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Abstract

Speech tokenization enables discrete represen-
tation and facilitates speech language modeling.
However, existing neural codecs capture low-
level acoustic features, overlooking the
semantic and contextual cues inherent to
human speech. While recent efforts introduced
semantic representations from self-supervised
speech models or incorporated contextual rep-
resentations from pre-trained language models,
challenges remain in aligning and unifying the
semantic and contextual representations. We in-
troduce FuseCodec, which unifies acoustic, se-
mantic, and contextual representations through
strong cross-modal alignment and globally in-
formed supervision. We propose three comple-
mentary techniques: (i) Latent Representation
Fusion, integrating semantic and contextual fea-
tures directly into the encoder latent space for
robust and unified representation learning; (ii)
Global Semantic-Contextual Supervision, su-
pervising discrete tokens with globally pooled
and broadcasted representations to enhance
temporal consistency and cross-modal align-
ment; and (iii) Temporally Aligned Contextual
Supervision, strengthening alignment by
dynamically matching contextual and speech
tokens within a local window for fine-grained
token-level supervision. We further introduce
FuseCodec-TTS, demonstrating our method-
ology’s applicability to zero-shot speech
synthesis. Empirically, FuseCodec achieves
state-of-the-art performance in LibriSpeech,
surpassing EnCodec, SpeechTokenizer, and
DAC in transcription accuracy, perceptual
quality, intelligibility, and speaker similarity.
Results highlight the effectiveness of contex-
tually and semantically guided tokenization for
speech tokenization and downstream tasks.

1 Introduction

Tokenization has become foundational in natu-
ral language processing (NLP), enabling language
models to learn discrete representations, while

facilitating efficient autoregressive modeling and
scalable downstream applications (Schmidt et al.,
2024). Inspired by this paradigm, the speech do-
main has increasingly adopted neural codecs, pop-
ularized by Encodec (Défossez et al., 2022) and
SoundStream (Zeghidour et al., 2022). Neural
codecs tokenize speech using an encoder, resid-
ual vector quantizer, and decoder architecture, en-
abling modeling discrete representations suitable
for modular extension to downstream tasks such as
speech synthesis (Wang et al., 2023).

However, the continuous and multidimensional
nature of human speech makes learning discrete
representations inherently challenging (Ju et al.,
2024). While neural codecs learn acoustic repre-
sentations (waveform and low-level signal charac-
teristics), they struggle to capture high-level seman-
tics requiring downstream models to adopt addi-
tional self-supervised masked language objectives
to derive semantic representations (phonetic con-
tent and linguistic meaning) (Borsos et al., 2023).
To address this drawback, recent neural codec ar-
chitectures incorporated semantic distillation from
pretrained self-supervised speech models (Zhang
et al., 2024; Défossez et al., 2024), improving the
quality of speech reconstruction and the semantic
aspect of learned representations.

In addition, another fundamental aspect of hu-
man speech remains missing in above mentioned
works: speech is inherently grounded in context
and surrounding cues (Brown et al., 2022). Discrete
speech representations, lacking grounding in con-
text, fall short of capturing this essential attribute
(Hallap et al., 2023). While language models have
demonstrated strong capabilities in learning such
contextual dependencies from text corpora (Devlin
et al., 2019a; Peters et al., 2018), speech tokenizers
have yet to fully leverage these capabilities. Al-
though a recent neural codec (Ahasan et al., 2024)
explored matching discrete speech representations
with contextual representation from a pre-trained



language model, it falls short in effective cross-
modal alignment, constraining the model’s ability
to fully unify semantic and contextual information.

Therefore, despite recent advances, several chal-
lenges remain unaddressed. Firstly, current ap-
proaches fail to unify all three aspects of discrete
speech representation: acoustic (learned by neu-
ral codecs), semantic (from self-supervised speech
models), and contextual (from language models).
Most work incorporates only semantic informa-
tion (Zhang et al., 2024; Défossez et al., 2024; Ye
et al., 2024), neglecting contextual grounding. Sec-
ondly, while a recent effort (Ahasan et al., 2024)
attempts to integrate contextual representations, it
lacks effective mechanisms for aligning text and
speech modalities. Thirdly, existing methods rely
on similarity-based objectives for representation
matching without directly incorporating informa-
tion into the latent space, limiting coherence and
downstream performance. We address these chal-
lenges through our proposed methodologies, while
preserving the core architecture and utilizing frozen
representations with zero inference overhead.

To address these challenges, we propose a
speech tokenization framework with three differ-
ent strategies/variations that enrich discrete speech
representations with unified and aligned semantic
and contextual information. Our first strategy in-
volves (i) Latent Representation Fusion, which
integrates semantic and contextual embeddings into
the encoder’s latent space through cross-modal at-
tention and additive fusion, resulting in more ro-
bust and coherent representations. Building on
this, we present (ii) Global Semantic-Contextual
Supervision, where globally pooled and broad-
casted modality vectors supervise each quantized
token across time, facilitating temporally consistent
and globally informed representation learning. To
enforce explicit alignment, we introduce another
strategy: (iii) Temporally Aligned Contextual Su-
pervision, which dynamically matches contextual
and speech tokens prior to timestep-level similar-
ity supervision, enabling fine-grained cross-modal
alignment and enhancing representation quality.

Then, we instantiate our framework through
three model variants: FuseCodec-Fusion with
Latent Representation Fusion, FuseCodec-Distill
with Global Semantic-Contextual Supervision,
and FuseCodec-ContextAlign with Temporally
Aligned Contextual Supervision. FuseCodec es-
tablishes new state-of-the-art performance on the
LibriSpeech test set (Panayotov et al., 2015) by

integrating contextual and semantic guidance into
the learning of discrete speech tokens. Specifi-
cally, FuseCodec-Fusion achieves the best scores
in transcription accuracy (WER 3.99, WIL 6.45),
intelligibility (STOI 0.95), and perceptual quality
(ViSQOL 3.47, PESQ 3.13), outperforming En-
Codec (Défossez et al., 2022), SpeechTokenizer
(Zhang et al., 2024), and DM-Codec (Ahasan
et al., 2024). FuseCodec-Distill further achieves
the highest UTMOS (3.65) and speaker similar-
ity (0.996), highlighting its strength in percep-
tual naturalness and speaker fidelity. Meanwhile,
FuseCodec-ContextAlign provides a strong trade-
off between interpretability and performance, with
particularly competitive scores in UTMOS (3.65)
and similarity (0.995). These results underscore
the effectiveness of incorporating contextual and
semantic signals into the tokenization process for
high-quality speech reconstruction.
Therefore, our key contributions are:

* We introduce three novel neural codecs based
on our method: Latent Representation Fu-
sion (FuseCodec-Fusion), Global Semantic-
Contextual Supervision (FuseCodec-Distill),
and Temporally Aligned Contextual Supervi-
sion (FuseCodec-ContextAlign).

* Our framework tackles different limitations
of neural codecs by integrating semantic and
contextual information through distinct meth-
ods, improving cross-modal alignment and
enhancing discrete representation learning.

* We demonstrate the utility of our approach in
a downstream TTS model and validate each
component with extensive ablation studies.

* FuseCodec achieves state-of-the-art perfor-
mance on LibriSpeech reducing transcription
error and improving speech naturalness.

