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Abstract1

Although deep neural networks can achieve human-level2

performance on many object recognition benchmarks,3

prior work suggests that these same models fail to learn4

simple abstract relations, such as determining whether5

two objects are the same or different. Much of this6

prior work focuses on training convolutional neural net-7

works to classify images of two same or two differ-8

ent abstract shapes, testing generalization on within-9

distribution stimuli. In this article, we comprehensively10

study whether deep neural networks can acquire and gen-11

eralize same-different relations both within and out-of-12

distribution using a variety of architectures, forms of pre-13

training, and fine-tuning datasets. We find that certain14

pretrained transformers can learn a same-different rela-15

tion that generalizes with near perfect accuracy to out-of-16

distribution stimuli. Furthermore, we find that fine-tuning17

on abstract shapes that lack texture or color provides the18

strongest out-of-distribution generalization. Our results19

suggest that, with the right approach, deep neural net-20

works can learn generalizable same-different visual rela-21

tions.22
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neural networks; transformer models24

Introduction25

Humans and a wide variety of non-human animals can easily26

recognize whether two objects are the same as each other27

or whether they are different (see Figure 1; Martinho III &28

Kacelnik, 2016; Christie, 2021; Gentner et al., 2021; Hespos29

et al., 2021). The abstract concept of equality is simple—even30

3-month-old infants (Anderson et al., 2018) and honeybees31

(Giurfa, 2021) can learn to distinguish between displays of32

two same or two different objects. Some researchers have33

even argued that it serves amongst a number of other basic34

logical operations as a foundation for higher-order cognition35

and reasoning (Gentner & Goldin-Meadow, 2003; Gentner &36

Hoyos, 2017). However, in contrast to humans and animals,37

recent work has argued that deep neural networks struggle to38

learn this simple relation (Ellis et al., 2015; Gülçehre & Ben-39

gio, 2016; Stabinger et al., 2016; Kim et al., 2018; Webb et40

al., 2020; Puebla & Bowers, 2022). This difficulty is surprising41

given that deep neural networks achieve human or superhu-42

man performance on a wide range of seemingly more com-43

plex visual tasks, such as image classification (Krizhevsky et44
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al., 2012; He et al., 2016), segmentation (Long et al., 2015),45

and generation (Ramesh et al., 2022).46

Same Different

Figure 1: Same or different? For humans and a number
of animal species, it is trivial to recognize that the image on
the left contains two of the same objects, while the image on
the right contains two different objects. Surprisingly, prior re-
search has suggested that deep neural networks struggle to
learn to discriminate between these images.

Past attempts to evaluate same-different relations in neu-47

ral networks have generally used the following methodology.48

Models are trained to classify images containing either two of49

the same or two different abstract objects, such as those in50

Figure 1. A model is considered successful if it is then able to51

generalize the same-different relation to unseen shapes after52

training. Convolutional neural networks (CNNs) trained from53

scratch fail to learn a generalizable relation, and tend to mem-54

orize training examples (Kim et al., 2018; Webb et al., 2020).55

However, deep neural networks have been shown to success-56

fully generalize the same-different relation in certain contexts.57

This generalization is either limited to in-domain test stimuli58

(Funke et al., 2021; Puebla & Bowers, 2022) or requires ar-59

chitectural modifications that build in an inductive bias towards60

relational tasks at the expense of other visual tasks (Kim et al.,61

2018; Webb et al., 2020; Webb, Frankland, et al., 2023; Webb,62

Mondal, & Cohen, 2023; Kerg et al., 2022; Geiger et al., 2023;63

Altabaa et al., 2023). Given these limited successes, an open64

question remains: without architectural modifications that re-65

strict model expressivity in general, can standard neural net-66

works learn an abstract same-different relation that general-67

izes to both in- and out-of-distribution stimuli?68

Addressing this question requires going beyond past work69

in a number of ways. First, most previous studies test for in-70

distribution generalization—that is, they use test stimuli that71

are visually similar to the training stimuli. We believe that72

out-of-distribution generalization provides much stronger ev-73

idence that a model has learned a genuine abstract relation74

without relying on spurious features. Second, the existing liter-75

ature uses training stimuli that demonstrate the same-different76

relation with either closed curves (as in Figure 1) or simple77
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Figure 2: Example stimuli from all four datasets. Each column represents one of the four same-versus-different datasets as
indicated by the label beneath the stimuli. The top row shows an example object that is used to form the stimuli that comprise
each dataset, while the second and third rows show an example “same” vs. “different” stimulus, respectively.

geometric shapes. It is unclear whether training on these78

types of objects is the most helpful for learning the relation79

versus more naturalistic objects that more closely resemble80

data seen during pretraining. Finally, most prior work focuses81

on convolutional architectures, but Vision Transformers (ViTs)82

(Dosovitskiy et al., 2020) adapted from the language domain83

(Vaswani et al., 2017) have recently emerged as a competi-84

tive alternative to CNNs on visual tasks. Self-attention, a key85

feature of ViTs, may provide an advantage when learning ab-86

stract visual relations—indeed, the ability to attend to and re-87

late any part of a stimulus to any other part may be crucial for88

relational abstraction.89

In this article, we address these limitations and comprehen-90

sively investigate how neural networks learn and generalize91

the same-different relation from image data. Our main find-92

ings are as follows:93

• Fine-tuning pretrained ResNet and ViT models on the94

same-different relation enables both architectures to gener-95

alize the relation to unseen objects in the same distribution96

as the fine-tuning set. In particular, CLIP pretraining results97

in nearly 100% in-distribution test accuracy for ViT models,98

and close to that for ResNet models.99

• Under certain conditions, CLIP-pretrained ViTs can reliably100

generalize the same-different relation to out-of-distribution101

stimuli with nearly 100% accuracy. Furthermore, these102

models can transfer the relation with up to 90% test accu-103

racy to a photorealistic same-different dataset of 3D objects104

without any fine-tuning on the 3D setting. These results105

suggest that these models acquire a generalizable abstract106

concept of equality.107

• Different fine-tuning datasets lead to qualitatively different108

patterns of generalization—fine-tuning on more visually ab-109

stract objects (which do not contain color or texture) results110

in stronger out-of-distribution generalization, whereas fine-111

tuning on more naturalistic objects fails to generalize.112

• ViTs generally prefer to determine equality between objects113

by comparing their color or texture, only learning to com-114

pare shape when the fine-tuning dataset lacks color and115

texture information. However, we find that CLIP pretraining116

helps to mitigate this preference for color and texture.117

Methods118

We operationalize the same-different task consistently with119

prior work, e.g. Fleuret et al. (2011). Models are asked to120

perform a binary classification task on images containing ei-121

ther two of the same objects or two different objects (see122

the second and third rows of Figure 2). Models are either123

trained from scratch or fine-tuned on a version of this task124

with a particular type of stimuli (see Training and Evaluation125

Datasets below). After training or fine-tuning, model weights126

are frozen, and validation and test accuracy scores are com-127

puted on sets of same-versus-different stimuli containing un-128

familiar objects. These can be either be the same type of129

objects that they were trained or fine-tuned on (in-distribution130

generalization) or different types of objects (out-of-distribution131

generalization). Thus, in order to attain high validation and132

test accuracy scores, the model must successfully generalize133

the learned same-different relation to novel objects. This type134

of generalization is more challenging than the standard image135

classification setting because of the abstract nature of what136

defines the classes—models must learn to attend to the rela-137

tionship between two objects rather than learn to attend to any138

particular visual features of those objects in the training data.139



Training and Evaluation Datasets We construct four140

same-versus-different datasets using four different types of141

objects (see Figure 2) ranging from abstract shapes to nat-142

uralistic images that are more familiar to pretrained models.143

We use the following objects to create these four datasets:144

1. Squiggles (SQU). Randomly generated closed shapes fol-145

lowing Fleuret et al. (2011).1 Most studies in the machine146

learning literature on the same-different relation uses this147

dataset (Kim et al., 2018; Funke et al., 2021; Puebla & Bow-148

ers, 2022; Messina et al., 2022).149

2. Alphanumeric (ALPH). Sampled handwritten characters150

from the Omniglot dataset (Lake et al., 2015).151

3. Shapes (SHA). Textured and colored shapes from152

Tartaglini et al. (2022). Objects that match in shape, tex-153

ture, and color are considered the same, while objects that154

differ along all three dimensions are considered different.155

4. Naturalistic (NAT). Photographs of real objects on white156

backgrounds from Brady et al. (2008). These stimuli are157

the most similar to the data that the pretrained models see158

before fine-tuning on the same-different task.159

Each stimulus is an image that contains two objects that160

are either the same or different. We select a total of 1,600161

unique objects for each dataset. These objects are split into162

disjoint sets of 1,200, 300, and 100 to form the training, val-163

idation, and test sets respectively. Unless otherwise speci-164

fied, the training, validation, and test sets each contain 6,400165

stimuli: 3,200 same and 3,200 different. To construct a given166

dataset, we first generate all possible pairs of same or different167

objects—we consider two objects to be the same if they are168

the same on a pixel level.2 Next, we randomly select a subset169

of the possible object pairs to create the stimuli such that each170

unique object is in at least one pair. Each object is resized to171

64x64 pixels, and then a pair of these objects is placed over172

a 224x224 pixel white background in randomly selected, non-173

overlapping positions. We consider two objects in a specific174

placement as one unique stimulus—in other words, a given175

pair of objects may appear in multiple images but in different176

positions (but with all placements of the same two objects be-177

ing confined to either the training, validation, or test set). All178

object pairs appear the same number of times to ensure that179

each unique object is equally represented.180

Models and Training Details We evaluate one convolu-181

tional architecture, ResNet-50 (He et al., 2016), and one182

1The original method from Fleuret et al. (2011) produces closed
contours with lines that are only one pixel thick. For our chosen im-
age and object size, these shapes become very difficult to see. We
correct this by using a dilation algorithm to darken and thicken the
lines to a width of three pixels.

2There is some ambiguity in how to define sameness. One could
imagine a same-different task in which two objects drawn from the
same category are considered the same, such as two different im-
ages of the same species of parrot. Furthermore, two objects can be
the same in some dimensions but differ in others (see Dissociating
Color, Texture, and Shape). Unless otherwise stated, we take “same”
to mean “exactly the same.”

