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Abstract
Although deep neural networks can achieve human-level
performance on many object recognition benchmarks,
prior work suggests that these same models fail to learn
simple abstract relations, such as determining whether
two objects are the same or different. Much of this
prior work focuses on training convolutional neural net-
works to classify images of two same or two differ-
ent abstract shapes, testing generalization on within-
distribution stimuli. In this article, we comprehensively
study whether deep neural networks can acquire and gen-
eralize same-different relations both within and out-of-
distribution using a variety of architectures, forms of pre-
training, and fine-tuning datasets. We find that certain
pretrained transformers can learn a same-different rela-
tion that generalizes with near perfect accuracy to out-of-
distribution stimuli. Furthermore, we find that fine-tuning
on abstract shapes that lack texture or color provides the
strongest out-of-distribution generalization. Our results
suggest that, with the right approach, deep neural net-
works can learn generalizable same-different visual rela-
tions.

Keywords: vision models; abstract relations; convolutional
neural networks; transformer models

Introduction
Humans and a wide variety of non-human animals can easily
recognize whether two objects are the same as each other
or whether they are different (see Figure 1; Martinho III &
Kacelnik, 2016; Christie, 2021; Gentner et al., 2021; Hespos
et al., 2021). The abstract concept of equality is simple—even
3-month-old infants (Anderson et al., 2018) and honeybees
(Giurfa, 2021) can learn to distinguish between displays of
two same or two different objects. Some researchers have
even argued that it serves amongst a number of other basic
logical operations as a foundation for higher-order cognition
and reasoning (Gentner & Goldin-Meadow, 2003; Gentner &
Hoyos, 2017). However, in contrast to humans and animals,
recent work has argued that deep neural networks struggle to
learn this simple relation (Ellis et al., 2015; Gülçehre & Ben-
gio, 2016; Stabinger et al., 2016; Kim et al., 2018; Webb et
al., 2020; Puebla & Bowers, 2022). This difficulty is surprising
given that deep neural networks achieve human or superhu-
man performance on a wide range of seemingly more com-
plex visual tasks, such as image classification (Krizhevsky et
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al., 2012; He et al., 2016), segmentation (Long et al., 2015),
and generation (Ramesh et al., 2022).

Same Different

Figure 1: Same or different? For humans and a number
of animal species, it is trivial to recognize that the image on
the left contains two of the same objects, while the image on
the right contains two different objects. Surprisingly, prior re-
search has suggested that deep neural networks struggle to
learn to discriminate between these images.

Past attempts to evaluate same-different relations in neu-
ral networks have generally used the following methodology.
Models are trained to classify images containing either two of
the same or two different abstract objects, such as those in
Figure 1. A model is considered successful if it is then able to
generalize the same-different relation to unseen shapes after
training. Convolutional neural networks (CNNs) trained from
scratch fail to learn a generalizable relation, and tend to mem-
orize training examples (Kim et al., 2018; Webb et al., 2020).
However, deep neural networks have been shown to success-
fully generalize the same-different relation in certain contexts.
This generalization is either limited to in-domain test stimuli
(Funke et al., 2021; Puebla & Bowers, 2022) or requires ar-
chitectural modifications that build in an inductive bias towards
relational tasks at the expense of other visual tasks (Kim et al.,
2018; Webb et al., 2020; Webb, Frankland, et al., 2023; Webb,
Mondal, & Cohen, 2023; Kerg et al., 2022; Geiger et al., 2023;
Altabaa et al., 2023). Given these limited successes, an open
question remains: without architectural modifications that re-
strict model expressivity in general, can standard neural net-
works learn an abstract same-different relation that general-
izes to both in- and out-of-distribution stimuli?

Addressing this question requires going beyond past work
in a number of ways. First, most previous studies test for in-
distribution generalization—that is, they use test stimuli that
are visually similar to the training stimuli. We believe that
out-of-distribution generalization provides much stronger ev-
idence that a model has learned a genuine abstract relation
without relying on spurious features. Second, the existing liter-
ature uses training stimuli that demonstrate the same-different
relation with either closed curves (as in Figure 1) or simple
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Figure 2: Example stimuli from all four datasets. Each column represents one of the four same-versus-different datasets as
indicated by the label beneath the stimuli. The top row shows an example object that is used to form the stimuli that comprise
each dataset, while the second and third rows show an example “same” vs. “different” stimulus, respectively.

geometric shapes. It is unclear whether training on these
types of objects is the most helpful for learning the relation
versus more naturalistic objects that more closely resemble
data seen during pretraining. Finally, most prior work focuses
on convolutional architectures, but Vision Transformers (ViTs)
(Dosovitskiy et al., 2020) adapted from the language domain
(Vaswani et al., 2017) have recently emerged as a competi-
tive alternative to CNNs on visual tasks. Self-attention, a key
feature of ViTs, may provide an advantage when learning ab-
stract visual relations—indeed, the ability to attend to and re-
late any part of a stimulus to any other part may be crucial for
relational abstraction.

In this article, we address these limitations and comprehen-
sively investigate how neural networks learn and generalize
the same-different relation from image data. Our main find-
ings are as follows:

• Fine-tuning pretrained ResNet and ViT models on the
same-different relation enables both architectures to gener-
alize the relation to unseen objects in the same distribution
as the fine-tuning set. In particular, CLIP pretraining results
in nearly 100% in-distribution test accuracy for ViT models,
and close to that for ResNet models.

• Under certain conditions, CLIP-pretrained ViTs can reliably
generalize the same-different relation to out-of-distribution
stimuli with nearly 100% accuracy. Furthermore, these
models can transfer the relation with up to 90% test accu-
racy to a photorealistic same-different dataset of 3D objects
without any fine-tuning on the 3D setting. These results
suggest that these models acquire a generalizable abstract
concept of equality.

• Different fine-tuning datasets lead to qualitatively different
patterns of generalization—fine-tuning on more visually ab-
stract objects (which do not contain color or texture) results

in stronger out-of-distribution generalization, whereas fine-
tuning on more naturalistic objects fails to generalize.

• ViTs generally prefer to determine equality between objects
by comparing their color or texture, only learning to com-
pare shape when the fine-tuning dataset lacks color and
texture information. However, we find that CLIP pretraining
helps to mitigate this preference for color and texture.

Methods

We operationalize the same-different task consistently with
prior work, e.g. Fleuret et al. (2011). Models are asked to
perform a binary classification task on images containing ei-
ther two of the same objects or two different objects (see
the second and third rows of Figure 2). Models are either
trained from scratch or fine-tuned on a version of this task
with a particular type of stimuli (see Training and Evaluation
Datasets below). After training or fine-tuning, model weights
are frozen, and validation and test accuracy scores are com-
puted on sets of same-versus-different stimuli containing un-
familiar objects. These can be either be the same type of
objects that they were trained or fine-tuned on (in-distribution
generalization) or different types of objects (out-of-distribution
generalization). Thus, in order to attain high validation and
test accuracy scores, the model must successfully generalize
the learned same-different relation to novel objects. This type
of generalization is more challenging than the standard image
classification setting because of the abstract nature of what
defines the classes—models must learn to attend to the rela-
tionship between two objects rather than learn to attend to any
particular visual features of those objects in the training data.

Training and Evaluation Datasets We construct four
same-versus-different datasets using four different types of
objects (see Figure 2) ranging from abstract shapes to nat-
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uralistic images that are more familiar to pretrained models.
We use the following objects to create these four datasets:

1. Squiggles (SQU). Randomly generated closed shapes fol-
lowing Fleuret et al. (2011).1 Most studies in the machine
learning literature on the same-different relation uses this
dataset (Kim et al., 2018; Funke et al., 2021; Puebla & Bow-
ers, 2022; Messina et al., 2022).

2. Alphanumeric (ALPH). Sampled handwritten characters
from the Omniglot dataset (Lake et al., 2015).

3. Shapes (SHA). Textured and colored shapes from
Tartaglini et al. (2022). Objects that match in shape, tex-
ture, and color are considered the same, while objects that
differ along all three dimensions are considered different.

4. Naturalistic (NAT). Photographs of real objects on white
backgrounds from Brady et al. (2008). These stimuli are
the most similar to the data that the pretrained models see
before fine-tuning on the same-different task.

Each stimulus is an image that contains two objects that
are either the same or different. We select a total of 1,600
unique objects for each dataset. These objects are split into
disjoint sets of 1,200, 300, and 100 to form the training, val-
idation, and test sets respectively. Unless otherwise speci-
fied, the training, validation, and test sets each contain 6,400
stimuli: 3,200 same and 3,200 different. To construct a given
dataset, we first generate all possible pairs of same or different
objects—we consider two objects to be the same if they are
the same on a pixel level.2 Next, we randomly select a subset
of the possible object pairs to create the stimuli such that each
unique object is in at least one pair. Each object is resized to
64x64 pixels, and then a pair of these objects is placed over
a 224x224 pixel white background in randomly selected, non-
overlapping positions. We consider two objects in a specific
placement as one unique stimulus—in other words, a given
pair of objects may appear in multiple images but in different
positions (but with all placements of the same two objects be-
ing confined to either the training, validation, or test set). All
object pairs appear the same number of times to ensure that
each unique object is equally represented.

Models and Training Details We evaluate one convolu-
tional architecture, ResNet-50 (He et al., 2016), and one
Transformer architecture, ViT-B/16 (Dosovitskiy et al., 2020).
We also evaluate three pretraining procedures: (1) randomly

1The original method from Fleuret et al. (2011) produces closed
contours with lines that are only one pixel thick. For our chosen im-
age and object size, these shapes become very difficult to see. We
correct this by using a dilation algorithm to darken and thicken the
lines to a width of three pixels.

2There is some ambiguity in how to define sameness. One could
imagine a same-different task in which two objects drawn from the
same category are considered the same, such as two different im-
ages of the same species of parrot. Furthermore, two objects can be
the same in some dimensions but differ in others (see Dissociating
Color, Texture, and Shape). Unless otherwise stated, we take “same”
to mean “exactly the same.”

initialized, in which all model parameters are randomly ini-
tialized (Kaiming normal for ResNet-50 and truncated normal
for ViT-B/16) and models are trained from scratch, (2) Ima-
geNet, in which models are pretrained in a supervised fash-
ion on a large corpus of images (ImageNet-1k for ResNet-50
and ImageNet-21k for ViT-B/16; Deng et al., 2009) with cat-
egory labels such as “barn owl” or “airplane,” and (3) CLIP
(Radford et al., 2021), in which models learn an image-text
contrastive objective where the cosine similarity between an
image embedding and its matching natural language caption
embedding is maximized. Unlike ImageNet labels, CLIP cap-
tions contain additional linguistic information beyond category
information (e.g. “a photo of a barn owl in flight”). To ad-
dress the difference in parameter count between ResNet-50
and ViT-B/16 (23M versus 86M parameters), we also provide
results for ImageNet-pretrained ConvNeXt-B Liu et al. (2022)
and DeiT-S Touvron et al. (2021) in Appendix A.4 (89M and
22M parameters respectively).