2  Proposed Method

As shown in Figure 1, we first introduce the speech
discretization pipeline (§2.1) and describe the
extraction of semantic and contextual represen-
tations from pre-trained models (§2.2). We then
present three strategies for integrating multimodal
guidance into speech tokenization: (i) Latent Rep-
resentation Fusion (§2.3.1), (i) Global Semantic-
Contextual Supervision (§2.3.2), and (iii) Tem-
porally Aligned Contextual Supervision (§2.3.3).
Finally, we outline the training objective (§2.4)
and the extension to a text-to-speech task (§2.5).
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Figure 1: Overview of the FuseCodec speech tokenization framework. Input speech x is encoded into latent features
Z, then quantized into discrete tokens Q(LK ) via residual vector quantization (RVQ). To enrich these tokens, we
incorporate semantic (S;, S) and contextual (C,, C, C*) representations from frozen pre-trained models. Global
vectors S and C are formed via mean pooling and [CLS] selection, respectively. We propose three strategies: (i)
Latent Representation Fusion, injecting global vectors S, C with Z to yield fused latent Z’; (ii) Global Semantic-
Contextual Supervision, supervising Q1) with global vectors; and (iii) Temporally Aligned Contextual Supervision,
aligning full contextual embeddings {C;} to RVQ outputs via a windowed matching algorithm to form C*.

2.1 Discrete Speech Representation
Discrete tokens serve as the foundation of neu-
ral codec-based speech-language models. Follow-
ing established approaches (Défossez et al., 2022;
Zhang et al., 2024; Ahasan et al., 2024), we dis-
cretize audio using an encoder-quantizer setup.
Given an input speech waveform x, an encoder
FE compresses x into a sequence of latent repre-
sentations Z = {z;}~ |, where T" is the number
of encoded frames. The encoder output Z is then
passed through a Residual Vector Quantization
module (RVQ), consisting of K quantization
layers. Each layer k produces a sequence of token
indices {ql(k)}zT:'1 For each token index ql(k), we
retrieve its corresponding embedding from the k-th
codebook, resulting in a sequence of quantized
vectors Q) = {qgk) ;TF:’P where qgk) € RP, with
D denoting the embedding dimensionality. We
use the embeddings from the first quantization
layer Q1) as the discrete representation of speech,
guided with multimodal representations.

2.2 Multimodal Representation Extraction

Concurrently, we extract representations from pre-
trained models. Specifically, we obtain contextual
representations from a pre-trained language model,
which are dynamic, token-level embeddings that
adapt to surrounding text (Devlin et al., 2019b; Pe-
ters et al., 2018). In parallel, we derive semantic

representations from a pre-trained self-supervised
speech model, which capture the high-level struc-
ture and meaning (Borsos et al., 2023).

Contextual Representation. The input speech
waveform x is transcribed into text x’ using a
pre-trained Automatic Speech Recognition (ASR)
model A, such that X’ = A(x). The ASR
model functions purely as a speech-to-text con-
verter and remains detached during training. The
transcribed text x’ is processed by a pre-trained lan-
guage model B, which produces a token sequence
{ci}-,. For each token ¢;, we extract hidden states
from all L layers, represented as {hgl)}f: 1- These
are averaged to produce contextual embeddings:
C, = %Zle hgl), where C; € RY', and D’ de-
notes the hidden dimension of the language model.

Semantic Representation. The input speech
waveform x is passed through a pre-trained self-
supervised speech model H, which outputs a se-
quence of frame-level tokens {s;}!",,. For each
frame s;, we extract hidden states from all L layers:
{hz@}lL: 1- These are averaged to obtain semantic
embeddings: S; = %Zle hgl), where S; € R,
and D’ denotes the hidden dimension.

2.3 Semantic-Contextual Guidance

Our goal is to enrich discrete speech representa-
tions by integrating contextual and semantic in-
formation, enabling tighter alignment between



acoustic structure and linguistic meaning. Prior
work has explored similar directions: Zhang et al.
(2024); Défossez et al. (2024) aligned HuBERT-
based semantic features with the first RVQ layer
using cosine similarity, while Ahasan et al. (2024)
matched BERT-based embeddings to RVQ outputs
via padded sequences and similarity loss. How-
ever, these methods either rely on a single modality
(semantic in Zhang et al. (2024); Défossez et al.
(2024)) or lack robust cross-modal alignment (mis-
aligned context in Ahasan et al. (2024)).

In contrast, we unify semantic and contextual
representations while ensuring robust alignment.
For this, we propose three strategies: (i) Latent Rep-
resentation Fusion (§2.3.1), (ii) Global Semantic-
Contextual Supervision (§2.3.2), and (iii) Tempo-
rally Aligned Contextual Supervision (§2.3.3)

2.3.1 Latent Representation Fusion

We first propose fusing semantic and contextual
representations with the encoder’s latent output.
The enhanced latents are then passed to the residual
vector quantization (RVQ) module, enabling the
learning of discrete codes enriched with semantic
and contextual information.

We begin by obtaining global semantic and con-
textual representations. Specifically, we take the
average of semantic embeddings {S;}"; to com-
pute the global semantic vector S = % S, S
For the textual modality, we select the [CLS] to-
ken embedding from the contextual representations
{Ci}i,, yielding C = Crcysj.

We then broadcast each global vector across the
discrete token sequence length 77, forming: S =
{S}I” ,and C = {C}T",. Broadcasting allows
each token to inherit the full semantic or contextual
knowledge of the sequence, ensuring every position
is enriched with the most informative signal for
cross-modal fusion or distillation.

Next, we apply multi-head cross-attention to en-
able cross-modal interaction, followed by an MLP
projection to match the encoder dimension D:

S’ = CrossAttention(S, C, C)Wg,

. e~ (D)
C’ = CrossAttention(C, S, S)W¢,

where Wg, W € RP™*P are learned projec-
tion matrices and CrossAttention(-) denotes multi-
head cross-attention. Finally, we fuse the modality
signals with the latent representation Z € R”"*P
via additive fusion and modality dropout:

Z'=7Z+(S®Ds)+(C'®Dec), (2)

where Dg,Dc € {0,137 %P are stochastic
dropout masks applied during training. Dropout
promotes robustness by preventing the quantized
representations from over-relying on the fused
modalities (Hussen Abdelaziz et al., 2020), and al-
lows inference using only the encoder signal. The
resulting fused representation Z’ is then passed to
the RVQ module for discrete speech quantization.

2.3.2 Semantic-Contextual Supervision

In addition to latent fusion, we explore an alterna-
tive representation supervision strategy, motivated
by its effectiveness of similarity matching in prior
speech tokenization work (Zhang et al., 2024; Dé-
fossez et al., 2024; Ahasan et al., 2024). Unlike
previous methods that supervise over feature di-
mensions or require local frame-level alignment,
we introduce a global-to-local time-axis distillation
scheme. Specifically, we use global semantic S and
contextual C vectors to supervise the RVQ output
across time. This provides temporally consistent
guidance and encourages the quantized space to
capture modality-aware temporal dynamics.

We adapt the combined distillation loss from
Ahasan et al. (2024), proposing it to operate along
the temporal axis rather than the feature axis. This
modification enables more effective alignment of
discrete latent representations with temporally dis-
tributed semantic and contextual signals, enhancing
cross-modal coherence over time.

Given the broadcasted global signals (see 2.3.1)
S,C e RT* | we apply a linear projection to
the first-layer RVQ output QM) € RT"*P (o align
dimensionality: Q’ D = QUW, where W €
RP*D’ Finally, we apply semantic-contextual su-
pervision using a temporally-aware distillation loss.

T/
Laistinn = —% Z log o <; |:COS <Q;(1)’ St>
t=1

+ cos (Q;(l), (~3t>]) ,
(3)

where o (-) is the sigmoid function and cos(-, )
denotes cosine similarity. This formulation pro-
vides fine-grained temporal supervision using
global modality signals, enhancing the represen-
tational quality of the learned discrete tokens.

2.3.3 Aligned Contextual Supervision

Building on our use of the global contextual vec-
tor C for supervision, we propose a finer-grained
approach that leverages the full sequence of contex-
tual embeddings {C;}!"_; to supervise the RVQ to-



ken sequence {qgl)}tT:'l, enabling richer, timestep-
level guidance. A key challenge, however, is the
mismatch in sequence lengths between the contex-
tual embeddings (n) and the RVQ output (77).