Transformer architecture, ViT-B/16 (Dosovitskiy et al., 2020).183

We also evaluate three pretraining procedures: (1) randomly184

initialized, in which all model parameters are randomly ini-185

tialized (Kaiming normal for ResNet-50 and truncated normal186

for ViT-B/16) and models are trained from scratch, (2) Ima-187

geNet, in which models are pretrained in a supervised fash-188

ion on a large corpus of images (ImageNet-1k for ResNet-50189

and ImageNet-21k for ViT-B/16; Deng et al., 2009) with cat-190

egory labels such as “barn owl” or “airplane,” and (3) CLIP191

(Radford et al., 2021), in which models learn an image-text192

contrastive objective where the cosine similarity between an193

image embedding and its matching natural language caption194

embedding is maximized. Unlike ImageNet labels, CLIP cap-195

tions contain additional linguistic information beyond category196

information (e.g. “a photo of a barn owl in flight”). To ad-197

dress the difference in parameter count between ResNet-50198

and ViT-B/16 (23M versus 86M parameters), we also provide199

results for ImageNet-pretrained ConvNeXt-B Liu et al. (2022)200

and DeiT-S Touvron et al. (2021) in Appendix A.4 (89M and201

22M parameters respectively).202

We adapt all models to the same-different task by append-203

ing a linear classifier to the output of the visual backbone. For204

models not trained from scratch, we directly fine-tune on train-205

ing sets from Training and Evaluation Datasets. Each model206

is trained from scratch or fine-tuned for 70 epochs with a batch207

size of 128, updating all parameters. We use a binary cross-208

entropy loss. For each architecture and pretraining combina-209

tion, we perform hyperparameter tuning via grid search over210

the initial learning rate (1e-4, 1e-5, 1e-6, 1e-7, 1e-8), learning211

rate scheduler (exponential, ReduceLROnPlateau), and212

optimizer (SGD, Adam, AdamW). We select the best perform-213

ing training configuration from the grid search according to214

in-distribution validation accuracy, and then train a model with215

those hyperparameters five times with different random seeds.216

We report the median test results across those five seeds.217

Generalization to Unseen Objects218

In-Distribution Generalization219

We first measure the performance of each model on test data220

containing the same types of objects used to train or fine-221

tune the model; e.g. models fine-tuned on pairs of hand-222

written characters are then tested on handwritten characters223

that were not seen during training. We refer to this as the in-224

distribution performance of the model. The starred (∗) result225

in Figure 3 shows the in-distribution median test accuracy of226

randomly-initialized ResNet-50 models trained on the Squig-227

gles dataset, which contains the same type of closed contours228

used by much of the prior work on the same-different rela-229

tion (Fleuret et al., 2011; Kim et al., 2018; Funke et al., 2021;230

Puebla & Bowers, 2022; Messina et al., 2022). Confirming the231

primary findings from prior work, these models do not attain232

above chance level test accuracy. The same pattern holds for233

randomly initialized ViT-B/16 models.234

However, as the rest of Figure 3 shows, pretrained models235

exhibit substantially improved in-distribution accuracy com-236



Figure 3: In-distribution test accuracy by architecture and pretraining method. Bars show median accuracy over 5 runs,
with the bar color denoting pretraining type and the x-axis denoting the dataset used for fine-tuning. See Methods for dataset
descriptions and model details, and Figure 2 for visual examples. The starred (∗) result is a replication of findings from prior
work showing that CNNs trained from scratch on stimuli like the images in Figure 1 attain chance-level test accuracy. The
double-starred (∗∗) result mirrors Funke et al. (2021) and Puebla & Bowers (2022), who show that ImageNet-pretrained CNNs
attain substantially higher in-distribution test accuracy relative to the same architectures trained from scratch.

pared to randomly initialized models across all four datasets.237

In particular, models pretrained with CLIP demonstrate the238

largest improvements, attaining nearly 100% test accuracy239

irrespective of fine-tuning dataset. Even without any fine-240

tuning, CLIP features appear to be highly useful for the241

same-different task—linear probes trained to do the same-242

different task using CLIP ViT-B/16 embeddings of stimuli with-243

out any fine-tuning achieve between 80% and 100% median244

in-distribution test accuracy depending on the dataset (Table245

12, Appendix A.7). Differences in performance can also be246

observed between architectures, with ViT-B/16 models con-247

sistently outperforming ResNet-50 after pretraining.3 These248

differences are likely not a result of a difference in parameter249

counts, as a similar gap in performance can be observed be-250

tween ImageNet ConvNeXt-B and ImageNet ViT-B/16, despite251

ConvNeXt-B being slightly larger (Appendix A.4).252

Another main finding is that the two visually abstract,253

shape-based datasets (SQU and ALPH) appear to pose more254

of a challenge to models than the SHA and NAT datasets—255

models attain noticeably higher in-distribution accuracy on the256

latter two across architectures and pretraining methods (al-257

though the effect is small for CLIP-pretrained models). This258

difference may be due to the color and texture information259

that is available in these datasets, which provides additional260

dimensions over which objects can be compared. We ex-261

plore the possibility that some models find it easier to eval-262

3ViTs also demonstrate qualitatively different training dynamics
compared to CNNs, appearing to generalize the same-different rela-
tion within the first few epochs of training. Furthermore, ViTs learn
more smoothly than ResNets. See Appendix A.2 for figures of train-
ing and accuracy curves.

uate equality using color or texture in addition to or instead of263

shape information in Examination of Inductive Biases.264

Out-of-Distribution Generalization265

The previous section showed that pretrained models can gen-266

eralize to unseen, in-distribution objects. However, if a model267

learns a truly abstract notion of same-different, it should be268

able to generalize the same-different relation to any two ob-269

jects regardless of their particular visual features. Thus, model270

performance on stimuli that are substantially different from271

training stimuli is a stronger measure of abstraction. We there-272

fore measure test accuracy for each model across all four273

datasets, yielding one in-distribution score and three out-of-274

distribution (OOD) scores per model. Table 1 shows median275

test accuracy over five seeds for CLIP-pretrained models; full276

generalization tables for all pretraining styles and architec-277

tures can be found in Appendix A.3.278

Overall, CLIP ViT-B/16 models fine-tuned on the Squig-279

gles task exhibit the strongest OOD generalization, achieving280

>95% median test accuracy on the three out-of-distribution281

datasets.4 As in the previous section, models fine-tuned on282

objects with visually abstract shape features only (SQU and283

ALPH) behave differently than those fine-tuned on datasets284

4It is worth noting that both this model and CLIP ResNet-50 fine-
tuned on the ALPH task (the model with the second best OOD gen-
eralization performance) exhibit some degree of sensitivity to the
random seed used during fine-tuning: most random seeds result in
nearly 100% OOD generalization for ViT or >80% for ResNet across
all datasets, while some seeds result in substantially lower perfor-
mance (1/5 seeds for ViT and 2/5 for ResNet). No other model con-
figurations exhibit this bimodal behavior. See Appendix A.10 for de-
tails.



Table 1: Out-of-distribution (OOD) test accuracy for CLIP models fine-tuned on each dataset. Rows indicate the dataset
that models are fine-tuned on, while columns indicate the test dataset. Each cell is the median performance over five random
seeds. The rightmost column labeled “Avg.” is the row-wise average of accuracy scores across OOD test sets (i.e. off-diagonal
values), which indicates how well a model fine-tuned on a given dataset is able to generalize to other datasets. The bottom row
labeled “Avg.” is the column-wise average across off-diagonal values, indicating how difficult it is for models fine-tuned on other
datasets to generalize to the given dataset. Note that the bolded diagonals are the pink bars in Figure 3. OOD generalization
results for all models are in Appendix A.3; Appendix A.5 shows median AUC-ROC scores.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 97.7 82.9 86.9 82.0 83.9
ALPH 82.1 97.4 92.8 91.8 88.9
SHA 56.0 78.1 98.1 96.1 76.7
NAT 50.1 59.3 93.4 97.3 67.6
Avg. 62.7 73.4 91.1 90.0

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 99.6 97.7 99.1 96.7 97.8
ALPH 55.3 99.4 99.6 91.2 82.0
SHA 50.0 55.4 100 100 68.5
NAT 50.0 68.0 99.8 100 72.6
Avg. 51.8 73.7 99.5 95.9

containing objects with shape, color, and texture features285

(SHA and NAT). The SQU and ALPH models generally at-286

tain high OOD test accuracy. On the other hand, models fine-287

tuned on the SHA or NAT datasets generalize well to each288

other but struggle to generalize to the SQU and ALPH tasks.289

Note that some of this effect can be attributed to miscalibrated290

bias, but not the entire effect—see Appendix A.5 for details.291

Another way to understand the generalization pattern in Ta-292

ble 1 is that the more “challenging” a dataset is to generalize293

the same-different relation to, the more effective it is as a fine-294

tuning dataset for inducing out-of-distribution generalization.295

For example, CLIP ViT-B/16 models fine-tuned on datasets296

other than Squiggles attain a median test accuracy of only297

51.8% on the Squiggles task on average, whereas CLIP ViT-298

B/16 fine-tuned on Squiggles attains an average OOD test299

accuracy of 97.8%. On the other hand, the Shapes dataset300

is easy for models fine-tuned on other datasets to generalize301

to (99.5% accuracy on average), but CLIP ViT fine-tuned on302

that “easier” dataset attains an average OOD test accuracy of303

only 68.5%. This pattern of Squiggles being more “difficult”304

to generalize to persists across architectures and pretraining305

methods (Appendix A.3).306

Out-of-Distribution Generalization to Photorealistic307

Stimuli308

In the previous section, we demonstrated that CLIP-pretrained309

models fine-tuned on one set of same-different stimuli can310

consistently generalize the relation to other visually distinct311

sets of stimuli. Despite these successes, one potential criti-312

cism is that the types of artificial stimuli we use—albeit having313

proved significantly challenging in previous attempts to solve314

the same-different task—lack the additional complexities in-315

volved in recognizing abstract visual relations in real-world316

environments. In particular, following prior work, the objects317

in our “same” stimuli are the same as each other at the pixel318

level. It is possible that models in this conventional setting319

learn to generalize the same-different relation by simply rec-320

ognizing whether small patches of pixels or even single pix-321

els have the same values rather than comparing whole ob-322

jects. Relying on pixel-level mechanisms to adjudicate be-323

tween same and different would fail in photorealistic settings,324

since two instances of the same 3D object can differ at the325

pixel level due to differences in lighting, rotation, and depth326

of field. Given the successful OOD generalization of our fine-327

tuned models in an artificial setting, we wanted to test whether328

our findings extend to more challenging real-world settings.329

To this end, we evaluate the fine-tuned models from pre-330

vious sections on a dataset of 1,024 photorealistic same-331

different stimuli (see Figure 4). Each stimulus is a 224x224332

pixel image depicting a pair of same or different 3D objects333

arranged on the surface of a table. We created these images334

in Blender, a sophisticated 3D modeling tool, using a set of335

16 unique 3D models of different objects that vary in shape,336

texture and color. To construct the dataset, we first generate337

all possible pairs of same or different objects, then select a338

subset of the possible “different” pairs such that each object339

appears in two pairs. This ensures that all objects are equally340

represented and that an equal number of “same” and “differ-341

ent” stimuli are created. We create 32 unique stimuli for each342

pair of objects by placing them on the table in eight random343

configurations within the view of four different camera angles,344

allowing partial occlusions. Each individual object is also ran-345

domly rotated around its Z-axis in each image—because 11 of346

the objects lack rotational symmetry, these rotations provide347

an additional challenge, especially for “same” classifications.5348

We evaluate the SQU, ALPH, SHA, and NAT fine-tuned349

models from the previous sections on the photorealistic350

dataset without any additional fine-tuning. We compute me-351

dian test accuracy on the photorealistic dataset for CLIP-352

pretrained models across the same five random seeds re-353

ported in previous sections (see Figure 22). Surprisingly,354

CLIP-pretrained ViT models generalize with 80-90% median355

test accuracy to the photorealistic stimuli despite only receiv-356

ing fine-tuning on pixel-level sameness between 2D objects,357

indicating that their robust generalization of the same-different358

relation is not limited to our particular definition of the same-359

different task. On the other hand, all other pretraining and360

5We also test models on a version of the photorealistic dataset
where “same” objects are always rotated identically. We find that
performance for most models improves slightly; see Appendix A.11.



