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Abstract

Commonsense reasoning is fundamentally based on multimodal knowledge. However, Large
Language Models (LLMs), trained using textual data only, are limited in their ability to in-
corporate essential visual information. In contrast, Visual Language Models (VLMs), which
excel at visually-oriented tasks, often fail at non-visual tasks such as textual commonsense
reasoning. This divergence highlights a critical challenge - the integration of robust visual
understanding with foundational text-based reasoning. To this end, we introduce a method
aimed at enhancing LLMs’ visual commonsense while maintaining textual modeling and
commonsense reasoning performance. Specifically, our method is based on test-time com-
pute scaling. We generate multiple images based on the input text prompt and integrate
these into the model’s decision-making process by mixing their prediction probabilities. To
facilitate multimodal grounded language modeling, we employ a late-fusion layer that com-
bines the projected visual features with the output of a pre-trained LLM conditioned on text
only. This late-fusion layer enables predictions based on comprehensive image-text knowl-
edge as well as text-only when required. We evaluate our approach using several visual
commonsense reasoning tasks together with traditional NLP tasks, including commonsense
reasoning and reading comprehension. Our experimental results demonstrate significant su-
periority over existing baselines. When our method is applied to recent LLMs (e.g., Llama
3), we observe improvements not only in visual commonsense but also in NLP benchmarks.

1 Introduction

Large language models (LLMs) have shown significant success in advancing a variety of natural language
understanding and generation tasks (Devlin et al., 2019; Radford et al., 2019; Zhang et al., 2022b; Team et al.,
2024; Touvron et al., 2023). As human knowledge is grounded in multimodal information, Vision Language
Models (VLMs) have emerged, incorporating both images and text (Alayrac et al., 2022; Liu et al., 2023b;a;
Li et al., 2023a; Dai et al., 2023; Cha et al., 2024), thus enabling significant advances in multimodal tasks
such as visual commonsense and visual question answering (Zhang et al., 2022a; Xia et al., 2023; Li et al.,
2023c; Jin et al., 2024). However, while VLMs excel at visually oriented tasks, this success may come at the
expense of their performance on non-visual tasks. Specifically, we categorize VLMs into three groups: (i)
VLMs that train the LLM weights exclusively on multimodal data and therefore suffer from forgetting of
language capabilities (Lu et al., 2024; McKinzie et al., 2024), (ii) VLMs that freeze the LLM during training
and thus preserve their language capabilities (Li et al., 2023a), and (iii) VLMs that balance the proportion
of language and multimodal data during training to mitigate forgetting of language capabilities (Lu et al.,
2024; McKinzie et al., 2024). With these directions, the key question now is whether we can further improve
the integration of robust visual understanding with foundational text-based language reasoning, enhancing
rather than merely preserving language capabilities (Yun et al., 2021). We note that one cause for this
divergence is the VLM’s over-reliance on a single visual input, even when such input contains little relevant
information (Chen et al., 2024).

To mitigate such discrepancies Visually-augmented Language Models (VaLMs) were proposed (Wang et al.,
2023; Guo et al., 2023; Zhang et al., 2022a; Cui et al., 2024; Tan & Bansal, 2020). VaLMs suggest augmenting
text-based models with additional visual information. Recent studies suggest VaLM-like models improve
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visual commonsense performance in NLP benchmarks (Zhang et al., 2024; Lu et al., 2022; Tang et al., 2023;
Zhang et al., 2022a; Yang et al., 2022). Notice, unlike VLMs, VaLMs focus on utilizing relevant visual
information to improve visual commonsense in language-oriented tasks, whereas VLMs are aimed at reason
over visual inputs such as visual question answering and image captioning (Wang et al., 2023).

In this study, we propose a novel VaLM like approach for improving visual commonsense reasoning in LLMs.
The proposed approach comprised of two main components: (i) a novel architecture, that allows for the late
fusion of text and images, and (ii) an inference-based procedure that integrates multiple images generated
by a pre-trained text-to-image model conditioned on the input text.

More specifically, in training, given an image and a corresponding caption, our method first encodes the
image using a pre-trained multimodal encoder, mapping the input into a common representation space of
text and images. Next, this encoded representation is passed through a projector, which maps this encoding
to a sequence of embeddings zv

1 , . . . , zv
n. Simultaneously, the input text is passed through a pre-trained LLM,

producing text token embeddings zx
1 , . . . , zx

k . Finally, we combine zv
1 , . . . , zv

n and zx
1 , . . . , zx

k through a late-
stage attention-like mechanism, which allows for text tokens to attend to the pseudo-text tokens generated
from the visual input. Unlike previous work, this integration is done once, just before the model’s prediction,
and not as input to the LLM. This late fusion enables the model to better focus on the input text to predict
the next token while also enabling it to use visual information if this is required to predict the next token.
This formulation strikes the right balance, allowing success in both visual understanding and text-based
language reasoning.

The second component of our approach involves the integration of multiple visual inputs at inference. Unlike
training, we do not have access to images corresponding to the input text at inference. So, instead, we
generate multiple images conditioned on the input text using a pre-trained text-to-image model. More
specifically, we consider different variations of the input text and pass it to a pre-trained text-to-image
generator to generate k image variations. Each generated image is fed into our visually augmented LLM to
generate k different predictions (probability vectors) and a prediction when no input image is given, thus
generating k+1 predictions. Lastly, all probability vectors are weighted-averaged to produce the final output.
By integrating different probability vectors, our prediction is based on several visualizations conditioned on
the input text. Further, the aggregated probability vector will be highly influenced by confident predictions,
being of low entropy. By providing an option not to use an input image at all, we also enable the prediction
to be made based on the input text alone when this is required.