To address this, we propose a dynamic window-
based alignment strategy that assigns each con-
textual embedding C; € R”’ to the most simi-
lar RVQ token le) embedding within a localized
search window using cosine similarity. A dynamic
window-shifting mechanism prevents alignment
overlap and ensures sequence-wide consistency. If
multiple RVQ tokens within the window share the
highest similarity, C; is assigned to all correspond-
ing positions in the aligned output C*, account-
ing for cases where a single linguistic token spans
multiple speech frames. The resulting sequence
C* € RT'*D" enables timestep-level supervision.
The full procedure is detailed in Algorithm 1.

Algorithm 1 Window-Based Token Alignment
Require: Contextual embeddings {C;}}" ;, RVQ

tokens {le)}thll, optional window size w

1: if w not provided then

22w+ [T /n]

3: end if

4: Initialize aligned output C* € RT"*D" +
5: Initialize £ < O {last matched index }

6: fori =1tondo

7. if dynamic window then

8: s« £+ 1ifi > 1, else 0 {start index }
9: e < min(s + w,T") {end index}

10:  else

11 s« (i—1) w, e+ min(s +w,T")

12:  end if

13:  Compute cosine similarity

ay = cos(C;, le)) fort € [s,e)
14:  Let 7 + max; oy {maximum similarity }
150 Ti<{t|ag>71}
16: foreacht € 7T; do
17: C; G
18:  end for
19: £+ max(T;)
20: end for
21: return C*

Finally, we apply temporally aligned contextual
supervision using a timestep-level distillation loss:

Listin = —% ilogff (COS (QQ(I), Cf)) » (4)
=1

where Q'(V) = Q(WW e RT"*P" is the linearly
projected RVQ output, and o(-) denotes the sig-
moid function. This loss enforces temporally pre-
cise alignment between acoustic tokens and their
corresponding contextual representations, encour-
aging modality-aware token learning.

2.4 Architecture and Training Objective

We build on widely adopted neural codec architec-
tures and training objectives, following (Défossez
etal., 2022; Zhang et al., 2024; Ahasan et al., 2024),
to establish a strong and reliable foundation. We
contribute to enhancing the learned representations
through semantic and contextual supervision and
fusion without altering the model architecture.

We use wav2vec 2.0 (base-960h) as the ASR
model A (Baevski et al., 2020), BERT (bert-base-
uncased) as the language model B (Devlin et al.,
2019a), and HuBERT (base-1s960) as the self-
supervised speech model H (Hsu et al., 2021). All
pre-trained models are frozen during training. The
speech tokenizer consists of an encoder E, an RVQ
module with 8 quantization layers (codebooks) of
size 1024, a decoder D, and three discriminators
(multi-period, multi-scale, and multi-scale STFT).
Architectural details are provided in Appendix B.1.

Quantization operates on 50 Hz frame rates. The
encoder and RVQ use an embedding dimension
of D = 1024, while the pre-trained langauge and
speech model have D’ = 768. Cross-Attentions
are implemented using 8-heads. The dropout masks
Dg and D¢ are applied at a rate of 10%.

Training Objective. We also adopt a multi-
objective training setup grounded in established
neural codec practices. This includes time-domain
reconstruction 10ss Liime, frequency-domain recon-
struction loss Lgeq, adversarial 1oss Ly, feature
matching loss Ly, and RVQ commitment loss
Lcommit (see Appendix B.2 for details).

To further enhance representation quality, we
introduce two auxiliary supervision objectives: a
global distillation loss as Lgisin (Sec. 2.3.2) and
a temporally aligned contextual loss as Lgisin
(Sec. 2.3.3). Lygistin is set to 0, when applying the
Latent Representation Fusion (Sec. 2.3.1).

The final training objective is a weighted sum:

Etotal = )\timefctime + )\freq»cfreq + Agen»cgen
+ )\feat»cfeat + )\commit»ccommit (5)
+ (Adistitt Ldistint or 0)



2.5 Downstream Extension to TTS Model

We extend the learned discrete token representa-
tions to a downstream text-to-speech (TTS) task,
following the neural codec language modeling
framework and objective used in prior work (Wang
etal., 2023; Zhang et al., 2024; Ahasan et al., 2024).
In this paradigm, speech synthesis is performed by
predicting quantized acoustic tokens produced by
the RVQ and decoded by a neural codec.

For this, we propose FuseCodec-TTS, an ex-
tension of FuseCodec-Fusion trained with ei-
ther Latent Representation Fusion (see §2.3.1)
or FuseCodec-Distill using Global Semantic-
Contextual Supervision (see §2.3.2). This allows
the TTS model to operate on discrete speech tokens
enriched with semantic and contextual information.

Given a phoneme sequence p and an acoustic
prompt A € R™*X extracted from a reference
utterance using FuseCodec, the goal is to predict a
sequence of discrete token indices g, ... g,
corresponding to the K RVQ layers.

To model coarse content and prosodic structure,
we autoregressively predict the token indices ¢(*)
from the first quantizer using a decoder-only Trans-
former conditioned on the phoneme sequence p.
The autoregressive (AR) training objective is:

Lar = —log T, p(a” | 4%). pi Oar)  (6)

To capture fine-grained acoustic details, we use
a non-autoregressive model to predict ¢® for each
k = 2,..., K, conditioned on the previously pre-
dicted layers ¢(<*), the phoneme sequence p, and
the acoustic prompt A. The non-autoregressive
(NAR) training objective is:

Lnar = — log Hszzp(q(k) | ¢, p, A; ONAR)
(7

Both AR and NAR token generators are imple-
mented using 12-layer Transformers with 16 atten-
tion heads, 1024-dimensional embeddings, 4096-
dimensional feed-forward layers, and a dropout rate
of 0.1. The predicted token indices are mapped to
their corresponding quantized embeddings Q(*),
which are then passed to FuseCodec’s decoder to
reconstruct the synthesized speech waveform.

3 Experimental Setup

Dataset. Following prior work in speech tokeniza-
tion (Zhang et al., 2024; Ahasan et al., 2024), we
train FuseCodec on the LibriSpeech (Panayotov

et al., 2015) train-clean-100 subset, which con-
tains 100 hours of English speech from 251 speak-
ers, sampled at 16 kHz. During training, we ran-
domly crop 3-second audio segments and reserve
100 samples for validation. For FuseCodec-TTS,
we combine the train and dev subsets of LibriTTS
(Zen et al., 2019), comprising 570 hours of speech.

For evaluating FuseCodec, we use the Lib-
riSpeech test-clean subset, which comprises
2,620 utterances held out entirely from training.
This setup follows prior baselines (Zhang et al.,
2024; Ahasan et al., 2024), though we evaluate
on the full set rather than a sampled subset. For
FuseCodec-TTS, we adopt two established bench-
mark protocols. In the LibriSpeech evaluation, fol-
lowing Wang et al. (2023), we select utterances be-
tween 4 and 10 seconds, yielding a 2.2-hour subset.
For each synthesis, a 3-second enrollment segment
is randomly cropped from a different utterance by
the same speaker. In the VCTK evaluation, fol-
lowing Zhang et al. (2024), a 3-second prompt is
selected or cropped from one utterance, and the
transcript of a separate utterance from the same
speaker serves as the synthesis target.

Training. FuseCodec is trained for 100 epochs
on two A40 GPUs with a batch size of 6, using the
Adam optimizer with a learning rate of 1 x 1074
and exponential decay factor 0.98. FuseCodec-TTS
is trained on A100 and L40S GPUs. The AR model
is trained for 200 epochs, and the NAR model for
150 epochs. Training employs dynamic batching,
with each batch containing up to 550 seconds of
audio for AR and 100-200 seconds for NAR. We
use the ScaledAdam optimizer with a learning rate
of 5 x 1072 and 200 warm-up steps.

Reproducibility. We provide a fully repro-
ducible setup, including a Dockerized environment,
source code, model checkpoints, and configuration
files (anonymized for review; see Appendix A.)