We adapt all models to the same-different task by append-
ing a linear classifier to the output of the visual backbone. For
models not trained from scratch, we directly fine-tune on train-
ing sets from Training and Evaluation Datasets. Each model
is trained from scratch or fine-tuned for 70 epochs with a batch
size of 128, updating all parameters. We use a binary cross-
entropy loss. For each architecture and pretraining combina-
tion, we perform hyperparameter tuning via grid search over
the initial learning rate (1e-4, 1e-5, 1e-6, 1e-7, 1e-8), learning
rate scheduler (exponential, ReduceLROnPlateau), and
optimizer (SGD, Adam, AdamW). We select the best perform-
ing training configuration from the grid search according to
in-distribution validation accuracy, and then train a model with
those hyperparameters five times with different random seeds.
We report the median test results across those five seeds.

Generalization to Unseen Objects

In-Distribution Generalization

We first measure the performance of each model on test data
containing the same types of objects used to train or fine-
tune the model; e.g. models fine-tuned on pairs of hand-
written characters are then tested on handwritten characters
that were not seen during training. We refer to this as the in-
distribution performance of the model. The starred (∗) result
in Figure 3 shows the in-distribution median test accuracy of
randomly-initialized ResNet-50 models trained on the Squig-
gles dataset, which contains the same type of closed contours
used by much of the prior work on the same-different rela-
tion (Fleuret et al., 2011; Kim et al., 2018; Funke et al., 2021;
Puebla & Bowers, 2022; Messina et al., 2022). Confirming the
primary findings from prior work, these models do not attain
above chance level test accuracy. The same pattern holds for
randomly initialized ViT-B/16 models.

However, as the rest of Figure 3 shows, pretrained models
exhibit substantially improved in-distribution accuracy com-
pared to randomly initialized models across all four datasets.
In particular, models pretrained with CLIP demonstrate the
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Figure 3: In-distribution test accuracy by architecture and pretraining method. Bars show median accuracy over 5 runs,
with the bar color denoting pretraining type and the x-axis denoting the dataset used for fine-tuning. See Methods for dataset
descriptions and model details, and Figure 2 for visual examples. The starred (∗) result is a replication of findings from prior
work showing that CNNs trained from scratch on stimuli like the images in Figure 1 attain chance-level test accuracy. The
double-starred (∗∗) result mirrors Funke et al. (2021) and Puebla & Bowers (2022), who show that ImageNet-pretrained CNNs
attain substantially higher in-distribution test accuracy relative to the same architectures trained from scratch.

largest improvements, attaining nearly 100% test accuracy
irrespective of fine-tuning dataset. Even without any fine-
tuning, CLIP features appear to be highly useful for the
same-different task—linear probes trained to do the same-
different task using CLIP ViT-B/16 embeddings of stimuli with-
out any fine-tuning achieve between 80% and 100% median
in-distribution test accuracy depending on the dataset (Ta-
ble 12, Appendix A.7). Differences in performance can also be
observed between architectures, with ViT-B/16 models con-
sistently outperforming ResNet-50 after pretraining.3 These
differences are likely not a result of a difference in parameter
counts, as a similar gap in performance can be observed be-
tween ImageNet ConvNeXt-B and ImageNet ViT-B/16, despite
ConvNeXt-B being slightly larger (Appendix A.4).

Another main finding is that the two visually abstract,
shape-based datasets (SQU and ALPH) appear to pose more
of a challenge to models than the SHA and NAT datasets—
models attain noticeably higher in-distribution accuracy on the
latter two across architectures and pretraining methods (al-
though the effect is small for CLIP-pretrained models). This
difference may be due to the color and texture information
that is available in these datasets, which provides additional
dimensions over which objects can be compared. We ex-
plore the possibility that some models find it easier to eval-
uate equality using color or texture in addition to or instead of
shape information in Examination of Inductive Biases.

3ViTs also demonstrate qualitatively different training dynamics
compared to CNNs, appearing to generalize the same-different rela-
tion within the first few epochs of training. Furthermore, ViTs learn
more smoothly than ResNets. See Appendix A.2 for figures of train-
ing and accuracy curves.

Out-of-Distribution Generalization

The previous section showed that pretrained models can gen-
eralize to unseen, in-distribution objects. However, if a model
learns a truly abstract notion of same-different, it should be
able to generalize the same-different relation to any two ob-
jects regardless of their particular visual features. Thus, model
performance on stimuli that are substantially different from
training stimuli is a stronger measure of abstraction. We there-
fore measure test accuracy for each model across all four
datasets, yielding one in-distribution score and three out-of-
distribution (OOD) scores per model. Table 1 shows median
test accuracy over five seeds for CLIP-pretrained models; full
generalization tables for all pretraining styles and architec-
tures can be found in Appendix A.3.

Overall, CLIP ViT-B/16 models fine-tuned on the Squig-
gles task exhibit the strongest OOD generalization, achieving
>95% median test accuracy on the three out-of-distribution
datasets.4 As in the previous section, models fine-tuned on
objects with visually abstract shape features only (SQU and
ALPH) behave differently than those fine-tuned on datasets
containing objects with shape, color, and texture features
(SHA and NAT). The SQU and ALPH models generally at-
tain high OOD test accuracy. On the other hand, models fine-
tuned on the SHA or NAT datasets generalize well to each

4It is worth noting that both this model and CLIP ResNet-50 fine-
tuned on the ALPH task (the model with the second best OOD gen-
eralization performance) exhibit some degree of sensitivity to the
random seed used during fine-tuning: most random seeds result in
nearly 100% OOD generalization for ViT or >80% for ResNet across
all datasets, while some seeds result in substantially lower perfor-
mance (1/5 seeds for ViT and 2/5 for ResNet). No other model con-
figurations exhibit this bimodal behavior. See Appendix A.10 for de-
tails.
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Table 1: Out-of-distribution (OOD) test accuracy for CLIP models fine-tuned on each dataset. Rows indicate the dataset
that models are fine-tuned on, while columns indicate the test dataset. Each cell is the median performance over five random
seeds. The rightmost column labeled “Avg.” is the row-wise average of accuracy scores across OOD test sets (i.e. off-diagonal
values), which indicates how well a model fine-tuned on a given dataset is able to generalize to other datasets. The bottom row
labeled “Avg.” is the column-wise average across off-diagonal values, indicating how difficult it is for models fine-tuned on other
datasets to generalize to the given dataset. Note that the bolded diagonals are the pink bars in Figure 3. OOD generalization
results for all models are in Appendix A.3; Appendix A.5 shows median AUC-ROC scores.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 97.7 82.9 86.9 82.0 83.9
ALPH 82.1 97.4 92.8 91.8 88.9
SHA 56.0 78.1 98.1 96.1 76.7
NAT 50.1 59.3 93.4 97.3 67.6
Avg. 62.7 73.4 91.1 90.0

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 99.6 97.7 99.1 96.7 97.8
ALPH 55.3 99.4 99.6 91.2 82.0
SHA 50.0 55.4 100 100 68.5
NAT 50.0 68.0 99.8 100 72.6
Avg. 51.8 73.7 99.5 95.9

other but struggle to generalize to the SQU and ALPH tasks.
Note that some of this effect can be attributed to miscalibrated
bias, but not the entire effect—see Appendix A.5 for details.

Another way to understand the generalization pattern in Ta-
ble 1 is that the more “challenging” a dataset is to general-
ize the same-different relation to, the more effective it is as
a fine-tuning dataset for inducing out-of-distribution general-
ization. For example, CLIP ViT-B/16 models fine-tuned on
datasets other than SQU attain a median test accuracy of only
51.8% on the SQU task on average, whereas CLIP ViT-B/16
fine-tuned on SQU attains an average OOD test accuracy of
97.8%. On the other hand, the SHA dataset is easy for models
fine-tuned on other datasets to generalize to (99.5% accuracy
on average), but CLIP ViT fine-tuned on that “easier” dataset
attains an average OOD test accuracy of only 68.5%. This
pattern of SQU being more “difficult” to generalize to persists
across architectures and pretraining methods (Appendix A.3).

Out-of-Distribution Generalization to Photorealistic
Stimuli
In the previous section, we demonstrated that CLIP-pretrained
models fine-tuned on one set of same-different stimuli can
consistently generalize the relation to other visually distinct
sets of stimuli. Despite these successes, one potential criti-
cism is that the types of artificial stimuli we use—albeit having
proved significantly challenging in previous attempts to solve
the same-different task—lack the additional complexities in-
volved in recognizing abstract visual relations in real-world
environments. In particular, following prior work, the objects
in our “same” stimuli are the same as each other at the pixel
level. It is possible that models in this conventional setting
learn to generalize the same-different relation by simply rec-
ognizing whether small patches of pixels or even single pix-
els have the same values rather than comparing whole ob-
jects. Relying on pixel-level mechanisms to adjudicate be-
tween same and different would fail in photorealistic settings,
since two instances of the same 3D object can differ at the
pixel level due to differences in lighting, rotation, and depth
of field. Given the successful OOD generalization of our fine-
tuned models in an artificial setting, we wanted to test whether

our findings extend to more challenging real-world settings.
To this end, we evaluate the fine-tuned models from pre-

vious sections on a dataset of 1,024 photorealistic same-
different stimuli (see Figure 4). Each stimulus is a 224x224
pixel image depicting a pair of same or different 3D objects
arranged on the surface of a table. We created these images
in Blender, a sophisticated 3D modeling tool, using a set of
16 unique 3D models of different objects that vary in shape,
texture and color. To construct the dataset, we first generate
all possible pairs of same or different objects, then select a
subset of the possible “different” pairs such that each object
appears in two pairs. This ensures that all objects are equally
represented and that an equal number of “same” and “differ-
ent” stimuli are created. We create 32 unique stimuli for each
pair of objects by placing them on the table in eight random
configurations within the view of four different camera angles,
allowing partial occlusions. Each individual object is also ran-
domly rotated around its Z-axis in each image—because 11 of
the objects lack rotational symmetry, these rotations provide
an additional challenge, especially for “same” classifications.5

We evaluate the SQU, ALPH, SHA, and NAT fine-tuned
models from the previous sections on the photorealistic
dataset without any additional fine-tuning. We compute me-
dian test accuracy on the photorealistic dataset for CLIP-
pretrained models across the same five random seeds re-
ported in previous sections (see Figure 22). Surprisingly,
CLIP-pretrained ViT models generalize with 80-90% median
test accuracy to the photorealistic stimuli despite only receiv-
ing fine-tuning on pixel-level sameness between 2D objects,
indicating that their robust generalization of the same-different
relation is not limited to our particular definition of the same-
different task. On the other hand, all other pretraining and
architecture combinations including CLIP-pretrained ResNets
fail to generalize consistently to the photorealistic stimuli (see
Appendix A.11). These results suggest that, with careful
choices of architecture and pretraining, fine-tuning on simplis-
tic 2D stimuli may be sufficient for learning an abstract same-

5We also test models on a version of the photorealistic dataset
where “same” objects are always rotated identically. We find that
performance for most models improves slightly; see Appendix A.11.
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Figure 4: Examples of “same” and “different” photorealistic stimuli. The textures of the table surface and background
wall are randomly selected from a set of four options each. No two objects in an image are the same on a pixel level. See
Appendix A.11 for images of all 16 3D objects.

different relation that generalizes to 3D objects despite the ad-
ditional visual complexities of real-world settings.