We evaluate our approach on a set of object and visual common-sense tasks together with text-based com-
monsense reasoning. For object commonsense, we employ the zero-shot benchmark proposed by Wang et al.
(2023), which focuses on questions related to colors, shapes, and sizes of different objects. For visual common-
sense, we consider a more challenging benchmark, the ImageNetVC (Xia et al., 2023) dataset. ImageNetVC
is composed of high-quality question-answer pairs over diverse domains. For commonsense reasoning, we
assess our method using standard benchmarks, similarly to Dubey et al. (2024); Touvron et al. (2023);
Team et al. (2023); Almazrouei et al. (2023a). We also consider the task of reading comprehension, where
we adhere to the benchmark framework suggested by Touvron et al. (2023). When considering object and
visual commonsense tasks, the proposed approach significantly outperforms the evaluated baselines across a
variety of architectures and model sizes. Interestingly, following the proposed approach also slightly improves
performance in text-based common-sense reasoning tasks. We conclude the experimental section with an
ablation study, analyzing the importance of each of the components composing our method.

2 Related Work

Large Language and Vision Models. LLMs have demonstrated remarkable capabilities in various natural
language processing tasks (Devlin et al., 2019; Radford et al., 2019; Zhang et al., 2022b; Team et al., 2024;
Touvron et al., 2023). Their potential expands significantly when integrated with visual modalities, giving
rise to vision language models (VLMs) (Alayrac et al., 2022; Liu et al., 2023b;a; Li et al., 2023a; Dai et al.,
2023; Cha et al., 2024). By incorporating text and image data during training, VLMs have enabled a new set
of multimodal understanding capabilities, allowing breakthroughs in tasks such as visual question answering
(VQA), image captioning, and visual commonsense reasoning (Zhang et al., 2022a; Xia et al., 2023; Li et al.,
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2023c; Jin et al., 2024). Despite their exceptional performance in visually oriented tasks, VLMs frequently
exhibit a drop in performance in non-visual tasks that necessitate fundamental common-sense reasoning.
In this work, we aim to improve performance in visual reasoning tasks while maintaining (or even slightly
improving) commonsense reasoning compared to language models.

Visually-Augmented Language Models. Numerous studies explored approaches to augment text-only
Language Models with visual information. One set of approaches retrieves images related to the input text
and uses them as contextual input to the language model (Tan & Bansal, 2020; Lu et al., 2022; Wang
et al., 2023). Similarly, Tang et al. (2021) employs a knowledge distillation approach to fuse visual knowl-
edge. Other works (Zhang et al., 2024; Guo et al., 2023; Li et al., 2023c) distill visual knowledge from
multimodal embedding methods such as CLIP (Radford et al., 2021) into text-only language models. Sim-
ilarly, MORE (Cui et al., 2024) distills visual knowledge from BLIP-2’s Q-Former (Li et al., 2023a) into
text-only models. Another set of works utilizes pre-trained text-to-image generative models. In the context
of diffusion-based text-to-image models, Z-LaVi (Yang et al., 2022) leverages generated visuals that match
possible label predictions of a given text-only language model. Our method, instead, considers visuals that
match the input text. LiVE (Tang et al., 2023) introduces a vision-text plug-and-play vision-text fusion
layer inserted within transformed blocks of pre-trained LMs. iNLG (Zhu et al., 2023) uses generated images
as additional visual supervision to guide the language model in text generation, where the visual input is
provided as an additional input to the LM in the form of a visual prefix. Unlike LiVE and iNGL, which
integrate visual knowledge as input to the LM or as an integrated layer, we, instead, use the output of an
unmodified pre-trained LLM together with an encoding of a generated image, using a late-fusion layer. This
enables focusing on the input text and use visual information. Second, instead of a specialized attention-like
mechanism or a mapping network, our work aggregates scores simply by averaging predictions made using
different generated images obtained from variations of the input text. This enables our method to use a
diverse set of predictions obtained using diverse visual “experts" and gauge its final prediction towards the
more confident predictions.

Multiple Generations Agreement. Several works encourage an agreement, or consistency, between the
predictions of a language model given perturbations of the input (Bachman et al., 2014; Sajjadi et al., 2016;
Xie et al., 2020; Zhai et al., 2019). In contrast, we model this agreement by aggregating predictions given
different visual inputs generated through a pre-trained text-to-image model conditioned on the input text.
Our work is also related to the ability to obtain the confidence of LLMs, as derived by Portillo Wightman
et al. (2023). They showed that one can estimate the confidence of LLMs by aggregating their predictions
under different prompts. Our motivation is similar but uses the agreement of different visually generated
inputs. In addition, while their work focuses on estimating confidence, we aim to improve visual commonsense
reasoning.

3 Method

Our approach, denoted as vLMIG , (stands for improving visual Language Models via Multiple Image
Generation), aims to leverage visual cues to improve object and visual commonsense capabilities in LLMs
while maintaining their performance in standard text benchmarks (i.e., commonsense reasoning and reading
comprehension tasks). For that, vLMIG adopts a multi-modal learning approach, where we incorporate
visual cues within textual representation to perform next-token prediction. During training, we utilize two
types of input data: (i) a pair of images and their corresponding text description, and (ii) a text and a
synthetically generated image obtained from a text-to-image model. During inference, given an input text
prompt, we generate multiple images corresponding to different parts of the input text, feed them into the
model, and aggregate their probability vectors based on their alignment with the input prompt. In the
following subsections we: (i) outline the process of model optimization (Section 3.1); and (ii) introduce our
visually driven inference method (Section 3.2).