Baselines. We compare FuseCodec against both
established and recent strong baseline speech to-
kenizers, including EnCodec (24 kHz) (Défossez
et al., 2022) and SpeechTokenizer (Zhang et al.,
2024), as well as BigCodec (Xin et al., 2024),
DAC (16 kHz) (Kumar et al., 2023), DM-Codec
(LM+SM) (Ahasan et al., 2024) FACodec (Natural-
Speech 3) (Ju et al., 2024), and Moshi (Défossez
et al., 2024). All baseline results are obtained us-
ing official released checkpoints. For FuseCodec-
TTS, we compare with neural codec language mod-
els that incorporate external representation guid-
ance. Specifically, we compare against USLM



Table 1: Speech reconstruction results across content preservation and naturalness metrics.

Orange and

light orange cells indicate the best and second-best scores, respectively. Results show that FuseCodec vari-
ants outperform baselines by unifying contextual and semantic signals in the discrete speech representations.

Content Preservation

Speech Naturalness

Model
WER| WIL|, STOIf ViSQOLt PESQtT UTMOST Similarity?

BigCodec 4.58 7.45 0.93 3.02 2.68 344 0.996
DAC 4.09 6.54 0.94 3.36 2.72 3.33 0.996
DM-Codec 4.09 6.75 0.93 3.20 2.77 3.45 0.994
EnCodec 4.04 6.58 0.92 3.06 2.31 241 0.980
FACodec 4.11 6.58 0.95 3.11 2.89 3.45 0.996
Mimi 11.61 18.05 0.85 2.49 1.69 2.28 0.934
SpeechTokenizer 4.16 6.71 0.92 3.08 2.60 341 0.996
FuseCodec (Baseline) 4.62 7.44 0.93 2.95 2.54 3.18 0.990
FuseCodec-ContextAlign  4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-Distill 4.09 6.60 0.94 3.43 3.06 3.65 0.996
FuseCodec-Fusion 3.99 6.45 0.95 3.47 3.13 3.63 0.995

(from SpeechTokenizer) (Zhang et al., 2024) and
DM-Codec-TTS (Ahasan et al., 2024), using their
official released LibriTTS trained checkpoints.

Metrics. We evaluate FuseCodec using two com-
plementary categories of metrics: Content Preser-
vation and Speech Naturalness. To assess Content
Preservation, we transcribe generated speech using
Whisper (medium) (Radford et al., 2023) and com-
pare it to ground-truth text. We report Word Error
Rate (WER), defined as WER = %, where S,
D, and I denote the number of substitutions, dele-
tions, and insertions, and NV is the number of words
in the reference. We also report Word Information
Lost (WIL), given by WIL = 1 — € + & where
C' is the number of correct words, N is the num-
ber of words in the reference, and P is the number
of words in the prediction. Additionally, we in-
clude Short-Time Objective Intelligibility (STOI), a
reference-based metric estimating intelligibility via
short-time spectral similarity. For Speech Natural-
ness, we evaluate perceptual and acoustic fidelity
using both reference-based and learned metrics.
ViSQOL and PESQ assess perceptual quality by
modeling auditory similarity and signal distortion,
respectively. We also report UTMOS for estimat-
ing human-judged naturalness, which is a neural
MOS predictor trained on large-scale human rat-
ings. Lastly, we compute Similarity as the cosine
similarity between L2-normalized speaker embed-
dings extracted using WavLM-TDNN (Chen et al.,
2022), reflecting speaker or content consistency.
For FuseCodec-TTS, we omit metrics requiring
reference audio (e.g., STOI, ViSQOL, PESQ), as
exact references are unavailable in synthesis.

4 Experimental Results and Discussion

In this section, we evaluate our proposed methods
on speech reconstruction quality (§4.1), their ex-
tension to speech synthesis (§4.2), and validate the
contribution of each component through compre-
hensive ablation studies (Appendix C)).

4.1 Speech Reconstruction Evaluation

We evaluate our three proposed methods: (i) La-
tent Representation Fusion: FuseCodec-Fusion
(Sec. 2.3.1) (ii) Global Semantic-Contextual Su-
pervision: FuseCodec-Distill (Sec. 2.3.2), and
(iii) Temporally Aligned Contextual Supervision:
FuseCodec-ContextAlign (Sec. 2.3.3).

Results. The results in Table 1 show that FuseC-
odec improves performance across all metrics re-
lated to content preservation and speech natural-
ness. FuseCodec-Fusion performs best overall,
achieving the lowest WER (3.99) and WIL (6.45),
along with the highest STOI (0.95), reducing tran-
scription error and improving intelligibility. It also
achieves the highest scores in ViSQOL (3.47) and
PESQ (3.13), reflecting superior perceptual qual-
ity. FuseCodec-Distill attains top scores in UT-
MOS (3.65) and Similarity (0.996), while also rank-
ing second in STOI (0.94), ViSQOL (3.43), and
PESQ (3.06), demonstrating strong naturalness and
speaker consistency. FuseCodec-ContextAlign also
performs competitively, particularly in UTMOS
(3.65) and Similarity (0.995), while showing con-
sistent improvements over FuseCodec (Baseline).

Discussion. FuseCodec-Fusion achieves the
best overall performance. Compared to EnCodec,
which focuses purely on acoustic representations,
and FACodec, which separates attribute learn-
ing without unifying representations, FuseCodec-



Table 2: Zero-shot TTS evaluation on LibriSpeech and VCTK. FuseCodec-TTS variants are compared to official
neural codec-based TTS checkpoints trained on LibriTTS. Bold and underline indicate best and second-best scores.
FuseCodec-TTS improves intelligibility, similarity, and naturalness via semantic-contextual aware tokenization.

Model WER | WIL | Similarity UTMOS t
LibriSpeech VCTK | LibriSpeech VCTK | LibriSpeech VCTK | LibriSpeech VCTK
DM-Codec-TTS 10.26 5.02 13.79 8.21 0.82 0.79 3.70 3.86
USLM 16.72 14.79 25.65 23.24 0.80 0.78 2.93 3.01
FuseCodec-Distill-TTS 8.55 3.66 12.07 6.02 0.82 0.78 3.55 3.75
FuseCodec-Fusion-TTS 9.67 4.07 13.23 7.18 0.83 0.79 3.63 3.82

Fusion incorporates both semantic and contextual
signals directly into the encoder’s latent space. This
enables the quantizer to learn a unified represen-
tation aligned with both linguistic meaning and
acoustic structure. It also outperforms models like
DAC and BigCodec, which prioritize compression
but lack representational alignment. FuseCodec-
Distill improves upon SpeechTokenizer and Mimi,
which distill only semantic representations from
speech models and underperform on intelligibility
and quality. In contrast, FuseCodec-Distill super-
vises the quantized space with global contextual
and semantic signals, promoting alignment with
high-level linguistic and acoustic content.
FuseCodec-ContextAlign introduces fine-
grained supervision by aligning discrete tokens
with temporally matched contextual tokens,
encouraging each token to reflect local linguistic
context. Although its constrained alignment limits
global contextual guidance, leading to slightly
lower performance than FuseCodec-Fusion and
FuseCodec-Distill, it still outperforms DM-Codec,
improving intelligibility and speaker similarity.
Overall, contextual guidance is most effective for
content preservation, while semantic supervision
enhances speech naturalness. FuseCodec-Fusion
delivers the best balance, FuseCodec-Distill excels
in speaker fidelity, and FuseCodec-ContextAlign
offers interpretable gains. These results underscore
the benefit of unifying multimodal representations.