Examination of Inductive Biases
What features do models use to decide whether two objects in
an image are the same? Since we train models without explicit
guidance for how to solve the task, any inductive bias a model
may have likely influences how it learns the same-different re-
lation. Previous work has claimed that CNNs trained on Ima-
geNet are often biased towards texture over shape (Geirhos
et al., 2019; Hermann et al., 2020). This may be related to
results from Kim et al. (2018) that show poor performance for
CNNs trained from scratch on textureless shapes. In this sec-
tion, we investigate whether and how these inductive biases
influence model behavior for the same-different task.

Grayscale and Graymasked Objects We train models on
one of three variants of the Shapes dataset: objects are ei-
ther kept the same (Figure 5a, “Color”), grayscaled to pre-
serve texture but remove color (Figure 5a, “Grayscale”), or
completely covered in gray to remove both texture and color
(Figure 5a, “Masked”). If a model is biased towards color, per-
formance should drop on the Grayscale and Masked datasets;
if it is biased towards texture, performance should suffer on the
Masked dataset. Only a model that is biased towards shape
would generalize effectively to all three settings. We train or
fine-tune on each of these three variants for randomly initial-
ized, ImageNet-pretrained, and CLIP-pretrained models.

Figure 6A shows the test performance of randomly initial-
ized ViT-B/16 trained on either Color, Grayscale, or Masked
versions of the Shapes dataset (Figure 5a) and tested on
novel objects from each of those distributions. Figure 6A
shows that ViT-B/16 trained from scratch only achieves
high in-distribution accuracy for the Color Shapes dataset
(92.9%); the hatched gray and dark gray bars representing
in-distribution accuracy for Grayscale and Masked Shapes
are much lower (78.8% and 53.5% respectively). Despite
this high in-distribution accuracy on Color Shapes, perfor-
mance drops to 66.2% and 62.6% when generalizing out-of-
distribution to Grayscale and Masked Shapes, as indicated
by the two lower gray bars beside the hatched green bar.
This gap suggests that ViT-B/16 only learns to compare ob-

Figure 5: Examples of stimuli used to test inductive bi-
ases. Figure (a) shows examples of objects from the three
versions of the Shapes dataset used to produce results in Fig-
ure 6. Figures (b) and (c) are examples of stimuli with conflict-
ing signals used in Dissociating Color, Texture, and Shape,
where either color is the same while texture and shape differ,
or color and texture are the same while shape differs.

ject color when it is trained from scratch on the Color Shapes
dataset, leading to greater errors when tested on datasets that
do not contain color. Figure 6A also shows that fine-tuning
on Masked Shapes allows for out-of-distribution generalization
that is strong relative to in-distribution generalization, suggest-
ing that the model learns a more generalizable shape bias in
this case. Figure 6B shows that CLIP pretraining weakens
ViT’s bias towards color, allowing for high in-distribution accu-
racy and near-perfect out-of-distribution generalization when
trained on any of the three modified Shapes datasets.

ResNet-50 does not demonstrate an inductive bias towards
color or texture when the model is trained from scratch. How-
ever, pretraining results in a slight bias, with a 7.3% gap
between in-distribution and Masked OOD accuracy for CLIP
ResNet-50 fine-tuned on Color Shapes (Figure 6D).
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Figure 6: Test accuracy for models trained or fine-tuned on one version of the Shapes dataset (Color, Grayscale, Masked)
and then tested on all three versions of the dataset. Example stimuli are shown in Figure 5a. Hatched bars indicate in-
distribution accuracy. Median results for the same hyperparameters trained for five different seeds are reported, with individual
runs also plotted as translucent points.

Dissociating Color, Texture, and Shape Results from Fig-
ure 6 suggest that some models learn to rely on certain fea-
tures more than others to differentiate between objects in an
image. To delve deeper, we create eight test datasets based
on the Shapes dataset that vary whether shape, color, and
texture are the same or different between two objects in an
image (examples in Appendix B.2, Figure 23). We label each
set of images with letters that represent whether color (C),
texture (T), or shape (S) are the same. For example, images
that contain two objects with the same color, different textures,
and the same shape are labeled CS. CTS and “none” repre-
sent the objects being completely the same or completely dif-
ferent, respectively. We then evaluate the same models from
Figure 6 on each of these test sets by measuring the propor-
tion of “same” predictions for each dataset. If this proportion
is high, the model views stimuli in those datasets as “same”; if
it is low, the model views them as “different.” The first rows of
Table 2 show the hypothesized behavior of theoretical models
with certain inductive biases when tested on each of the gen-
erated datasets. For example, if a model makes predictions by
comparing object shape, then it should predict “same” when-
ever the shape of the two objects in an image are the same
(S) and “different” otherwise. Ideally, a model that has learned
our definition of “same” (i.e. pixel-level similarity) should not

predict “same” for any case besides CTS.
Comparing the first row of results to predicted behavior,

the “same” predictions made by Random ViT-B/16 on Color
Shapes align closely with the predicted “color-biased model”
behavior. This confirms our result from Figure 6, which shows
that this model cannot generalize to datasets without color. If
the same architecture is pretrained with CLIP and then fine-
tuned on Color Shapes, its predictions become much more
sensitive to texture and shape. However, these results reveal
a bias towards color and texture. For example, CLIP ViT-B/16
classifies CT images as “same” 89% of the time when fine-
tuned on Color Shapes, but only 2% of the time when fine-
tuned on Masked Shapes. This indicates that CLIP ViT-B/16
maintains an inductive bias towards color and texture during
fine-tuning; it only learns to compare object shape when there
are no other features available in its fine-tuning data.

Discussion and Conclusion

Previous work has argued that deep neural networks struggle
to learn the same-different relation between two objects in the
same image (Kim et al., 2018; Puebla & Bowers, 2022), but
the scope and nature of these difficulties are not fully under-
stood. In this article, we tested several architectures with a
number of pretraining methods and fine-tuning datasets in or-
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Table 2: Predicted results of dissociation experiments compared to actual results from ViT-B/16 models fine-tuned on
different versions of the original SHA dataset. The proportion of “same” predictions for different types of images should
change based on the inductive bias a given model is using. Even CLIP-pretrained ViT-B/16, which seemed from Figure 6 to be
unbiased, is revealed to have a slight bias towards either color & texture or shape depending on its fine-tuning dataset. Median
results over five seeds are reported for each row. Results for Random ViT-B/16 fine-tuned on Grayscale and Masked Shapes
are not shown due to low accuracy (making the results difficult to interpret); full table is Table 16.

Acc. Proportion of “Same” Predictions

Predicted ↓ acc. none S T TS C CS CT CTS

(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
color 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
texture 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
shape 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

ViT-B/16 (Rand) ↓ acc. none S T TS C CS CT CTS

Color Shapes 0.91 0.15 0.15 0.17 0.16 0.86 0.87 0.96 0.97

ViT-B/16 (CLIP) ↓ acc. none S T TS C CS CT CTS

Color Shapes 1.00 0.00 0.01 0.03 0.09 0.12 0.41 0.89 1.00
Grayscale Shapes 1.00 0.00 0.00 0.01 0.06 0.02 0.26 0.59 1.00
Masked Shapes 1.00 0.00 0.04 0.00 0.24 0.00 0.47 0.02 1.00

der to investigate the ability of neural networks to learn and
generalize the same-different relation. Some of our model
configurations are able to generalize the relation across all
of our out-of-distribution evaluation datasets; the best model
is CLIP ViT fine-tuned on the Squiggles same-different task.
Across five random seeds, this model yields a median test ac-
curacy of nearly 100% on every evaluation dataset we use.
Furthermore, this model can generalize the relation from an
artificial 2D setting to a more challenging 3D setting with up
to 95% test accuracy without any additional fine-tuning on 3D
stimuli. The existence of such a model suggests that deep
neural networks can learn generalizable representations of
the same-different relation, at least for the tests we examined.

There are a number of possible reasons why CLIP-
pretrained Vision Transformers exhibit the strongest out-of-
distribution generalization. CLIP pretraining may be helpful
because of the diversity of the dataset, which Fang et al.
(2022) argue is key to the robust generalization of CLIP mod-
els in other settings. This success may also be due to volume:
CLIP models were trained on 400 million images, an order of
magnitude greater than the 14 or 1.2 million images in Ima-
geNet datasets. Another hypothesis is that linguistic supervi-
sion from captions containing phrases like “same,” “different,”
or “two of” (which ImageNet-supervised models would have
no exposure to) helps models to separate same and different
objects in their visual embedding spaces, an idea supported
by the results of our linear probe experiments (Appendix A.7).

Even with CLIP pretraining, only ViT architectures exhibit
strong out-of-distribution generalization. This may be due to
their larger receptive field size; CNNs can only compare dis-
tant image patches in deeper layers, whereas ViTs can com-
pare any image patch to any other as early as the first self-
attention layer. Thus, ViTs may be able to integrate com-
plex shape information and compare individual objects to each

other more efficiently than CNNs. Indeed, Lepori et al. (2024)
find that ViT architectures compute this relation through direct
comparisons between whole objects in early processing lay-
ers, regardless of the spatial distance separating the objects.

The success of ViT over ResNet is somewhat surprising.
Although convolutional neural networks were directly inspired
by models of visual perception in primates (Hubel & Wiesel,
1968; Fukushima, 1980; LeCun et al., 1995), we show that
they do not necessarily learn more generalizable representa-
tions of abstract relations. Even CLIP ResNet—the strongest
performing ResNet model—fails to match CLIP ViT’s out-of-
distribution performance. This result suggests that Transform-
ers may represent a competitive alternative model of human
vision, despite the more biologically-inspired origins of convo-
lutional networks. It also echoes work from Tuli et al. (2021)
showing that, like humans, ViT models are consistently more
biased towards shape compared to convolutional models.

Although Transformer models can learn more human-
aligned representations, they may require more training data
to do so. When trained from a random initialization on
6400 examples, ViT-B/16 achieves only 5% above guess-
ing accuracy for half of our tasks (Table 9), while ResNet-50
achieves above-chance accuracy for all but one task (Table 8).
Nonetheless, both models are extremely data-inefficient com-
pared to humans: infants less than a year old require less
than ten examples to generalize the same-different relation
(Hespos et al., 2021). Even when Transformer models do
learn robust representations of same-different, this alignment
seems to be a result of pretraining on large amounts of natu-
ralistic data rather than human-like inductive biases. Our find-
ings suggest that human-like visual processing can emerge in
deep neural networks even without explicitly human-inspired
architectural choices, which has important implications for
how to approach the computational modeling of vision.
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A Additional Generalization Results

A.1 Testing Models on Evaluation Sets from
Puebla & Bowers (2022)

We test two of our models on the evaluation sets from Puebla
& Bowers (2022): ImageNet ResNet-50 fine-tuned on SQU,
which is roughly equivalent to the models tested in Puebla &
Bowers (2022), and CLIP ViT-B/16 fine-tuned on SQU, which
is our best model. We use code from Puebla & Bowers (2022)
to generate test sets of 6,400 images evenly split between the
classes, which is equal to the size of our test sets. Figure 7
show all 10 evaluation datasets used in this section. Further-
more, we report median AUC-ROC to better match Puebla
& Bowers (2022), who report mean AUC-ROC. The rest of
our methodology follows Methods. We also test models on
four more challenging evaluation sets from Puebla & Bowers
(2022); details and results can be found in Subsection A.1.1.