3.1 Visually Enhanced Language Model

Our training process aims to equip the LM with the ability to utilize visual knowledge and align it with
textual information. To this end, vLMIG is comprised of four main components: (i) a pre-trained LLM;

3



Under review as submission to TMLR

The vibrant plumage of a parrot,
perched atop a sleek, silver

laptop, contrasts starkly with the
deep green leaves fluttering in the

background

Vision
Encoder

Vision
Encoder

Projector

Projector

Last
H

idden
Layer

...

Pre-Trained LLM

D
ecoder
Layer

Head Layer

Feed Forward Network

Fusion Attention Layer

Fusion Layer

VK

Q

Figure 1: Illustration of the proposed method. During training, we utilize two types of data: (i).
a pair of images and the corresponding text description, or (ii) a text and synthetically generated image
conditioned on the input text. Each image is passed through a prerained vision encoder and then through a
visual token projector, which projects the visual encoding onto pseudo-textual tokens. Simultaneously, the
input text is passed through a pre-trained LLM, producing textual tokens. Next, our fusion layer fuses the
visual pseudo-textual tokens and textual tokens, and produces a prediction of the next textual token. In
this fusion layer, an attention-like mechanism is performed where queries are taken to the textual tokens,
and the keys and values are taken as both the textual tokens and visual pseudo-textual tokens. In blue are
fixed pretrained components while in orange are trainable components. At inference, the same process is
applied, but to k different images conditionally generated using the input text. The predictions resulting
from different images are then integrated as a form of ensemble using Eq. 6 and Eq. 7.

(ii) a pre-trained Vision Encoder; (iii) a Visual Token Projector (VTP); and (iv) a Late Fusion Attention
Layer (LFAL). To preserve the integrity of their learned representations, the Vision Encoder and the LLM
are kept frozen during the training process (refer to Figure 1). The following sections will elaborate on the
VTP and LFAL components.

Given an image v ∈ R3×224×224 and its corresponding caption x = (x(1), . . . , x(nx)), where nx is the number
of tokens in the caption, the objective during training is to maximize the log-likelihood:

max
θ

log Pθ(x(t)|x(<t), v). (1)

Our method begins with the vision encoder V that extracts visual features zv = V(v), where zv ∈ Rnv×dv .
Here, nv is the number of image patches produced by the image, which are subsequently used to extract
visual features of dimension dv using a visual extractor, which in our case is a vision encoder. These features
are then transformed by the Visual Token Projector.

Visual Token Projector (VTP). The VTP intuitively projects the visual representation of the input
image, zv, into a pseudo-text latent embedding. Such representation does not represent actual words but
aligns with the dimensions of the embedded text tokens, hence allowing us to fuse this visual representation
with the input prompt later via attention blocks. The VTP comprises two linear layers,

uv = W1σ(W2zv), (2)

where W2 ∈ Rdv×dVTP , W1 ∈ RdVTP×dx , dVTP is the hidden embedding dimension, σ is a non-linear function,
and dx is the text embedding dimension of the LLM. Overall we obtain uv ∈ Rnv×dx .

Late Fusion Attention Layer (LFAL). The LFAL aims to incorporate visual cues with textual context.
The LFAL is a late fusion module, i.e., it is added before the logits output. The design of this layer is
similar to that of a standard Transformer block. The trainable parameters of this layer are the modules that
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transform the input into Q, K, V representations accordingly. We fuse the visual representations with the
text representations by concatenating them along the time dimension,

K = V = [zv; zx
(<t)], Q = zx

(<t), (3)

where zx is the latent representation of the input text obtained by the pre-trained LLM, and K, V ∈
R(t+nv)×dx , Q ∈ Rt×dx . Thus, the attention mechanism facilitates the integration of visual context into the
language model’s predictions by computing

Φ ∝
(
QKT

)
; Xv = Φ · V, (4)

where Φ ∈ Rt×(t+nv), Xv ∈ Rt×dx .

Finally, we introduce a linear layer to convert the embedding dimension to the dimensions of the vocabulary
size. This can be represented as:

X̂v = WXv, (5)

where W ∈ Rdx×N are the trainable weights and N represents the size of the vocabulary.

3.2 Visually Driven Inference

vLMIG grounds the inference process with visual information. For instance, when asked, Does the Samoyed
have a spotted pattern on its back? an image of a Samoyed could provide the necessary visual information.
However, since the text lacks an associated image for visual reasoning in our inference setup, we employ a
text-to-image module to generate the required images.

To enhance visual robustness, we generate k images corresponding to the entire prompt. For a prompt
containing multiple sentences, an image is generated per sentence. If the number of sentences does not
match k, we randomly sample k from the prompt’s pool of sentences. We also ensure that each generated
image corresponding to the same sentence is generated with a unique seed.

The images are integrated as a form of ensemble, i.e., we run our model with different images, allowing for
a robust visual representation. This also allows for the integration of diverse visual information, i.e.,

k∑
i=1

Pθ(xt | x1, . . . , xt−1, vi). (6)

To add another layer of resilience to corrupted images, we additionally measure the alignment score between
the text and the generated image by applying

k∑
i

f(x̄i, vi)P (xt | x1, . . . , xt−1, vi) + (1 − f(x̄i, vi))P (xt | x1, . . . , xt−1) (7)

where f(x̄i, vi) is a normalized CLIP score of the generated image vi and its corresponding text x̄i. This
allows us to determine the confidence of the generated image w.r.t the input text. Intuitively, when the
score is high, we rely more on the language model with the image guidance, and otherwise on the original
language model. Finally, we sample from Equation (7), to produce the text output. An example of our
model’s inference is shown in Fig. 2.