4.2 Speech Synthesis Evaluation
We extend our methods to the zero-shot text-to-
speech task and evaluate against neural codec
TTS models that incorporate representational
supervision for comparison. We deicde to
adapt FuseCodec-Fusion to FuseCodec-Fusion-
TTS and FuseCodec-Distill to FuseCodec-Distill-
TTS, based on their superior performance.
Results. Table 2 shows that both FuseCodec-
TTS variants outperform prior methods across most
metrics on LibriSpeech and VCTK. FuseCodec-

Distill-TTS achieves the best content preservation,
with the lowest WER (8.55/3.66) and WIL (12.07 /
6.02), surpassing both DM-Codec-TTS and USLM.
FuseCodec-Fusion-TTS delivers the highest per-
ceptual quality, achieving the top speaker similarity
(0.83/0.79), while also maintaining strong intelli-
gibility with the second-best UTMOS (3.63 / 3.82),
WER (9.67 / 4.07), and WIL (13.23 /7.18).

Discussion. FuseCodec-Fusion-TTS leads in
perceptual quality and speaker similarity. Unlike
DM-Codec-TTS, which lacks precise alignment,
and USLM, which incorporates only semantic fea-
tures, FuseCodec-Fusion-TTS integrates both se-
mantic and contextual signals directly into the en-
coder’s latent space. This allows the quantizer
to capture expressive prosody and speaker iden-
tity, resulting in more natural and coherent speech.
FuseCodec-Distill-TTS achieves the highest intel-
ligibility and transcription accuracy. In contrast
to USLM’s lack of contextual grounding and DM-
Codec-TTS’s limited supervision, it distills global
semantic-contextual representations into the quan-
tized token space, enhancing alignment with se-
mantic and contextual info. While FuseCodec-
Fusion-TTS excels in naturalness and speaker fi-
delity, FuseCodec-Distill-TTS offers stronger lin-
guistic precision. This trade-off reflects the comple-
mentary strengths of each variant and underscores
the importance of integrating semantic-contextual
fusion or supervision into speech tokenization.

5 Conclusion

We introduced FuseCodec, a unified speech tok-
enization framework that integrates acoustic, se-
mantic, and contextual signals via multimodal rep-
resentation fusion and supervision. Our methods
enable fine-grained alignment and achieve state-of-
the-art results on speech reconstruction, improving
intelligibility, quality, and speaker similarity. These
findings highlight the value of semantic and con-
textual grounding in discrete speech modeling.



Limitations

While FuseCodec demonstrates strong perfor-
mance in incorporating semantic and contextual
representation into discrete speech tokenization,
our approach relies on frozen pretrained language
and speech models, which may limit adaptability
to non-English or low-resource languages. More-
over, although we focus on zero inference over-
head, training requires additional computational re-
sources due to multimodal guidance. Future work
could explore lightweight, adaptive guidance mech-
anisms and broader language coverage.
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A Resources

We provide all necessary resources to ensure full
reproducibility of our models and results. All links
are anonymized for double-blind peer review.

¢ Docker: A containerized environment with
all required Python packages for training.
LINK

¢ Code and Configuration: Full codebase for
preprocessing, training, and inference. LINK

* Model Checkpoints: Trained model weights.
LINK

B Tokenizer Design and Loss Functions

B.1 Model Details

To implement a strong speech tokenizer baseline,
we adopt a standard neural codec architecture and
discriminator setup commonly used in prior work
(Défossez et al., 2022; Zeghidour et al., 2022).

Encoder and Decoder. The Encoder consists
of an initial 1D convolutional layer with 32 chan-
nels and a kernel size of 7, followed by 4 stacked
residual blocks. Each block includes two dilated
convolutions with a (3, 1) kernel and no dilation ex-
pansion (dilation = 1), a residual connection, and a
strided convolutional layer for temporal downsam-
pling. Stride values across the blocks are set to 2,
4, 5, and 8, with kernel sizes for the downsampling
layers set to twice the corresponding stride. Chan-
nel dimensions double at each downsampling stage.
The encoder then includes a two-layer BiILSTM,
and concludes with a 1D convolution (kernel size
7) to project to the target embedding dimension.
ELU (Clevert et al., 2016) is used as the activation
function, and layer normalization or weight nor-
malization is applied depending on the layer. The
Decoder mirrors the encoder architecture, with the
only difference being the use of transposed convolu-
tions in place of strided convolutions to reverse the
downsampling steps, and the inclusion of LSTM
layers to restore temporal resolution.

Residual Vector Quantizer. The Residual Vec-
tor Quantizer (RVQ) module discretizes the en-
coder’s continuous latent representations into a se-
quence of codebook indices. Specifically, we quan-
tize the encoder latent tensor of shape [B, D, T
using 8 residual codebooks, each with 1024 code-
book entries. Each subsequent codebook quantizes
the residual error of the previous one. Codebook
entries are updated using an exponential moving
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average with a decay factor of 0.99. To prevent
codebook collapse, unused entries are randomly re-
sampled using vectors from the current batch. The
RVQ output is a discrete tensor of shape [B, Ny, T,
where N, is the number of active quantizers. The
indices are mapped back to the original latent space
by summing the corresponding codebook embed-
dings and are then fed into the decoder to recon-
struct the input. A straight-through estimator (Ben-
gio et al., 2013) is used to propagate gradients
through the quantizer.

Discriminators. We utilize discriminators to
guide the generators (Encoder, RVQ, and Decoder)
to reconstruct speech more closely to the origi-
nal. We make use of three distinct discriminators:
a Multi-Scale STFT (MS-STFT) discriminator, a
Multi-Scale Discriminator (MSD), and a Multi-
Period Discriminator (MPD). The MS-STFT dis-
criminator, proposed by (Défossez et al., 2022),
works on multiple resolutions of the complex-
valued short-time Fourier transform (STFT). It
treats the real and imaginary parts as concatenated
and applies a sequence of 2D convolutional lay-
ers. The initial layer uses a kernel size of 3 x 8
with 32 channels. This is followed by convolu-
tions with increasing temporal dilation rates (1, 2,
and 4) and a stride of 2 along the frequency axis.
A final 3 x 3 convolution with stride 1 outputs
the discriminator prediction. The MSD processes
the raw waveform at various temporal scales using
progressively downsampled versions of the input.
We adopt the configuration from (Zeghidour et al.,
2022), which was originally based on (Kumar et al.,
2019). Similarly, the MPD, introduced by (Kong
et al., 2020), models periodic structure in the wave-
form by reshaping it into a 2D input with unique
periodic patterns. For consistency, we standardize
the number of channels in both the MSD and MPD
to match those in the MS-STFT discriminator.

B.2 Training Objective

To ensure that FuseCodec learns discrete speech
representations, we ground our training objective
on proven techniques, following (Défossez et al.,
2022; Zhang et al., 2024; Ahasan et al., 2024).
Reconstruction loss. Let x and X denote the
original and reconstructed speech waveforms, re-
spectively. For spectral comparisons, we define
64-bin Mel-spectrograms M (+) using STFTs with
window size 2¢ and hop size 2¢/4, where i € £ =
{5,...,11} indexes different resolution scales. We
compute the time-domain L4y and frequency-


https://drive.google.com/file/d/1hofjRg1IoeC2IEEd8Okwowg-P_GBnd0-/view?usp=drive_link
https://drive.google.com/file/d/1vUKnzhBJIC4SBV5A1GvLYXnLGH1baYsn/view?usp=drive_link
https://drive.google.com/drive/folders/1-2WE9AJS6Cw8N6Qw0TAw_nZFTVVDuIAY?usp=drive_link

domain Lyeq reconstruction losses as:
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Adpversarial loss. To reduce the discriminabil-
ity of reconstructed speech, we adopt a GAN-
based training objective with a set of discriminators
{D®W}¢_ | including multi-period (MPD), multi-
scale (MSD), and multi-scale STFT (MS-STFT)
variants (see Appendix B for details). The gener-
ator Lgen and discriminator Lgis losses are com-
puted as:

d
1 A
_ 1 _ pi)(x
Lgen d;max (0, 1-D (x)) (10)
1 A
Lase = ; [max(0, 1 - D(x))
+max(0, 1+ DD (x))] (11

Let D](Z)() denote the output of the j-th layer

of D™, with ¢ total layers. We include a feature
Ltear matching loss to stabilize training and align
intermediate features as:

d
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Commitment Loss. To ensure encoder outputs
align closely with their quantized representations,
we apply a commitment penalty during residual
vector quantization (RVQ). Let r; denote the resid-
ual vector at step j € {1,...,¢}, and c; be its
corresponding nearest codebook entry, we calcu-
late commitment 108S Lcommit as:

q
Leommic = »_ IIrj — ;3 (13)
j=1
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C Ablation Studies

We ablate and investigate each design choice
and the necessity of components in our proposed
methodology for FuseCodec. All model hyperpa-
rameters, training procedures, and configurations
are kept fixed, except for the specific changes intro-
duced in each ablation setup.

