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Abstract001

Speech tokenization enables discrete represen-002
tation and facilitates speech language modeling.003
However, existing neural codecs capture low-004
level acoustic features, overlooking the005
semantic and contextual cues inherent to006
human speech. While recent efforts introduced007
semantic representations from self-supervised008
speech models or incorporated contextual rep-009
resentations from pre-trained language models,010
challenges remain in aligning and unifying the011
semantic and contextual representations. We in-012
troduce FuseCodec, which unifies acoustic, se-013
mantic, and contextual representations through014
strong cross-modal alignment and globally in-015
formed supervision. We propose three comple-016
mentary techniques: (i) Latent Representation017
Fusion, integrating semantic and contextual fea-018
tures directly into the encoder latent space for019
robust and unified representation learning; (ii)020
Global Semantic-Contextual Supervision, su-021
pervising discrete tokens with globally pooled022
and broadcasted representations to enhance023
temporal consistency and cross-modal align-024
ment; and (iii) Temporally Aligned Contextual025
Supervision, strengthening alignment by026
dynamically matching contextual and speech027
tokens within a local window for fine-grained028
token-level supervision. We further introduce029
FuseCodec-TTS, demonstrating our method-030
ology’s applicability to zero-shot speech031
synthesis. Empirically, FuseCodec achieves032
state-of-the-art performance in LibriSpeech,033
surpassing EnCodec, SpeechTokenizer, and034
DAC in transcription accuracy, perceptual035
quality, intelligibility, and speaker similarity.036
Results highlight the effectiveness of contex-037
tually and semantically guided tokenization for038
speech tokenization and downstream tasks.039

1 Introduction040

Tokenization has become foundational in natu-041

ral language processing (NLP), enabling language042

models to learn discrete representations, while043

facilitating efficient autoregressive modeling and 044

scalable downstream applications (Schmidt et al., 045

2024). Inspired by this paradigm, the speech do- 046

main has increasingly adopted neural codecs, pop- 047

ularized by Encodec (Défossez et al., 2022) and 048

SoundStream (Zeghidour et al., 2022). Neural 049

codecs tokenize speech using an encoder, resid- 050

ual vector quantizer, and decoder architecture, en- 051

abling modeling discrete representations suitable 052

for modular extension to downstream tasks such as 053

speech synthesis (Wang et al., 2023). 054

However, the continuous and multidimensional 055

nature of human speech makes learning discrete 056

representations inherently challenging (Ju et al., 057

2024). While neural codecs learn acoustic repre- 058

sentations (waveform and low-level signal charac- 059

teristics), they struggle to capture high-level seman- 060

tics requiring downstream models to adopt addi- 061

tional self-supervised masked language objectives 062

to derive semantic representations (phonetic con- 063

tent and linguistic meaning) (Borsos et al., 2023). 064

To address this drawback, recent neural codec ar- 065

chitectures incorporated semantic distillation from 066

pretrained self-supervised speech models (Zhang 067

et al., 2024; Défossez et al., 2024), improving the 068

quality of speech reconstruction and the semantic 069

aspect of learned representations. 070

In addition, another fundamental aspect of hu- 071

man speech remains missing in above mentioned 072

works: speech is inherently grounded in context 073

and surrounding cues (Brown et al., 2022). Discrete 074

speech representations, lacking grounding in con- 075

text, fall short of capturing this essential attribute 076

(Hallap et al., 2023). While language models have 077

demonstrated strong capabilities in learning such 078

contextual dependencies from text corpora (Devlin 079

et al., 2019a; Peters et al., 2018), speech tokenizers 080

have yet to fully leverage these capabilities. Al- 081

though a recent neural codec (Ahasan et al., 2024) 082

explored matching discrete speech representations 083

with contextual representation from a pre-trained 084
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language model, it falls short in effective cross-085

modal alignment, constraining the model’s ability086

to fully unify semantic and contextual information.087

Therefore, despite recent advances, several chal-088

lenges remain unaddressed. Firstly, current ap-089

proaches fail to unify all three aspects of discrete090

speech representation: acoustic (learned by neu-091

ral codecs), semantic (from self-supervised speech092

models), and contextual (from language models).093

Most work incorporates only semantic informa-094

tion (Zhang et al., 2024; Défossez et al., 2024; Ye095

et al., 2024), neglecting contextual grounding. Sec-096

ondly, while a recent effort (Ahasan et al., 2024)097

attempts to integrate contextual representations, it098

lacks effective mechanisms for aligning text and099

speech modalities. Thirdly, existing methods rely100

on similarity-based objectives for representation101

matching without directly incorporating informa-102

tion into the latent space, limiting coherence and103

downstream performance. We address these chal-104

lenges through our proposed methodologies, while105

preserving the core architecture and utilizing frozen106

representations with zero inference overhead.107

To address these challenges, we propose a108

speech tokenization framework with three differ-109

ent strategies/variations that enrich discrete speech110

representations with unified and aligned semantic111

and contextual information. Our first strategy in-112

volves (i) Latent Representation Fusion, which113

integrates semantic and contextual embeddings into114

the encoder’s latent space through cross-modal at-115

tention and additive fusion, resulting in more ro-116

bust and coherent representations. Building on117

this, we present (ii) Global Semantic-Contextual118

Supervision, where globally pooled and broad-119

casted modality vectors supervise each quantized120

token across time, facilitating temporally consistent121

and globally informed representation learning. To122

enforce explicit alignment, we introduce another123

strategy: (iii) Temporally Aligned Contextual Su-124

pervision, which dynamically matches contextual125

and speech tokens prior to timestep-level similar-126

ity supervision, enabling fine-grained cross-modal127

alignment and enhancing representation quality.128

Then, we instantiate our framework through129

three model variants: FuseCodec-Fusion with130

Latent Representation Fusion, FuseCodec-Distill131

with Global Semantic-Contextual Supervision,132

and FuseCodec-ContextAlign with Temporally133

Aligned Contextual Supervision. FuseCodec es-134

tablishes new state-of-the-art performance on the135

LibriSpeech test set (Panayotov et al., 2015) by136

integrating contextual and semantic guidance into 137

the learning of discrete speech tokens. Specifi- 138

cally, FuseCodec-Fusion achieves the best scores 139

in transcription accuracy (WER 3.99, WIL 6.45), 140

intelligibility (STOI 0.95), and perceptual quality 141

(ViSQOL 3.47, PESQ 3.13), outperforming En- 142

Codec (Défossez et al., 2022), SpeechTokenizer 143

(Zhang et al., 2024), and DM-Codec (Ahasan 144

et al., 2024). FuseCodec-Distill further achieves 145

the highest UTMOS (3.65) and speaker similar- 146

ity (0.996), highlighting its strength in percep- 147

tual naturalness and speaker fidelity. Meanwhile, 148

FuseCodec-ContextAlign provides a strong trade- 149

off between interpretability and performance, with 150

particularly competitive scores in UTMOS (3.65) 151

and similarity (0.995). These results underscore 152

the effectiveness of incorporating contextual and 153

semantic signals into the tokenization process for 154

high-quality speech reconstruction. 155

Therefore, our key contributions are: 156

• We introduce three novel neural codecs based 157

on our method: Latent Representation Fu- 158

sion (FuseCodec-Fusion), Global Semantic- 159

Contextual Supervision (FuseCodec-Distill), 160

and Temporally Aligned Contextual Supervi- 161

sion (FuseCodec-ContextAlign). 162

• Our framework tackles different limitations 163

of neural codecs by integrating semantic and 164

contextual information through distinct meth- 165

ods, improving cross-modal alignment and 166

enhancing discrete representation learning. 167

• We demonstrate the utility of our approach in 168

a downstream TTS model and validate each 169

component with extensive ablation studies. 170

• FuseCodec achieves state-of-the-art perfor- 171

mance on LibriSpeech reducing transcription 172

error and improving speech naturalness. 173

2 Proposed Method 174

As shown in Figure 1, we first introduce the speech 175

discretization pipeline (§2.1) and describe the 176

extraction of semantic and contextual represen- 177

tations from pre-trained models (§2.2). We then 178

present three strategies for integrating multimodal 179

guidance into speech tokenization: (i) Latent Rep- 180

resentation Fusion (§2.3.1), (ii) Global Semantic- 181

Contextual Supervision (§2.3.2), and (iii) Tem- 182

porally Aligned Contextual Supervision (§2.3.3). 183

Finally, we outline the training objective (§2.4) 184

and the extension to a text-to-speech task (§2.5). 185
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Figure 1: Overview of the FuseCodec speech tokenization framework. Input speech x is encoded into latent features
Z, then quantized into discrete tokens Q(1:K) via residual vector quantization (RVQ). To enrich these tokens, we
incorporate semantic (Si, Ŝ) and contextual (Ci, Ĉ,C∗) representations from frozen pre-trained models. Global
vectors Ŝ and Ĉ are formed via mean pooling and [CLS] selection, respectively. We propose three strategies: (i)
Latent Representation Fusion, injecting global vectors Ŝ, Ĉ with Z to yield fused latent Z′; (ii) Global Semantic-
Contextual Supervision, supervising Q(1) with global vectors; and (iii) Temporally Aligned Contextual Supervision,
aligning full contextual embeddings {Ci} to RVQ outputs via a windowed matching algorithm to form C∗.

