding of the tools’ functionalities is indispens-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Meta-task demonstrations

Tool: search by title for MDBList. Search for Movies or TV Shows by title, include option
year or mediatype filter to narrow your results.
Parameters: 1) ”s”: title to search; 2) ”y”: year to limit title search in format YYYY; 3)
”m”: search for ”movie” or ”tv show”. Leave empty for both; 4) ”l”: limit return items. Use
number from 1 to 100.
Effect
-Q: When using tool ’search by title for MDBList’ with input {”s”: ”friends”, ”m”:
”movie”, ”l”: 1}, what would be the output/result?
-A: The result would be the search result for the movie titled ”friends” limited to 1 item.
Decision-making
-Q: What function should be called and what parameters should be fed into it to get ”the
top-rated movies from around the year 1990, limited to three results.”? Examples: ”The
Unforgettable Director of Love Movies”, ”Killed the Family and Went to the Movies”, ...
-A: Tool: search by title for MDBList. Inputs: {”s”: ”the top-rated movies”, ”y”: 1990,
”m”: ”movie”, ”l”: 3}
Input boundary
-Q: Would {”s”: ”family”, ”m”: ”tv”} be considered a suitable input for tool
search by title for MDBList?
-A: No, since ”tv” is invalid for parameter ”m”.
Output boundary
-Q: Is it feasible to get the movies titled by ”friends” in Singapore as the result with tool
search by title for MDBList?
-A: No, it’s infeasible since it’s beyond the capability of the tool.
Counterfact
-Q: When using tool ’search by title for MDBList’ with input {”s”: ”friends”, ”m”:
”movie”, ”l”: 1}, I get the movie titled ”friends” limited to 1 item as the output. What
would be the new output if I change the input ”l” as 5?
-A: The new tool output is:the movie titled ”friends” limited to 5 items.

Figure 4: Qualitative case for meta-task generation. Given a real-world tool (API), we obtain a set
of QA pairs for 6 meta-tasks following the 2-step procedure illustrated in Figure 3.

able for enabling the controller to use tools proficiently. In real-world scenarios, tools are typically
accompanied by a manual (or tutorial), which provides sufficient relevant details about their func-
tionalities and usage. Endowed with strong few-shot learning Brown et al. (2020) and zero-shot
learning Wei et al. (2021) capabilities, foundation models can be prompted to unravel tools’ func-
tionalities and comprehend how to use them. To this end, we can construct suitable task-specific
prompts either through manual design Vemprala et al. (2024) or retrieval Zhou et al. (2022). How-
ever, prompting is restricted by input context length, thus the situation may be more challenging with
multiple complex tools with long descriptions. While most training-based tool learning methods rely
on extensive expert-annotated solution data for goal-oriented tasks, the knowledge contained in the
tool execution process itself remains unutilized. We propose a self-supervised data augmentation
method to efficiently endow LLMs the comprehension of a set of tools.

5 CONCLUSION

In this work, we introduced MetaTool, an efficient and generalizable method that facilitates tool
learning with task-agnostic comprehension. This is achieved by deriving self-supervised meta-task
data from tool execution actions. Augmented the meta-tasks into either complex toolset fine-tuning
or large-scale instruction tuning, our model exhibits sophisticated tool mastery as well as generality
in in-context learning. Evaluated on multiple tool use benchmarks, MetaTool outperforms models
trained on expert solutions and showcases comparable performance with ChatGPT in a size of 8B.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md.

Dawit Mureja Argaw, Fabian Caba Heilbron, Joon-Young Lee, Markus Woodson, and In So Kweon.
The anatomy of video editing: A dataset and benchmark suite for ai-assisted video editing. In
European Conference on Computer Vision, pp. 201–218. Springer, 2022.

Elias Bareinboim, Andrew Forney, and Judea Pearl. Bandits with unobserved confounders: A causal
approach. Advances in Neural Information Processing Systems, 28, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Harrison Chase. Langchain. 2022. URL https://github.com/hwchase17/langchain.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guid-
ing instruction-based image editing via multimodal large language models. arXiv preprint
arXiv:2309.17102, 2023.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023.