C.1 Ablation: Attention-Projection

Configuration in Representation Fusion
Setup. We investigate the impact of changing the
attention-projection configuration in FuseCodec-
Fusion (Section 2.3.1). The selected method,
Cross-Before, applies multi-head cross-attention
prior to projection:

C,C)Wg,
S,S)W

S’ = CrossAttention(S,
, o (14)
C’ = CrossAttention(C, o,

where S, C € R’ are broadcasted global se-
mantic and contextual vectors. We compare this
with the following ablated variants:
None, which skips attention and directly applies
projection:
S’ = SWg,
C'=CW¢

Self-Before, which applies self-attention before
projection:

(15)

S’ = SelfAttention(S, S, S)W g,

o~ o~ (16)
C’ = SelfAttention(C, C, C)W¢

Self-After, which projects first and then applies
self-attention:

S = SelfAttention(SWS )s

, . (17
C’ = SelfAttention(CW )

Cross-After, which applies projection before cross-
attention:

S’ = CrossAttention(SWg, CW¢, CW(),

C = CrossAttention(CWc, SWg, gWS)
(18)

Results. Table 3 shows the results of five vari-
ants. The selected Cross-Before setup achieves the
highest performance on intelligibility STOI (0.95),
and all naturalness metrics: ViSQOL (3.47), PESQ
(3.13), and second-best UTMOS (3.63). Self-
Before yields the best WER (3.92) and WIL (6.36),
and second-best ViSQOL (3.43), PESQ (3.05), and



Table 3: Ablation of attention-projection configurations in multimodal latent fusion. Cross variants incorporate
cross-modal attention between semantic and contextual signals, while Self variants apply self-attention. Before
applies attention prior to projection into the encoder’s latent space, whereas After applies attention post-projection.
None uses direct projection without attention. Applying cross-modal attention before projection consistently
improves content preservation and speech naturalness by enabling richer multimodal interactions in the original

dimension.

Content Preservation

Model Variant

Speech Naturalness

Attn-Proj Type

WER| WIL| STOIT ViSQOLt PESQT UTMOST Similarityt
FuseCodec-Fusion  None 4.10 6.60 0.93 3.26 2.92 3.65 0.995
FuseCodec-Fusion  Self-After 4.07 6.61 0.93 3.26 2.95 3.63 0.995
FuseCodec-Fusion  Self-Before 3.92 6.36 0.94 343 3.05 3.59 0.995
FuseCodec-Fusion  Cross-After 4.17 6.70 0.93 3.28 2.90 3.61 0.995
FuseCodec-Fusion  Cross-Before 3.99 6.45 0.95 3.47 3.13 3.63 0.995

STOI (0.94). The None and Cross-After configu-
rations perform comparatively worse across intelli-
gibility and naturalness.

Discussion. These results demonstrate that the
configuration of attention relative to projection sig-
nificantly impacts the effectiveness of representa-
tion fusion. The best-performing method, Cross-
Before, applies cross-modal attention in the origi-
nal lower-dimensional space. This enables richer
semantic-contextual interactions to be captured be-
fore transformation into the higher-dimensional en-
coder space, leading to improved intelligibility and
perceptual quality.

Self-Before performs competitively by achiev-
ing the best WER and WIL, suggesting that intra-
modal structuring of global feature representations
also benefits the fusion approach. However, the
absence of explicit cross-modal exchange limits its
effectiveness on naturalness metrics such as UT-
MOS and PESQ.

By contrast, Cross-After performs poorly, indi-
cating that applying cross-attention after projection
diminishes its effectiveness. Suggesting that once
projected into the higher-dimensional space, the
global vectors lose semantic coherence, resulting
in less expressive fusion and lower audio quality.

Finally, removing attention (None) results in the
weakest performance on intelligibility and percep-
tual scores, despite yielding the highest UTMOS.
This indicates that even unstructured modality sig-
nals can enhance naturalness, but without align-
ment through attention mechanisms, they fail to
deliver consistent semantic-contextual grounding.

Overall, these results confirm that performing
attention prior to projection, especially cross-modal
attention, is essential for extracting the most benefit
from semantic-contextual signals during fusion.
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C.2 Ablation: Attention-Guidance
Configuration in Semantic-Contextual
Guidance

Setup. We study the impact of attention configura-
tion and guidance modality used in the distillation
objective. Our method, FuseCodec-Distill, intro-
duces timestep-aligned supervision using global
contextual and semantic signals (Section 2.3.2).
The selected configuration, None + Semantic-
Contextual, projects the first-layer RVQ tokens
QM and computes cosine similarity with both se-
mantic and contextual guidance vectors:

T/
1 1 -
Lisin = T E log o <2 [COS <Q2(1), St)
=1

+ cos (Qi(l), Ct)])
(19)

We compare this against three ablated variants:
None + Contextual, which excludes both atten-
tion and semantic guidance:

Liistinl = —% i logo (COS (Q2(1)7 ét)) (20)
=1

Cross + Contextual, which introduces cross-
attention between contextual vectors and projected
RVQ tokens:

C = CrossAttention(C, Q'™W, QM) 1)

Cross + Semantic-Contextual, which includes
cross-attention but retains both guidance signals.

Results. Table 4 reports the performance across
four configurations. The best-performing variant
is None + Semantic-Contextual, achieving the
lowest WER (4.09) and WIL (6.60), and highest



Table 4: Ablation of attention and guidance strategies in semantic-contextual distillation. Cross variants apply
cross-attention between contextual embeddings and discrete tokens, while None applies supervision directly.
Semantic-Contextual combines both global semantic and contextual signals. Direct supervision using both signals
achieves the best intelligibility and perceptual quality by preserving global structure.

Content Preservation

Speech Naturalness

WER|, WIL| STOIt ViSQOLt PESQf UTMOST Similarity?

Model Variant Attention Guidance

FuseCodec-Distill None Contextual 4.20
FuseCodec-Distill  Cross Contextual 4.18
FuseCodec-Distill None Semantic-Contextual  4.09
FuseCodec-Distill  Cross Semantic-Contextual — 4.21

677 093 3.13 274 3.60 0.995
675 093 321 2.83 3.60 0.995
6.60  0.94 3.43 3.06 3.65 0.996
6.82 093 3.18 2.84 3.62 0.994

scores on STOI (0.940), ViSQOL (3.43), PESQ
(3.06), UTMOS (3.65), and Similarity (0.996). The
second-best results are obtained by Cross + Con-
textual, but excluding semantic guidance or using
attention degrades performance across all metrics.

Discussion. These results show that including
both semantic and contextual supervision is essen-
tial for improving the quantization quality of the
discrete tokens. The None + Semantic-Contextual
configuration outperforms all others, highlighting
that cosine-based alignment with both modalities
provides the most stable and effective guidance
during quantized representation learning.

Introducing cross-attention (Cross) reduces per-
formance, suggesting that attention distorts the
global nature of the guidance signals and makes su-
pervision less consistent across time. The Cross +
Semantic-Contextual variant also underperforms,
despite having access to both guidance sources, in-
dicating that attention interferes with their inherent
structure and alignment function.