2.1 Discrete Speech Representation186

Discrete tokens serve as the foundation of neu-187

ral codec-based speech-language models. Follow-188

ing established approaches (Défossez et al., 2022;189

Zhang et al., 2024; Ahasan et al., 2024), we dis-190

cretize audio using an encoder-quantizer setup.191

Given an input speech waveform x, an encoder192

E compresses x into a sequence of latent repre-193

sentations Z = {zi}T
′

i=1, where T ′ is the number194

of encoded frames. The encoder output Z is then195

passed through a Residual Vector Quantization196

module (RVQ), consisting of K quantization197

layers. Each layer k produces a sequence of token198

indices {q(k)i }T
′

i=1. For each token index q
(k)
i , we199

retrieve its corresponding embedding from the k-th200

codebook, resulting in a sequence of quantized201

vectors Q(k) = {q(k)
i }T

′
i=1, where q(k)

i ∈ RD, with202

D denoting the embedding dimensionality. We203

use the embeddings from the first quantization204

layer Q(1) as the discrete representation of speech,205

guided with multimodal representations.206

2.2 Multimodal Representation Extraction207

Concurrently, we extract representations from pre-208

trained models. Specifically, we obtain contextual209

representations from a pre-trained language model,210

which are dynamic, token-level embeddings that211

adapt to surrounding text (Devlin et al., 2019b; Pe-212

ters et al., 2018). In parallel, we derive semantic213

representations from a pre-trained self-supervised 214

speech model, which capture the high-level struc- 215

ture and meaning (Borsos et al., 2023). 216

Contextual Representation. The input speech 217

waveform x is transcribed into text x′ using a 218

pre-trained Automatic Speech Recognition (ASR) 219

model A, such that x′ = A(x). The ASR 220

model functions purely as a speech-to-text con- 221

verter and remains detached during training. The 222

transcribed text x′ is processed by a pre-trained lan- 223

guage model B, which produces a token sequence 224

{ci}ni=1. For each token ci, we extract hidden states 225

from all L layers, represented as {h(l)
i }Ll=1. These 226

are averaged to produce contextual embeddings: 227

Ci =
1
L

∑L
l=1 h

(l)
i , where Ci ∈ RD′

, and D′ de- 228

notes the hidden dimension of the language model. 229

Semantic Representation. The input speech 230

waveform x is passed through a pre-trained self- 231

supervised speech model H , which outputs a se- 232

quence of frame-level tokens {si}mi=1,. For each 233

frame si, we extract hidden states from all L layers: 234

{h(l)
i }Ll=1. These are averaged to obtain semantic 235

embeddings: Si =
1
L

∑L
l=1 h

(l)
i , where Si ∈ RD′

, 236

and D′ denotes the hidden dimension. 237

2.3 Semantic-Contextual Guidance 238

Our goal is to enrich discrete speech representa- 239

tions by integrating contextual and semantic in- 240

formation, enabling tighter alignment between 241
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acoustic structure and linguistic meaning. Prior242

work has explored similar directions: Zhang et al.243

(2024); Défossez et al. (2024) aligned HuBERT-244

based semantic features with the first RVQ layer245

using cosine similarity, while Ahasan et al. (2024)246

matched BERT-based embeddings to RVQ outputs247

via padded sequences and similarity loss. How-248

ever, these methods either rely on a single modality249

(semantic in Zhang et al. (2024); Défossez et al.250

(2024)) or lack robust cross-modal alignment (mis-251

aligned context in Ahasan et al. (2024)).252

In contrast, we unify semantic and contextual253

representations while ensuring robust alignment.254

For this, we propose three strategies: (i) Latent Rep-255

resentation Fusion (§2.3.1), (ii) Global Semantic-256

Contextual Supervision (§2.3.2), and (iii) Tempo-257

rally Aligned Contextual Supervision (§2.3.3)258

2.3.1 Latent Representation Fusion259

We first propose fusing semantic and contextual260

representations with the encoder’s latent output.261

The enhanced latents are then passed to the residual262

vector quantization (RVQ) module, enabling the263

learning of discrete codes enriched with semantic264

and contextual information.265

We begin by obtaining global semantic and con-266

textual representations. Specifically, we take the267

average of semantic embeddings {Si}mi=1 to com-268

pute the global semantic vector Ŝ = 1
m

∑m
i=1 Si.269

For the textual modality, we select the [CLS] to-270

ken embedding from the contextual representations271

{Ci}ni=1, yielding Ĉ = C[CLS].272

We then broadcast each global vector across the273

discrete token sequence length T ′, forming: S̃ =274

{Ŝ}T ′
t=1, and C̃ = {Ĉ}T ′

t=1. Broadcasting allows275

each token to inherit the full semantic or contextual276

knowledge of the sequence, ensuring every position277

is enriched with the most informative signal for278

cross-modal fusion or distillation.279

Next, we apply multi-head cross-attention to en-280

able cross-modal interaction, followed by an MLP281

projection to match the encoder dimension D:282

S′ = CrossAttention(S̃, C̃, C̃)WS ,

C′ = CrossAttention(C̃, S̃, S̃)WC ,
(1)283

where WS ,WC ∈ RD′×D are learned projec-284

tion matrices and CrossAttention(·) denotes multi-285

head cross-attention. Finally, we fuse the modality286

signals with the latent representation Z ∈ RT ′×D287

via additive fusion and modality dropout:288

Z′ = Z+ (S′ ⊙DS) + (C′ ⊙DC), (2)289

where DS ,DC ∈ {0, 1}T ′×D are stochastic 290

dropout masks applied during training. Dropout 291

promotes robustness by preventing the quantized 292

representations from over-relying on the fused 293

modalities (Hussen Abdelaziz et al., 2020), and al- 294

lows inference using only the encoder signal. The 295

resulting fused representation Z′ is then passed to 296

the RVQ module for discrete speech quantization. 297

2.3.2 Semantic-Contextual Supervision 298

In addition to latent fusion, we explore an alterna- 299

tive representation supervision strategy, motivated 300

by its effectiveness of similarity matching in prior 301

speech tokenization work (Zhang et al., 2024; Dé- 302

fossez et al., 2024; Ahasan et al., 2024). Unlike 303

previous methods that supervise over feature di- 304

mensions or require local frame-level alignment, 305

we introduce a global-to-local time-axis distillation 306

scheme. Specifically, we use global semantic Ŝ and 307

contextual Ĉ vectors to supervise the RVQ output 308

across time. This provides temporally consistent 309

guidance and encourages the quantized space to 310

capture modality-aware temporal dynamics. 311

We adapt the combined distillation loss from 312

Ahasan et al. (2024), proposing it to operate along 313

the temporal axis rather than the feature axis. This 314

modification enables more effective alignment of 315

discrete latent representations with temporally dis- 316

tributed semantic and contextual signals, enhancing 317

cross-modal coherence over time. 318

Given the broadcasted global signals (see 2.3.1) 319

S̃, C̃ ∈ RT ′×D′
, we apply a linear projection to 320

the first-layer RVQ output Q(1) ∈ RT ′×D to align 321

dimensionality: Q′(1) = Q(1)W, where W ∈ 322

RD×D′
. Finally, we apply semantic-contextual su- 323

pervision using a temporally-aware distillation loss. 324

Ldistill = −
1

T ′

T ′∑
t=1

log σ

(
1

2

[
cos

(
Q

′(1)
t , S̃t

)
+cos

(
Q

′(1)
t , C̃t

)])
,

(3) 325

where σ(·) is the sigmoid function and cos(·, ·) 326

denotes cosine similarity. This formulation pro- 327

vides fine-grained temporal supervision using 328

global modality signals, enhancing the represen- 329

tational quality of the learned discrete tokens. 330

2.3.3 Aligned Contextual Supervision 331

Building on our use of the global contextual vec- 332

tor Ĉ for supervision, we propose a finer-grained 333

approach that leverages the full sequence of contex- 334

tual embeddings {Ci}ni=1 to supervise the RVQ to- 335
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ken sequence {q(1)
t }T