Figure 4: Examples of “same” and “different” photorealistic stimuli. The textures of the table surface and background
wall are randomly selected from a set of four options each. No two objects in an image are the same on a pixel level. See
Appendix A.11 for images of all 16 3D objects.

architecture combinations including CLIP-pretrained ResNets361

fail to generalize consistently to the photorealistic stimuli (see362

Appendix A.11). These results suggest that, with careful363

choices of architecture and pretraining, fine-tuning on simplis-364

tic 2D stimuli may be sufficient for learning an abstract same-365

different relation that generalizes to 3D objects despite the ad-366

ditional visual complexities of real-world settings.367

Examination of Inductive Biases368

What features do models use to decide whether two objects369

in an image are the same? Since we train models without370

explicit guidance for how to solve the task, any inductive bias371

a given model may have likely influences how it learns the372

same-different relation. Previous work has claimed that CNNs373

trained on ImageNet are often biased towards texture over374

shape (Geirhos et al., 2019; Hermann et al., 2020). This375

may be related to results from Kim et al. (2018) that show376

poor performance for CNNs trained from scratch on texture-377

less shapes. In this section, we investigate whether and how378

these inductive biases influence model behavior for the same-379

different task.380

Grayscale and Graymasked Objects We train models on381

one of three variants of the Shapes dataset: objects are ei-382

ther kept the same (Figure 5a, “Color”), grayscaled to pre-383

serve texture but remove color (Figure 5a, “Grayscale”), or384

completely covered in gray to remove both texture and color385

(Figure 5a, “Masked”). If a model is biased towards color, per-386

formance should drop on the Grayscale and Masked datasets;387

if it is biased towards texture, performance should suffer on the388

Masked dataset. Only a model that is biased towards shape389

would generalize effectively to all three settings. We train or390

fine-tune on each of these three variants for randomly initial-391

ized, ImageNet-pretrained, and CLIP-pretrained models.392

Figure 6A shows the test performance of randomly initial-393

ized ViT-B/16 trained on either Color, Grayscale, or Masked394

versions of the Shapes dataset (Figure 5a) and tested on395

novel objects from each of those distributions. Figure 6A396

shows that ViT-B/16 trained from scratch only achieves397

high in-distribution accuracy for the Color Shapes dataset398

(92.9%); the hatched gray and dark gray bars representing399

Figure 5: Examples of stimuli used to test inductive bi-
ases. Figure (a) shows examples of objects from the three
versions of the Shapes dataset used to produce results in Fig-
ure 6. Figures (b) and (c) are examples of stimuli with conflict-
ing signals used in Dissociating Color, Texture, and Shape,
where either color is the same while texture and shape differ,
or color and texture are the same while shape differs.

in-distribution accuracy for Grayscale and Masked Shapes400

are much lower (78.8% and 53.5% respectively). Despite401

this high in-distribution accuracy on Color Shapes, perfor-402

mance drops to 66.2% and 62.6% when generalizing out-of-403

distribution to Grayscale and Masked Shapes, as indicated404

by the two lower gray bars beside the hatched green bar.405

This gap suggests that ViT-B/16 only learns to compare ob-406

ject color when it is trained from scratch on the Color Shapes407

dataset, leading to greater errors when tested on datasets that408

do not contain color. Figure 6A also shows that fine-tuning409

on Masked Shapes allows for out-of-distribution generalization410

that is strong relative to in-distribution generalization, suggest-411

ing that the model learns a more generalizable shape bias in412

this case. Figure 6B shows that CLIP pretraining weakens413



Figure 6: Test accuracy for models trained or fine-tuned on one version of the Shapes dataset (Color, Grayscale, Masked)
and then tested on all three versions of the dataset. Example stimuli are shown in Figure 5a. Hatched bars indicate in-
distribution accuracy. Median results for the same hyperparameters trained for five different seeds are reported, with individual
runs also plotted as translucent points.

ViT’s bias towards color, allowing for high in-distribution accu-414

racy and near-perfect out-of-distribution generalization when415

trained on any of the three modified Shapes datasets.416

ResNet-50 does not demonstrate an inductive bias towards417

color or texture when the model is trained from scratch. How-418

ever, pretraining results in a slight bias, with a 7.3% gap419

between in-distribution and Masked OOD accuracy for CLIP420

ResNet-50 fine-tuned on Color Shapes (Figure 6D).421

Dissociating Color, Texture, and Shape Results from Fig-422

ure 6 suggest that some models learn to rely on certain fea-423

tures more than others to differentiate between objects in an424

image. To delve deeper, we create eight test datasets based425

on the Shapes dataset that vary whether shape, color, and426

texture are the same or different between two objects in an427

image (examples in Appendix B.2, Figure 23). We label each428

set of images with letters that represent whether color (C),429

texture (T), or shape (S) are the same. For example, images430

that contain two objects with the same color, different textures,431

and the same shape are labeled CS. CTS and “none” repre-432

sent the objects being completely the same or completely dif-433

ferent, respectively. We then evaluate the same models from434

Figure 6 on each of these test sets by measuring the propor-435

tion of “same” predictions for each dataset. If this proportion436

is high, the model views stimuli in those datasets as “same”; if437

it is low, the model views them as “different.” The first rows of438

Table 2 show the hypothesized behavior of theoretical models439

with certain inductive biases when tested on each of the gen-440

erated datasets. For example, if a model makes predictions by441

comparing object shape, then it should predict “same” when-442

ever the shape of the two objects in an image are the same443

(S) and “different” otherwise. Ideally, a model that has learned444

our definition of “same” (i.e. pixel-level similarity) should not445

predict “same” for any case besides CTS.446

Comparing the first row of results to predicted behavior,447

the “same” predictions made by Random ViT-B/16 on Color448

Shapes align closely with the predicted “color-biased model”449

behavior. This confirms our result from Figure 6, which shows450

that this model cannot generalize to datasets without color. If451

the same architecture is pretrained with CLIP and then fine-452

tuned on Color Shapes, its predictions become much more453

sensitive to texture and shape. However, these results reveal454

a bias towards color and texture. For example, CLIP ViT-B/16455

classifies CT images as “same” 89% of the time when fine-456

tuned on Color Shapes, but only 2% of the time when fine-457

tuned on Masked Shapes. This indicates that CLIP ViT-B/16458

maintains an inductive bias towards color and texture during459

fine-tuning; it only learns to compare object shape when there460



Table 2: Predicted results of dissociation experiments compared to actual results from ViT-B/16 models fine-tuned on
different versions of the original SHA dataset. The proportion of “same” predictions for different types of images should
change based on the inductive bias a given model is using. Even CLIP-pretrained ViT-B/16, which seemed from Figure 6 to be
unbiased, is revealed to have a slight bias towards either color & texture or shape depending on its fine-tuning dataset. Median
results over five seeds are reported for each row. Results for Random ViT-B/16 fine-tuned on Grayscale and Masked Shapes
are not shown due to low accuracy (making the results difficult to interpret); full table is Table 16.

Acc. Proportion of “Same” Predictions

Predicted ↓ acc. none S T TS C CS CT CTS

(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
color 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
texture 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
shape 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

ViT-B/16 (Rand) ↓ acc. none S T TS C CS CT CTS

Color Shapes 0.91 0.15 0.15 0.17 0.16 0.86 0.87 0.96 0.97

ViT-B/16 (CLIP) ↓ acc. none S T TS C CS CT CTS

Color Shapes 1.00 0.00 0.01 0.03 0.09 0.12 0.41 0.89 1.00
Grayscale Shapes 1.00 0.00 0.00 0.01 0.06 0.02 0.26 0.59 1.00
Masked Shapes 1.00 0.00 0.04 0.00 0.24 0.00 0.47 0.02 1.00

are no other features available in its fine-tuning data.461

Discussion and Conclusion462

Previous work has argued that deep neural networks struggle463

to learn the same-different relation between two objects in the464

same image (Kim et al., 2018; Puebla & Bowers, 2022), but465

the scope and nature of these difficulties are not fully under-466

stood. In this article, we tested several architectures with a467

number of pretraining methods and fine-tuning datasets in or-468

der to investigate the ability of neural networks to learn and469

generalize the same-different relation. Some of our model470

configurations are able to generalize the relation across all471

of our out-of-distribution evaluation datasets; the best model472

is CLIP ViT fine-tuned on the Squiggles same-different task.473

Across five random seeds, this model yields a median test ac-474

curacy of nearly 100% on every evaluation dataset we use.475

Furthermore, this model can generalize the relation from an476

artificial 2D setting to a more challenging 3D setting with up477

to 95% test accuracy without any additional fine-tuning on 3D478

stimuli. The existence of such a model suggests that deep479

neural networks can learn generalizable representations of480

the same-different relation, at least for the tests we examined.481

There are a number of possible reasons why CLIP-482

pretrained Vision Transformers exhibit the strongest out-of-483

distribution generalization. CLIP pretraining may be helpful484

because of the diversity of the dataset, which Fang et al.485

(2022) argue is key to the robust generalization of CLIP mod-486

els in other settings. This success may also be due to volume:487

CLIP models were trained on 400 million images, an order of488

magnitude greater than the 14 or 1.2 million images in Ima-489

geNet datasets. Another hypothesis is that linguistic supervi-490

sion from captions containing phrases like “same,” “different,”491

or “two of” (which ImageNet-supervised models would have492

no exposure to) helps models to separate same and different493

objects in their visual embedding spaces, an idea supported494

by the results of our linear probe experiments (Appendix A.7).495

Even with CLIP pretraining, only ViT architectures exhibit496

strong out-of-distribution generalization. This may be due to497

their larger receptive field size; CNNs can only compare dis-498

tant image patches in deeper layers, whereas ViTs can com-499

pare any image patch to any other as early as the first self-500

attention layer. Thus, ViTs may be able to integrate com-501

plex shape information and compare individual objects to each502

other more efficiently than CNNs. Indeed, Lepori et al. (2024)503

find that ViT architectures compute this relation through direct504

comparisons between whole objects in early processing lay-505

ers, regardless of the spatial distance separating the objects.506

The success of ViT over ResNet is somewhat surprising.507

Although convolutional neural networks were directly inspired508

by models of visual perception in primates (Hubel & Wiesel,509

1968; Fukushima, 1980; LeCun et al., 1995), we show that510

they do not necessarily learn more generalizable representa-511

tions of abstract relations. Even CLIP ResNet—the strongest512

performing ResNet model—fails to match CLIP ViT’s out-of-513

distribution performance. This result suggests that Transform-514

ers may represent a competitive alternative model of human515

vision, despite the more biologically-inspired origins of convo-516

lutional networks. It also echoes work from Tuli et al. (2021)517

showing that, like humans, ViT models are consistently more518

biased towards shape compared to convolutional models.519

Although Transformer models can learn more human-520

aligned representations, they may require more training data521

to do so. When trained from a random initialization on522

6400 examples, ViT-B/16 achieves only 5% above guess-523

ing accuracy for half of our tasks (Table 9), while ResNet-50524

achieves above-chance accuracy for all but one task (Table 8).525

Nonetheless, both models are extremely data-inefficient com-526

pared to humans: infants less than a year old require less527



than ten examples to generalize the same-different relation528

(Hespos et al., 2021). Even when Transformer models do529

learn robust representations of same-different, this alignment530

seems to be a result of pretraining on large amounts of natu-531

ralistic data rather than human-like inductive biases. Our find-532

ings suggest that human-like visual processing can emerge in533

deep neural networks even without explicitly human-inspired534

architectural choices, which has important implications for535

how to approach the computational modeling of vision.536
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A Additional Generalization Results721