The Contextual-only variants perform compara-
tively worse, confirming that semantic signals play
an important role in guiding the learned represen-
tations toward higher-level content fidelity and im-
proved intelligibility.

Overall, these findings support using both guid-
ance signals in their original global forms and ap-
plying them directly, without attention, to ensure
stable, timestep-aligned distillation.

C.3 Ablation: Fixed vs. Dynamic Window
Configuration in Temporal Alignment

Setup. We investigate the effect of fixed versus
dynamic windowing in the token alignment algo-
rithm (Algorithm 1). Our full method, FuseCodec-
ContextAlign, aligns each contextual embedding
C; € RY' to a localized region of RVQ tokens
{ le) }I” | based on cosine similarity. The selected

configuration, Dynamic-window Contextual (see
Section 2.3.3), dynamically adjusts the alignment
window for each C;, using the index of the previous
match to guide the next search range. This content-
aware strategy produces a temporally aligned se-
quence C* € RT" %D’ which is used to compute a
timestep-level distillation loss:

Lalign = —% i log o <cos (Q;(l), C;)) (22)
t=1

We compare this setup against the following ab-
lated variants:

Fixed-window Contextual, which uses a fixed
alignment window of size w = |T"/n |, where T’
is the RVQ sequence length and n is the number
of contextual embeddings. Each C; is aligned to
the most similar token le) within its predefined
window.

Fixed-window Semantic-Contextual, which
adds semantic supervision using semantic represen-
tations {S;}",, in addition to contextual represen-
tations aligned via a fixed-window token alignment.
Since both semantic and RVQ tokens are extracted
at the same frame rate, they are inherently time-
aligned, requiring no additional alignment. The
combined loss is:

T
Lalign = —% gloga <; |:COS (Q;(l), CI)

+ cos (Q;(l), St>])
(23)

Dynamic-window Semantic-Contextual,
which replaces the fixed window with a dynamic
alignment strategy, while also incorporating direct
supervision from semantic embeddings {S;}.

Results. As shown in Table 5, the Dynamic-
window Contextual configuration achieves the
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Table 5: Ablation of windowing and guidance strategies in temporally aligned contextual supervision. Dynamic
variants adapt the alignment window per token based on content similarity, while Fixed variants use a uniform
window. Semantic-Contextual combines semantic and contextual signals for supervision. Dynamic windowing
consistently improves intelligibility and clarity by enabling finer temporal alignment of contextual embeddings.

Content Preservation

Speech Naturalness

Model Variant Window  Guidance
WER| WIL| STOIf ViSQOLt PESQt UTMOST  Similarity?
FuseCodec-ContextAlign ~ Fixed Contextual 4.26 6.88 0.92 3.19 2.71 3.58 0.994
FuseCodec-ContextAlign  Dynamic  Contextual 4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-ContextAlign ~ Fixed Semantic-Contextual 4.30 6.88 0.92 3.10 2.62 3.74 0.995
FuseCodec-ContextAlign  Dynamic  Semantic-Contextual 4.21 6.78 0.93 3.12 2.72 3.75 0.995
best performance across content preservation met- accuracy.

rics, achieving the lowest WER (4.15), WIL (6.70),
and highest STOI (0.93). It also performs strongly
in terms of speech naturalness, with the best PESQ
(2.85), high ViSQOL (3.18), and top Similarity
(0.995). The Dynamic Semantic-Contextual vari-
ant achieves the best UTMOS (3.75), second-best
WER (4.21) and WIL (6.78), and matches the top
Similarity. By contrast, both Fixed-window config-
urations obtains lower scores across most metrics,
particularly the Fixed Semantic-Contextual con-
figuration, which scores the lowest ViSQOL (3.10)
and PESQ (2.62), despite a relatively high UTMOS
(3.74).

Discussion. These results highlight the impor-
tance of the temporal alignment strategy in influ-
encing speech reconstruction quality. The superior
performance of the Dynamic-window Contextual
variant demonstrates that token alignment using a
dynamic window, where contextual embeddings
are adaptively aligned based on token similarity,
achieves better semantic grounding and contextual
precision.

In contrast, the Fixed-window variants suffer
from rigid alignment constraints. They fail to cap-
ture fine-grained temporal dependencies by enforc-
ing a fixed windowing strategy, which resuls in de-
graded speech clarity (lower ViSQOL and PESQ).
This limitation is especially noticeable in the Fixed
Semantic-Contextual setup, where the addition of
semantic supervision is insufficient to compensate
for the strictly aligned contextual embeddings as
the fixed window does not account for local content
variations.

Both Semantic-Contextual variants improve
UTMOS, indicating that semantic supervision con-
tributes positively to speech naturalness. However,
this comes with a trade-off when not paired with
dynamically aligned contextual guidance, as the
semantic-only supervision fails to improve content
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Overall, these findings underscore that dynamic
alignment is essential for effective contextual repre-
sentation guidance. They also highlight that while
semantic supervision enhances fluency and natural-
ness, it must be combined with flexible alignment
mechanisms to avoid compromising content preser-
vation.

C.4 Ablation: Dropout Mask Configuration
in Representation Fusion

Setup. We investigate the effect of modality
dropout rate on the quality of latent representation
fusion. As described in Section 2.3.1, we apply
stochastic dropout masks Dg, D¢ € {0,1}7' %P
element-wise to the projected semantic (S’) and
contextual (C’) vectors during training:
Z' =7+ (S0Ds)+(C'oDc) (24

This stochastic masking prevents FuseCodec from
over-reliance on any single modality and encour-
ages the model to learn robust representations.

The selected configuration uses a 10% dropout
rate—i.e., each element in Dg and D¢ has a 10%
chance of being masked to zero during training. We
compare this against higher dropout rates: 30%,
50%,70%, and 90% .

Results. The best overall performance is
achieved with the 10% dropout rate configuration,
which achieves the lowest WER (3.99) and WIL
(6.45) and the highest STOI (0.95), ViSQOL (3.47),
and PESQ (3.13). Increasing the dropout rate to
30-90% leads to the worsening of the most con-
tent preservation and speech naturalness metrics.
While UTMOS and Similarity remain relatively sta-
ble, 50% dropout achieves minor gains in UTMOS
(3.66) and Similarity (0.996).

Discussion. These results confirm the impor-
tance of carefully balancing modality dropout



Table 6: Ablation of modality dropout probability during latent representation fusion in FuseCodec. Dropout
indicates the stochastic masking rate applied independently to semantic and contextual representations during
training. Moderate dropout prevents over-reliance on a single modality, while higher rates degrade multimodal
integration. A 10% dropout rate achieves the best trade-off, maximizing intelligibility and perceptual quality.

Content Preservation

Speech Naturalness

Model Variant Dropout

WER] WIL] STOIT ViSQOLft PESQT UTMOS?T Similarityt
FuseCodec-Fusion 10% 3.99 6.45 0.95 3.47 3.13 3.63 0.995
FuseCodec-Fusion 30% 4.10 6.63 0.94 3.29 2.96 3.65 0.995
FuseCodec-Fusion 50% 4.09 6.58 0.94 3.33 297 3.66 0.996
FuseCodec-Fusion 70% 4.08 6.64 0.93 3.26 291 3.63 0.995
FuseCodec-Fusion 90% 4.15 6.67 0.93 3.26 2.86 3.61 0.995

during latent fusion and underscore the value
of semantic-contextual representation integration.
Preserving a sufficient portion of the auxiliary rep-
resentations by using a small 10% dropout rate
achieves the most effective use of semantic and
contextual information.

As the dropout rate increases, the model receives
increasingly less additional modality information,
reducing its ability to align latent tokens with mul-
timodal supervision. This negatively affects in-
telligibility (WER, WIL) and perceptual quality
(ViSQOL, PESQ).