4 Experimental Setup

4.1 Datasets

We optimize vLMIG using a combination of natural and artificial text-image pairs, obtained by applying a
pre-trained text-to-image model on texts from text-only datasets. We use the Visual Genome Regions dataset
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Prompt: “Imagine you are on a tropical island as the day winds down. 
The sun begins to set, casting a warm glow over the ocean. 
What does the beach look like at this golden hour?“

Llama3-8B-Instruct: “As the day winds down and the sun sets over the 
tropical island, the beach transforms into a breathtakingly beautiful 
scene. The golden hour, a short period of time just before sunset, casts 
a warm, soft light over the entire landscape.”

Ours (Llama3-8B-Instruct): “As the day winds down on this tropical 
island, the beach transforms into a serene and breathtakingly 
beautiful scene. The golden hour, that magical time when the sun 
begins to set, has painted the sky with hues of warm orange, pink, and 
purple. The vibrant colors dance across the horizon, casting a warm 
glow over the ocean and the surrounding landscape.”

Prompt: “Answer List: brown, black, white, yellow, green, gray, red, 
orange, blue, silver, and pink. What is the color of an emperor 
penguin’s belly? Please select the most possible answer from the above 
list. Please answer in one word.“

Score for “Yellow”:
            0.19                                   0.10                                  0.18

Score for “White”:
            0.22                                   0.26                                  0.21

Llama3-8B-Instruct: “Yellow.”

Ours (Llama3-8B-Instruct): “White.”

Figure 2: An illustrative example of our method at inference. On the LHS, we address visual commonsense
reasoning with the prompt What is the color of an emperor penguin’s belly? vLMIG correctly answers
’White’, while Llama3-8B-Instruct incorrectly answers ’Yellow". Our method generates 3 images and assigns
higher weights (CLIP-scores) to the correct prediction. Similar illustrations can be found in 4. On the RHS,
for text generation, our method generates 3 images aligned with different parts of the sentence, resulting in
a visually cohesive response. In contrast, Llama’s answer is less visually aligned.

(Krishna et al., 2016), which consists of 5.4M images with region descriptions. We also leverage Laion-
220K (Schuhmann & Bevan, 2023), which comprises 220K captioned images from the LVIS dataset (Gupta
et al., 2019), and Wikitext-103-raw-v1 (Merity et al., 2016), a collection of over 100 million tokens extracted
from verified Wikipedia articles. To simulate inference with generated images, we randomly sample 2% of
data from the Wikipedia textual dataset and use it to generate the corresponding image.

4.2 Implementation Details

In all experiments, we use CLIP-ViTB/32 (Radford et al., 2021) to compute the CLIP score for text-image
pairs and as the vision encoder. For text-to-image generation, we utilize SDXL-turbo (Sauer et al., 2023).
Model optimization was performed using four A100 GPUs following a dual training pipeline. The model was
first trained for 40K iterations with a batch size of 256, employing AdamW with a learning rate of 5 × 10−4

and a constant scheduler. It was then fine-tuned for 10K iterations with a batch size of 128 and a learning
rate of 5 × 10−5. For all training runs, only the LFAL and VTP were optimized, while all other components
remained frozen. Training vLMIG required approximately 192 A100 GPU hours on Llama-3, 90 hours on
Gemma-2B and OPT-2.7B, and 50 hours on GPT-2. In inference, unless stated otherwise, we generate 10
images per sample.

4.3 Evaluation Benchmarks

Object Commonsense (Object Color, Shape, and Relative Size). For object commonsense eval-
uation, we employ the zero-shot evaluation benchmark proposed by Wang et al. (2023) which focuses on
question-answering tasks related to colors, shapes, and sizes of objects. For color evaluation, we adapt the
Memory Color (Norlund et al., 2021) and Color Terms (Bruni et al., 2012) datasets, and for shape assess-
ment, we use the ViComTe shape dataset (Zhang et al., 2022a). Size evaluation employs the dataset inspired
by Bagherinezhad et al. (2016). All these tests adhere to the guidelines provided by Wang et al. (2023).

Visual Commonsense. We evaluate the proposed method on ImageNetVC (Xia et al., 2023), a human-
annotated dataset designed specifically for zero and few-shot visual commonsense evaluation across 1,000
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ImageNet categories (Deng et al., 2009). It comprises more than 4,076 high-quality QA pairs over diverse
domains such as color, shape, material, component, and general questions. For base models, we employ the
prompts in Table 7 of Xia et al. (2023) and measure accuracy by selecting, from a predefined candidate set,
the answer with the highest likelihood. For instruct models (i.e. Vicuna, Llama-3B-Instruct), we use the
instruction-style prompt in Table 11 of the same work and compute the top-1 accuracy over the model’s
one-word response.

Commonsense Reasoning. For commonsense reasoning, we consider the same benchmark tests from
Touvron et al. (2023): PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC in both its easy and challenge forms (Clark et al., 2018), Open-
BookQA (Mihaylov et al., 2018), and CommonsenseQA (Talmor et al., 2018). To gauge accuracy across
these various tests, we adopt the metric proposed by Shwartz et al. (2020), which calculates accuracy by
selecting the candidate with the highest likelihood from a predefined candidate set.

Reading Comprehension. We adhere to the benchmark of Touvron et al. (2023) and assess performance
on BoolQ (Clark et al., 2019), SQuAD 2.0 (Rajpurkar et al., 2018), and QuAC (Choi et al., 2018). We
evaluate SQuAD and QuAC using the settings recommended by Ouyang et al. (2022) and report the exact
match (EM) score. For BoolQ, we consider a zero-shot binary setup by selecting the highest probability
between the yes/no tokens.