A.1 Testing Models on Evaluation Sets from722

Puebla & Bowers (2022)723

We test two of our models on the evaluation sets from Puebla724

& Bowers (2022): ImageNet ResNet-50 fine-tuned on SQU,725

which is roughly equivalent to the models tested in Puebla &726

Bowers (2022), and CLIP ViT-B/16 fine-tuned on SQU, which727

is our best model. We use code from Puebla & Bowers (2022)728

to generate test sets of 6,400 images evenly split between the729

classes, which is equal to the size of our test sets. Figure 7730

show all 10 evaluation datasets used in this section. Further-731

more, we report median AUC-ROC to better match Puebla732

& Bowers (2022), who report mean AUC-ROC. The rest of733

our methodology follows Methods. We also test models on734

four more challenging evaluation sets from Puebla & Bowers735

(2022); details and results can be found in Subsection A.1.1.736

We test two of our models on the 9 main evaluation sets737

from Puebla & Bowers (2022): ImageNet ResNet-50 fine-738

tuned on SQU, which is roughly equivalent to the models739

tested in Puebla & Bowers (2022), and CLIP ViT-B/16 fine-740

tuned on SQU, which is our best model. We use code from741

Puebla & Bowers (2022) to generate test sets of 6,400 images742

evenly split between the classes, which is equal to the size of743

our test sets. Figure 7 show all 10 evaluation datasets used744

in this section. Furthermore, we report median AUC-ROC to745

better match Puebla & Bowers (2022), who report mean AUC-746

ROC. The rest of our methodology follows Methods.747

Our ImageNet ResNet-50 results are comparable to results748

from Puebla & Bowers (2022) but not identical. Differences749

in our specific results may be due to our differing methods for750

creating our datasets. For example, the sizes of their objects751

are variable and may either be smaller or larger than our cho-752

sen size of 64x64 pixels (see Figure 7 for examples). Their Im-753

ageNet ResNet-50 model is fine-tuned on Fleuret et al. (2011)754

stimuli in which the sizes of the objects also vary, whereas our755

model is fine-tuned on objects of a fixed size. We also thicken756

the lines of our SQU stimuli, while Puebla & Bowers (2022) do757

not. Furthermore, they use more fine-tuning images than us758

(28,000 versus 6,400), and their hyperparameters likely differ759

as well. Even still, the larger pattern of results is the same—760

ImageNet ResNet-50 fine-tuned on the same-different rela-761

tion using stimuli from Fleuret et al. (2011) (our SQU stimuli)762

attains relatively high in-distribution test accuracy but strug-763

gles to generalize out-of-distribution. This agrees with the re-764

sults we obtain using our evaluation sets (SQU, ALPH, SHA,765

& NAT); Table 6 shows that ImageNet-ResNet-50 fine-tuned766

on SQU struggles to generalize out-of-distribution.767

In contrast, CLIP ViT-B/16 fine-tuned on our SQU dataset768

achieves perfect or nearly perfect in- and out-of-distribution769

generalization, with the exception of two test datasets (Lines770

and Arrows). This performance is rather remarkable given771

that objects in the evaluation datasets from Puebla & Bowers772

(2022) vary greatly in size, whereas our CLIP ViT-B/16 model773

is fine-tuned on objects of a fixed size only. This suggests that774

CLIP ViT-B/16 fine-tuned on SQU may learn a same-different775

relation that is invariant to certain qualities (such as object776

size) without explicit fine-tuning for such invariance. This is777

also supported by CLIP ViT’s generalization to photorealis-778

tic stimuli in Out-of-Distribution Generalization to Photoreal-779

istic Stimuli, in which objects vary in size and pose. Figure780

9 shows examples of stimuli from the two more challenging781

datasets (Lines and Arrows) for which all five CLIP ViT-B/16782

random seeds make errors. For Arrows, this lack of gener-783

alization may be due to symbols overlapping or being much784

closer to each other than any stimuli in our fine-tuning data.785

It’s also possible that the model lacks the spatial reasoning786

required to form useful object representations for the Arrows787

dataset—unlike other datasets, this dataset requires the abil-788

ity to reason about the direction of an identical line relative to789

identical triangles in order to distinguish objects. Thus, fail-790

ure on Arrows may simply be due to “perceptual” errors like791

difficulties in segmenting the objects or failures in spatial rea-792

soning rather than a lack of a general same-different repre-793

sentation. We also see a very slight decrease in test AUC-794

ROC for the Scrambled dataset, which is an interesting case.795

Errors made for this dataset were primarily due to our model796

misclassifying slightly scrambled and unmodified polygons as797

the “same.” This error may offer insight into how exactly CLIP798

ViT-B/16 fine-tuned on SQU compares objects in an image.799

However, the most surprising finding is that CLIP ViT-B/16800

classifies all stimuli in the Lines dataset as “same” (see Ap-801

pendix A.6), and that its ROC-AUC score is below 0.5. This802

is striking because all objects in the Lines dataset are ac-803

tually the same under reflection. This result makes it very804

tempting to conclude that CLIP ViT-B/16 actually learns to805

generalize to reflections without ever being fine-tuned to do806

so. In fact, if models see the same image multiple times807

but flipped horizontally during pretraining—which is a com-808

mon data augmentation—then pretrained models may already809

have reflection invariance baked in. Pretraining data augmen-810

tations have been shown to have such an effect on other ab-811

stract relational learning tasks (Davidson et al., 2023). While812

a proper treatment of CLIP’s invariances are outside of the813

scope of this work, we test our intuition that CLIP ViTs learn a814

reflection-invariant same-different relation in Subsection A.1.3815

below. We find evidence that strongly suggests our intuition.816

However, there are other possible contributing factors to CLIP817

ViT’s failure on the Lines dataset. For instance, the Lines818

dataset consists entirely of one unique object that is scaled819

and flipped to create all stimuli; therefore, if our model makes820

a perceptual error when processing this particular object, that821

error could plausibly occur across the entire dataset.822

A.1.1 More Challenging Datasets from Puebla & Bowers823

(2022) In order to better understand CLIP ViT’s limitations,824

we further test the ability of CLIP ViT-B/16 fine-tuned on SQU825

(our best model from previous sections) to generalize to four826

additional datasets from Puebla & Bowers (2022): Rectan-827

gles, Straight Lines, Connected Squares, and Connected Cir-828

cles (see Figure 10 for example stimuli). These datasets are829



Figure 7: Examples of “same” and “different” stimuli from all 10 evaluation sets in Figure 8. The first dataset (SQU) is
the in-distribution test set and is the same as our SQU dataset from the main body of this paper. The other nine datasets are
generated following Puebla & Bowers (2022).

Figure 8: Out-of-distribution test AUC-ROC for ImageNet ResNet-50 and CLIP ViT-B/16 fine-tuned on SQU. Median AUC-
ROC over five seeds is reported with individual runs also shown. The legend on the right indicates the test dataset. The two red
bars in this figure show in-distribution test AUC-ROC, which is also reported for CLIP ViT-B/16 in Table 11.

somewhat more challenging than previously tested datasets830

because they either contain extremely minimal visual infor-831

mation (Rectangles and Straight Lines) or require models to832

correctly process objects consisting of two sub-objects (Con-833

nected Squares and Connected Circles). Our methodology is834

exactly the same as described earlier in Appendix .835

Results for the same five model seeds in Figure 8 (and the836

main body of the paper) are presented in the bar chart in Fig-837

ure 10. Performance is slightly above chance for the Rect-838

angles and Straight Lines datasets, exactly chance for Con-839

nected Squares, and well above chance for Connected Cir-840

cles (although not near perfect or excellent). At first, these841

results appear to contradict our main claim: that CLIP ViT-842

B/16 fine-tuned on SQU learns a generalizable representation843

of same-different. However, we believe that the failure of CLIP844

ViT to generalize to these datasets is actually a result of the845

model’s “fuzzy” same-different computation rather than an ab-846

ject failure to generalize the relation. Instead of computing a847

perfect equality between each pixel of the two objects, CLIP848

ViT appears to use an embedding similarity threshold to de-849

termine sameness. This can lead to model errors when the850

learned threshold is too low for a new OOD dataset.851

Our first line of evidence that this is the case is CLIP852

ViT’s strong performance on the photorealistic dataset in Out-853

of-Distribution Generalization to Photorealistic Stimuli. The854

“same” objects in these images are not the same on a pixel855

level, yet CLIP ViT can still accurately classify them. This856

strong performance could only be enabled by a “fuzzy” same-857

different computation whereby exact pixel-level details are dis-858

regarded. Note that the objects in the photorealistic dataset859

can vary greatly in size and pose; the objects in the Rect-860

angles and Straight Lines datasets (Figure 10) are more or861

less the same entity but varied in size (and in the case of862

Rectangles, “pose,” due to the slightly different height-width863

ratios of the rectangles). Thus, this size and pose invariance864

could explain the model’s poor generalization to Rectangles865

and Straight Lines.866

Our second line of evidence is the distribution of CLIP ViT867

logits on the Rectangles, Straight Lines, and Connected Cir-868

cles datasets. We examine the logits of the median seed of869

CLIP ViT fine-tuned on SQU (i.e. the seed corresponding to870

the bars in Figure 10) on these four datasets. See Table 3871



Figure 9: “Different” images misclassified by CLIP ViT-B/16 as “same” from Puebla & Bowers (2022)’s Lines and Arrows
datasets. These stimuli are randomly sampled from the set of stimuli misclassified by all five seeds. Nearly 100% of model
errors across evaluation datasets and seeds are mistaking “different” stimuli for “same” stimuli, so we only show mistakes of this
kind. Note that the “different” Lines stimuli (middle row) are actually the same under reflection. Confusion matrices computed on
these two datasets for the models tested in this section can be found in Appendix A.6.

Figure 10: Example stimuli (left) and median test AUC-ROC scores for CLIP ViT-B/16 fine-tuned on SQU (right) on four
more challenging evaluation sets from Puebla & Bowers (2022). Left: “same” stimuli are displayed in the top row, while
“different” stimuli are in the bottom row. Note that “different” stimuli in the Connected Squares and Connected Circles datasets
are actually the same under reflection. Right: CLIP ViT’s generalization to these four datasets is notably worse than the other
datasets tested in Appendix . There are a number of possible explanations; see Subsections A.1.2 and A.1.3.

Table 3: Model classifications and average logits by ground-truth class for CLIP ViT-B/16 fine-tuned on SQU on the four
datasets in Figure 10. The % Pred. “Same” column indicates the percentage of all stimuli (which are evenly split between
“same” and “different”) are predicted “same.” Nearly 100% of stimuli for each dataset receive a “same” classification. The
GT “Same” and “Diff” Logit columns indicate the model’s average “same” logit for ground truth “same” and “different” images
respectively. Images that are actually the same receive reliably stronger “same” judgements except in the case of Connected
Squares.