We test two of our models on the 9 main evaluation sets
from Puebla & Bowers (2022): ImageNet ResNet-50 fine-
tuned on SQU, which is roughly equivalent to the models
tested in Puebla & Bowers (2022), and CLIP ViT-B/16 fine-
tuned on SQU, which is our best model. We use code from
Puebla & Bowers (2022) to generate test sets of 6,400 images
evenly split between the classes, which is equal to the size of
our test sets. Figure 7 show all 10 evaluation datasets used
in this section. Furthermore, we report median AUC-ROC to
better match Puebla & Bowers (2022), who report mean AUC-
ROC. The rest of our methodology follows Methods.

Our ImageNet ResNet-50 results are comparable to results
from Puebla & Bowers (2022) but not identical. Differences
in our specific results may be due to our differing methods for
creating our datasets. For example, the sizes of their objects
are variable and may either be smaller or larger than our cho-
sen size of 64x64 pixels (see Figure 7 for examples). Their Im-
ageNet ResNet-50 model is fine-tuned on Fleuret et al. (2011)
stimuli in which the sizes of the objects also vary, whereas our
model is fine-tuned on objects of a fixed size. We also thicken
the lines of our SQU stimuli, while Puebla & Bowers (2022) do
not. Furthermore, they use more fine-tuning images than us
(28,000 versus 6,400), and their hyperparameters likely differ
as well. Even still, the larger pattern of results is the same—
ImageNet ResNet-50 fine-tuned on the same-different rela-
tion using stimuli from Fleuret et al. (2011) (our SQU stimuli)
attains relatively high in-distribution test accuracy but strug-
gles to generalize out-of-distribution. This agrees with the re-
sults we obtain using our evaluation sets (SQU, ALPH, SHA,
& NAT); Table 6 shows that ImageNet-ResNet-50 fine-tuned
on SQU struggles to generalize out-of-distribution.

In contrast, CLIP ViT-B/16 fine-tuned on our SQU dataset
achieves perfect or nearly perfect in- and out-of-distribution
generalization, with the exception of two test datasets (Lines
and Arrows). This performance is rather remarkable given
that objects in the evaluation datasets from Puebla & Bowers
(2022) vary greatly in size, whereas our CLIP ViT-B/16 model
is fine-tuned on objects of a fixed size only. This suggests that

CLIP ViT-B/16 fine-tuned on SQU may learn a same-different
relation that is invariant to certain qualities (such as object
size) without explicit fine-tuning for such invariance. This is
also supported by CLIP ViT’s generalization to photorealistic
stimuli in Out-of-Distribution Generalization to Photorealistic
Stimuli, in which objects vary in size and pose. Figure 9 shows
examples of stimuli from the two more challenging datasets
(Lines and Arrows) for which all five CLIP ViT-B/16 random
seeds make errors. For Arrows, this lack of generalization may
be due to symbols overlapping or being much closer to each
other than any stimuli in our fine-tuning data. It’s also possi-
ble that the model lacks the spatial reasoning required to form
useful object representations for the Arrows dataset—unlike
other datasets, this dataset requires the ability to reason about
the direction of an identical line relative to identical triangles in
order to distinguish objects. Thus, failure on Arrows may sim-
ply be due to “perceptual” errors like difficulties in segmenting
the objects or failures in spatial reasoning rather than a lack of
a general same-different representation. We also see a very
slight decrease in test AUC-ROC for the Scrambled dataset,
which is an interesting case. Errors made for this dataset were
primarily due to our model misclassifying slightly scrambled
and unmodified polygons as the “same.” This error may of-
fer insight into how exactly CLIP ViT-B/16 fine-tuned on SQU
compares objects in an image.

However, the most surprising finding is that CLIP ViT-B/16
classifies all stimuli in the Lines dataset as “same” (see Ap-
pendix A.6), and that its ROC-AUC score is below 0.5. This
is striking because all objects in the Lines dataset are ac-
tually the same under reflection. This result makes it very
tempting to conclude that CLIP ViT-B/16 actually learns to
generalize to reflections without ever being fine-tuned to do
so. In fact, if models see the same image multiple times
but flipped horizontally during pretraining—which is a com-
mon data augmentation—then pretrained models may already
have reflection invariance baked in. Pretraining data augmen-
tations have been shown to have such an effect on other ab-
stract relational learning tasks (Davidson et al., 2023). While
a proper treatment of CLIP’s invariances are outside of the
scope of this work, we test our intuition that CLIP ViTs learn a
reflection-invariant same-different relation in Subsection A.1.3
below. We find evidence that strongly suggests our intuition.
However, there are other possible contributing factors to CLIP
ViT’s failure on the Lines dataset. For instance, the Lines
dataset consists entirely of one unique object that is scaled
and flipped to create all stimuli; therefore, if our model makes
a perceptual error when processing this particular object, that
error could plausibly occur across the entire dataset.

A.1.1 More Challenging Datasets from Puebla & Bowers
(2022) In order to better understand CLIP ViT’s limitations,
we further test the ability of CLIP ViT-B/16 fine-tuned on SQU
(our best model from previous sections) to generalize to four
additional datasets from Puebla & Bowers (2022): Rectan-
gles, Straight Lines, Connected Squares, and Connected Cir-
cles (see Figure 10 for example stimuli). These datasets are
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Figure 7: Examples of “same” and “different” stimuli from all 10 evaluation sets in Figure 8. The first dataset (SQU) is
the in-distribution test set and is the same as our SQU dataset from the main body of this paper. The other nine datasets are
generated following Puebla & Bowers (2022).

Figure 8: Out-of-distribution test AUC-ROC for ImageNet ResNet-50 and CLIP ViT-B/16 fine-tuned on SQU. Median AUC-
ROC over five seeds is reported with individual runs also shown. The legend on the right indicates the test dataset. The two red
bars in this figure show in-distribution test AUC-ROC, which is also reported for CLIP ViT-B/16 in Table 11.

somewhat more challenging than previously tested datasets
because they either contain extremely minimal visual infor-
mation (Rectangles and Straight Lines) or require models to
correctly process objects consisting of two sub-objects (Con-
nected Squares and Connected Circles). Our methodology is
exactly the same as described earlier in Appendix A.1.

Results for the same five model seeds in Figure 8 (and the
main body of the paper) are presented in the bar chart in Fig-
ure 10. Performance is slightly above chance for the Rect-
angles and Straight Lines datasets, exactly chance for Con-
nected Squares, and well above chance for Connected Cir-
cles (although not near perfect or excellent). At first, these
results appear to contradict our main claim: that CLIP ViT-
B/16 fine-tuned on SQU learns a generalizable representation
of same-different. However, we believe that the failure of CLIP
ViT to generalize to these datasets is actually a result of the
model’s “fuzzy” same-different computation rather than an ab-
ject failure to generalize the relation. Instead of computing a
perfect equality between each pixel of the two objects, CLIP
ViT appears to use an embedding similarity threshold to de-
termine sameness. This can lead to model errors when the

learned threshold is too low for a new OOD dataset.
Our first line of evidence that this is the case is CLIP

ViT’s strong performance on the photorealistic dataset in Out-
of-Distribution Generalization to Photorealistic Stimuli. The
“same” objects in these images are not the same on a pixel
level, yet CLIP ViT can still accurately classify them. This
strong performance could only be enabled by a “fuzzy” same-
different computation whereby exact pixel-level details are dis-
regarded. Note that the objects in the photorealistic dataset
can vary greatly in size and pose; the objects in the Rect-
angles and Straight Lines datasets (Figure 10) are more or
less the same entity but varied in size (and in the case of
Rectangles, “pose,” due to the slightly different height-width
ratios of the rectangles). Thus, this size and pose invariance
could explain the model’s poor generalization to Rectangles
and Straight Lines.

Our second line of evidence is the distribution of CLIP ViT
logits on the Rectangles, Straight Lines, and Connected Cir-
cles datasets. We examine the logits of the median seed of
CLIP ViT fine-tuned on SQU (i.e. the seed corresponding to
the bars in Figure 10) on these four datasets. See Table 3
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Figure 9: “Different” images misclassified by CLIP ViT-B/16 as “same” from Puebla & Bowers (2022)’s Lines and Arrows
datasets. These stimuli are randomly sampled from the set of stimuli misclassified by all five seeds. Nearly 100% of model
errors across evaluation datasets and seeds are mistaking “different” stimuli for “same” stimuli, so we only show mistakes of this
kind. Note that the “different” Lines stimuli (middle row) are actually the same under reflection. Confusion matrices computed on
these two datasets for the models tested in this section can be found in Appendix A.6.

Figure 10: Example stimuli (left) and median test AUC-ROC scores for CLIP ViT-B/16 fine-tuned on SQU (right) on four
more challenging evaluation sets from Puebla & Bowers (2022). Left: “same” stimuli are displayed in the top row, while
“different” stimuli are in the bottom row. Note that “different” stimuli in the Connected Squares and Connected Circles datasets
are actually the same under reflection. Right: CLIP ViT’s generalization to these four datasets is notably worse than the other
datasets tested in Appendix A.1. There are a number of possible explanations; see Subsections A.1.2 and A.1.3.

Table 3: Model classifications and average logits by ground-truth class for CLIP ViT-B/16 fine-tuned on SQU on the four
datasets in Figure 10. The % Pred. “Same” column indicates the percentage of all stimuli (which are evenly split between
“same” and “different”) are predicted “same.” Nearly 100% of stimuli for each dataset receive a “same” classification. The
GT “Same” and “Diff” Logit columns indicate the model’s average “same” logit for ground truth “same” and “different” images
respectively. Images that are actually the same receive reliably stronger “same” judgements except in the case of Connected
Squares.

Dataset ↓ % Pred. “Same” GT “Same” Logit GT “Diff” Logit

Rectangles 99.97 3.82 3.45
Straight Lines 99.98 3.81 3.61

Connected Squares 100.0 3.73 3.76
Connected Circles 99.95 4.0 3.2

Proceedings of Cognitive Computational Neuroscience 2025



for results. First, we note that the model predicts “same” for
nearly 100% of the images in each dataset (% Pred. “Same”
in Table 3). However, the strength of these “same” classifi-
cations differs reliably between ground truth “same” and “dif-
ferent” images for three of the four datasets. The average
“same” logit for truly “same” images (GT “Same” Logit in Ta-
ble 3) in the Rectangles, Straight Lines, and Connected Cir-
cles datasets is higher than the average “same” logit for “dif-
ferent” images (GT “Diff” Logit in Table 3). This indicates that
the model does in fact discriminate between “same” and “dif-
ferent” to some extent for these datasets.