Tiankai Hang, Shuyang Gu, Dong Chen, Xin Geng, and Baining Guo. Cca: Collaborative competi-
tive agents for image editing. arXiv preprint arXiv:2401.13011, 2024.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Mikolaj Hernik and Gergely Csibra. Functional understanding facilitates learning about tools in
human children. Current opinion in neurobiology, 19(1):34–38, 2009.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

11

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/hwchase17/langchain


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Judea Pearl. Causal inference in statistics: An overview. 2009.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
books, 2018.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. arXiv preprint
arXiv:2305.14318, 2023.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning
Ding, Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form question
answering. arXiv preprint arXiv:2305.06849, 2023a.

Yujia Qin, Shengding Hu, Yankai Lin, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023b.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023c.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv preprint
arXiv:2306.06624, 2023.

Teknium. Hermes-2-theta-llama-3-8b. URL https://huggingface.co/NousResearch/
Hermes-2-Theta-Llama-3-8B.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Sai H Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. IEEE Access, 2024.

Bryan Wang, Yuliang Li, Zhaoyang Lv, Haijun Xia, Yan Xu, and Raj Sodhi. Lave: Llm-powered
agent assistance and language augmentation for video editing. arXiv preprint arXiv:2402.10294,
2024a.

12

https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B
https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiaohan Wang, Yuehu Liu, Xinhang Song, Yuyi Liu, Sixian Zhang, and Shuqiang Jiang. An in-
teractive navigation method with effect-oriented affordance. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16446–16456, 2024b.

Xiaohan Wang, Yuehu Liu, Xinhang Song, Beibei Wang, and Shuqiang Jiang. Camp: Causal multi-
policy planning for interactive navigation in multi-room scenes. Advances in Neural Information
Processing Systems, 36, 2024c.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. Berkeley function calling leaderboard. 2024.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Junzhe Zhang and Elias Bareinboim. Markov decision processes with unobserved confounders: A
causal approach. Purdue AI Lab, West Lafayette, IN, USA, Tech. Rep, 2016.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig.
Docprompting: Generating code by retrieving the docs. arXiv preprint arXiv:2207.05987, 2022.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems, 36,
2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTS

Context Generation Prompt

System
You are a helpful assistant. You will first be provided with the documentation of several
tools and their functions/APIs. Then, given the called function, the function input, and the
tool output/result from the user, your task is to provide the context that represents the output.
Instructions
1. Review the provided tool documentation to understand the available functions and their
purposes.
2. Identify the called function and its input parameters.
3. Describe what context the result represents based on the function and input.
Examples
Tool documentation. Tool: Weather; Function/API: get weather; Parameters: city (string),
data (string)
Input. Called function: get weather; Function input: {’city’: ’New York’, ’data’: ’July
10th’}; Result: ’sunny’
Output. The weather in New York on July 10th.
Notice
-Be precise and DO NOT include the details in the result.

Figure 5: Prompt for generating contextual result given the tool description, action, and the original
action result.

Self-play Trial Prompt

You are AutoGPT, you can use many tools(functions) to do the following task.
First, I will give you the task description, and your task start.
At each step, you need to give your thought to analyze the status now and what to do next,
with a function call to actually execute your step. Your output should follow this format:
Thought:Action:Action Input:
After the call, you will get the call result, and you are now in a new state.
Then you will analyze your status now, then decide what to do next...
After many (Thought-call) pairs, you finally perform the task, and then you can give your
final answer.
Remember:
1. the state change is irreversible, you can’t go back to one of the former states. If you want
to restart the task, say ”I give up and restart”.
2. All the thought is short, at most in 5 sentence.
3.You can do more than one try, so if your plan is to continuously try some conditions, you
can do one of the conditions per try.
Let’s Begin!
Task description: You should use functions to help handle real-time user queries. Remem-
ber:
1.ALWAYS call the ”Finish” function at the end of the task. The final answer should contain
enough information to show to the user. If you can’t handle the task, or you find that function
calls always fail(the function is not valid now), use function Finish(”give up and restart”).
2.Do not use origin tool names, use only subfunctions’ names.
You have access to the following tools: (tool descriptions)
{’name’: ’Finish’, ’description’: ’If you believe that you have obtained a result that can
answer the task, please call this function to provide the final answer.’}