Dataset ↓ % Pred. “Same” GT “Same” Logit GT “Diff” Logit

Rectangles 99.97 3.82 3.45
Straight Lines 99.98 3.81 3.61

Connected Squares 100.0 3.73 3.76
Connected Circles 99.95 4.0 3.2



for results. First, we note that the model predicts “same” for872

nearly 100% of the images in each dataset (% Pred. “Same”873

in Table 3). However, the strength of these “same” classifi-874

cations differs reliably between ground truth “same” and “dif-875

ferent” images for three of the four datasets. The average876

“same” logit for truly “same” images (GT “Same” Logit in Ta-877

ble 3) in the Rectangles, Straight Lines, and Connected Cir-878

cles datasets is higher than the average “same” logit for “dif-879

ferent” images (GT “Diff” Logit in Table 3). This indicates that880

the model does in fact discriminate between “same” and “dif-881

ferent” to some extent for these datasets.882

Our third and final line of evidence is the relationship of883

the average cosine similarity between “different” object em-884

beddings in a given dataset and CLIP ViT SQU’s performance885

on the dataset. Objects that are considered on average much886

more similar according to CLIP ViT SQU than the objects in887

the SQU dataset predict poor generalization performance; this888

is likely because these objects exceed the model’s learned889

threshold for judging “same,” which is calibrated for SQU stim-890

uli. See Subsection A.1.2.891

Separately, note that CLIP ViT appears to learn a same-892

different relation that is invariant to reflection; in other words,893

the same object reflected is still considered “same” when894

compared to the non-reflected version. The “different” im-895

ages in the Lines, Connected Squares, and Connected Cir-896

cles datasets are in fact the same object reflected. In fact, the897

two most difficult datasets for CLIP ViT—Lines and Connected898

Squares—both feature the same type of reflection: reflection899

across the y-axis of the objects. We test CLIP ViT SQU on900

a version of our fine-tuning datasets where objects are re-901

flected across the y-axis, finding that this drops model gener-902

alization to these datasets from near perfect to near chance.903

This strongly suggests reflection-invariance in this model. See904

Subsection below.905

A.1.2 Object Embedding Similarity Predicts Generaliza-906

tion for CLIP ViT SQU We seek to measure how visu-907

ally distinct the OOD objects in the Puebla & Bowers (2022)908

datasets are according to a CLIP ViT fine-tuned on SQU com-909

pared to the objects in the model’s fine-tuning dataset (SQU).910

We hypothesize that because of the model’s “fuzzy” same-911

different computation, it will perform worse on datasets that912

contain objects that are more visually similar to each other913

compared to SQU objects.914

We measure inter-object similarity by creating separate in-915

put images for each individual object. These images are916

equivalent to the “same” and “different” stimuli, except only917

one object is present. The single object is randomly placed in918

the image. In the case of the datasets from Puebla & Bowers919

(2022), we generate 1,000 unique object images in this way920

for each dataset. In the case of our SQU fine-tuning set, we921

source 1,000 unique objects not seen during fine-tuning. For922

each dataset, we embed each single-object image using the923

image encoder from CLIP ViT fine-tuned on SQU. We then924

compute pairwise cosine similarity between the embeddings925

of all different objects. Finally, we report the average of the926

Figure 11: Average inter-object CLIP embedding simi-
larity for each evaluation dataset (green) vs. CLIP ViT
generalization performance (magenta). The vertical green
lines represent the variance in inter-object similarity for each
dataset. If different objects are overly similar to each other
compared to the fine-tuning data (SQU; green star), model
generalization performance drops significantly due to misclas-
sifying all “different” images as “same.”

pairwise object cosine similarity scores as the solid green line927

in Figure 11.928

The green star in Figure 11 marks the average inter-929

object embedding similarity for unseen SQU objects, while930

the dashed green line indicates the maximal average inter-931

object embedding similarity for which CLIP ViT SQU performs932

well (this corresponds to the Wider dataset; see Figure 7).933

The datasets with an average inter-object embedding simi-934

larity above this threshold are Lines, Connected Squares (C.935

Squares), Straight Lines (S. Lines), Rectangles, and Con-936

nected Circles (C. Circles). Plotted in magenta in Figure 11937

are the median test AUC-ROC scores on each evaluation938

dataset. Model performance is near perfect for all datasets939

with object similarities below the threshold marked by the940

dashed green line (with the exception of Arrows). Model per-941

formance drops precipitously for datasets with object similar-942

ities above the threshold. Essentially, the objects in these943

datasets are significantly more similar to each other com-944

pared to the objects in the fine-tuning data (SQU); thus, be-945

cause CLIP ViT learns a “fuzzy” same-different computation,946

it considers the objects in these high-similarity datasets to947

be the “same” according to the lower threshold learned on948

SQU. Model predictions for these high-similarity datasets ac-949

cord with this interpretation; nearly all “different” images are950

misclassified as “same” (see Table 3 as well as Appendix A.6).951

A.1.3 Reflection Invariance in CLIP ViT The poor gen-952

eralization performance of CLIP ViT on the Lines, Connected953

Squares, and Connected Circles datasets from Puebla & Bow-954

ers (2022) (see Figures 7 and 10) suggest an interesting955

possibility: that CLIP ViT learns a reflection invariant same-956

different relation, despite not being trained to do so (see the957



Figure 12: Example stimuli from each “flipped” dataset.

end of Appendix ). To test this, we evaluate CLIP ViTs fine-958

tuned on SQU on “flipped” versions of our SQU, ALPH, and959

NAT fine-tuning datasets. We skip the SHA dataset since960

many of the shapes have bilateral symmetry. The “same”961

stimuli in the flipped datasets are the same as the regular962

datasets; the “different” stimuli however are created by re-963

flecting a copy of a given object about its y-axis. See the964

right side of Figure 12 for example stimuli. Note that this965

matches the definition of “different” used by the Lines, Con-966

nected Squares, and Connected Circles datasets from Puebla967

& Bowers (2022).968

We create flipped SQU, ALPH, and NAT datasets contain-969

ing 6,400 images each, evenly divided between “same” and970

“different.” We then compute test accuracy on these datasets971

for CLIP ViT-B/16 fine-tuned on SQU using the same five972

seeds used elsewhere in the paper. We find that median973

model performance drops significantly for the flipped datasets974

due to models predicting “same” for “different” images, indi-975

cating that the model considers reflected versions of the same976

object to be the same. This effect is more severe for the two977

OOD datasets (ALPH and NAT). Decreases in median test978

accuracy as well as the percentage of all stimuli predicted979

“same” for each dataset are the following: 99.6% (original)980

to 77.1% (flipped) test accuracy for SQU, with 72.9% pre-981

dicted “same;” 97.7% (original) to 51.6% (flipped) test accu-982

racy for ALPH, with 98.4% predicted “same;” 96.7% (original)983

to 51.8% (flipped) for NAT, with 98.2% predicted “same.” This984

invariance likely helps to explain why model generalization985

suffers on Lines, Connected Squares, and Connected Circles986

from Puebla & Bowers (2022).987

A.2 In-Distribution Learning Curves988

For each architecture and pretraining method, we plot loss989

and in-distribution validation accuracy per epoch of fine-tuning990

or training on each dataset. Lines show averages for the same991

set of hyperparameters (for that model & dataset) across five992

seeds.993

A.3 Out-of-distribution Generalization Tables994

We report median test accuracy over five random seeds995

for each pretraining method, architecture, and fine-tuning996

dataset. The tables below include the four main fine-tuning997

datasets (SQU, ALPH, SHA, NAT; see Figure 2), the grayscale998

and masked versions of the SHA dataset (SHA-G and SHA-999

M; see Figure 5a), and grayscale and masked versions of the1000

NAT dataset (NAT-G and NAT-M). As in Table 1, rows indicate1001

the dataset that models are fine-tuned on, while columns indi-1002

cate the test dataset. The rightmost column labeled “Avg.” is1003

the row-wise average of accuracy scores across OOD evalu-1004

ation sets (i.e. off-diagonal values), which indicates how well1005

a model fine-tuned on a given dataset is able to generalize to1006

other datasets. The bottom row labeled “Avg.” is the column-1007

wise average across off-diagonal values, indicating how diffi-1008

cult it is for models fine-tuned on other datasets to generalize1009

to the given dataset.1010



Figure 13: Average loss curves for randomly-initialized ResNet-50 and ViT-B/16 trained on each dataset. Even though
loss curves for models trained on SQU go to zero, validation accuracy remains flat, indicating that models memorize training
data. Furthermore, the loss curves for randomly-initialized ViT-B/16 distinctly mirror the hierarchy of dataset difficulty discussed
in Out-of-Distribution Generalization.

Figure 14: Average loss curves for ImageNet-pretrained ResNet-50 and ViT-B/16 fine-tuned on each dataset. Models
converge substantially faster than in Figure 13. ImageNet ViT-B/16 models fine-tuned on SHA and NAT already attain nearly
100% validation accuracy after only one epoch.



Figure 15: Average loss curves for CLIP-pretrained ResNet-50 and ViT-B/16 fine-tuned on each dataset. In-distribution
generalization to color-containing datasets SHA and NAT seem much more difficult for CLIP ResNet-50 than CLIP ViT-B/16 (or
any other model configuration). CLIP ViT-B/16 attains nearly 100% validation accuracy after only one epoch of fine-tuning on all
datasets except SQU.



Table 4: OOD test accuracy for CLIP ResNet-50 models fine-tuned on each dataset. The model fine-tuned on NAT-G exhibits
the strongest average OOD generalization, although it fails to generalize to the SQU stimuli.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 97.7 80.8 82.9 81.9 73.6 82.0 86.6 82.6 81.5
ALPH 83.5 97.4 88.9 90.1 92.9 90.7 78.2 83.8 86.9
SHA 51.3 69.3 98.1 96.2 90.8 95.2 76.3 86.6 80.8
SHA-G 65.5 80.7 98.1 98.2 95.1 93.7 95.8 91.5 88.6
SHA-M 55.9 68.1 94.7 92.1 76.1 79.6 100 86.4 82.4
NAT 53.4 76.0 95.2 96.1 96.1 97.3 87.0 94.3 85.4
NAT-G 55.6 81.3 95.4 97.3 98.0 95.7 89.7 92.7 88.0
NAT-M 59.8 80.6 90.6 91.4 90.1 94.8 94.3 95.0 85.9
Avg. 60.7 76.7 92.3 92.2 90.9 90.2 88.3 88.2

Table 5: OOD test accuracy for CLIP ViT-B/16 models fine-tuned on each dataset. It is interesting to note the different
patterns of generalization between models fine-tuned on SHA, SHA-G, and SHA-M. Models fine-tuned on the SHA dataset
(which contains color and texture) do not generalize very well to NAT-G and NAT-M datasets; models fine-tuned on SHA-G
(which removes color) generalize somewhat better to NAT-G and NAT-M; and models fine-tuned on SHA-M (which removes color
and texture) attain 100% or near 100% accuracy on NAT-G and NAT-M. The same pattern holds for models fine-tuned on NAT,
NAT-G, and NAT-M tasks.

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 99.5 97.7 99.1 98.9 94.8 95.5 95.0 98.1 97.0
ALPH 59.5 99.4 99.9 99.9 98.8 99.7 95.1 97.5 92.9
SHA 50.0 56.0 100 98.6 98.2 100 60.6 77.7 77.3
SHA-G 50.2 63.5 100 99.9 99.9 100 85.5 95.6 85.0
SHA-M 55.6 93.3 100 100 99.8 100 100 97.8 92.4
NAT 50.0 68.4 99.8 97.8 99.3 100 63.0 83.7 80.3
NAT-G 50.2 70.6 99.9 98.9 100 100 71.5 93.9 87.6
NAT-M 60.2 92.7 100 99.9 100 100 94.3 98.5 92.4
Avg. 53.7 77.5 99.8 99.1 98.7 99.3 84.8 92.0

Table 6: OOD test accuracy for ImageNet ResNet-50 models fine-tuned on each dataset. Unlike CLIP-pretrained models,
ImageNet ResNet-50 fine-tuned on SQU actually exhibits the weakest OOD generalization.