4.4 Baselines

We consider two sets of baseline methods. First, to evaluate object color, shape, and relative size, col-
lectively representing the object visual commonsense benchmark, we compared our method with VaLMs,
which are primarily focused on improving visual commonsense in language models. Specifically, we con-
sidered Vokenization (Tan & Bansal, 2020), based on BERT. X-adapter (Zhang et al., 2024) is based on
both BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). Z-LaVI (Yang et al., 2022) is built on
GPT-neo-1.3B (Gao et al., 2020). iNLG (Zhu et al., 2023) uses the MS-COCO pretrained base model of
BART (Lewis et al., 2019). Additionally, LIVE (Tang et al., 2023) leverages both BART and T5 (Raffel
et al., 2023), as does the multimodal version of MORE (Cui et al., 2024), built on T5, and VaLM (Wang
et al., 2023). We also directly compared these models with pure LMs, namely BERT and GPT-2 (Radford
et al., 2019), as well as fine-tuned versions of these LMs trained on the same data as our method without
incorporating images.

Second, to assess visual commonsense, commonsense reasoning, and reading comprehension, we conducted
evaluations with LMs and VLMs across a range of model sizes and architectures. We aimed to compare our
method with LLMs to ensure that we not only improve visual commonsense reasoning but also maintain
performance on other language abilities. Additionally, we demonstrate that VLMs, which excel at visually-
oriented tasks, are suboptimal compared to our method on non-visual tasks, such as basic commonsense
reasoning. The LMs: GPT-2, OPT-2.7B (Zhang et al., 2022b), Gemma-2B (Team et al., 2024), Vicuna-
7B (Zheng et al., 2023), and both the base and instruct versions of Llama3-8B (AI@Meta, 2024). The
VLMs: InstructBLIP (Dai et al., 2023), built on Vicuna-7B, and Llava-Next (Liu et al., 2024), built on both
Vicuna-7B and Llama3-8B.

5 Results

5.1 Main Results

We first examine ways of improving weaker language models (in terms of data and size) with visual capabil-
ities. Following previous work, we focus on two types of language models: masked language models (BERT)
and causal language models (GPT-2). Both models lack visual commonsense and fail to answer simple
questions like, What is the color of a banana?. For GPT-2-based models, we measured accuracy using direct
zero-shot predictions. For BERT-based models, we followed the approach from Zhang et al. (2024), masking
the sequence immediately after the last word and predicting the masked token. For a fair comparison in this
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Table 1: Performance results on object commonsense tasks (Memory Color, Color Terms, Object Shape, and
Relative Size). The table compares (i) Masked Language Models, where vLMIG is based on BERT, and
(ii) Causal Language Models, where vLMIG is based on GPT-2. Models marked ∗ retrieve images during
inference, † are zero-shot, and ‡ generate images during inference.

Model Base Model Memory Color Color Terms Object Shape Relative Size

BERT - 31.6 30.7 28.1 38.1
BERT (FT) BERT 33.9 31.5 21.5 35.7
Vokenization∗ BERT 14.2 20.0 43.2 72.4
X-adapter∗ RoBERTa 59.6 53.8 - -
X-adapter∗ BERT 64.1 60.0 - -
vLMIG ‡ BERT 74.5 72.5 67.3 78.4
GPT-2 - 32.4 34.6 44.5 43.1
GPT-2 (FT) GPT-2 33.3 34.9 39.3 38.2
Z-LaVI∗† GPT-neo 50.4 49.2 64.4 76.8
LIVE‡ T5 42.4 41.5 36.4 70.1
LIVE‡ BART 49.6 46.7 41.5 66.7
iNLG‡ BART 48.6 44.8 39.5 51.1
MORE∗ T5 47.5 45.6 33.5 65.8
VaLM∗ (k = 4) GPT-2 54.0 52.7 62.8 85.0
VaLM∗ (k = 8) GPT-2 58.6 50.2 59.4 62.4
vLMIG ‡ GPT-2 72.5 69.2 66.8 85.5

experiment, we limited the training of our method to the Visual Genome dataset. Additional details about
the baselines’ setup can be found in Appendix A.

Table 1 summarizes the results 1. vLMIG significantly improves all tasks and model variations when
considering BERT-based models. As for GPT-2, vLMIG significantly outperforms the base model and VaLM
across all setups, with minor improvement when considering Relative Size (85.0 vs. 85.5). Furthermore, we
trained vLMIG on COCO with the same settings as iNLG. The results, 66.9 vs. 48.6 on Memory Color,
65.8 vs. 44.8 on Color Terms, 63.1 vs. 39.5 on Object Shape, and 73.5 vs. 51.1 on Relative Size show
that our method consistently outperforms iNLG across all tasks. We hypothesize that the improvement is a
result of our unique integration of multiple images, whereas in the baselines, a single image could sometimes
be incorrect. Further, our novel late fusion mechanism that uses multiple image generation provides a
significant advantage over the rest of the baselines that incorporate images in earlier layers or Z-LaVI that
sum probabilities and do not fuse images.

In Appendix B, we provide additional comparisons with baselines on the object commonsense task: (i)
using image retrieval instead of image generation, (ii) generating a different number of multiple images
for our method and the baseline, and (iii) evaluating vLMIG on additional object visual commonsense
tasks. Specifically, we present a comparison on the VEC benchmark (Li et al., 2023c), showing that vLMIG
outperforms baselines in tasks involving height, mass, temperature, and hardness.