Figure 6: Prompt for search for solution paths through self-play trials. The successful trials are
picked according to the final answer. Unsupervised tool actions can be extracted from all trials.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 QUALITATIVE CASE STUDY

Context Generation Examples

Example 1
Input for LLMs: Tool: fixtures for golf leaderboard (Lists tournament fixtures for a given
tour id and season id).
Input parameters: {”tour id”: 1, ”season id”: 2023}.
Result: ”2023 European Tour”
Output (contextual result): Golf fixture held in 2023 season with tour id 1 is 2023
European Tour.

Example 2
Input for LLMs:
Tool: find place by text (Search for places by text string).
Input parameters: {”text”: ”national parks in United States”}.
Result: {’name’: ’Yellowstone National Park’, ’address’: ’United States’, ’phone number’:
’+13073447381’, ’website’: ’https://www.nps.gov/yell/index.htm’}
Output (contextual result): Details of national parks in the United States such as Yellow-
stone National Park.

Example 3
Input for LLMs:
Tool: get 10000 anime quotes (Access best quality anime quotes from over 10000+ animes.
Get anime quotes based on anime search.)
Input parameters: {”search”: ”Naruto”, ”page”: 1}
Result: [’Those who do not understand true pain can never understand true peace.’, ’Things
never go as planned in this curse world.’, ’Becoming the Hokage doesn’t mean people will
acknowledge you.’]
Output (contextual result): A list of quotes from the anime ”Naruto” retrieved from page
1 including ’Things never go as planned in this curse world’.

Figure 7: Examples of generating contextual results with LLMs given the tool descriptions, actions
and action results.

We present several examples of context generation (mentioned in Section 2.2) and the prompt in
Figure 7 and Figure 5. The LLM worker is only asked to complete the contextual information for
the results returned by the tool. In the Effect meta-task, the model learns to predict the contextual
results given the input parameters, which helps it better understand the tool mechanism. Otherwise
asking the model to predict merely the retrieval results (e.g. 2023 European Tour, Yellowstone
National Park) is impractical and not beneficial. No other information or prior knowledge from the
LLM worker are needed and provided to MetaTool.

As showcased in Figure 8, the agent is required to construct stacks containing a green block on top
of a yellow block from a pile of 4 blocks. With mere descriptions of tools in the prompts, LLaMA3
fails to understand the precondition of using tools resulting in invalid actions. Training on tool-
oriented solution data, LLaMA3-solution attempts to lift the yellow block successfully but fails to
sequentially achieve the task goal and falls into repetitive loops. The proposed MetaTool model
achieves the target state with an effective action sequence (although still not the optimal efficiency)
and corresponding reasoning. These 3 models correspond to the 3 paradigms illustrated in Figure 1.
The results show that LLMs can learn tool use better on the basis of robust tool understanding.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 8: Case study of MetaTool compared with 2 baselines on BlocksWorld task. Actions in red
denote invalid ones (e.g. pick up a block at the bottom). LLaMA3-solution is the LLaMA model
trained on task solution data.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Qualitative cases for meta-tasks in tool-oriented scenario.

17


	Introduction
	Approach
	Self-supervised Meta-tasks for Tool Understanding
	Metaset Construction
	Tool Learning Augmented with Meta-tasks

	Experiments
	Tool-oriented Scenarios
	Task setup
	Implementation details
	Results analysis

	Tool-augmented Scenarios
	Task setup
	Results analysis

	Qualitative Case of meta-tasks

	Related Works
	Tool learning
	Tool understanding

	Conclusion
	Appendix
	Prompts
	Qualitative Case Study