′
t=1, enabling richer, timestep-336

level guidance. A key challenge, however, is the337

mismatch in sequence lengths between the contex-338

tual embeddings (n) and the RVQ output (T ′).339

To address this, we propose a dynamic window-340

based alignment strategy that assigns each con-341

textual embedding Ci ∈ RD′
to the most simi-342

lar RVQ token Q
(1)
t embedding within a localized343

search window using cosine similarity. A dynamic344

window-shifting mechanism prevents alignment345

overlap and ensures sequence-wide consistency. If346

multiple RVQ tokens within the window share the347

highest similarity, Ci is assigned to all correspond-348

ing positions in the aligned output C∗, account-349

ing for cases where a single linguistic token spans350

multiple speech frames. The resulting sequence351

C∗ ∈ RT ′×D′
enables timestep-level supervision.352

The full procedure is detailed in Algorithm 1.353

Algorithm 1 Window-Based Token Alignment

Require: Contextual embeddings {Ci}ni=1, RVQ
tokens {Q(1)

t }T
′

t=1, optional window size w
1: if w not provided then
2: w ← ⌊T ′/n⌋
3: end if
4: Initialize aligned output C∗ ∈ RT ′×D′ ← 0
5: Initialize ℓ← 0 {last matched index}
6: for i = 1 to n do
7: if dynamic window then
8: s← ℓ+ 1 if i > 1, else 0 {start index}
9: e← min(s+ w, T ′) {end index}

10: else
11: s← (i− 1) · w, e← min(s+ w, T ′)
12: end if
13: Compute cosine similarity

αt = cos(Ci,Q
(1)
t ) for t ∈ [s, e)

14: Let τ ← maxt αt {maximum similarity}
15: Ti ← {t | αt ≥ τ}
16: for each t ∈ Ti do
17: C∗

t ← Ci

18: end for
19: ℓ← max(Ti)
20: end for
21: return C∗

Finally, we apply temporally aligned contextual354

supervision using a timestep-level distillation loss:355

Ldistill = −
1

T ′

T ′∑
t=1

log σ
(
cos

(
Q

′(1)
t ,C∗

t

))
, (4)356

357

where Q′(1) = Q(1)W ∈ RT ′×D′
is the linearly 358

projected RVQ output, and σ(·) denotes the sig- 359

moid function. This loss enforces temporally pre- 360

cise alignment between acoustic tokens and their 361

corresponding contextual representations, encour- 362

aging modality-aware token learning. 363

2.4 Architecture and Training Objective 364

We build on widely adopted neural codec architec- 365

tures and training objectives, following (Défossez 366

et al., 2022; Zhang et al., 2024; Ahasan et al., 2024), 367

to establish a strong and reliable foundation. We 368

contribute to enhancing the learned representations 369

through semantic and contextual supervision and 370

fusion without altering the model architecture. 371

We use wav2vec 2.0 (base-960h) as the ASR 372

model A (Baevski et al., 2020), BERT (bert-base- 373

uncased) as the language model B (Devlin et al., 374

2019a), and HuBERT (base-ls960) as the self- 375

supervised speech model H (Hsu et al., 2021). All 376

pre-trained models are frozen during training. The 377

speech tokenizer consists of an encoder E, an RVQ 378

module with 8 quantization layers (codebooks) of 379

size 1024, a decoder D, and three discriminators 380

(multi-period, multi-scale, and multi-scale STFT). 381

Architectural details are provided in Appendix B.1. 382

Quantization operates on 50 Hz frame rates. The 383

encoder and RVQ use an embedding dimension 384

of D = 1024, while the pre-trained langauge and 385

speech model have D′ = 768. Cross-Attentions 386

are implemented using 8-heads. The dropout masks 387

DS and DC are applied at a rate of 10%. 388

Training Objective. We also adopt a multi- 389

objective training setup grounded in established 390

neural codec practices. This includes time-domain 391

reconstruction loss Ltime, frequency-domain recon- 392

struction loss Lfreq, adversarial loss Lgen, feature 393

matching loss Lfeat, and RVQ commitment loss 394

Lcommit (see Appendix B.2 for details). 395

To further enhance representation quality, we 396

introduce two auxiliary supervision objectives: a 397

global distillation loss as Ldistill (Sec. 2.3.2) and 398

a temporally aligned contextual loss as Ldistill 399

(Sec. 2.3.3). Ldistill is set to 0, when applying the 400

Latent Representation Fusion (Sec. 2.3.1). 401

The final training objective is a weighted sum: 402

Ltotal = λtimeLtime + λfreqLfreq + λgenLgen

+ λfeatLfeat + λcommitLcommit

+ (λdistillLdistill or 0)

(5) 403

404
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2.5 Downstream Extension to TTS Model405

We extend the learned discrete token representa-406

tions to a downstream text-to-speech (TTS) task,407

following the neural codec language modeling408

framework and objective used in prior work (Wang409

et al., 2023; Zhang et al., 2024; Ahasan et al., 2024).410

In this paradigm, speech synthesis is performed by411

predicting quantized acoustic tokens produced by412

the RVQ and decoded by a neural codec.413

For this, we propose FuseCodec-TTS, an ex-414

tension of FuseCodec-Fusion trained with ei-415

ther Latent Representation Fusion (see §2.3.1)416

or FuseCodec-Distill using Global Semantic-417

Contextual Supervision (see §2.3.2). This allows418

the TTS model to operate on discrete speech tokens419

enriched with semantic and contextual information.420

Given a phoneme sequence p and an acoustic421

prompt A ∈ Rτ×K extracted from a reference422

utterance using FuseCodec, the goal is to predict a423

sequence of discrete token indices q(1), . . . , q(K),424

corresponding to the K RVQ layers.425

To model coarse content and prosodic structure,426

we autoregressively predict the token indices q(1)427

from the first quantizer using a decoder-only Trans-428

former conditioned on the phoneme sequence p.429

The autoregressive (AR) training objective is:430

LAR = − log
∏T ′

i=1 p
(
q
(1)
i | q(1)<i , p; θAR

)
(6)431

432
To capture fine-grained acoustic details, we use433

a non-autoregressive model to predict q(k) for each434

k = 2, . . . ,K, conditioned on the previously pre-435

dicted layers q(<k), the phoneme sequence p, and436

the acoustic prompt A. The non-autoregressive437

(NAR) training objective is:438

LNAR = − log
∏K

k=2 p
(
q(k) | q(<k),p,A; θNAR

)
(7)439

440
Both AR and NAR token generators are imple-441

mented using 12-layer Transformers with 16 atten-442

tion heads, 1024-dimensional embeddings, 4096-443

dimensional feed-forward layers, and a dropout rate444

of 0.1. The predicted token indices are mapped to445

their corresponding quantized embeddings Q(k),446

which are then passed to FuseCodec’s decoder to447

reconstruct the synthesized speech waveform.448

3 Experimental Setup449

Dataset. Following prior work in speech tokeniza-450

tion (Zhang et al., 2024; Ahasan et al., 2024), we451

train FuseCodec on the LibriSpeech (Panayotov452

et al., 2015) train-clean-100 subset, which con- 453

tains 100 hours of English speech from 251 speak- 454

ers, sampled at 16 kHz. During training, we ran- 455

domly crop 3-second audio segments and reserve 456

100 samples for validation. For FuseCodec-TTS, 457

we combine the train and dev subsets of LibriTTS 458

(Zen et al., 2019), comprising 570 hours of speech. 459

For evaluating FuseCodec, we use the Lib- 460

riSpeech test-clean subset, which comprises 461

2,620 utterances held out entirely from training. 462

This setup follows prior baselines (Zhang et al., 463

2024; Ahasan et al., 2024), though we evaluate 464

on the full set rather than a sampled subset. For 465

FuseCodec-TTS, we adopt two established bench- 466

mark protocols. In the LibriSpeech evaluation, fol- 467

lowing Wang et al. (2023), we select utterances be- 468

tween 4 and 10 seconds, yielding a 2.2-hour subset. 469

For each synthesis, a 3-second enrollment segment 470

is randomly cropped from a different utterance by 471

the same speaker. In the VCTK evaluation, fol- 472

lowing Zhang et al. (2024), a 3-second prompt is 473

selected or cropped from one utterance, and the 474

transcript of a separate utterance from the same 475

speaker serves as the synthesis target. 476

Training. FuseCodec is trained for 100 epochs 477

on two A40 GPUs with a batch size of 6, using the 478

Adam optimizer with a learning rate of 1 × 10−4 479

and exponential decay factor 0.98. FuseCodec-TTS 480

is trained on A100 and L40S GPUs. The AR model 481

is trained for 200 epochs, and the NAR model for 482

150 epochs. Training employs dynamic batching, 483

with each batch containing up to 550 seconds of 484

audio for AR and 100–200 seconds for NAR. We 485

use the ScaledAdam optimizer with a learning rate 486

of 5× 10−2 and 200 warm-up steps. 487

Reproducibility. We provide a fully repro- 488

ducible setup, including a Dockerized environment, 489

source code, model checkpoints, and configuration 490

files (anonymized for review; see Appendix A.) 491

Baselines. We compare FuseCodec against both 492

established and recent strong baseline speech to- 493

kenizers, including EnCodec (24 kHz) (Défossez 494

et al., 2022) and SpeechTokenizer (Zhang et al., 495

2024), as well as BigCodec (Xin et al., 2024), 496

DAC (16 kHz) (Kumar et al., 2023), DM-Codec 497

(LM+SM) (Ahasan et al., 2024) FACodec (Natural- 498

Speech 3) (Ju et al., 2024), and Moshi (Défossez 499

et al., 2024). All baseline results are obtained us- 500

ing official released checkpoints. For FuseCodec- 501

TTS, we compare with neural codec language mod- 502

els that incorporate external representation guid- 503

ance. Specifically, we compare against USLM 504
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Table 1: Speech reconstruction results across content preservation and naturalness metrics. Orange and