Next, we evaluate vLMIG on more complex benchmarks of visual commonsense, commonsense reason-
ing, and reading comprehension. Results are reported in Table 2. Results per subtask can be found in
Appendix C.2. We show that vLMIG consistently outperforms LMs across all model sizes: small (GPT-
2), mid (Gemma-2B), and large-scale (Vicuna-7B, Llama3-8B, and Llama3-8B-Instruct). Interestingly, our
method also slightly improves performance in commonsense reasoning and reading comprehension, tasks
that are primarily text-oriented and typically do not require visual reasoning. We observe an improvement
of ∼1 absolute points over the LMs in commonsense reasoning while maintaining comparable performance
in reading comprehension.

When comparing with VLMs, such as the VLM variants of Vicuna-7B, InstructBLIP and Llava-Next, while
these models boost visual commonsense (e.g., Llava-Next achieves 49.3 vs. 43.5 for Vicuna-7B), they suffer

1The reported results of GPT-2, BERT, Z-LaVI, iNLG, MORE, and LIVE were obtained by running the official codebase,
while the results for the other models were taken from their respective papers. As no codebase exists for the X-adapter, we
could not obtain a result for Object Shape and Relative Size.
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Table 2: Results for visual commonsense, commonsense reasoning, and reading comprehension. We report
results for LLMs: GPT-2, Gemma-2B, OPT-2.7B, Vicuna-7B, Llama3-8B, and Llama3-8B-Instruct. ∗ indi-
cates VLM models that train on large-scale image-text data. We apply vLMIG to the base LLM in each
table block for a fair comparison.

Tasks

Model Base Model Visual
Commonsense

Commonsense
Reasoning

Reading
Comprehension Avg.

Small-Scale Models
GPT-2 - 30.3 46.1 30.5 35.6
vLMIG GPT-2 38.6 46.7 32.2 39.2

Mid-Scale Models
Gemma-2B - 45.6 63.8 48.8 52.7
vLMIG Gemma-2B 50.1 65.1 48.9 54.7
OPT-2.7B - 41.0 50.9 44.6 45.5
vLMIG OPT-2.7B 45.4 51.6 44.7 47.2

Large-Scale Models
Vicuna-7B - 43.5 56.6 57.5 52.5
InstructBLIP∗ Vicuna-7B 48.4 52.5 53.6 51.5
Llava-Next∗ Vicuna-7B 49.3 53.7 54.7 52.5
vLMIG Vicuna-7B 47.6 56.8 57.9 54.1
Llama3-8B - 52.0 72.0 57.9 60.6
Llava-Next∗ Llama3-8B 55.6 68.5 54.8 59.6
vLMIG Llama3-8B 55.0 72.9 58.0 62.0
Llama3-8B-Instruct - 53.0 71.6 59.2 61.2
vLMIG Llama3-8B-Instruct 55.6 71.7 60.9 62.7

trade-offs in commonsense reasoning (53.7 vs. 56.6) and reading comprehension (54.7 vs. 57.5). InstructBLIP
shows a similar trend, with 48.4 in visual commonsense but reduced performance in commonsense reasoning
(52.5 vs. 56.6) and reading comprehension (53.6 vs. 57.5). In contrast, our method not only improves visual
commonsense (47.6 for Vicuna-7B) but also enhances performance in commonsense reasoning (56.8) and
reading comprehension (57.9). This consistency demonstrates that, despite extensive VLM training, late
fusion adaptation enhances visual commonsense capabilities without compromising other language tasks.

In addition, we evaluate whether vLMIG , which leverages an image generation model and an image fea-
ture extraction model-adding approximately 2.5B parameters to the backbone model-bridges the gap be-
tween smaller and larger models in the visual commonsense task, i.e., achieving performance comparable
to significantly larger models of the same architecture. Table 3 presents the accuracy of vLMIG applied
to models of different sizes. When applied to OPT-2.7B, vLMIG improves accuracy from 41.0 to 45.4,
achieving performance comparable to the significantly larger OPT-66B model (45.7). Similarly, applying
vLMIG to Llama3-8B improves accuracy from 52.0 to 55.0, closely matching Falcon-40B (Almazrouei et al.,
2023b) (55.0) while using significantly fewer parameters. Moreover, using three LFAL layers, as presented
in Appendix C under "Effect of scaling in fusion strategy on performance," further boosts Llama3-8B-based
vLMIG to 56.3, approaching the performance of Llama3-70B (56.9).

A potential concern is that generating multiple images during inference could increase runtime, reducing
the practicality of the proposed method. However, we believe the proposed approach could be viewed as
test-time compute scaling, which leads to better task performance on the expense of longer inference time.
Having said that, to fairly assess this, we estimate the inference time of vLMIG and baseline methods
using the vLLM inference package (Kwon et al., 2023), while ensuring model performance remains roughtly
the same. We evaluate the inference time of vLMIG using Llama3-8B and compare it to Llama3-70B,
with both models achieving similar task performance. vLMIG (Llama3-8B) runs at 2425 ms per sample,
while Llama3-70B requires 2802 ms. In both settings, we use a context length of 1000 tokens and measure
runtime over a loop of 38 predictions. The Llama3-8B variant is evaluated on a single A100 GPU, whereas
Llama3-70B runs on 8×A100 GPUs. These results demonstrate that vLMIG achieves competitive inference
efficiency while avoiding the computational overhead of larger models.
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Table 3: Scaling analysis: vLMIG improves smaller models to match the performance of larger models.
Model # Parameters Accuracy

OPT-based Models
OPT-2.7B 2.7B 41.0
vLMIG (OPT-2.7B) 5.3B 45.4
OPT-66B 66B 45.7

Llama3 and Falcon-based Models
Falcon-7B 7B 49.4
Llama3-8B 8B 52.0
vLMIG (Llama3-8B) 10.7B 55.0
vLMIG (Llama3-8B) - 3 LFALs 11.1B 56.3
Falcon-40B 40B 55.0
Llama3-70B 70B 56.9

Table 4: Performance comparison of image generation, CLIP text embedding, and the baseline (Gemma-2B)
on Visual Commonsense, Commonsense Reasoning, and Reading Comprehension. Additionally, we report
the average inference time (in milliseconds) for a single token prediction on the Color dataset.