ImageNet ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 84.8 57.4 59.3 52.6 65.1 62.9 50.2 60.8 58.3
ALPH 61.3 83.7 60.4 69.0 78.5 70.2 68.0 73.9 68.8
SHA 51.2 66.7 94.4 90.1 78.4 84.0 64.1 66.5 71.6
SHA-G 53.9 72.6 70.8 94.6 84.2 74.2 90.1 78.9 75.0
SHA-M 56.2 68.9 73.7 92.4 79.4 68.7 99.3 79.8 77.0
NAT 50.3 58.3 80.4 69.5 78.6 90.5 62.4 70.7 67.2
NAT-G 50.8 72.2 70.0 82.8 89.8 78.2 69.1 81.1 75.0
NAT-M 50.1 74.9 66.9 76.2 84.0 74.2 78.9 88.4 72.2
Avg. 53.4 67.3 68.8 76.1 79.8 73.2 73.3 73.1



Table 7: OOD test accuracy for ImageNet ViT-B/16 models fine-tuned on each dataset. Interestingly, models fine-tuned
on SHA exhibit strong generalization to the grayscale and masked versions of that dataset (but still don’t generalize to SQU or
ALPH).

ImageNet ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 95.4 65.8 57.6 53.3 59.7 60.5 51.8 66.3 59.3
ALPH 81.7 97.0 50.5 51.0 59.1 52.1 52.1 67.0 59.1
SHA 50.0 50.1 100 96.2 99.3 99.4 55.8 82.5 76.2
SHA-G 50.0 61.2 100 99.8 99.8 99.9 73.9 84.8 81.4
SHA-M 57.7 88.0 99.9 99.8 99.6 97.5 99.9 97.1 91.4
NAT 50.0 50.4 97.3 80.4 97.8 100 50.4 71.8 71.2
NAT-G 50.0 50.2 98.3 91.7 99.7 99.9 54.0 87.8 82.5
NAT-M 52.2 72.3 99.8 99.3 99.9 100 91.7 98.4 87.9
Avg. 55.9 62.6 86.2 81.7 87.9 87.1 68.0 79.6

Table 8: OOD test accuracy for randomly-initialized ResNet-50 models trained on each dataset. Models attain surprisingly
high in-distribution test accuracy for certain datasets, such as SHA and SHA-G. Models trained on SQU appear to learn nothing
even though their loss curves diminish (see Figure 13). This indicates that models are memorizing training examples, which is
consistent with results from prior work (e.g. Kim et al. (2018)).

Randomly Initialized ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 49.8 49.7 49.5 48.2 49.1 48.3 49.6 50.0 49.2
ALPH 53.1 69.2 58.9 59.0 55.2 58.6 50.0 50.4 55.0
SHA 51.2 69.3 82.6 80.4 82.3 82.9 53.8 61.8 68.8
SHA-G 50.6 67.2 85.0 85.5 87.5 84.0 59.8 67.4 71.6
SHA-M 50.0 57.0 77.3 77.0 77.0 75.0 78.3 74.3 69.9
NAT 52.9 69.5 81.6 80.4 80.3 80.2 55.4 68.0 69.7
NAT-G 51.1 64.2 77.3 83.6 82.8 82.5 61.3 72.5 73.4
NAT-M 50.0 59.4 77.2 79.1 80.3 79.2 69.2 74.4 70.6
Avg. 51.3 62.3 72.4 72.5 73.9 72.9 59.5 63.5

Table 9: OOD test accuracy for randomly-initialized ViT-B/16 models trained on each dataset. Given their larger receptive
field size, randomly initialized ViTs somewhat surprisingly perform worse overall than randomly initialized ResNets (Table 8).

Randomly Initialized ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 51.7 51.8 51.0 53.5 52.7 53.8 51.4 53.9 52.6
ALPH 49.9 54.8 51.7 51.9 56.8 52.0 49.9 51.4 51.9
SHA 50.0 50.1 92.9 66.2 62.6 73.8 50.7 56.0 58.5
SHA-G 50.0 50.5 74.2 78.8 66.5 66.4 55.7 56.4 60.0
SHA-M 50.0 50.0 56.5 59.6 53.5 55.5 81.3 63.5 59.5
NAT 50.1 51.7 75.7 58.7 62.2 76.7 53.4 62.8 59.2
NAT-G 50.2 51.8 64.1 69.9 70.7 67.0 55.9 65.9 62.8
NAT-M 50.0 50.5 56.4 56.8 58.4 58.2 55.0 66.2 55.0
Avg. 50.0 50.9 61.4 59.5 61.4 61.0 56.8 58.6



A.4 ImageNet Models with Comparable Parameters1011

One explanation for the difference in performance between1012

ResNet-50 and ViT-B/16 is the fact that ResNet-50 consists of1013

23M parameters, whereas ViT-B/16 has a total of 86M pa-1014

rameters. To explore this possibility, we fine-tune and test1015

ConvNeXt-B Liu et al. (2022) as an example of a convolutional1016

model with 89M parameters (comparable to ViT-B/16), as well1017

as DeiT-S Touvron et al. (2021), a 22M parameter transformer1018

model of similar size to ResNet-50.1019

Results for ConvNeXt-B are shown on the left in Table 10.1020

This model was pre-trained on ImageNet-22k, the same1021

dataset as ImageNet ViT-B/16, and also has a similar number1022

of parameters as ViT-B/16. Comparing the left-hand side of1023

Table 10 to Table 7, we can see that despite ConvNeXt’s com-1024

petitive edge in parameter count, ViT-B/16 still seems to have1025

slightly stronger OOD generalization between SHA and NAT1026

as well as between SQU and ALPH. However, ConvNeXt does1027

generalize with a 71.7% accuracy to SHA when trained on1028

ALPH, which is better than any other non-CLIP model tested.1029

Looking at the right-hand side of Table 10, we see that1030

compared to ResNet-50 (Table 6), DeiT-S has more success1031

generalizing within SQU and ALPH as well as SHA and NAT.1032

These two smaller models were pre-trained on ImageNet-1033

1k, but despite this DeiT-S is still quite competitive with the1034

larger ConvNeXt, which was pre-trained on significantly more1035

data (ImageNet-22k). Taken as a whole, these additional re-1036

sults seem to suggest that the biggest differentiator between1037

ResNet-50 and ViT-B/16 is not parameter count or size of pre-1038

training data but architectural design.1039

A.5 Area Under the ROC Curve for CLIP Models1040

In addition to reporting median test accuracy across seeds,1041

we report median area under the ROC curve for CLIP ResNet-1042

50 and CLIP ViT-B/16. Table 11 below mirrors Table 1 from the1043

main paper.1044

Models fine-tuned on the Shapes and Naturalistic datasets1045

attain rather high AUC across all OOD test datasets, notably1046

including the Alphanumeric task (which does not contain color1047

or texture). CLIP ResNet-50 in particular attains > 0.8 AUC1048

across all fine-tuning conditions and test datasets. This is in1049

contrast to median accuracy results reported in Table 1, which1050

shows more of a dramatic “upper triangular” pattern. This in-1051

dicates that some of the models that achieve poor OOD test1052

accuracy may perform much more strongly with a correctly1053

calibrated bias. Even still, the “upper triangular” pattern is1054

still evident here—models fine-tuned on SQU and ALPH tasks1055

demonstrate stronger generalization than models fine-tuned1056

on SHA and NAT tasks. Furthermore, ViT still outperforms1057

ResNet, achieving perfect AUC across all test datasets when1058

fine-tuned on SQU.1059

A.6 Out-of-distribution Test Confusion Matrices1060

We consider the pattern of errors produced by two of our mod-1061

els: ImageNet ResNet-50 fine-tuned on SQU, which is the1062

most similar to models tested in some prior work (Funke et1063

Table 10: OOD test accuracy for ImageNet ConvNeXt-B
and DeiT-S fine-tuned on the main four datasets. Per-
formance is competitive between a small transformer model
of similar size to ResNet-50 and a large convolutional model
comparable to ViT-B/16, suggesting that the difference mainly
comes down to architecture.

ImageNet-22k ConvNeXt-B

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 87.0 55.3 52.8 52.5 61.9
ALPH 64.0 93.6 71.7 61.7 72.7
SHA 50.0 50.2 98.4 86.9 71.4
NAT 50.0 50.6 78.5 98.2 69.3
Avg. 62.8 62.4 75.4 74.8

ImageNet-1k DeiT-S

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 85.6 61.4 54.0 53.9 63.7
ALPH 62.2 88.7 63.1 71.3 71.3
SHA 50.1 52.2 97.9 94.5 73.7
NAT 50.0 52.7 85.2 98.4 71.6
Avg. 62.0 63.7 75.0 79.5

Table 11: Out-of-distribution test AUC for CLIP models
fine-tuned on each dataset. Rows indicate the dataset that
models are fine-tuned on, while columns indicate the test
dataset. Each cell is the median performance over five ran-
dom seeds. The rightmost column labeled “Avg.” is the row-
wise average of accuracy scores across OOD evaluation sets
(i.e. off-diagonal values), which indicates how well a model
fine-tuned on a given dataset is able to generalize to other
datasets. The bottom row labeled “Avg.” is the column-wise
average across off-diagonal values, indicating how difficult it
is for models fine-tuned on other datasets to generalize to the
given dataset.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 0.99 0.95 0.93 0.86 0.91
ALPH 0.96 0.99 0.96 0.97 0.96
SHA 0.8 0.91 1.0 0.99 0.9
NAT 0.83 0.94 0.99 0.99 0.92
Avg. 0.86 0.93 0.96 0.94

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 1.00 1.00 1.00 1.00 1.00
ALPH 0.93 1.00 1.00 1.00 0.98
SHA 0.62 0.91 1.00 1.00 0.84
NAT 0.63 0.93 1.00 1.00 0.85
Avg. 0.73 0.95 1.00 1.00



al., 2021; Puebla & Bowers, 2022), and CLIP ViT-B/16 fine-1064

tuned on SQU, which is our best model. We compute confu-1065

sion matrices for both of these models on our four main test1066

sets (SQU, ALPH, SHA, & NAT) as well as the Lines and Ar-1067

rows test sets from Puebla & Bowers (2022), which our CLIP1068

ViT-B/16 model finds challenging (see Appendix for visual ex-1069

amples and results). We report matrices for the random seed1070

that yields the median in-distribution test accuracy (i.e. the run1071

that corresponds to the bars in Figure 3).1072

In general, both ImageNet ResNet-50 and CLIP ViT-B/161073

models tend to mistake “different” stimuli for “same” stimuli1074

more frequently than the converse. However, this is not al-1075

ways the case for ImageNet ResNet-50—as the top row of1076

Figure 16 shows, ResNet makes the opposite error (mistak-1077

ing “same” for “different”) much more frequently when tested1078

on SHA and NAT datasets. This is never the case for CLIP1079

ViT-B/16 (bottom row of Figure 16). Furthermore, the differ-1080

ence in frequency between the two types of errors is much1081

more stark for CLIP ViT-B/16; the vast majority of errors made1082

by this model across all test datasets are mistaking “different”1083

stimuli for “same” stimuli. Hochmann (2021) argues that much1084

of the studies on same-different relation learning in children1085

and animals can actually be accounted for by subjects learn-1086

ing a concept of “same” without learning a symmetric concept1087

of “different;” in other words, a subject can achieve high per-1088

formance on many same-different tasks used in the cognitive1089

science literature by only recognizing when two objects are1090

the same as each other (without explicitly representing “dif-1091

ferent”). This seems to align with the errors made by CLIP1092

ViT-B/16. It is possible that this model learns a stronger or1093

more coherent concept of sameness and thus decides to out-1094

put “same” whenever it is less certain.1095

Another notable result is the CLIP ViT-B/16 confusion ma-1096

trix for the Lines dataset from Puebla & Bowers (2022). The1097

model assigns the label “same” to 100% of the “different” stim-1098

uli with relatively high confidence (as indicated by the < 0.51099

AUC-ROC score on this dataset in Appendix ). This is in con-1100

trast to ImageNet ResNet-50, which appears to assign cate-1101

gory labels at random for the Lines dataset. As extrapolated1102

in Appendix , the “different” stimuli in this dataset are actually1103

the same under reflection, suggesting that CLIP ViT-B/16 fine-1104

tuned on SQU may learn a reflection-invariant same-different1105

relation despite not being fine-tuned for such invariance (al-1106

though this is speculative).1107

A.7 Probing CLIP Embeddings1108

In order to determine the degree to which CLIP pretrain-1109

ing alone encodes useful information for learning the same-1110

different relation, we perform a linear probe on the CLIP1111

ResNet-50 and CLIP ViT-B/16 models. As in our main ex-1112

periments, we append a linear binary classifier to the visual1113

backbone of each model. However, in this experiment, we1114

freeze the pretrained weights in the backbone of each model1115

and train only the parameters of the classifier on the fixed em-1116

beddings given by the backbone. Results are displayed in1117

Table 12.1118

Table 12: Out-of-distribution test accuracy for the best lin-
ear probe trained on CLIP embeddings of each dataset.