light orange cells indicate the best and second-best scores, respectively. Results show that FuseCodec vari-
ants outperform baselines by unifying contextual and semantic signals in the discrete speech representations.

Model
Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

BigCodec 4.58 7.45 0.93 3.02 2.68 3.44 0.996
DAC 4.09 6.54 0.94 3.36 2.72 3.33 0.996
DM-Codec 4.09 6.75 0.93 3.20 2.77 3.45 0.994
EnCodec 4.04 6.58 0.92 3.06 2.31 2.41 0.980
FACodec 4.11 6.58 0.95 3.11 2.89 3.45 0.996
Mimi 11.61 18.05 0.85 2.49 1.69 2.28 0.934
SpeechTokenizer 4.16 6.71 0.92 3.08 2.60 3.41 0.996

FuseCodec (Baseline) 4.62 7.44 0.93 2.95 2.54 3.18 0.990
FuseCodec-ContextAlign 4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-Distill 4.09 6.60 0.94 3.43 3.06 3.65 0.996
FuseCodec-Fusion 3.99 6.45 0.95 3.47 3.13 3.63 0.995

(from SpeechTokenizer) (Zhang et al., 2024) and505

DM-Codec-TTS (Ahasan et al., 2024), using their506

official released LibriTTS trained checkpoints.507

Metrics. We evaluate FuseCodec using two com-508

plementary categories of metrics: Content Preser-509

vation and Speech Naturalness. To assess Content510

Preservation, we transcribe generated speech using511

Whisper (medium) (Radford et al., 2023) and com-512

pare it to ground-truth text. We report Word Error513

Rate (WER), defined as WER = S+D+I
N , where S,514

D, and I denote the number of substitutions, dele-515

tions, and insertions, and N is the number of words516

in the reference. We also report Word Information517

Lost (WIL), given by WIL = 1 − C
N + C

P , where518

C is the number of correct words, N is the num-519

ber of words in the reference, and P is the number520

of words in the prediction. Additionally, we in-521

clude Short-Time Objective Intelligibility (STOI), a522

reference-based metric estimating intelligibility via523

short-time spectral similarity. For Speech Natural-524

ness, we evaluate perceptual and acoustic fidelity525

using both reference-based and learned metrics.526

ViSQOL and PESQ assess perceptual quality by527

modeling auditory similarity and signal distortion,528

respectively. We also report UTMOS for estimat-529

ing human-judged naturalness, which is a neural530

MOS predictor trained on large-scale human rat-531

ings. Lastly, we compute Similarity as the cosine532

similarity between L2-normalized speaker embed-533

dings extracted using WavLM-TDNN (Chen et al.,534

2022), reflecting speaker or content consistency.535

For FuseCodec-TTS, we omit metrics requiring536

reference audio (e.g., STOI, ViSQOL, PESQ), as537

exact references are unavailable in synthesis.538

4 Experimental Results and Discussion 539

In this section, we evaluate our proposed methods 540

on speech reconstruction quality (§4.1), their ex- 541

tension to speech synthesis (§4.2), and validate the 542

contribution of each component through compre- 543

hensive ablation studies (Appendix C)). 544

4.1 Speech Reconstruction Evaluation 545

We evaluate our three proposed methods: (i) La- 546

tent Representation Fusion: FuseCodec-Fusion 547

(Sec. 2.3.1) (ii) Global Semantic-Contextual Su- 548

pervision: FuseCodec-Distill (Sec. 2.3.2), and 549

(iii) Temporally Aligned Contextual Supervision: 550

FuseCodec-ContextAlign (Sec. 2.3.3). 551

Results. The results in Table 1 show that FuseC- 552

odec improves performance across all metrics re- 553

lated to content preservation and speech natural- 554

ness. FuseCodec-Fusion performs best overall, 555

achieving the lowest WER (3.99) and WIL (6.45), 556

along with the highest STOI (0.95), reducing tran- 557

scription error and improving intelligibility. It also 558

achieves the highest scores in ViSQOL (3.47) and 559

PESQ (3.13), reflecting superior perceptual qual- 560

ity. FuseCodec-Distill attains top scores in UT- 561

MOS (3.65) and Similarity (0.996), while also rank- 562

ing second in STOI (0.94), ViSQOL (3.43), and 563

PESQ (3.06), demonstrating strong naturalness and 564

speaker consistency. FuseCodec-ContextAlign also 565

performs competitively, particularly in UTMOS 566

(3.65) and Similarity (0.995), while showing con- 567

sistent improvements over FuseCodec (Baseline). 568

Discussion. FuseCodec-Fusion achieves the 569

best overall performance. Compared to EnCodec, 570

which focuses purely on acoustic representations, 571

and FACodec, which separates attribute learn- 572

ing without unifying representations, FuseCodec- 573
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Table 2: Zero-shot TTS evaluation on LibriSpeech and VCTK. FuseCodec-TTS variants are compared to official
neural codec-based TTS checkpoints trained on LibriTTS. Bold and underline indicate best and second-best scores.
FuseCodec-TTS improves intelligibility, similarity, and naturalness via semantic-contextual aware tokenization.

Model
WER ↓ WIL ↓ Similarity ↑ UTMOS ↑

LibriSpeech VCTK LibriSpeech VCTK LibriSpeech VCTK LibriSpeech VCTK

DM-Codec-TTS 10.26 5.02 13.79 8.21 0.82 0.79 3.70 3.86
USLM 16.72 14.79 25.65 23.24 0.80 0.78 2.93 3.01

FuseCodec-Distill-TTS 8.55 3.66 12.07 6.02 0.82 0.78 3.55 3.75
FuseCodec-Fusion-TTS 9.67 4.07 13.23 7.18 0.83 0.79 3.63 3.82