Method Visual
Commonsense

Commonsense
Reasoning

Reading
Comprehension

Inference time
(ms)

Gemma-2B 45.6 63.8 48.8 20
CLIP Text Embedding 47.9 65.0 48.9 58
Generated Images 50.1 65.1 48.9 779

5.2 Ablation Studies

We present four ablation studies: (i) analyzing the effect of using a multi-modal representation, (ii) com-
paring the effect of late versus early fusion layers, (iii) examining the effect of the number of generated
images, and (iv) comparing our approach with a fine-tuned baseline. Additional results and ablations can be
found in Appendix C. Specifically, we ablate the fusion depth, explore different visual encoder choices and
image generation models, report inference efficiency, and evaluate the image selection strategy—all of which
contribute to vLMIG ’s effectiveness.

CLIP text embedding vs. image generation. One might argue that multi-modal representations,
which might serve as a bridge between image and text modalities, could be used instead to inject visual
information. For instance, one could extract a CLIP representation for each input prompt and obtain a
visually driven text representation. Such representation could be later used under the same modeling setup
instead of synthetic image generation. And so the natural question is, do synthetically generated images hold
more information than multi-modal text representation?

To address this, we compare vLMIG both of which are based on the Gemma-2B architecture, against
text representations obtained from a pre-trained CLIP (Radford et al., 2021) model, specifically the CLIP-
ViTB/32 version. For a fair comparison, we adapt the proposed model architecture, datasets, and implemen-
tation details and only replace the visual representations with multi-modal textual representations. Initially,
we tried to embed the full-text prompt using CLIP. However, this resulted in poor performance. Instead, as
suggested by Guo et al. (2023), we extract noun entities from the text prompt using a part-of-speech tagger.
Then, we embed this pre-processed text using CLIP text encoder. We report the visual commonsense, com-
monsense reasoning, and reading comprehension results under the same settings described in Section 4.3.
We also report the average inference running time, of a token prediction, tested on the color test. Results
are reported in Table 4.

For visual commonsense, image generation significantly boosts performance compared to the CLIP text
embedding and the baseline (Gemma-2B), while CLIP text embedding improves over the baseline. In com-
monsense reasoning and reading comprehension, both image generation and CLIP text embedding methods

10
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Table 5: Ablation of late vs. early fusion of visual information on Visual Commonsense* (includes the Color
test set), Commonsense Reasoning* (includes the PIQA test set), and Reading Comprehension* (includes
the BoolQ test set).

Architecture Visual
Commonsense*

Commonsense
Reasoning*

Reading
Comprehension*

Early fusion 41.9 75.2 65.9
Prepend fusion 42.4 70.1 65.4
Late fusion 45.4 77.7 67.0
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Figure 3: Average impact of the number of generated images per inference on performance, aggregating
results from three tests: Color (Xia et al., 2023), PIQA (Bisk et al., 2019), and BoolQ (Clark et al., 2019).
This graph displays the average performance scores for values of k from 1 to 10, illustrating the general trend
across varied test scenarios under identical settings.

either outperform or match the baseline. For inference time, using CLIP text embeddings helps close the
gap between the generated image method and the baseline. Overall, while the generated images method
achieves the highest performance, CLIP text embeddings offer a balanced trade-off between accuracy and
inference run-time, providing alternative for scenarios where computational resources or latency are limited.

Late vs. early fusion of visual information. Visual information can be fused into LLMs in different
ways. We consider how fusing or injecting visual information in various stages affects downstream task
performance. We report the results of vLMIG when considering either early or late fusion. In the case
of early fusion, we apply our fusion layer to our visual pseudo tokens and textual tokens, which are the
output of a single encoding layer of the pretrained LLM. We then pass the resulting output to the rest of
the pretrained LLM. We additionally provide a comparison for an alternative design choice, in which we
omit the fusion layer and optimize the vision projector layer while prepending such representation to the
text input (Prepend Fusion), which is then fed into the LLM. The loss function and other training settings
remain unchanged. As shown in Table 5, late fusion achieves the best performance across all benchmarks.

The effect of k (number of generated images). We analyze the impact of the number of generated
images (k) during inference. We examined our method across various values of k, from k = 1 to k =
10. Due to resource constraints, we consider a single test from each of the three benchmarks (i.e., visual
commonsense, commonsense reasoning, and reading comprehension). Specifically, we utilized the color test
from the ImageNetVC benchmark (Xia et al., 2023) for visual commonsense. For commonsense reasoning,
we use the PIQA benchmark (Bisk et al., 2019), and for reading comprehension, we consider BoolQ (Clark
et al., 2019). Each test was performed under the same settings as in Section 4. The average results are shown
in Figure 3, and the results per benchmark can be found in Table 23 on Appendix C.2. As expected, we
observe an improved performance as we increase k, with a performance saturation when ∼ 6 images are used,
where scaling the number of images is especially helpful for improving performance on visual commonsense
tasks.

vLMIG effectiveness vs. fine-tuned LLM. Lastly, to directly assess the impact of image integration,
we compare our approach with a baseline using Gemma-2B (Team et al., 2024), which was fine-tuned on the
same datasets but without visual elements. The Gemma-2B model was fine-tuned with a learning rate of
5 × 10−5, identical to our training settings but excluding the additional visual layers. Results on the Color
test from ImageNetVC (Xia et al., 2023), PIQA (Bisk et al., 2019), and BoolQ (Clark et al., 2019), detailed
in Table 6, demonstrate that including images significantly enhances performance across all benchmarks.
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Table 6: Performance comparison of our method vs. Gemma-2B fine-tuned (FT) LLM on *Visual Com-
monsense (includes the Color testset (Xia et al., 2023)), *Commonsense Reasoning (includes the PIQA
testset (Bisk et al., 2019)), and *Reading Comprehension (includes the BoolQ testset (Clark et al., 2019)).