CLIP ResNet-50 Probe

← Test→
Train ↓ SQU ALPH SHA NAT Avg.

SQU 62.4 50.0 50.0 50.0 50.0
ALPH 50.0 72.7 50.1 49.8 49.9
SHA 50.0 50.0 85.6 50.3 50.1
NAT 50.0 49.9 52.5 85.6 50.8
Avg. 50.0 50.0 50.8 50.0

CLIP ViT-B/16 Probe

← Test→
Train ↓ SQU ALPH SHA NAT Avg.

SQU 81.9 51.1 55.8 52.7 53.2
ALPH 50.0 94.4 53.1 58.5 53.9
SHA 50.0 50.0 99.9 90.4 63.5
NAT 50.0 50.1 70.6 100 56.9
Avg. 50.0 50.4 59.8 67.2

We find that the linear probe can generally exhibit rather1119

high in-distribution generalization. CLIP embeddings of Natu-1120

ralistic stimuli produce the highest in-distribution test accuracy,1121

followed closely by Shapes. CLIP embeddings of ALPH and1122

SQU datasets are more difficult to learn from. This mirrors1123

the ordering observed in Out-of-Distribution Generalization in1124

which the two same-different tasks containing color and tex-1125

ture features tend to be easier to learn, while the shape-based1126

tasks tend to be more difficult. The fact that Alphanumeric and1127

Squiggles probes are unable to generalize OOD, however, is1128

odd considering the fact that the solutions to both of these1129

datasets should be the same (based on shape); this implies1130

there is some other signal that linear probes are picking up1131

on in order to separate “same” and “different” stimuli in these1132

cases.1133

In the case of CLIP ResNet-50, the linear probe does not1134

generalize to any OOD stimuli. On the other hand, CLIP ViT-1135

B/16 probes trained on Shapes or Naturalistic stimuli general-1136

ize somewhat well to each other (90.4% generalization from1137

Shapes to Naturalistic; 70.6% from Naturalistic to Shapes).1138

Somewhat surprisingly, the CLIP ViT-B/16 probe trained on1139

the Squiggles dataset does not generalize the relation to other1140

datasets despite the impressive generalization performance of1141

the fully fine-tuned model.1142

A.8 CLIP Embedding Cosine Similarity1143

Distributions1144

Interestingly, Table 13 shows that ViT-B/16’s embeddings1145

seem to become more distinct during fine-tuning whereas1146

ResNet-50’s become closer together. This is likely not due to1147

differences in generalization performance given that the me-1148

dian difference between ViT-B/16 and ResNet-50 for within-1149

distribution generalization is only 1.9%, and the median differ-1150

ence in out-of-distribution generalization is 13.9%. We do not1151

have a clear explanation for this phenomenon, and also con-1152

cede that it may be a methodological problem resulting from1153

calculating cosine similarity between CLIP embeddings after1154



Figure 16: Confusion matrices for ImageNet ResNet-50 (top row) and CLIP ViT-B/16 (bottom row) fine-tuned on SQU.
Each column gives confusion matrices for a given test set as indicated by the labels above. The rows of the confusion matrices
are the true labels (TD means “true different”; TS means “true same”), while the columns of the matrices are the predicted
classes (PD means “predicted different”; PS means “predicted same”). Each cell in the matrix shows the number of test images
with a given true label and a predicted label as assigned by each model.

Figure 17: Distribution of cosine similarities between CLIP
ResNet-50 representations of the Squiggles, Alphanu-
meric, Shapes, and Naturalistic datasets. These cosine
similarities are calculated before fine-tuning. n = 6,400 for
each dataset, 20.48M pairs calculated per dataset.

extensive fine-tuning.1155

Given our hypothesis that generalization accuracy should1156

correlate with greater cosine similarity of representations be-1157

fore fine-tuning, it is odd that the masked versions of Shapes1158

and Naturalistic sometimes have greater average cosine sim-1159

ilarity measures than Alphanumeric, despite having worse1160

generalization accuracy (Tables 4-8). However, this is likely1161

due to the fact that masking shapes greatly decreases the ef-1162

fective number of unique tokens in the dataset. For example,1163

the Shapes dataset only has 16 unique shapes, so masking1164

those objects results in only 16 unique objects in total. Ap-1165

pendix C shows that training on a dataset with so few tokens is1166

Figure 18: Distribution of cosine similarities between CLIP
ViT-B/16 representations of the Squiggles, Alphanumeric,
Shapes, and Naturalistic datasets. These cosine similar-
ities are calculated before fine-tuning. n = 6,400 for each
dataset, 20.48M pairs calculated per dataset.

detrimental to in- and out-of-distribution generalization. Thus,1167

datasets with a high average cosine similarity seemingly only1168

improve generalization in the cases where they also include a1169

diversity of unique training objects (like the Squiggles dataset).1170

A.9 Fine-tuning on Noise1171

We initially calculated average pairwise cosine similarity for1172

CLIP representations of random Gaussian noise as a baseline1173

for measuring visual diversity within our datasets (Table 14).1174

However, after observing a pattern in which more closely-1175

embedded datasets induce stronger out-of-distribution gener-1176

alization, we decided to see whether models perform even1177



Figure 19: Examples of stimuli used when fine-tuning on noise. From left to right: a single example object; a stimulus labeled
as “same;” a stimulus labeled as “different.” All noise stimuli were sampled from a Gaussian distribution with µ = 0 and σ = 1.

Table 13: Average pairwise cosine similarity between CLIP
embeddings of training stimuli within each dataset. Be-
cause n = 6,400 for each dataset, averages are computed
over 20.48M pairs. We extract CLIP embeddings before fine-
tuning on the same-different task and after fine-tuning on the
Squiggles task (median across five seeds).

Before Fine-tuning Fine-tuned on SQU

Dataset ↓ ResNet-50 ViT-B/16 ResNet-50 ViT-B/16

noise 0.992 0.993 0.983 0.997
SQU 0.929 0.940 0.992 0.283
ALPH 0.881 0.889 0.984 0.634
SHA 0.855 0.861 0.949 0.548
NAT 0.788 0.805 0.937 0.568

SHA-G 0.868 0.873 0.938 0.538
SHA-M 0.900 0.904 0.948 0.579
NAT-G 0.845 0.850 0.944 0.513
NAT-M 0.882 0.879 0.940 0.407

better when they are fine-tuned on a version of the same-1178

different task where they must label two same-versus-different1179

64x64 squares of random Gaussian noise (see Figure 19).1180

Theoretically, if models fine-tuned on this task are forced to1181

compare objects on the level of individual pixels, they should1182

be able to generalize to any same-different dataset in which1183

objects are the same on a pixel level (the definition of same-1184

ness we employ in this work).1185

We use the same methodology as described in Methods.1186

That is, we fine-tune CLIP ResNet-50 and CLIP ViT-B/16 on1187

this task, sweeping over the learning rates (1e-4, 1e-5, 1e-6,1188

1e-7, 1e-8) and two learning rate schedulers (Exponential,1189

ReduceLROnPlateau). We report results for the best models1190

trained for 70 epochs with a batch size of 128 in Table 15.1191

As shown in Table 15, models fine-tuned on noise largely1192

fail to generalize. One likely explanation for this lack of gen-1193

eralization is that models fine-tuned on noise learn to attend1194

to small regions in both objects (e.g. two adjacent pixels in1195

the corner of each object) and calculate whether those small1196

regions are equivalent. This might help explain why CLIP ViT-1197

B/16 fine-tuned on noise generalizes quite strongly to the SHA1198

and NAT datasets—these two datasets contain textures, so1199

Table 14: Average pairwise cosine similarity between CLIP
embeddings of training stimuli within each dataset. Be-
cause n = 6,400 for each dataset, averages are computed
over approximately 20M pairs. We extract CLIP embeddings
before fine-tuning on the same-different task. For similarities
afterwards, see Appendix .

Dataset ↓ ResNet-50 ViT-B/16

noise 0.992 0.993
SQU 0.929 0.940
ALPH 0.881 0.889
SHA 0.855 0.861
NAT 0.788 0.805

Table 15: Out-of-distribution test accuracy for CLIP mod-
els fine-tuned on noise. Rows indicate model architec-
ture and number of epochs, while columns indicate the test
dataset. Each cell is the median performance over five ran-
dom seeds. The rightmost column labeled “Avg.” is the row-
wise average of accuracy scores across OOD evaluation sets
(i.e. not including the NOISE column), which indicates how
well a model is able to generalize to other datasets. The bot-
tom row labeled “Avg.” is the column-wise average, indicating
how difficult it is for models fine-tuned on noise to generalize
to that given dataset.

← Test→
Model ↓ NOISE SQU ALPH SHA NAT Avg.
ViT-B/16 95.3 50.3 65.1 97.1 96.9 77.4
ResNet-50 94.9 50 50 61.2 59.3 55.1
Avg. 95.1 50.2 57.6 79.2 78.1

this potential strategy of computing equality based on highly1200

localized features would work well. On the other hand, this1201

strategy would likely fail for stimuli in the Squiggles and Al-1202

phanumeric tasks, which consist of primarily empty space and1203

require the integration of more global shape information. Al-1204

though the idea of training on noise for abstract-relations is1205

promising in theory (since there should not be spurious, non-1206

generalizing visual features), it would require careful design to1207

counteract such undesirable local “shortcuts” (Geirhos et al.,1208

2020).1209



Figure 20: Out-of-distribution test accuracy for CLIP models for each fine-tuning dataset across all five random seeds.
The top row shows test accuracy for CLIP ResNet-50, while the bottom row shows test accuracy for CLIP ViT-B/16. The columns
indicate the fine-tuning dataset (from left to right: SQU, ALPH, SHA, & NAT), while the legend indicates the test dataset. Each
individual plot point is the test accuracy for a given random seed. Stars represent the median test accuracy, which are equivalent
to the values reported in Table 1.