Fusion incorporates both semantic and contextual574

signals directly into the encoder’s latent space. This575

enables the quantizer to learn a unified represen-576

tation aligned with both linguistic meaning and577

acoustic structure. It also outperforms models like578

DAC and BigCodec, which prioritize compression579

but lack representational alignment. FuseCodec-580

Distill improves upon SpeechTokenizer and Mimi,581

which distill only semantic representations from582

speech models and underperform on intelligibility583

and quality. In contrast, FuseCodec-Distill super-584

vises the quantized space with global contextual585

and semantic signals, promoting alignment with586

high-level linguistic and acoustic content.587

FuseCodec-ContextAlign introduces fine-588

grained supervision by aligning discrete tokens589

with temporally matched contextual tokens,590

encouraging each token to reflect local linguistic591

context. Although its constrained alignment limits592

global contextual guidance, leading to slightly593

lower performance than FuseCodec-Fusion and594

FuseCodec-Distill, it still outperforms DM-Codec,595

improving intelligibility and speaker similarity.596

Overall, contextual guidance is most effective for597

content preservation, while semantic supervision598

enhances speech naturalness. FuseCodec-Fusion599

delivers the best balance, FuseCodec-Distill excels600

in speaker fidelity, and FuseCodec-ContextAlign601

offers interpretable gains. These results underscore602

the benefit of unifying multimodal representations.603

4.2 Speech Synthesis Evaluation604

We extend our methods to the zero-shot text-to-605

speech task and evaluate against neural codec606

TTS models that incorporate representational607

supervision for comparison. We deicde to608

adapt FuseCodec-Fusion to FuseCodec-Fusion-609

TTS and FuseCodec-Distill to FuseCodec-Distill-610

TTS, based on their superior performance.611

Results. Table 2 shows that both FuseCodec-612

TTS variants outperform prior methods across most613

metrics on LibriSpeech and VCTK. FuseCodec-614

Distill-TTS achieves the best content preservation, 615

with the lowest WER (8.55 / 3.66) and WIL (12.07 / 616

6.02), surpassing both DM-Codec-TTS and USLM. 617

FuseCodec-Fusion-TTS delivers the highest per- 618

ceptual quality, achieving the top speaker similarity 619

(0.83 / 0.79), while also maintaining strong intelli- 620

gibility with the second-best UTMOS (3.63 / 3.82), 621

WER (9.67 / 4.07), and WIL (13.23 / 7.18). 622

Discussion. FuseCodec-Fusion-TTS leads in 623

perceptual quality and speaker similarity. Unlike 624

DM-Codec-TTS, which lacks precise alignment, 625

and USLM, which incorporates only semantic fea- 626

tures, FuseCodec-Fusion-TTS integrates both se- 627

mantic and contextual signals directly into the en- 628

coder’s latent space. This allows the quantizer 629

to capture expressive prosody and speaker iden- 630

tity, resulting in more natural and coherent speech. 631

FuseCodec-Distill-TTS achieves the highest intel- 632

ligibility and transcription accuracy. In contrast 633

to USLM’s lack of contextual grounding and DM- 634

Codec-TTS’s limited supervision, it distills global 635

semantic-contextual representations into the quan- 636

tized token space, enhancing alignment with se- 637

mantic and contextual info. While FuseCodec- 638

Fusion-TTS excels in naturalness and speaker fi- 639

delity, FuseCodec-Distill-TTS offers stronger lin- 640

guistic precision. This trade-off reflects the comple- 641

mentary strengths of each variant and underscores 642

the importance of integrating semantic-contextual 643

fusion or supervision into speech tokenization. 644

5 Conclusion 645

We introduced FuseCodec, a unified speech tok- 646

enization framework that integrates acoustic, se- 647

mantic, and contextual signals via multimodal rep- 648

resentation fusion and supervision. Our methods 649

enable fine-grained alignment and achieve state-of- 650

the-art results on speech reconstruction, improving 651

intelligibility, quality, and speaker similarity. These 652

findings highlight the value of semantic and con- 653

textual grounding in discrete speech modeling. 654
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Limitations655

While FuseCodec demonstrates strong perfor-656

mance in incorporating semantic and contextual657

representation into discrete speech tokenization,658

our approach relies on frozen pretrained language659

and speech models, which may limit adaptability660

to non-English or low-resource languages. More-661

over, although we focus on zero inference over-662

head, training requires additional computational re-663

sources due to multimodal guidance. Future work664

could explore lightweight, adaptive guidance mech-665

anisms and broader language coverage.666
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A Resources837

We provide all necessary resources to ensure full838

reproducibility of our models and results. All links839

are anonymized for double-blind peer review.840

• Docker: A containerized environment with841

all required Python packages for training.842

LINK843

• Code and Configuration: Full codebase for844

preprocessing, training, and inference. LINK845

• Model Checkpoints: Trained model weights.846

LINK847

B Tokenizer Design and Loss Functions848

B.1 Model Details849

To implement a strong speech tokenizer baseline,850

we adopt a standard neural codec architecture and851

discriminator setup commonly used in prior work852

(Défossez et al., 2022; Zeghidour et al., 2022).853

Encoder and Decoder. The Encoder consists854

of an initial 1D convolutional layer with 32 chan-855

nels and a kernel size of 7, followed by 4 stacked856

residual blocks. Each block includes two dilated857

convolutions with a (3, 1) kernel and no dilation ex-858

pansion (dilation = 1), a residual connection, and a859

strided convolutional layer for temporal downsam-860

pling. Stride values across the blocks are set to 2,861

4, 5, and 8, with kernel sizes for the downsampling862

layers set to twice the corresponding stride. Chan-863

nel dimensions double at each downsampling stage.864

The encoder then includes a two-layer BiLSTM,865

and concludes with a 1D convolution (kernel size866

7) to project to the target embedding dimension.867

ELU (Clevert et al., 2016) is used as the activation868

function, and layer normalization or weight nor-869

malization is applied depending on the layer. The870

Decoder mirrors the encoder architecture, with the871

only difference being the use of transposed convolu-872

tions in place of strided convolutions to reverse the873

downsampling steps, and the inclusion of LSTM874

layers to restore temporal resolution.875

Residual Vector Quantizer. The Residual Vec-876

tor Quantizer (RVQ) module discretizes the en-877

coder’s continuous latent representations into a se-878

quence of codebook indices. Specifically, we quan-879

tize the encoder latent tensor of shape [B,D, T ]880

using 8 residual codebooks, each with 1024 code-881

book entries. Each subsequent codebook quantizes882

the residual error of the previous one. Codebook883

entries are updated using an exponential moving884

average with a decay factor of 0.99. To prevent 885

codebook collapse, unused entries are randomly re- 886

sampled using vectors from the current batch. The 887

RVQ output is a discrete tensor of shape [B,Nq, T ], 888

where Nq is the number of active quantizers. The 889

indices are mapped back to the original latent space 890

by summing the corresponding codebook embed- 891

dings and are then fed into the decoder to recon- 892

struct the input. A straight-through estimator (Ben- 893

gio et al., 2013) is used to propagate gradients 894

through the quantizer. 895

Discriminators. We utilize discriminators to 896

guide the generators (Encoder, RVQ, and Decoder) 897

to reconstruct speech more closely to the origi- 898

nal. We make use of three distinct discriminators: 899

a Multi-Scale STFT (MS-STFT) discriminator, a 900

Multi-Scale Discriminator (MSD), and a Multi- 901

Period Discriminator (MPD). The MS-STFT dis- 902

criminator, proposed by (Défossez et al., 2022), 903

works on multiple resolutions of the complex- 904

valued short-time Fourier transform (STFT). It 905

treats the real and imaginary parts as concatenated 906

and applies a sequence of 2D convolutional lay- 907

ers. The initial layer uses a kernel size of 3 × 8 908

with 32 channels. This is followed by convolu- 909

tions with increasing temporal dilation rates (1, 2, 910

and 4) and a stride of 2 along the frequency axis. 911

A final 3 × 3 convolution with stride 1 outputs 912

the discriminator prediction. The MSD processes 913

the raw waveform at various temporal scales using 914

progressively downsampled versions of the input. 915

We adopt the configuration from (Zeghidour et al., 916

2022), which was originally based on (Kumar et al., 917

2019). Similarly, the MPD, introduced by (Kong 918

et al., 2020), models periodic structure in the wave- 919

form by reshaping it into a 2D input with unique 920

periodic patterns. For consistency, we standardize 921

the number of channels in both the MSD and MPD 922

to match those in the MS-STFT discriminator. 923

B.2 Training Objective 924

To ensure that FuseCodec learns discrete speech 925

representations, we ground our training objective 926

on proven techniques, following (Défossez et al., 927

2022; Zhang et al., 2024; Ahasan et al., 2024). 928

Reconstruction loss. Let x and x̂ denote the 929

original and reconstructed speech waveforms, re- 930

spectively. For spectral comparisons, we define 931

64-bin Mel-spectrograms Mi(·) using STFTs with 932

window size 2i and hop size 2i/4, where i ∈ E = 933

{5, . . . , 11} indexes different resolution scales. We 934

compute the time-domain Ltime and frequency- 935

11

https://drive.google.com/file/d/1hofjRg1IoeC2IEEd8Okwowg-P_GBnd0-/view?usp=drive_link
https://drive.google.com/file/d/1vUKnzhBJIC4SBV5A1GvLYXnLGH1baYsn/view?usp=drive_link
https://drive.google.com/drive/folders/1-2WE9AJS6Cw8N6Qw0TAw_nZFTVVDuIAY?usp=drive_link


domain Lfreq reconstruction losses as:936

Ltime = ∥x− x̂∥1 (8)937

938

Lfreq =
∑
i∈E

(
∥Mi(x)−Mi(x̂)∥1939

+∥Mi(x)−Mi(x̂)∥2
)

(9)940

Adversarial loss. To reduce the discriminabil-941

ity of reconstructed speech, we adopt a GAN-942

based training objective with a set of discriminators943

{D(i)}di=1, including multi-period (MPD), multi-944

scale (MSD), and multi-scale STFT (MS-STFT)945

variants (see Appendix B for details). The gener-946

ator Lgen and discriminator Ldisc losses are com-947

puted as:948

Lgen =
1

d

d∑
i=1

max
(
0, 1−D(i)(x̂)

)
(10)949

Ldisc =
1

d

d∑
i=1

[
max(0, 1−D(i)(x))950

+max(0, 1 +D(i)(x̂))
]