Our third and final line of evidence is the relationship of
the average cosine similarity between “different” object em-
beddings in a given dataset and CLIP ViT SQU’s performance
on the dataset. Objects that are considered on average much
more similar according to CLIP ViT SQU than the objects in
the SQU dataset predict poor generalization performance; this
is likely because these objects exceed the model’s learned
threshold for judging “same,” which is calibrated for SQU stim-
uli. See Subsection A.1.2.

Separately, note that CLIP ViT appears to learn a same-
different relation that is invariant to reflection; in other words,
the same object reflected is still considered “same” when
compared to the non-reflected version. The “different” im-
ages in the Lines, Connected Squares, and Connected Cir-
cles datasets are in fact the same object reflected. In fact, the
two most difficult datasets for CLIP ViT—Lines and Connected
Squares—both feature the same type of reflection: reflection
across the y-axis of the objects. We test CLIP ViT SQU on
a version of our fine-tuning datasets where objects are re-
flected across the y-axis, finding that this drops model gener-
alization to these datasets from near perfect to near chance.
This strongly suggests reflection-invariance in this model. See
Subsection A.1.3 below.

A.1.2 Object Embedding Similarity Predicts Generaliza-
tion for CLIP ViT SQU We seek to measure how visu-
ally distinct the OOD objects in the Puebla & Bowers (2022)
datasets are according to a CLIP ViT fine-tuned on SQU com-
pared to the objects in the model’s fine-tuning dataset (SQU).
We hypothesize that because of the model’s “fuzzy” same-
different computation, it will perform worse on datasets that
contain objects that are more visually similar to each other
compared to SQU objects.

We measure inter-object similarity by creating separate in-
put images for each individual object. These images are
equivalent to the “same” and “different” stimuli, except only
one object is present. The single object is randomly placed in
the image. In the case of the datasets from Puebla & Bowers
(2022), we generate 1,000 unique object images in this way
for each dataset. In the case of our SQU fine-tuning set, we
source 1,000 unique objects not seen during fine-tuning. For
each dataset, we embed each single-object image using the
image encoder from CLIP ViT fine-tuned on SQU. We then
compute pairwise cosine similarity between the embeddings
of all different objects. Finally, we report the average of the

Figure 11: Average inter-object CLIP embedding simi-
larity for each evaluation dataset (green) vs. CLIP ViT
generalization performance (magenta). The vertical green
lines represent the variance in inter-object similarity for each
dataset. If different objects are overly similar to each other
compared to the fine-tuning data (SQU; green star), model
generalization performance drops significantly due to misclas-
sifying all “different” images as “same.”

pairwise object cosine similarity scores as the solid green line
in Figure 11.

The green star in Figure 11 marks the average inter-
object embedding similarity for unseen SQU objects, while
the dashed green line indicates the maximal average inter-
object embedding similarity for which CLIP ViT SQU performs
well (this corresponds to the Wider dataset; see Figure 7).
The datasets with an average inter-object embedding simi-
larity above this threshold are Lines, Connected Squares (C.
Squares), Straight Lines (S. Lines), Rectangles, and Con-
nected Circles (C. Circles). Plotted in magenta in Figure 11
are the median test AUC-ROC scores on each evaluation
dataset. Model performance is near perfect for all datasets
with object similarities below the threshold marked by the
dashed green line (with the exception of Arrows). Model per-
formance drops precipitously for datasets with object similar-
ities above the threshold. Essentially, the objects in these
datasets are significantly more similar to each other com-
pared to the objects in the fine-tuning data (SQU); thus, be-
cause CLIP ViT learns a “fuzzy” same-different computation,
it considers the objects in these high-similarity datasets to
be the “same” according to the lower threshold learned on
SQU. Model predictions for these high-similarity datasets ac-
cord with this interpretation; nearly all “different” images are
misclassified as “same” (see Table 3 as well as Appendix A.6).

A.1.3 Reflection Invariance in CLIP ViT The poor gen-
eralization performance of CLIP ViT on the Lines, Connected
Squares, and Connected Circles datasets from Puebla & Bow-
ers (2022) (see Figures 7 and 10) suggest an interesting
possibility: that CLIP ViT learns a reflection invariant same-
different relation, despite not being trained to do so (see the
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Figure 12: Example stimuli from each “flipped” dataset.

end of Appendix A.1). To test this, we evaluate CLIP ViTs
fine-tuned on SQU on “flipped” versions of our SQU, ALPH,
and NAT fine-tuning datasets. We skip the SHA dataset since
many of the shapes have bilateral symmetry. The “same”
stimuli in the flipped datasets are the same as the regular
datasets; the “different” stimuli however are created by re-
flecting a copy of a given object about its y-axis. See the
right side of Figure 12 for example stimuli. Note that this
matches the definition of “different” used by the Lines, Con-
nected Squares, and Connected Circles datasets from Puebla
& Bowers (2022).

We create flipped SQU, ALPH, and NAT datasets contain-
ing 6,400 images each, evenly divided between “same” and
“different.” We then compute test accuracy on these datasets
for CLIP ViT-B/16 fine-tuned on SQU using the same five
seeds used elsewhere in the paper. We find that median
model performance drops significantly for the flipped datasets
due to models predicting “same” for “different” images, indi-
cating that the model considers reflected versions of the same
object to be the same. This effect is more severe for the two
OOD datasets (ALPH and NAT). Decreases in median test
accuracy as well as the percentage of all stimuli predicted
“same” for each dataset are the following: 99.6% (original)
to 77.1% (flipped) test accuracy for SQU, with 72.9% pre-
dicted “same;” 97.7% (original) to 51.6% (flipped) test accu-
racy for ALPH, with 98.4% predicted “same;” 96.7% (original)
to 51.8% (flipped) for NAT, with 98.2% predicted “same.” This
invariance likely helps to explain why model generalization
suffers on Lines, Connected Squares, and Connected Circles
from Puebla & Bowers (2022).

A.2 In-Distribution Learning Curves
For each architecture and pretraining method, we plot loss
and in-distribution validation accuracy per epoch of fine-tuning
or training on each dataset. Lines show averages for the same
set of hyperparameters (for that model & dataset) across five
seeds.

A.3 Out-of-distribution Generalization Tables
We report median test accuracy over five random seeds
for each pretraining method, architecture, and fine-tuning
dataset. The tables below include the four main fine-tuning
datasets (SQU, ALPH, SHA, NAT; see Figure 2), the grayscale
and masked versions of the SHA dataset (SHA-G and SHA-
M; see Figure 5a), and grayscale and masked versions of the
NAT dataset (NAT-G and NAT-M). As in Table 1, rows indicate
the dataset that models are fine-tuned on, while columns indi-
cate the test dataset. The rightmost column labeled “Avg.” is
the row-wise average of accuracy scores across OOD evalu-
ation sets (i.e. off-diagonal values), which indicates how well
a model fine-tuned on a given dataset is able to generalize to
other datasets. The bottom row labeled “Avg.” is the column-
wise average across off-diagonal values, indicating how diffi-
cult it is for models fine-tuned on other datasets to generalize
to the given dataset.
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Figure 13: Average loss curves for randomly-initialized ResNet-50 and ViT-B/16 trained on each dataset. Even though
loss curves for models trained on SQU go to zero, validation accuracy remains flat, indicating that models memorize training
data. Furthermore, the loss curves for randomly-initialized ViT-B/16 distinctly mirror the hierarchy of dataset difficulty discussed
in Out-of-Distribution Generalization.

Figure 14: Average loss curves for ImageNet-pretrained ResNet-50 and ViT-B/16 fine-tuned on each dataset. Models
converge substantially faster than in Figure 13. ImageNet ViT-B/16 models fine-tuned on SHA and NAT already attain nearly
100% validation accuracy after only one epoch.
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Figure 15: Average loss curves for CLIP-pretrained ResNet-50 and ViT-B/16 fine-tuned on each dataset. In-distribution
generalization to color-containing datasets SHA and NAT seem much more difficult for CLIP ResNet-50 than CLIP ViT-B/16 (or
any other model configuration). CLIP ViT-B/16 attains nearly 100% validation accuracy after only one epoch of fine-tuning on all
datasets except SQU.
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Table 4: OOD test accuracy for CLIP ResNet-50 models fine-tuned on each dataset. The model fine-tuned on NAT-G exhibits
the strongest average OOD generalization, although it fails to generalize to the SQU stimuli.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 97.7 80.8 82.9 81.9 73.6 82.0 86.6 82.6 81.5
ALPH 83.5 97.4 88.9 90.1 92.9 90.7 78.2 83.8 86.9
SHA 51.3 69.3 98.1 96.2 90.8 95.2 76.3 86.6 80.8
SHA-G 65.5 80.7 98.1 98.2 95.1 93.7 95.8 91.5 88.6
SHA-M 55.9 68.1 94.7 92.1 76.1 79.6 100 86.4 82.4
NAT 53.4 76.0 95.2 96.1 96.1 97.3 87.0 94.3 85.4
NAT-G 55.6 81.3 95.4 97.3 98.0 95.7 89.7 92.7 88.0
NAT-M 59.8 80.6 90.6 91.4 90.1 94.8 94.3 95.0 85.9
Avg. 60.7 76.7 92.3 92.2 90.9 90.2 88.3 88.2

Table 5: OOD test accuracy for CLIP ViT-B/16 models fine-tuned on each dataset. It is interesting to note the different
patterns of generalization between models fine-tuned on SHA, SHA-G, and SHA-M. Models fine-tuned on the SHA dataset
(which contains color and texture) do not generalize very well to NAT-G and NAT-M datasets; models fine-tuned on SHA-G
(which removes color) generalize somewhat better to NAT-G and NAT-M; and models fine-tuned on SHA-M (which removes color
and texture) attain 100% or near 100% accuracy on NAT-G and NAT-M. The same pattern holds for models fine-tuned on NAT,
NAT-G, and NAT-M tasks.

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 99.5 97.7 99.1 98.9 94.8 95.5 95.0 98.1 97.0
ALPH 59.5 99.4 99.9 99.9 98.8 99.7 95.1 97.5 92.9
SHA 50.0 56.0 100 98.6 98.2 100 60.6 77.7 77.3
SHA-G 50.2 63.5 100 99.9 99.9 100 85.5 95.6 85.0
SHA-M 55.6 93.3 100 100 99.8 100 100 97.8 92.4
NAT 50.0 68.4 99.8 97.8 99.3 100 63.0 83.7 80.3
NAT-G 50.2 70.6 99.9 98.9 100 100 71.5 93.9 87.6
NAT-M 60.2 92.7 100 99.9 100 100 94.3 98.5 92.4
Avg. 53.7 77.5 99.8 99.1 98.7 99.3 84.8 92.0

Table 6: OOD test accuracy for ImageNet ResNet-50 models fine-tuned on each dataset. Unlike CLIP-pretrained models,
ImageNet ResNet-50 fine-tuned on SQU actually exhibits the weakest OOD generalization.