A.10 Sensitivity of OOD Generalization to Random1210

Seed1211

In Table 1, we report median out-of-distribution test accu-1212

racy across five random seeds for CLIP ResNet-50 and CLIP1213

ViT-B/16. Here, we extend this table by reporting out-of-1214

distribution test accuracy for all five random seeds.1215

All model configurations demonstrate some sensitivity to1216

random seed. However, the two best generalizing models—1217

CLIP ResNet-50 fine-tuned on ALPH (Figure 20B) and CLIP1218

ViT-B/16 fine-tuned on SQU (Figure 20E)—demonstrate a dis-1219

tinct bimodal distribution across seeds. While some seeds at-1220

tain high test accuracy across all three OOD test sets, one1221

(CLIP ViT) or two seeds (CLIP ResNet) perform substantially1222

worse across all three sets. This creates a visible gap be-1223

tween points that persists across all three OOD test sets in1224

panels B and E in Figure 20. Other configurations demon-1225

strate such a gap for one or two test sets (e.g. panel A and1226

panel D in Figure 20), but no other configurations demonstrate1227

such a gap for all three OOD sets.1228

It is interesting to consider the fact that the only randomness1229

in our setup for these models is in the data batching (since1230

models are initialized with deterministic, pretrained weights).1231

This indicates that the order in which models see particular1232

examples from the training set is important for abstraction and1233

determines whether or not models discover the generalizing1234

solution.1235

A.11 Additional Photorealistic Evaluation Results1236

Using the objects depicted in Figure 21, we create two condi-1237

tions of the photorealistic evaluation dataset described in Out-1238

of-Distribution Generalization to Photorealistic Stimuli: one in1239

which individual objects in a given image are randomly and1240

independently rotated, and one in which objects are given the1241

same random rotation. The first condition presents a more1242

challenging out-of-distribution task for our fine-tuned models1243

than the second since it introduces additional and substantial1244

variation between “same” objects.1245

We evaluate our SQU, ALPH, SHA, & NAT fine-tuned mod-1246

els as described in the Out-of-Distribution Generalization to1247

Photorealistic Stimuli section on both conditions of the pho-1248

torealistic dataset. None of the models receive any addi-1249

tional fine-tuning on the photorealistic dataset. Results for1250

all pretraining and fine-tuning combinations are displayed in1251

Figure 22—the hatched bars indicate the easier identical ro-1252

tation condition, while unhatched bars indicate the more dif-1253

ficult individual rotation condition. CLIP ViT models demon-1254

strate impressive generalization to the photorealistic stimuli1255

across all fine-tuning datasets. ImageNet pretrained ViT mod-1256

els that are fine-tuned on the SHA and NAT datasets demon-1257

strate some generalization to the photorealistic setting. All1258

other models fail to generalize. In particular, although CLIP1259

ResNet-50 demonstrates a similar generalization pattern to1260

CLIP ViT-B/16 in the Out-of-Distribution Generalization sec-1261



Figure 21: Images of all 16 3D objects used to create the photorealistic evaluation set in Out-of-Distribution General-
ization to Photorealistic Stimuli. Note that many of the objects lack rotational symmetry, e.g. the rubber duck (top row, third
image) or the mug (bottom row, first image)—thus, different views of these objects can appear substantially different.

Figure 22: Median test accuracy (top row) and AUC-ROC (bottom row) for models fine-tuned on SQU, ALPH, SHA, &
NAT and tested on the photorealistic dataset. The two plots on the left show results for ResNet models, while the two on the
right show results for ViT. The bars are grouped by fine-tuning dataset, as indicated by the labels along the x-axis. The colors
indicate the pretraining method. Hatched bars indicate model performance on the version of the photorealistic dataset in which
objects are given identical random rotations; unhatched bars indicate model performance on the version in which individual
objects are rotated independently. Individual seeds are also shown over each bar; these seeds are identical to those used in the
In-Distribution Generalization and Out-of-Distribution Generalization sections.

tion as shown in Table 1, none of the ResNet models gener-1262

alize robustly to the photorealistic dataset. This suggests that1263

ResNet models may be prone to relying on pixel-level heuris-1264

tics.1265

Performance improves slightly for most models when ob-1266

jects are rotated identically. However, models perform nearly1267

just as well when objects are rotated individually. This is im-1268

pressive in the case of CLIP-pretrained ViT, seeing as models1269

were not fine-tuned for rotational invariance. Evaluation re-1270

sults on the Lines dataset from Puebla & Bowers (2022) in1271

Appendix seem to support the possibility that CLIP ViT mod-1272

els acquire a same-different relation that is also reflection in-1273

variant despite receiving no signal to do so.1274



Figure 23: Examples of training images from every Table 2
and Table 16 testing dataset. Every test dataset contained
6400 images and 300 unique objects.

B Inductive Bias Experiment Details1275

B.1 Grayscale and Mask Details1276

Because training datasets are constructed by sampling ran-1277

dom objects, the exact objects used between the original,1278

Grayscale, and Masked datasets are not the same. Details1279

on the training datasets are as follows:1280

Grayscaled Shapes Images were taken from the Shapes1281

dataset ( Training and Evaluation Datasets) and converted to1282

grayscale using the PIL ImageOps.grayscale method.1283

Masked Shapes Images were taken from the Shapes1284

dataset. Because the background was already white, we se-1285

lected RGB pixels that were ≤ (250, 250, 250) and replaced1286

them with pixels of the value (100, 100, 100). Extra pixels with1287

any values greater than 250 that are not equal to the back-1288

ground color (255, 255, 255) were also converted to (100, 100,1289

100).1290

B.2 Dissociating Color, Texture, and Shape1291

C Diversity of Training Data Heatmaps1292

See Figure 24.1293



Table 16: Predicted results of dissociation experiments, along with actual results from all models trained on different
versions of the original Shapes dataset. Ideally, the proportion of “same” predictions for different types of images should
change based on the inductive bias a given model is using. Median results over five seeds are reported for each row. SHA=Color
Shapes, GRAY-SHA=Grayscale Shapes, MASK-SHA=Masked Shapes.

Acc. Proportion of “Same” Predictions

Predicted ↓ acc. none S T TS C CS CT CTS

(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
color 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
texture 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
shape 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

ViT-B/16 ↓ acc. none S T TS C CS CT CTS

SHA (Rand) 0.91 0.15 0.15 0.17 0.16 0.86 0.87 0.96 0.97
GRAY-SHA (Rand) 0.77 0.33 0.35 0.45 0.50 0.41 0.48 0.80 0.87
MASK-SHA (Rand) 0.61 0.52 0.65 0.55 0.66 0.59 0.68 0.63 0.73
SHA (ImageNet) 1.00 0.00 0.02 0.01 0.06 0.34 0.81 0.82 1.00
GRAY-SHA (ImageNet) 1.00 0.00 0.01 0.00 0.06 0.05 0.40 0.47 1.00
MASK-SHA (ImageNet) 1.00 0.00 0.15 0.00 0.28 0.00 0.82 0.03 1.00
SHA (CLIP) 1.00 0.00 0.01 0.03 0.09 0.12 0.41 0.89 1.00
GRAY-SHA (CLIP) 1.00 0.00 0.00 0.01 0.06 0.02 0.26 0.59 1.00
MASK-SHA (CLIP) 1.00 0.00 0.04 0.00 0.24 0.00 0.47 0.02 1.00

ResNet-50 ↓ acc. none S T TS C CS CT CTS

SHA (Rand) 0.83 0.25 0.29 0.34 0.35 0.43 0.44 0.71 0.90
GRAY-SHA (Rand) 0.84 0.27 0.29 0.39 0.41 0.38 0.40 0.81 0.96
MASK-SHA (R) 0.79 0.26 0.36 0.37 0.48 0.34 0.47 0.47 0.85
SHA (ImageNet) 0.93 0.15 0.49 0.17 0.59 0.39 0.94 0.43 1.00
GRAY-SHA (ImageNet) 0.79 0.41 0.64 0.44 0.65 0.59 0.96 0.61 0.99
MASK-SHA (ImageNet) 0.84 0.17 0.49 0.17 0.45 0.27 0.83 0.28 0.85
SHA (CLIP) 0.98 0.04 0.11 0.05 0.15 0.20 0.60 0.47 1.00
GRAY-SHA (CLIP) 0.98 0.04 0.42 0.07 0.54 0.06 0.53 0.15 1.00
MASK-SHA (CLIP) 0.98 0.04 0.90 0.05 0.95 0.05 0.92 0.07 1.00



Figure 24: Validation accuracies for a ViT-B/16 ImageNet model fine-tuned on different numbers of unique objects and
different amounts of Squiggles stimuli. Hyperparameters chosen correspond with the best-performing Squiggles model from
Figure 3. Each cell is averaged over five different seeds. ImageNet ViT-B/16 must be fine-tuned on at least 25,600 images
containing at least 1,024 unique tokens to achieve high out-of-distribution accuracy.

Figure 25: Examples of stimuli in the Aligned condition (a) and (b) and the Unaligned condition (c) and (d). Objects used
are from the same Naturalistic dataset in the main paper (Brady et al., 2008).



D Patch Alignment Experiment1294

One intuition is that ViT models may be able to more eas-1295

ily compute same-different due to their ability to directly com-1296

pare image patches using attention. This implies that if objects1297

were aligned with ViT image patches, it might be easier for ViT1298

models to implement the same-different relation (since seg-1299

mentation would effectively already be done for the model).1300

We consider whether aligning objects with ViT patches al-1301

lows for quicker convergence or more robust in-distribution1302

generalization. Figure 25a and 25b show stimuli under the1303

Aligned condition, where objects are aligned within the grid of1304

tokens used by ViT models to process images. For ViT-B/16,1305

each object takes up a 4x4 sub-grid of tokens (16 total); for1306

ViT-B/32, objects take up 2x2 sub-grids (4 tokens total). The1307

sub-grids in which the objects are placed are randomly chosen1308

for each stimulus. The number of possible spatial configura-1309

tions is exactly 36 for same stimuli (9 choose 2) and 72 for1310

different stimuli.1311

On the other hand, Figure 25c and 25d show stimuli un-1312

der the Unaligned condition. In this case, stimuli are randomly1313

placed and do not have to align with ViT tokens (just as in the1314

rest of our experiments). The result is that the objects span1315

a larger number of tokens, and the number of configurations1316

that the objects can occupy from the point of view of the ViT1317

is combinatorially much larger than in the Aligned condition.1318

Thus, ViT models trained on these stimuli must integrate in-1319

formation across a larger and much less predictable set of1320

tokens. The number of possible spatial configurations is on1321

the order of 100 million.1322

In all experiments, models are trained to classify images as1323

same or different with cross entropy loss and a batch size of1324

64 for 30 epochs. Each experiment uses an initial learning1325

rate of 2e-6, a ReduceLROnPlateau learning rate scheduler1326

(patience=2), and an AdamW optimizer (weight decay=1e-2).1327

Models are fine-tuned on 6400 stimuli (with 1920 unique train-1328

ing objects, disjoint from 240 other validation objects). 6
1329

Table 17 shows results for ImageNet models fine-tuned on1330

these datasets. Contrary to our hypothesis, it seems that ViT1331

models do not benefit from having objects aligned to their to-1332

ken patches. In fact, the Unaligned condition provides slightly1333

better generalization, likely because there is more variability1334

in the training data.1335

6The setup of this experiment is slightly different from the main
paper is because it was an early exploratory result.

Table 17: Results for ImageNet models fine-tuned on stim-
uli from Figure 25. Training accuracy, in-distribution vali-
dation accuracy, and out-of-distribution generalization to the
Shapes dataset is shown.

Aligned ↓ Train Acc. Val. Acc. SHA Acc.

ViT-B/16 100 100 85.6
ViT-B/32 100 99.7 82.4
ResNet-50 87.2 68.9 53.9
ResNet-152 99.5 89.2 74.6

Unaligned ↓ Train Acc. Val. Acc. SHA Acc.

ViT-B/16 100 100 91.0
ViT-B/32 100 99.5 96.9
ResNet-50 85.7 66.9 55.9
ResNet-152 99.5 88.6 78.5
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