(11)951

Let D(i)
j (·) denote the output of the j-th layer952

of D(i), with ℓ total layers. We include a feature953

Lfeat matching loss to stabilize training and align954

intermediate features as:955

Lfeat =
1

dℓ

d∑
i=1

ℓ∑
j=1

∥D(i)
j (x)−D

(i)
j (x̂)∥1

mean
(
∥D(i)

j (x)∥1
) (12)956

Commitment Loss. To ensure encoder outputs957

align closely with their quantized representations,958

we apply a commitment penalty during residual959

vector quantization (RVQ). Let rj denote the resid-960

ual vector at step j ∈ {1, . . . , q}, and cj be its961

corresponding nearest codebook entry, we calcu-962

late commitment loss Lcommit as:963

Lcommit =

q∑
j=1

∥rj − cj∥22 (13)964

C Ablation Studies 965

We ablate and investigate each design choice 966

and the necessity of components in our proposed 967

methodology for FuseCodec. All model hyperpa- 968

rameters, training procedures, and configurations 969

are kept fixed, except for the specific changes intro- 970

duced in each ablation setup. 971

C.1 Ablation: Attention-Projection 972

Configuration in Representation Fusion 973

Setup. We investigate the impact of changing the 974

attention-projection configuration in FuseCodec- 975

Fusion (Section 2.3.1). The selected method, 976

Cross-Before, applies multi-head cross-attention 977

prior to projection: 978

S′ = CrossAttention(S̃, C̃, C̃)WS ,

C′ = CrossAttention(C̃, S̃, S̃)WC ,
(14) 979

where S̃, C̃ ∈ RT ′×D′
are broadcasted global se- 980

mantic and contextual vectors. We compare this 981

with the following ablated variants: 982

None, which skips attention and directly applies 983

projection: 984

S′ = S̃WS ,

C′ = C̃WC

(15) 985

Self-Before, which applies self-attention before 986

projection: 987

S′ = SelfAttention(S̃, S̃, S̃)WS ,

C′ = SelfAttention(C̃, C̃, C̃)WC

(16) 988

Self-After, which projects first and then applies 989

self-attention: 990

S′ = SelfAttention(S̃WS),

C′ = SelfAttention(C̃WC)
(17) 991

Cross-After, which applies projection before cross- 992

attention: 993

S′ = CrossAttention(S̃WS , C̃WC , C̃WC),

C′ = CrossAttention(C̃WC , S̃WS , S̃WS)
(18) 994

Results. Table 3 shows the results of five vari- 995

ants. The selected Cross-Before setup achieves the 996

highest performance on intelligibility STOI (0.95), 997

and all naturalness metrics: ViSQOL (3.47), PESQ 998

(3.13), and second-best UTMOS (3.63). Self- 999

Before yields the best WER (3.92) and WIL (6.36), 1000

and second-best ViSQOL (3.43), PESQ (3.05), and 1001
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Table 3: Ablation of attention-projection configurations in multimodal latent fusion. Cross variants incorporate
cross-modal attention between semantic and contextual signals, while Self variants apply self-attention. Before
applies attention prior to projection into the encoder’s latent space, whereas After applies attention post-projection.
None uses direct projection without attention. Applying cross-modal attention before projection consistently
improves content preservation and speech naturalness by enabling richer multimodal interactions in the original
dimension.

Model Variant Attn-Proj Type Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

FuseCodec-Fusion None 4.10 6.60 0.93 3.26 2.92 3.65 0.995
FuseCodec-Fusion Self-After 4.07 6.61 0.93 3.26 2.95 3.63 0.995
FuseCodec-Fusion Self-Before 3.92 6.36 0.94 3.43 3.05 3.59 0.995
FuseCodec-Fusion Cross-After 4.17 6.70 0.93 3.28 2.90 3.61 0.995
FuseCodec-Fusion Cross-Before 3.99 6.45 0.95 3.47 3.13 3.63 0.995

STOI (0.94). The None and Cross-After configu-1002

rations perform comparatively worse across intelli-1003

gibility and naturalness.1004

Discussion. These results demonstrate that the1005

configuration of attention relative to projection sig-1006

nificantly impacts the effectiveness of representa-1007

tion fusion. The best-performing method, Cross-1008

Before, applies cross-modal attention in the origi-1009

nal lower-dimensional space. This enables richer1010

semantic-contextual interactions to be captured be-1011

fore transformation into the higher-dimensional en-1012

coder space, leading to improved intelligibility and1013

perceptual quality.1014

Self-Before performs competitively by achiev-1015

ing the best WER and WIL, suggesting that intra-1016

modal structuring of global feature representations1017

also benefits the fusion approach. However, the1018

absence of explicit cross-modal exchange limits its1019

effectiveness on naturalness metrics such as UT-1020

MOS and PESQ.1021

By contrast, Cross-After performs poorly, indi-1022

cating that applying cross-attention after projection1023

diminishes its effectiveness. Suggesting that once1024

projected into the higher-dimensional space, the1025

global vectors lose semantic coherence, resulting1026

in less expressive fusion and lower audio quality.1027

Finally, removing attention (None) results in the1028

weakest performance on intelligibility and percep-1029

tual scores, despite yielding the highest UTMOS.1030

This indicates that even unstructured modality sig-1031

nals can enhance naturalness, but without align-1032

ment through attention mechanisms, they fail to1033

deliver consistent semantic-contextual grounding.1034

Overall, these results confirm that performing1035

attention prior to projection, especially cross-modal1036

attention, is essential for extracting the most benefit1037

from semantic-contextual signals during fusion.1038

C.2 Ablation: Attention-Guidance 1039

Configuration in Semantic-Contextual 1040

Guidance 1041

Setup. We study the impact of attention configura- 1042

tion and guidance modality used in the distillation 1043

objective. Our method, FuseCodec-Distill, intro- 1044

duces timestep-aligned supervision using global 1045

contextual and semantic signals (Section 2.3.2). 1046

The selected configuration, None + Semantic- 1047

Contextual, projects the first-layer RVQ tokens 1048

Q(1) and computes cosine similarity with both se- 1049

mantic and contextual guidance vectors: 1050

Ldistill = −
1

T ′

T ′∑
t=1

log σ

(
1

2

[
cos

(
Q

′(1)
t , S̃t

)
+cos

(
Q

′(1)
t , C̃t

)])
(19) 1051

We compare this against three ablated variants: 1052

None + Contextual, which excludes both atten- 1053

tion and semantic guidance: 1054

Ldistill = −
1

T ′

T ′∑
t=1

log σ
(
cos

(
Q

′(1)
t , C̃t

))
(20) 1055

Cross + Contextual, which introduces cross- 1056

attention between contextual vectors and projected 1057

RVQ tokens: 1058

C̃ = CrossAttention(C̃,Q′(1),Q′(1)) (21) 1059

Cross + Semantic-Contextual, which includes 1060

cross-attention but retains both guidance signals. 1061

Results. Table 4 reports the performance across 1062

four configurations. The best-performing variant 1063

is None + Semantic-Contextual, achieving the 1064

lowest WER (4.09) and WIL (6.60), and highest 1065
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Table 4: Ablation of attention and guidance strategies in semantic-contextual distillation. Cross variants apply
cross-attention between contextual embeddings and discrete tokens, while None applies supervision directly.
Semantic-Contextual combines both global semantic and contextual signals. Direct supervision using both signals
achieves the best intelligibility and perceptual quality by preserving global structure.

Model Variant Attention Guidance
Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

FuseCodec-Distill None Contextual 4.20 6.77 0.93 3.13 2.74 3.60 0.995
FuseCodec-Distill Cross Contextual 4.18 6.75 0.93 3.21 2.83 3.60 0.995
FuseCodec-Distill None Semantic-Contextual 4.09 6.60 0.94 3.43 3.06 3.65 0.996
FuseCodec-Distill Cross Semantic-Contextual 4.21 6.82 0.93 3.18 2.84 3.62 0.994