ImageNet ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 84.8 57.4 59.3 52.6 65.1 62.9 50.2 60.8 58.3
ALPH 61.3 83.7 60.4 69.0 78.5 70.2 68.0 73.9 68.8
SHA 51.2 66.7 94.4 90.1 78.4 84.0 64.1 66.5 71.6
SHA-G 53.9 72.6 70.8 94.6 84.2 74.2 90.1 78.9 75.0
SHA-M 56.2 68.9 73.7 92.4 79.4 68.7 99.3 79.8 77.0
NAT 50.3 58.3 80.4 69.5 78.6 90.5 62.4 70.7 67.2
NAT-G 50.8 72.2 70.0 82.8 89.8 78.2 69.1 81.1 75.0
NAT-M 50.1 74.9 66.9 76.2 84.0 74.2 78.9 88.4 72.2
Avg. 53.4 67.3 68.8 76.1 79.8 73.2 73.3 73.1
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Table 7: OOD test accuracy for ImageNet ViT-B/16 models fine-tuned on each dataset. Interestingly, models fine-tuned
on SHA exhibit strong generalization to the grayscale and masked versions of that dataset (but still don’t generalize to SQU or
ALPH).

ImageNet ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 95.4 65.8 57.6 53.3 59.7 60.5 51.8 66.3 59.3
ALPH 81.7 97.0 50.5 51.0 59.1 52.1 52.1 67.0 59.1
SHA 50.0 50.1 100 96.2 99.3 99.4 55.8 82.5 76.2
SHA-G 50.0 61.2 100 99.8 99.8 99.9 73.9 84.8 81.4
SHA-M 57.7 88.0 99.9 99.8 99.6 97.5 99.9 97.1 91.4
NAT 50.0 50.4 97.3 80.4 97.8 100 50.4 71.8 71.2
NAT-G 50.0 50.2 98.3 91.7 99.7 99.9 54.0 87.8 82.5
NAT-M 52.2 72.3 99.8 99.3 99.9 100 91.7 98.4 87.9
Avg. 55.9 62.6 86.2 81.7 87.9 87.1 68.0 79.6

Table 8: OOD test accuracy for randomly-initialized ResNet-50 models trained on each dataset. Models attain surprisingly
high in-distribution test accuracy for certain datasets, such as SHA and SHA-G. Models trained on SQU appear to learn nothing
even though their loss curves diminish (see Figure 13). This indicates that models are memorizing training examples, which is
consistent with results from prior work (e.g. Kim et al. (2018)).

Randomly Initialized ResNet-50

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 49.8 49.7 49.5 48.2 49.1 48.3 49.6 50.0 49.2
ALPH 53.1 69.2 58.9 59.0 55.2 58.6 50.0 50.4 55.0
SHA 51.2 69.3 82.6 80.4 82.3 82.9 53.8 61.8 68.8
SHA-G 50.6 67.2 85.0 85.5 87.5 84.0 59.8 67.4 71.6
SHA-M 50.0 57.0 77.3 77.0 77.0 75.0 78.3 74.3 69.9
NAT 52.9 69.5 81.6 80.4 80.3 80.2 55.4 68.0 69.7
NAT-G 51.1 64.2 77.3 83.6 82.8 82.5 61.3 72.5 73.4
NAT-M 50.0 59.4 77.2 79.1 80.3 79.2 69.2 74.4 70.6
Avg. 51.3 62.3 72.4 72.5 73.9 72.9 59.5 63.5

Table 9: OOD test accuracy for randomly-initialized ViT-B/16 models trained on each dataset. Given their larger receptive
field size, randomly initialized ViTs somewhat surprisingly perform worse overall than randomly initialized ResNets (Table 8).

Randomly Initialized ViT-B/16

← Test→
Train ↓ SQU ALPH SHA SHA-G SHA-M NAT NAT-G NAT-M Avg.
SQU 51.7 51.8 51.0 53.5 52.7 53.8 51.4 53.9 52.6
ALPH 49.9 54.8 51.7 51.9 56.8 52.0 49.9 51.4 51.9
SHA 50.0 50.1 92.9 66.2 62.6 73.8 50.7 56.0 58.5
SHA-G 50.0 50.5 74.2 78.8 66.5 66.4 55.7 56.4 60.0
SHA-M 50.0 50.0 56.5 59.6 53.5 55.5 81.3 63.5 59.5
NAT 50.1 51.7 75.7 58.7 62.2 76.7 53.4 62.8 59.2
NAT-G 50.2 51.8 64.1 69.9 70.7 67.0 55.9 65.9 62.8
NAT-M 50.0 50.5 56.4 56.8 58.4 58.2 55.0 66.2 55.0
Avg. 50.0 50.9 61.4 59.5 61.4 61.0 56.8 58.6
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A.4 ImageNet Models with Comparable Parameters
One explanation for the difference in performance between
ResNet-50 and ViT-B/16 is the fact that ResNet-50 consists of
23M parameters, whereas ViT-B/16 has a total of 86M pa-
rameters. To explore this possibility, we fine-tune and test
ConvNeXt-B Liu et al. (2022) as an example of a convolutional
model with 89M parameters (comparable to ViT-B/16), as well
as DeiT-S Touvron et al. (2021), a 22M parameter transformer
model of similar size to ResNet-50.

Results for ConvNeXt-B are shown on the left in Table 10.
This model was pre-trained on ImageNet-22k, the same
dataset as ImageNet ViT-B/16, and also has a similar number
of parameters as ViT-B/16. Comparing the left-hand side of
Table 10 to Table 7, we can see that despite ConvNeXt’s com-
petitive edge in parameter count, ViT-B/16 still seems to have
slightly stronger OOD generalization between SHA and NAT
as well as between SQU and ALPH. However, ConvNeXt does
generalize with a 71.7% accuracy to SHA when trained on
ALPH, which is better than any other non-CLIP model tested.

Looking at the right-hand side of Table 10, we see that
compared to ResNet-50 (Table 6), DeiT-S has more success
generalizing within SQU and ALPH as well as SHA and NAT.
These two smaller models were pre-trained on ImageNet-
1k, but despite this DeiT-S is still quite competitive with the
larger ConvNeXt, which was pre-trained on significantly more
data (ImageNet-22k). Taken as a whole, these additional re-
sults seem to suggest that the biggest differentiator between
ResNet-50 and ViT-B/16 is not parameter count or size of pre-
training data but architectural design.

A.5 Area Under the ROC Curve for CLIP Models
In addition to reporting median test accuracy across seeds,
we report median area under the ROC curve for CLIP ResNet-
50 and CLIP ViT-B/16. Table 11 below mirrors Table 1 from the
main paper.

Models fine-tuned on the Shapes and Naturalistic datasets
attain rather high AUC across all OOD test datasets, notably
including the Alphanumeric task (which does not contain color
or texture). CLIP ResNet-50 in particular attains > 0.8 AUC
across all fine-tuning conditions and test datasets. This is in
contrast to median accuracy results reported in Table 1, which
shows more of a dramatic “upper triangular” pattern. This in-
dicates that some of the models that achieve poor OOD test
accuracy may perform much more strongly with a correctly
calibrated bias. Even still, the “upper triangular” pattern is
still evident here—models fine-tuned on SQU and ALPH tasks
demonstrate stronger generalization than models fine-tuned
on SHA and NAT tasks. Furthermore, ViT still outperforms
ResNet, achieving perfect AUC across all test datasets when
fine-tuned on SQU.

A.6 Out-of-distribution Test Confusion Matrices
We consider the pattern of errors produced by two of our mod-
els: ImageNet ResNet-50 fine-tuned on SQU, which is the
most similar to models tested in some prior work (Funke et

Table 10: OOD test accuracy for ImageNet ConvNeXt-B
and DeiT-S fine-tuned on the main four datasets. Per-
formance is competitive between a small transformer model
of similar size to ResNet-50 and a large convolutional model
comparable to ViT-B/16, suggesting that the difference mainly
comes down to architecture.

ImageNet-22k ConvNeXt-B

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 87.0 55.3 52.8 52.5 61.9
ALPH 64.0 93.6 71.7 61.7 72.7
SHA 50.0 50.2 98.4 86.9 71.4
NAT 50.0 50.6 78.5 98.2 69.3
Avg. 62.8 62.4 75.4 74.8

ImageNet-1k DeiT-S

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 85.6 61.4 54.0 53.9 63.7
ALPH 62.2 88.7 63.1 71.3 71.3
SHA 50.1 52.2 97.9 94.5 73.7
NAT 50.0 52.7 85.2 98.4 71.6
Avg. 62.0 63.7 75.0 79.5

Table 11: Out-of-distribution test AUC for CLIP models
fine-tuned on each dataset. Rows indicate the dataset that
models are fine-tuned on, while columns indicate the test
dataset. Each cell is the median performance over five ran-
dom seeds. The rightmost column labeled “Avg.” is the row-
wise average of accuracy scores across OOD evaluation sets
(i.e. off-diagonal values), which indicates how well a model
fine-tuned on a given dataset is able to generalize to other
datasets. The bottom row labeled “Avg.” is the column-wise
average across off-diagonal values, indicating how difficult it
is for models fine-tuned on other datasets to generalize to the
given dataset.

CLIP ResNet-50

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 0.99 0.95 0.93 0.86 0.91
ALPH 0.96 0.99 0.96 0.97 0.96
SHA 0.8 0.91 1.0 0.99 0.9
NAT 0.83 0.94 0.99 0.99 0.92
Avg. 0.86 0.93 0.96 0.94

CLIP ViT-B/16

← Test→
Train ↓ SQU ALPH SHA NAT Avg.
SQU 1.00 1.00 1.00 1.00 1.00
ALPH 0.93 1.00 1.00 1.00 0.98
SHA 0.62 0.91 1.00 1.00 0.84
NAT 0.63 0.93 1.00 1.00 0.85
Avg. 0.73 0.95 1.00 1.00
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al., 2021; Puebla & Bowers, 2022), and CLIP ViT-B/16 fine-
tuned on SQU, which is our best model. We compute confu-
sion matrices for both of these models on our four main test
sets (SQU, ALPH, SHA, & NAT) as well as the Lines and Ar-
rows test sets from Puebla & Bowers (2022), which our CLIP
ViT-B/16 model finds challenging (see Appendix A.1 for visual
examples and results). We report matrices for the random
seed that yields the median in-distribution test accuracy (i.e.
the run that corresponds to the bars in Figure 3).

In general, both ImageNet ResNet-50 and CLIP ViT-B/16
models tend to mistake “different” stimuli for “same” stimuli
more frequently than the converse. However, this is not al-
ways the case for ImageNet ResNet-50—as the top row of
Figure 16 shows, ResNet makes the opposite error (mistak-
ing “same” for “different”) much more frequently when tested
on SHA and NAT datasets. This is never the case for CLIP
ViT-B/16 (bottom row of Figure 16). Furthermore, the differ-
ence in frequency between the two types of errors is much
more stark for CLIP ViT-B/16; the vast majority of errors made
by this model across all test datasets are mistaking “different”
stimuli for “same” stimuli. Hochmann (2021) argues that much
of the studies on same-different relation learning in children
and animals can actually be accounted for by subjects learn-
ing a concept of “same” without learning a symmetric concept
of “different;” in other words, a subject can achieve high per-
formance on many same-different tasks used in the cognitive
science literature by only recognizing when two objects are
the same as each other (without explicitly representing “dif-
ferent”). This seems to align with the errors made by CLIP
ViT-B/16. It is possible that this model learns a stronger or
more coherent concept of sameness and thus decides to out-
put “same” whenever it is less certain.