Interestingly, metrics such as UTMOS and Simi-
larity remain relatively stable or improve at moder-
ate dropout rates (50%), suggesting that prosodic
and speaker characteristics are preserved within
the base latent representations. However, the loss
of some semantic-contextual information comes at
the cost of worse content preservation.

Overall, the findings suggest that light dropout
(10%) provides the best trade-off, ensuring robust
yet expressive multimodal grounding during latent
token fusion.

C.5 Ablation: Quntizer Layer Configuration
in Semantic-Contextual Guidance

Setup. We study the impact of RVQ layer su-
pervision depth in the distillation objective. Our
method, FuseCodec-Distill, uses first-layer super-
vision, projecting the first-layer RVQ tokens Q)
and computing cosine similarity (see Sections 2.3.2
and 2.3.3).

We compare this against an ablated variant, all-
layer supervision, which averages the outputs
from all eight RVQ layers. We define the averaged
RVQ output as:
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8
. 1 , /
Q(I.S) _ g E Q('L) e RT ><D7
i=1

Ql(l:S) _ Q(l:S)W

(25)

In the Global Semantic-Contextual Supervi-
sion setting, we apply the all-layer supervision to
the distillation loss as:

T/
»Cdistill = —% Z IOgO' <; [COS (Q;(l:B)7 St)
t=1

)

(26)

Similarly, for the Temporally Aligned Contex-

tual Supervision setting, we apply the all-layer
supervision to the distillation loss as:

/(1:8) Ct

—i—cos( +

1(1:8)
t

*

7Ct

)

27)

T/
1
Ealign = _F Z log g (COS (
t=1

Results. Table 7 shows the effect of RVQ su-
pervision depth across both distillation configura-
tions. For FuseCodec (Distill), which uses Global
Semantic-Contextual Supervision, first-layer super-
vision achieves the strongest performance across all
content preservation and naturalness metrics, with
the lowest WER (4.09), WIL (6.60), and highest
STOI (0.94), ViSQOL (3.43), PESQ (3.06), UT-
MOS (3.65), and Similarity (0.996). Similarly,
FuseCodec (ContexAlign), which uses Temporally
Aligned Contextual Supervision, First-layer su-
pervision again achieves stronger results in WER
(4.15), WIL (6.70), ViSQOL (3.18), PESQ (2.85),
and Similarity (0.995). In contrast, using all-layer
supervision leads to consistent degradation across
most metrics in both settings.



Table 7: Ablation of RVQ supervision depth under global (Distill) and temporally aligned (ContexAlign) guidance.
First Layer indicates supervision is applied only to the first-layer RVQ tokens, while All Layers averages
representations from all eight RVQ layers before supervision. Supervising the first-layer RVQ tokens leads to
stronger semantic-contextual grounding and improved intelligibility compared to all-layer supervision.

Content Preservation

Speech Naturalness

Model Variant RVQ Layer

WER| WIL] STOIf ViSQOL{ PESQf UTMOST Similarityf
FuseCodec-ContextAlign  First Layer  4.15 6.70 0.93 3.18 2.85 3.65 0.995
FuseCodec-ContextAlign  All Layers 4.34 7.04 0.93 3.17 2.72 3.65 0.993
FuseCodec-Distill First Layer  4.09 6.60 0.94 343 3.06 3.65 0.996
FuseCodec-Distill All Layers 4.23 6.86 0.93 3.26 2.84 3.61 0.994

Discussion. The results highlight that the layer
at which RVQ tokens are supervised significantly
impacts the quality of semantic and contextual guid-
ance during distillation. Supervising the first RVQ
layer yields stronger performance, as these tokens
encode high-level, abstract representations more
aligned with semantic intent and global context.
This leads to better linguistic grounding and intel-
ligibility, reflected in improved WER, STOI, and
ViSQOL scores.

In contrast, deeper RVQ layers capture lower-
level acoustic and residual details, which are less
suitable for semantic or contextual alignment. Av-
eraging supervision across all layers matches these
fine-grained signals with global ones, impacting the
alignment objective. This results in performance
drop across content preservation and speech natu-
ralness metrics.

Some naturalness metrics, such as UTMOS and
Similarity, remain relatively stable with all-layer
supervision, suggesting that speaker identity and
prosodic features are distributed throughout the
RVQ layers. However, these are insufficient for
guiding semantic alignment during distillation.

Overall, applying supervision at the first RVQ
layer provides a clearer, more semantically
grounded signal, leading to better alignment and
overall performance in speech reconstruction.

D Related Work

Recent progress in speech and audio generation has
been largely driven by advances in discrete repre-
sentation learning, neural audio codecs, and lan-
guage model-based synthesis. VQ-VAE (van den
Oord et al., 2018) introduced vector quantization
in latent spaces to support symbolic modeling
of audio, while HuBERT (Hsu et al., 2021) ap-
plied masked prediction over cluster-derived la-
bels to learn contextualized speech features in a
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self-supervised manner. SoundStream (Zeghidour
et al., 2022) proposed a causal adversarially trained
codec with residual vector quantization (RVQ) and
demonstrated scalable compression at low bitrates.
HiFi-Codec (Yang et al., 2023) further improved
efficiency by introducing group residual quantiza-
tion, reducing the number of required codebooks
while preserving audio fidelity. On the genera-
tive side, AudioLM (Borsos et al., 2023) modeled
long-range dependencies in semantic and acous-
tic tokens using transformer-based language mod-
eling. This approach was extended by VALL-E
(Wang et al., 2023), which enabled zero-shot text-
to-speech synthesis by conditioning on short acous-
tic prompts and leveraging codec token generation.
To improve the suitability of tokenization for lan-
guage modeling tasks, X-Codec (Ye et al., 2024)
integrated semantic embeddings from pretrained
models into the quantization pipeline, while LAST
(Turetzky and Adi, 2024) learned a tokenizer su-
pervised by a frozen language model to improve
downstream ASR and speech generation perfor-
mance. HiFi-GAN (Kong et al., 2020) introduced
multi-period and multi-scale discriminators, en-
abling high-fidelity waveform synthesis with real-
time efficiency.

In parallel, codec designs have evolved to im-
prove training stability and perceptual quality. En-
Codec (Défossez et al., 2022) introduced a GAN-
based codec architecture with multi-loss balancing
and spectrogram-based discrimination, setting a
new benchmark for real-time low-bitrate synthe-
sis. BigCodec (Xin et al., 2024) scaled the VQ-
VAE framework and showed that a single large
codebook could achieve near-human perceptual
quality at 1 kbps. DAC (Kumar et al., 2023) pro-
posed refinements to residual quantization, such
as factorized and normalized codebooks, and in-
troduced advanced discriminators to improve qual-



ity under bitrate constraints. More recent work
has focused on improving token expressiveness for
downstream tasks. SpeechTokenizer (Zhang et al.,
2024) demonstrated that hierarchical quantization
improves resynthesis and zero-shot TTS, while
DM-Codec (Ahasan et al., 2024) aligned quantiza-
tion layers with pretrained speech and text models
to reduce WER and enhance contextual fidelity. Fi-
nally, NaturalSpeech 3 (Ju et al., 2024) introduced
a factorized codec for disentangling prosodic and
acoustic attributes in speech, and Moshi (Défossez
et al., 2024) unified ASR and TTS in a streaming,
full-duplex transformer model operating on jointly
learned semantic and acoustic tokens.

E Qualitative Comparison
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Sample 1 Sample 2

(click image to play audio)

Original Speech

SpeechTokenizer

DM-Codec

i

EnCodec b b

FuseCodec-
Fusion

FuseCodec-
Distill

FuseCodec-
ContextAlign

Figure 2: Qualitative speech reconstruction results comparing our method to multiple baselines. Each cell shows the
spectrogram output for two samples; clicking an image plays the corresponding audio.
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