scores on STOI (0.940), ViSQOL (3.43), PESQ1066

(3.06), UTMOS (3.65), and Similarity (0.996). The1067

second-best results are obtained by Cross + Con-1068

textual, but excluding semantic guidance or using1069

attention degrades performance across all metrics.1070

Discussion. These results show that including1071

both semantic and contextual supervision is essen-1072

tial for improving the quantization quality of the1073

discrete tokens. The None + Semantic-Contextual1074

configuration outperforms all others, highlighting1075

that cosine-based alignment with both modalities1076

provides the most stable and effective guidance1077

during quantized representation learning.1078

Introducing cross-attention (Cross) reduces per-1079

formance, suggesting that attention distorts the1080

global nature of the guidance signals and makes su-1081

pervision less consistent across time. The Cross +1082

Semantic-Contextual variant also underperforms,1083

despite having access to both guidance sources, in-1084

dicating that attention interferes with their inherent1085

structure and alignment function.1086

The Contextual-only variants perform compara-1087

tively worse, confirming that semantic signals play1088

an important role in guiding the learned represen-1089

tations toward higher-level content fidelity and im-1090

proved intelligibility.1091

Overall, these findings support using both guid-1092

ance signals in their original global forms and ap-1093

plying them directly, without attention, to ensure1094

stable, timestep-aligned distillation.1095

C.3 Ablation: Fixed vs. Dynamic Window1096

Configuration in Temporal Alignment1097

Setup. We investigate the effect of fixed versus1098

dynamic windowing in the token alignment algo-1099

rithm (Algorithm 1). Our full method, FuseCodec-1100

ContextAlign, aligns each contextual embedding1101

Ci ∈ RD′
to a localized region of RVQ tokens1102

{Q(1)
t }T

′
t=1 based on cosine similarity. The selected1103

configuration, Dynamic-window Contextual (see 1104

Section 2.3.3), dynamically adjusts the alignment 1105

window for each Ci, using the index of the previous 1106

match to guide the next search range. This content- 1107

aware strategy produces a temporally aligned se- 1108

quence C∗ ∈ RT ′×D′
, which is used to compute a 1109

timestep-level distillation loss: 1110

Lalign = − 1

T ′

T ′∑
t=1

log σ
(
cos

(
Q

′(1)
t ,C∗

t

))
(22) 1111

We compare this setup against the following ab- 1112

lated variants: 1113

Fixed-window Contextual, which uses a fixed 1114

alignment window of size w = ⌊T ′/n⌋, where T ′ 1115

is the RVQ sequence length and n is the number 1116

of contextual embeddings. Each Ci is aligned to 1117

the most similar token Q
(1)
t within its predefined 1118

window. 1119

Fixed-window Semantic-Contextual, which 1120

adds semantic supervision using semantic represen- 1121

tations {Si}mi=1, in addition to contextual represen- 1122

tations aligned via a fixed-window token alignment. 1123

Since both semantic and RVQ tokens are extracted 1124

at the same frame rate, they are inherently time- 1125

aligned, requiring no additional alignment. The 1126

combined loss is: 1127

Lalign = − 1

T ′

T ′∑
t=1

log σ

(
1

2

[
cos

(
Q

′(1)
t ,C∗

t

)
+cos

(
Q

′(1)
t ,St

)])
(23) 1128

Dynamic-window Semantic-Contextual, 1129

which replaces the fixed window with a dynamic 1130

alignment strategy, while also incorporating direct 1131

supervision from semantic embeddings {St}. 1132

Results. As shown in Table 5, the Dynamic- 1133

window Contextual configuration achieves the 1134
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Table 5: Ablation of windowing and guidance strategies in temporally aligned contextual supervision. Dynamic
variants adapt the alignment window per token based on content similarity, while Fixed variants use a uniform
window. Semantic-Contextual combines semantic and contextual signals for supervision. Dynamic windowing
consistently improves intelligibility and clarity by enabling finer temporal alignment of contextual embeddings.

Model Variant Window Guidance Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

FuseCodec-ContextAlign Fixed Contextual 4.26 6.88 0.92 3.19 2.71 3.58 0.994
FuseCodec-ContextAlign Dynamic Contextual 4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-ContextAlign Fixed Semantic-Contextual 4.30 6.88 0.92 3.10 2.62 3.74 0.995
FuseCodec-ContextAlign Dynamic Semantic-Contextual 4.21 6.78 0.93 3.12 2.72 3.75 0.995

best performance across content preservation met-1135

rics, achieving the lowest WER (4.15), WIL (6.70),1136

and highest STOI (0.93). It also performs strongly1137

in terms of speech naturalness, with the best PESQ1138

(2.85), high ViSQOL (3.18), and top Similarity1139

(0.995). The Dynamic Semantic-Contextual vari-1140

ant achieves the best UTMOS (3.75), second-best1141

WER (4.21) and WIL (6.78), and matches the top1142

Similarity. By contrast, both Fixed-window config-1143

urations obtains lower scores across most metrics,1144

particularly the Fixed Semantic-Contextual con-1145

figuration, which scores the lowest ViSQOL (3.10)1146

and PESQ (2.62), despite a relatively high UTMOS1147

(3.74).1148

Discussion. These results highlight the impor-1149

tance of the temporal alignment strategy in influ-1150

encing speech reconstruction quality. The superior1151

performance of the Dynamic-window Contextual1152

variant demonstrates that token alignment using a1153

dynamic window, where contextual embeddings1154

are adaptively aligned based on token similarity,1155

achieves better semantic grounding and contextual1156

precision.1157

In contrast, the Fixed-window variants suffer1158

from rigid alignment constraints. They fail to cap-1159

ture fine-grained temporal dependencies by enforc-1160

ing a fixed windowing strategy, which resuls in de-1161

graded speech clarity (lower ViSQOL and PESQ).1162

This limitation is especially noticeable in the Fixed1163

Semantic-Contextual setup, where the addition of1164

semantic supervision is insufficient to compensate1165

for the strictly aligned contextual embeddings as1166

the fixed window does not account for local content1167

variations.1168

Both Semantic-Contextual variants improve1169

UTMOS, indicating that semantic supervision con-1170

tributes positively to speech naturalness. However,1171

this comes with a trade-off when not paired with1172

dynamically aligned contextual guidance, as the1173

semantic-only supervision fails to improve content1174

accuracy. 1175

Overall, these findings underscore that dynamic 1176

alignment is essential for effective contextual repre- 1177

sentation guidance. They also highlight that while 1178

semantic supervision enhances fluency and natural- 1179

ness, it must be combined with flexible alignment 1180

mechanisms to avoid compromising content preser- 1181

vation. 1182

C.4 Ablation: Dropout Mask Configuration 1183

in Representation Fusion 1184

Setup. We investigate the effect of modality 1185

dropout rate on the quality of latent representation 1186

fusion. As described in Section 2.3.1, we apply 1187

stochastic dropout masks DS ,DC ∈ {0, 1}T
′×D 1188

element-wise to the projected semantic (S′) and 1189

contextual (C′) vectors during training: 1190

Z′ = Z+ (S′ ⊙DS) + (C′ ⊙DC) (24) 1191

This stochastic masking prevents FuseCodec from 1192

over-reliance on any single modality and encour- 1193

ages the model to learn robust representations. 1194

The selected configuration uses a 10% dropout 1195

rate—i.e., each element in DS and DC has a 10% 1196

chance of being masked to zero during training. We 1197

compare this against higher dropout rates: 30%, 1198

50%, 70%, and 90%. 1199

Results. The best overall performance is 1200

achieved with the 10% dropout rate configuration, 1201

which achieves the lowest WER (3.99) and WIL 1202

(6.45) and the highest STOI (0.95), ViSQOL (3.47), 1203

and PESQ (3.13). Increasing the dropout rate to 1204

30–90% leads to the worsening of the most con- 1205

tent preservation and speech naturalness metrics. 1206

While UTMOS and Similarity remain relatively sta- 1207

ble, 50% dropout achieves minor gains in UTMOS 1208

(3.66) and Similarity (0.996). 1209

Discussion. These results confirm the impor- 1210

tance of carefully balancing modality dropout 1211
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Table 6: Ablation of modality dropout probability during latent representation fusion in FuseCodec. Dropout
indicates the stochastic masking rate applied independently to semantic and contextual representations during
training. Moderate dropout prevents over-reliance on a single modality, while higher rates degrade multimodal
integration. A 10% dropout rate achieves the best trade-off, maximizing intelligibility and perceptual quality.