Another notable result is the CLIP ViT-B/16 confusion ma-
trix for the Lines dataset from Puebla & Bowers (2022). The
model assigns the label “same” to 100% of the “different” stim-
uli with relatively high confidence (as indicated by the < 0.5
AUC-ROC score on this dataset in Appendix A.1). This is
in contrast to ImageNet ResNet-50, which appears to assign
category labels at random for the Lines dataset. As extrap-
olated in Appendix A.1, the “different” stimuli in this dataset
are actually the same under reflection, suggesting that CLIP
ViT-B/16 fine-tuned on SQU may learn a reflection-invariant
same-different relation despite not being fine-tuned for such
invariance (although this is speculative).

A.7 Probing CLIP Embeddings
In order to determine the degree to which CLIP pretrain-
ing alone encodes useful information for learning the same-
different relation, we perform a linear probe on the CLIP
ResNet-50 and CLIP ViT-B/16 models. As in our main ex-
periments, we append a linear binary classifier to the visual
backbone of each model. However, in this experiment, we
freeze the pretrained weights in the backbone of each model
and train only the parameters of the classifier on the fixed em-
beddings given by the backbone. Results are displayed in
Table 12.

Table 12: Out-of-distribution test accuracy for the best lin-
ear probe trained on CLIP embeddings of each dataset.

CLIP ResNet-50 Probe

← Test→
Train ↓ SQU ALPH SHA NAT Avg.

SQU 62.4 50.0 50.0 50.0 50.0
ALPH 50.0 72.7 50.1 49.8 49.9
SHA 50.0 50.0 85.6 50.3 50.1
NAT 50.0 49.9 52.5 85.6 50.8
Avg. 50.0 50.0 50.8 50.0

CLIP ViT-B/16 Probe

← Test→
Train ↓ SQU ALPH SHA NAT Avg.

SQU 81.9 51.1 55.8 52.7 53.2
ALPH 50.0 94.4 53.1 58.5 53.9
SHA 50.0 50.0 99.9 90.4 63.5
NAT 50.0 50.1 70.6 100 56.9
Avg. 50.0 50.4 59.8 67.2

We find that the linear probe can generally exhibit rather
high in-distribution generalization. CLIP embeddings of Natu-
ralistic stimuli produce the highest in-distribution test accuracy,
followed closely by Shapes. CLIP embeddings of ALPH and
SQU datasets are more difficult to learn from. This mirrors
the ordering observed in Out-of-Distribution Generalization in
which the two same-different tasks containing color and tex-
ture features tend to be easier to learn, while the shape-based
tasks tend to be more difficult. The fact that Alphanumeric and
Squiggles probes are unable to generalize OOD, however, is
odd considering the fact that the solutions to both of these
datasets should be the same (based on shape); this implies
there is some other signal that linear probes are picking up
on in order to separate “same” and “different” stimuli in these
cases.

In the case of CLIP ResNet-50, the linear probe does not
generalize to any OOD stimuli. On the other hand, CLIP ViT-
B/16 probes trained on Shapes or Naturalistic stimuli general-
ize somewhat well to each other (90.4% generalization from
Shapes to Naturalistic; 70.6% from Naturalistic to Shapes).
Somewhat surprisingly, the CLIP ViT-B/16 probe trained on
the Squiggles dataset does not generalize the relation to other
datasets despite the impressive generalization performance of
the fully fine-tuned model.

A.8 CLIP Embedding Cosine Similarity
Distributions
Interestingly, Table 13 shows that ViT-B/16’s embeddings
seem to become more distinct during fine-tuning whereas
ResNet-50’s become closer together. This is likely not due to
differences in generalization performance given that the me-
dian difference between ViT-B/16 and ResNet-50 for within-
distribution generalization is only 1.9%, and the median differ-
ence in out-of-distribution generalization is 13.9%. We do not
have a clear explanation for this phenomenon, and also con-
cede that it may be a methodological problem resulting from
calculating cosine similarity between CLIP embeddings after
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Figure 16: Confusion matrices for ImageNet ResNet-50 (top row) and CLIP ViT-B/16 (bottom row) fine-tuned on SQU.
Each column gives confusion matrices for a given test set as indicated by the labels above. The rows of the confusion matrices
are the true labels (TD means “true different”; TS means “true same”), while the columns of the matrices are the predicted
classes (PD means “predicted different”; PS means “predicted same”). Each cell in the matrix shows the number of test images
with a given true label and a predicted label as assigned by each model.

Figure 17: Distribution of cosine similarities between CLIP
ResNet-50 representations of the Squiggles, Alphanu-
meric, Shapes, and Naturalistic datasets. These cosine
similarities are calculated before fine-tuning. n = 6,400 for
each dataset, 20.48M pairs calculated per dataset.

extensive fine-tuning.
Given our hypothesis that generalization accuracy should

correlate with greater cosine similarity of representations be-
fore fine-tuning, it is odd that the masked versions of Shapes
and Naturalistic sometimes have greater average cosine sim-
ilarity measures than Alphanumeric, despite having worse
generalization accuracy (Tables 4- 8). However, this is likely
due to the fact that masking shapes greatly decreases the ef-
fective number of unique tokens in the dataset. For example,
the Shapes dataset only has 16 unique shapes, so masking
those objects results in only 16 unique objects in total. Ap-
pendix C shows that training on a dataset with so few tokens is

Figure 18: Distribution of cosine similarities between CLIP
ViT-B/16 representations of the Squiggles, Alphanumeric,
Shapes, and Naturalistic datasets. These cosine similar-
ities are calculated before fine-tuning. n = 6,400 for each
dataset, 20.48M pairs calculated per dataset.

detrimental to in- and out-of-distribution generalization. Thus,
datasets with a high average cosine similarity seemingly only
improve generalization in the cases where they also include a
diversity of unique training objects (like the Squiggles dataset).

A.9 Fine-tuning on Noise
We initially calculated average pairwise cosine similarity for
CLIP representations of random Gaussian noise as a baseline
for measuring visual diversity within our datasets (Table 14).
However, after observing a pattern in which more closely-
embedded datasets induce stronger out-of-distribution gener-
alization, we decided to see whether models perform even
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Figure 19: Examples of stimuli used when fine-tuning on noise. From left to right: a single example object; a stimulus labeled
as “same;” a stimulus labeled as “different.” All noise stimuli were sampled from a Gaussian distribution with µ = 0 and σ = 1.

Table 13: Average pairwise cosine similarity between CLIP
embeddings of training stimuli within each dataset. Be-
cause n = 6,400 for each dataset, averages are computed
over 20.48M pairs. We extract CLIP embeddings before fine-
tuning on the same-different task and after fine-tuning on the
Squiggles task (median across five seeds).

Before Fine-tuning Fine-tuned on SQU

Dataset ↓ ResNet-50 ViT-B/16 ResNet-50 ViT-B/16

noise 0.992 0.993 0.983 0.997
SQU 0.929 0.940 0.992 0.283
ALPH 0.881 0.889 0.984 0.634
SHA 0.855 0.861 0.949 0.548
NAT 0.788 0.805 0.937 0.568

SHA-G 0.868 0.873 0.938 0.538
SHA-M 0.900 0.904 0.948 0.579
NAT-G 0.845 0.850 0.944 0.513
NAT-M 0.882 0.879 0.940 0.407

better when they are fine-tuned on a version of the same-
different task where they must label two same-versus-different
64x64 squares of random Gaussian noise (see Figure 19).
Theoretically, if models fine-tuned on this task are forced to
compare objects on the level of individual pixels, they should
be able to generalize to any same-different dataset in which
objects are the same on a pixel level (the definition of same-
ness we employ in this work).

We use the same methodology as described in Methods.
That is, we fine-tune CLIP ResNet-50 and CLIP ViT-B/16 on
this task, sweeping over the learning rates (1e-4, 1e-5, 1e-6,
1e-7, 1e-8) and two learning rate schedulers (Exponential,
ReduceLROnPlateau). We report results for the best models
trained for 70 epochs with a batch size of 128 in Table 15.

As shown in Table 15, models fine-tuned on noise largely
fail to generalize. One likely explanation for this lack of gen-
eralization is that models fine-tuned on noise learn to attend
to small regions in both objects (e.g. two adjacent pixels in
the corner of each object) and calculate whether those small
regions are equivalent. This might help explain why CLIP ViT-
B/16 fine-tuned on noise generalizes quite strongly to the SHA
and NAT datasets—these two datasets contain textures, so

Table 14: Average pairwise cosine similarity between CLIP
embeddings of training stimuli within each dataset. Be-
cause n = 6,400 for each dataset, averages are computed
over approximately 20M pairs. We extract CLIP embeddings
before fine-tuning on the same-different task. For similarities
afterwards, see Appendix A.8.

Dataset ↓ ResNet-50 ViT-B/16

noise 0.992 0.993
SQU 0.929 0.940
ALPH 0.881 0.889
SHA 0.855 0.861
NAT 0.788 0.805

Table 15: Out-of-distribution test accuracy for CLIP mod-
els fine-tuned on noise. Rows indicate model architec-
ture and number of epochs, while columns indicate the test
dataset. Each cell is the median performance over five ran-
dom seeds. The rightmost column labeled “Avg.” is the row-
wise average of accuracy scores across OOD evaluation sets
(i.e. not including the NOISE column), which indicates how
well a model is able to generalize to other datasets. The bot-
tom row labeled “Avg.” is the column-wise average, indicating
how difficult it is for models fine-tuned on noise to generalize
to that given dataset.

← Test→
Model ↓ NOISE SQU ALPH SHA NAT Avg.
ViT-B/16 95.3 50.3 65.1 97.1 96.9 77.4
ResNet-50 94.9 50 50 61.2 59.3 55.1
Avg. 95.1 50.2 57.6 79.2 78.1

this potential strategy of computing equality based on highly
localized features would work well. On the other hand, this
strategy would likely fail for stimuli in the Squiggles and Al-
phanumeric tasks, which consist of primarily empty space and
require the integration of more global shape information. Al-
though the idea of training on noise for abstract-relations is
promising in theory (since there should not be spurious, non-
generalizing visual features), it would require careful design to
counteract such undesirable local “shortcuts” (Geirhos et al.,
2020).
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Figure 20: Out-of-distribution test accuracy for CLIP models for each fine-tuning dataset across all five random seeds.
The top row shows test accuracy for CLIP ResNet-50, while the bottom row shows test accuracy for CLIP ViT-B/16. The columns
indicate the fine-tuning dataset (from left to right: SQU, ALPH, SHA, & NAT), while the legend indicates the test dataset. Each
individual plot point is the test accuracy for a given random seed. Stars represent the median test accuracy, which are equivalent
to the values reported in Table 1.

A.10 Sensitivity of OOD Generalization to Random
Seed
In Table 1, we report median out-of-distribution test accu-
racy across five random seeds for CLIP ResNet-50 and CLIP
ViT-B/16. Here, we extend this table by reporting out-of-
distribution test accuracy for all five random seeds.