Model Variant Dropout Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

FuseCodec-Fusion 10% 3.99 6.45 0.95 3.47 3.13 3.63 0.995
FuseCodec-Fusion 30% 4.10 6.63 0.94 3.29 2.96 3.65 0.995
FuseCodec-Fusion 50% 4.09 6.58 0.94 3.33 2.97 3.66 0.996
FuseCodec-Fusion 70% 4.08 6.64 0.93 3.26 2.91 3.63 0.995
FuseCodec-Fusion 90% 4.15 6.67 0.93 3.26 2.86 3.61 0.995

during latent fusion and underscore the value1212

of semantic-contextual representation integration.1213

Preserving a sufficient portion of the auxiliary rep-1214

resentations by using a small 10% dropout rate1215

achieves the most effective use of semantic and1216

contextual information.1217

As the dropout rate increases, the model receives1218

increasingly less additional modality information,1219

reducing its ability to align latent tokens with mul-1220

timodal supervision. This negatively affects in-1221

telligibility (WER, WIL) and perceptual quality1222

(ViSQOL, PESQ).1223

Interestingly, metrics such as UTMOS and Simi-1224

larity remain relatively stable or improve at moder-1225

ate dropout rates (50%), suggesting that prosodic1226

and speaker characteristics are preserved within1227

the base latent representations. However, the loss1228

of some semantic-contextual information comes at1229

the cost of worse content preservation.1230

Overall, the findings suggest that light dropout1231

(10%) provides the best trade-off, ensuring robust1232

yet expressive multimodal grounding during latent1233

token fusion.1234

C.5 Ablation: Quntizer Layer Configuration1235

in Semantic-Contextual Guidance1236

Setup. We study the impact of RVQ layer su-1237

pervision depth in the distillation objective. Our1238

method, FuseCodec-Distill, uses first-layer super-1239

vision, projecting the first-layer RVQ tokens Q(1)1240

and computing cosine similarity (see Sections 2.3.21241

and 2.3.3).1242

We compare this against an ablated variant, all-1243

layer supervision, which averages the outputs1244

from all eight RVQ layers. We define the averaged1245

RVQ output as:1246

Q(1:8) =
1

8

8∑
i=1

Q(i) ∈ RT ′×D,

Q′(1:8) = Q(1:8)W

(25) 1247

In the Global Semantic-Contextual Supervi- 1248

sion setting, we apply the all-layer supervision to 1249

the distillation loss as: 1250

Ldistill = −
1

T ′

T ′∑
t=1

log σ

(
1

2

[
cos

(
Q

′(1:8)
t , S̃t

)
+cos

(
Q

′(1:8)
t , C̃t

)])
(26) 1251

Similarly, for the Temporally Aligned Contex- 1252

tual Supervision setting, we apply the all-layer 1253

supervision to the distillation loss as: 1254

Lalign = − 1

T ′

T ′∑
t=1

log σ
(
cos

(
Q

′(1:8)
t ,C∗

t

))
(27) 1255

Results. Table 7 shows the effect of RVQ su- 1256

pervision depth across both distillation configura- 1257

tions. For FuseCodec (Distill), which uses Global 1258

Semantic-Contextual Supervision, first-layer super- 1259

vision achieves the strongest performance across all 1260

content preservation and naturalness metrics, with 1261

the lowest WER (4.09), WIL (6.60), and highest 1262

STOI (0.94), ViSQOL (3.43), PESQ (3.06), UT- 1263

MOS (3.65), and Similarity (0.996). Similarly, 1264

FuseCodec (ContexAlign), which uses Temporally 1265

Aligned Contextual Supervision, First-layer su- 1266

pervision again achieves stronger results in WER 1267

(4.15), WIL (6.70), ViSQOL (3.18), PESQ (2.85), 1268

and Similarity (0.995). In contrast, using all-layer 1269

supervision leads to consistent degradation across 1270

most metrics in both settings. 1271
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Table 7: Ablation of RVQ supervision depth under global (Distill) and temporally aligned (ContexAlign) guidance.
First Layer indicates supervision is applied only to the first-layer RVQ tokens, while All Layers averages
representations from all eight RVQ layers before supervision. Supervising the first-layer RVQ tokens leads to
stronger semantic-contextual grounding and improved intelligibility compared to all-layer supervision.

Model Variant RVQ Layer
Content Preservation Speech Naturalness

WER↓ WIL↓ STOI↑ ViSQOL↑ PESQ↑ UTMOS↑ Similarity↑

FuseCodec-ContextAlign First Layer 4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-ContextAlign All Layers 4.34 7.04 0.93 3.17 2.72 3.65 0.993

FuseCodec-Distill First Layer 4.09 6.60 0.94 3.43 3.06 3.65 0.996
FuseCodec-Distill All Layers 4.23 6.86 0.93 3.26 2.84 3.61 0.994

Discussion. The results highlight that the layer1272

at which RVQ tokens are supervised significantly1273

impacts the quality of semantic and contextual guid-1274

ance during distillation. Supervising the first RVQ1275

layer yields stronger performance, as these tokens1276

encode high-level, abstract representations more1277

aligned with semantic intent and global context.1278

This leads to better linguistic grounding and intel-1279

ligibility, reflected in improved WER, STOI, and1280

ViSQOL scores.1281

In contrast, deeper RVQ layers capture lower-1282

level acoustic and residual details, which are less1283

suitable for semantic or contextual alignment. Av-1284

eraging supervision across all layers matches these1285

fine-grained signals with global ones, impacting the1286

alignment objective. This results in performance1287

drop across content preservation and speech natu-1288

ralness metrics.1289

Some naturalness metrics, such as UTMOS and1290

Similarity, remain relatively stable with all-layer1291

supervision, suggesting that speaker identity and1292

prosodic features are distributed throughout the1293

RVQ layers. However, these are insufficient for1294

guiding semantic alignment during distillation.1295

Overall, applying supervision at the first RVQ1296

layer provides a clearer, more semantically1297

grounded signal, leading to better alignment and1298

overall performance in speech reconstruction.1299

D Related Work1300

Recent progress in speech and audio generation has1301

been largely driven by advances in discrete repre-1302

sentation learning, neural audio codecs, and lan-1303

guage model-based synthesis. VQ-VAE (van den1304

Oord et al., 2018) introduced vector quantization1305

in latent spaces to support symbolic modeling1306

of audio, while HuBERT (Hsu et al., 2021) ap-1307

plied masked prediction over cluster-derived la-1308

bels to learn contextualized speech features in a1309

self-supervised manner. SoundStream (Zeghidour 1310

et al., 2022) proposed a causal adversarially trained 1311

codec with residual vector quantization (RVQ) and 1312

demonstrated scalable compression at low bitrates. 1313

HiFi-Codec (Yang et al., 2023) further improved 1314

efficiency by introducing group residual quantiza- 1315

tion, reducing the number of required codebooks 1316

while preserving audio fidelity. On the genera- 1317

tive side, AudioLM (Borsos et al., 2023) modeled 1318

long-range dependencies in semantic and acous- 1319

tic tokens using transformer-based language mod- 1320

eling. This approach was extended by VALL-E 1321

(Wang et al., 2023), which enabled zero-shot text- 1322

to-speech synthesis by conditioning on short acous- 1323

tic prompts and leveraging codec token generation. 1324

To improve the suitability of tokenization for lan- 1325

guage modeling tasks, X-Codec (Ye et al., 2024) 1326

integrated semantic embeddings from pretrained 1327

models into the quantization pipeline, while LAST 1328

(Turetzky and Adi, 2024) learned a tokenizer su- 1329

pervised by a frozen language model to improve 1330

downstream ASR and speech generation perfor- 1331

mance. HiFi-GAN (Kong et al., 2020) introduced 1332

multi-period and multi-scale discriminators, en- 1333

abling high-fidelity waveform synthesis with real- 1334

time efficiency. 1335

In parallel, codec designs have evolved to im- 1336

prove training stability and perceptual quality. En- 1337

Codec (Défossez et al., 2022) introduced a GAN- 1338

based codec architecture with multi-loss balancing 1339

and spectrogram-based discrimination, setting a 1340

new benchmark for real-time low-bitrate synthe- 1341

sis. BigCodec (Xin et al., 2024) scaled the VQ- 1342

VAE framework and showed that a single large 1343

codebook could achieve near-human perceptual 1344

quality at 1 kbps. DAC (Kumar et al., 2023) pro- 1345

posed refinements to residual quantization, such 1346

as factorized and normalized codebooks, and in- 1347

troduced advanced discriminators to improve qual- 1348

17



ity under bitrate constraints. More recent work1349

has focused on improving token expressiveness for1350

downstream tasks. SpeechTokenizer (Zhang et al.,1351

2024) demonstrated that hierarchical quantization1352

improves resynthesis and zero-shot TTS, while1353

DM-Codec (Ahasan et al., 2024) aligned quantiza-1354

tion layers with pretrained speech and text models1355

to reduce WER and enhance contextual fidelity. Fi-1356

nally, NaturalSpeech 3 (Ju et al., 2024) introduced1357

a factorized codec for disentangling prosodic and1358

acoustic attributes in speech, and Moshi (Défossez1359

et al., 2024) unified ASR and TTS in a streaming,1360

full-duplex transformer model operating on jointly1361

learned semantic and acoustic tokens.1362

E Qualitative Comparison1363
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Sample 1 Sample 2

(click image to play audio)

Original Speech

SpeechTokenizer

DM-Codec

EnCodec

FuseCodec-
Fusion

FuseCodec-
Distill

FuseCodec-
ContextAlign

Figure 2: Qualitative speech reconstruction results comparing our method to multiple baselines. Each cell shows the
spectrogram output for two samples; clicking an image plays the corresponding audio.
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