All model configurations demonstrate some sensitivity to
random seed. However, the two best generalizing models—
CLIP ResNet-50 fine-tuned on ALPH (Figure 20B) and CLIP
ViT-B/16 fine-tuned on SQU (Figure 20E)—demonstrate a dis-
tinct bimodal distribution across seeds. While some seeds at-
tain high test accuracy across all three OOD test sets, one
(CLIP ViT) or two seeds (CLIP ResNet) perform substantially
worse across all three sets. This creates a visible gap be-
tween points that persists across all three OOD test sets in
panels B and E in Figure 20. Other configurations demon-
strate such a gap for one or two test sets (e.g. panel A and
panel D in Figure 20), but no other configurations demonstrate
such a gap for all three OOD sets.

It is interesting to consider the fact that the only randomness
in our setup for these models is in the data batching (since
models are initialized with deterministic, pretrained weights).
This indicates that the order in which models see particular
examples from the training set is important for abstraction and
determines whether or not models discover the generalizing
solution.

A.11 Additional Photorealistic Evaluation Results
Using the objects depicted in Figure 21, we create two condi-
tions of the photorealistic evaluation dataset described in Out-
of-Distribution Generalization to Photorealistic Stimuli: one in
which individual objects in a given image are randomly and
independently rotated, and one in which objects are given the
same random rotation. The first condition presents a more
challenging out-of-distribution task for our fine-tuned models
than the second since it introduces additional and substantial
variation between “same” objects.

We evaluate our SQU, ALPH, SHA, & NAT fine-tuned mod-
els as described in the Out-of-Distribution Generalization to
Photorealistic Stimuli section on both conditions of the pho-
torealistic dataset. None of the models receive any addi-
tional fine-tuning on the photorealistic dataset. Results for
all pretraining and fine-tuning combinations are displayed in
Figure 22—the hatched bars indicate the easier identical ro-
tation condition, while unhatched bars indicate the more dif-
ficult individual rotation condition. CLIP ViT models demon-
strate impressive generalization to the photorealistic stimuli
across all fine-tuning datasets. ImageNet pretrained ViT mod-
els that are fine-tuned on the SHA and NAT datasets demon-
strate some generalization to the photorealistic setting. All
other models fail to generalize. In particular, although CLIP
ResNet-50 demonstrates a similar generalization pattern to
CLIP ViT-B/16 in the Out-of-Distribution Generalization sec-
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Figure 21: Images of all 16 3D objects used to create the photorealistic evaluation set in Out-of-Distribution General-
ization to Photorealistic Stimuli. Note that many of the objects lack rotational symmetry, e.g. the rubber duck (top row, third
image) or the mug (bottom row, first image)—thus, different views of these objects can appear substantially different.

Figure 22: Median test accuracy (top row) and AUC-ROC (bottom row) for models fine-tuned on SQU, ALPH, SHA, &
NAT and tested on the photorealistic dataset. The two plots on the left show results for ResNet models, while the two on the
right show results for ViT. The bars are grouped by fine-tuning dataset, as indicated by the labels along the x-axis. The colors
indicate the pretraining method. Hatched bars indicate model performance on the version of the photorealistic dataset in which
objects are given identical random rotations; unhatched bars indicate model performance on the version in which individual
objects are rotated independently. Individual seeds are also shown over each bar; these seeds are identical to those used in the
In-Distribution Generalization and Out-of-Distribution Generalization sections.

tion as shown in Table 1, none of the ResNet models gener-
alize robustly to the photorealistic dataset. This suggests that
ResNet models may be prone to relying on pixel-level heuris-
tics.

Performance improves slightly for most models when ob-
jects are rotated identically. However, models perform nearly
just as well when objects are rotated individually. This is im-

pressive in the case of CLIP-pretrained ViT, seeing as models
were not fine-tuned for rotational invariance. Evaluation re-
sults on the Lines dataset from Puebla & Bowers (2022) in
Appendix A.1 seem to support the possibility that CLIP ViT
models acquire a same-different relation that is also reflection
invariant despite receiving no signal to do so.
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Figure 23: Examples of training images from every Table 2
and Table 16 testing dataset. Every test dataset contained
6400 images and 300 unique objects.

B Inductive Bias Experiment Details

B.1 Grayscale and Mask Details
Because training datasets are constructed by sampling ran-
dom objects, the exact objects used between the original,
Grayscale, and Masked datasets are not the same. Details
on the training datasets are as follows:

Grayscaled Shapes Images were taken from the Shapes
dataset (see Training and Evaluation Datasets) and converted
to grayscale using the PIL ImageOps.grayscale method.

Masked Shapes Images were taken from the Shapes
dataset. Because the background was already white, we se-
lected RGB pixels that were ≤ (250, 250, 250) and replaced
them with pixels of the value (100, 100, 100). Extra pixels with
any values greater than 250 that are not equal to the back-
ground color (255, 255, 255) were also converted to (100, 100,
100).

B.2 Dissociating Color, Texture, and Shape

C Diversity of Training Data Heatmaps

See Figure 24.
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Table 16: Predicted results of dissociation experiments, along with actual results from all models trained on different
versions of the original Shapes dataset. Ideally, the proportion of “same” predictions for different types of images should
change based on the inductive bias a given model is using. Median results over five seeds are reported for each row. SHA=Color
Shapes, GRAY-SHA=Grayscale Shapes, MASK-SHA=Masked Shapes.

Acc. Proportion of “Same” Predictions

Predicted ↓ acc. none S T TS C CS CT CTS

(no bias) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
color 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
texture 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00
shape 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

ViT-B/16 ↓ acc. none S T TS C CS CT CTS

SHA (Rand) 0.91 0.15 0.15 0.17 0.16 0.86 0.87 0.96 0.97
GRAY-SHA (Rand) 0.77 0.33 0.35 0.45 0.50 0.41 0.48 0.80 0.87
MASK-SHA (Rand) 0.61 0.52 0.65 0.55 0.66 0.59 0.68 0.63 0.73
SHA (ImageNet) 1.00 0.00 0.02 0.01 0.06 0.34 0.81 0.82 1.00
GRAY-SHA (ImageNet) 1.00 0.00 0.01 0.00 0.06 0.05 0.40 0.47 1.00
MASK-SHA (ImageNet) 1.00 0.00 0.15 0.00 0.28 0.00 0.82 0.03 1.00
SHA (CLIP) 1.00 0.00 0.01 0.03 0.09 0.12 0.41 0.89 1.00
GRAY-SHA (CLIP) 1.00 0.00 0.00 0.01 0.06 0.02 0.26 0.59 1.00
MASK-SHA (CLIP) 1.00 0.00 0.04 0.00 0.24 0.00 0.47 0.02 1.00

ResNet-50 ↓ acc. none S T TS C CS CT CTS

SHA (Rand) 0.83 0.25 0.29 0.34 0.35 0.43 0.44 0.71 0.90
GRAY-SHA (Rand) 0.84 0.27 0.29 0.39 0.41 0.38 0.40 0.81 0.96
MASK-SHA (R) 0.79 0.26 0.36 0.37 0.48 0.34 0.47 0.47 0.85
SHA (ImageNet) 0.93 0.15 0.49 0.17 0.59 0.39 0.94 0.43 1.00
GRAY-SHA (ImageNet) 0.79 0.41 0.64 0.44 0.65 0.59 0.96 0.61 0.99
MASK-SHA (ImageNet) 0.84 0.17 0.49 0.17 0.45 0.27 0.83 0.28 0.85
SHA (CLIP) 0.98 0.04 0.11 0.05 0.15 0.20 0.60 0.47 1.00
GRAY-SHA (CLIP) 0.98 0.04 0.42 0.07 0.54 0.06 0.53 0.15 1.00
MASK-SHA (CLIP) 0.98 0.04 0.90 0.05 0.95 0.05 0.92 0.07 1.00
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Figure 24: Validation accuracies for a ViT-B/16 ImageNet model fine-tuned on different numbers of unique objects and
different amounts of Squiggles stimuli. Hyperparameters chosen correspond with the best-performing Squiggles model from
Figure 3. Each cell is averaged over five different seeds. ImageNet ViT-B/16 must be fine-tuned on at least 25,600 images
containing at least 1,024 unique tokens to achieve high out-of-distribution accuracy.

Figure 25: Examples of stimuli in the Aligned condition (a) and (b) and the Unaligned condition (c) and (d). Objects used
are from the same Naturalistic dataset in the main paper (Brady et al., 2008).
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D Patch Alignment Experiment

One intuition is that ViT models may be able to more eas-
ily compute same-different due to their ability to directly com-
pare image patches using attention. This implies that if objects
were aligned with ViT image patches, it might be easier for ViT
models to implement the same-different relation (since seg-
mentation would effectively already be done for the model).

We consider whether aligning objects with ViT patches al-
lows for quicker convergence or more robust in-distribution
generalization. Figure 25a and 25b show stimuli under the
Aligned condition, where objects are aligned within the grid of
tokens used by ViT models to process images. For ViT-B/16,
each object takes up a 4x4 sub-grid of tokens (16 total); for
ViT-B/32, objects take up 2x2 sub-grids (4 tokens total). The
sub-grids in which the objects are placed are randomly chosen
for each stimulus. The number of possible spatial configura-
tions is exactly 36 for same stimuli (9 choose 2) and 72 for
different stimuli.

On the other hand, Figure 25c and 25d show stimuli un-
der the Unaligned condition. In this case, stimuli are randomly
placed and do not have to align with ViT tokens (just as in the
rest of our experiments). The result is that the objects span
a larger number of tokens, and the number of configurations
that the objects can occupy from the point of view of the ViT
is combinatorially much larger than in the Aligned condition.
Thus, ViT models trained on these stimuli must integrate in-
formation across a larger and much less predictable set of
tokens. The number of possible spatial configurations is on
the order of 100 million.

In all experiments, models are trained to classify images as
same or different with cross entropy loss and a batch size of
64 for 30 epochs. Each experiment uses an initial learning
rate of 2e-6, a ReduceLROnPlateau learning rate scheduler
(patience=2), and an AdamW optimizer (weight decay=1e-2).
Models are fine-tuned on 6400 stimuli (with 1920 unique train-
ing objects, disjoint from 240 other validation objects). 6

Table 17 shows results for ImageNet models fine-tuned on
these datasets. Contrary to our hypothesis, it seems that ViT
models do not benefit from having objects aligned to their to-
ken patches. In fact, the Unaligned condition provides slightly
better generalization, likely because there is more variability
in the training data.

6The setup of this experiment is slightly different from the main
paper is because it was an early exploratory result.

Table 17: Results for ImageNet models fine-tuned on stim-
uli from Figure 25. Training accuracy, in-distribution vali-
dation accuracy, and out-of-distribution generalization to the
Shapes dataset is shown.

Aligned ↓ Train Acc. Val. Acc. SHA Acc.

ViT-B/16 100 100 85.6
ViT-B/32 100 99.7 82.4
ResNet-50 87.2 68.9 53.9
ResNet-152 99.5 89.2 74.6

Unaligned ↓ Train Acc. Val. Acc. SHA Acc.

ViT-B/16 100 100 91.0
ViT-B/32 100 99.5 96.9
ResNet-50 85.7 66.9 55.9
ResNet-152 99.5 88.6 78.5
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