Method *Visual
Commonsense

*Commonsense
Reasoning

*Reading
Comprehension

Gemma-2B (FT) 35.2 76.1 64.9
vLMIG 45.4 77.7 67.0

6 Discussion

Limitations. While Tab. 3 shows that vLMIG achieves comparable inference time with fixed task per-
formance, its main drawback remains inference speed, as it requires generating k images. This limitation
is particularly evident when compared to models of the same size. Although recent diffusion models can
produce high-quality images in a single step, inference still incurs noticeable latency. That said, this trade-off
aligns with the prevailing trend of scaling test-time compute to enhance output quality (Wei et al., 2023; Yao
et al., 2023; Snell et al., 2024), reaffirming the “no-free-lunch” principle that higher performance typically
demands longer runtime.

For scenarios where inference speed is paramount, one can replace generated images with multimodal rep-
resentations within the same framework—dramatically improving runtime at the cost of some performance
(see Tab. 4). Additionally, simple optimizations such as parallelizing text processing and image generation
or using lower-resolution images can further mitigate latency: preliminary results with Llama3-8B demon-
strate that reducing image size from 512 × 512 to 256 × 256 lowers inference time from 1938 ms to 1588 ms
with minimal impact on task performance. Future work will explore more advanced strategies to optimize
inference time.

Finally, we have not yet evaluated vLMIG on the newest flagship LLMs (e.g., DeepSeek (DeepSeek-AI et al.,
2025)) nor trained it beyond the 8B-parameter scale due to computational constraints. Larger-scale studies
are left for future work.

Conclusion. We introduce vLMIG , a method designed to enhance the visual commonsense capabilities
of LLMs while maintaining their foundational text-based language reasoning capabilities. To enable this,
vLMIG introduces two main novel components: (i) a novel training pipeline consisting of a late fusion layer
applied over the output of a text-only LLM and a visually adapted pseudo-tokens, and (ii) the integration
of multiple visual “experts" through the generation of multiple images from a text-to-image model and the
aggregation of their “vote" (or vector probabilities), enabling the model to leverage diverse visual perspectives.
We conduct a comprehensive evaluation demonstrating our approach’s effectiveness across various visual
commonsense tasks, significantly outperforming existing baselines. Notably, vLMIG excels in visual tasks
while also maintaining or slightly enhancing performance in text-based commonsense reasoning and reading
comprehension. In future work, we plan to explore its potential in more complex visual reasoning tasks,
including those requiring deeper object relationships and contextual understanding.

Broader Impact Statement

The broader impact of our method has both potential risks and benefits associated with using LLMs, visual
encoders, and text-to-image generators. As our method uses these components, it inherits their associated
issues. The following are points that should be considered: (i) Hallucinations: Similar to LLMs, our model
might generate outputs that are not grounded in facts. In our case, this can also happen in the text-to-
image model, where the model generates factually incorrect visuals; (ii) Biases: Biases can be performed
using the pre-trained LLM, the CLIP encoder, and the text-to-image generator and transferred into our
model. This may lead to biased output or to unfair representations of diverse content; and (iii) Energy
consumptions: While our model primarily uses pre-trained foundation models as part of our model design and
only adapts a lightweight vision projector fusion layer, training such pre-trained models requires significant
energy consumption. Further, inference time queries, which are performed many times, may be costly.
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A Comparison to baselines vision-text models

Baseline methods have various setups. For a fair comparison, we limit the training of our method to the
Visual Genome dataset Krishna et al. (2016). Expect VaLM and iLNG, all other baselines were trained on
the VG dataset during pretraining or retrieved images from Visual Genome during inference. Specifically,
Vokenization and X-adapter rely on COCO (Lin et al., 2015) and VG, while LIVE incorporates COCO, VG,
CC3M (Sharma et al., 2018), and Flick30k (Plummer et al., 2016).

Z-LaVI and MORE are zero-shot models; we employed them with the VG and Bing Image Search image
collections.

VaLM, uses a different setup from ours, as it trains GPT-2 from scratch. Furthermore, since VaLM’s weights
are not publicly available, we could not fine-tune it on Visual Genome and report results from their paper
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instead. To ensure a fair comparison with iNLG, we also provide an additional evaluation, comparing our
method with iNLG under the same training settings, i.e., trained on MS COCO.

In the Relative Size test, which involves a binary decision (yes/no questions), GPT-2, BERT, Vokenization,
MORE, LIVE, and iNLG models exhibited a strong bias toward either "yes" or "no," often resulting in
consistently answering either "yes" or "no." To address this, we fine-tuned the open-weight models (all models
except VaLM and X-Adapter, which do not have open weights) using the proposed method, with 3,200 yes/no
questions about object sizes from the ViComTe size dataset (Zhang et al., 2022a), over three epochs with a
learning rate of 5e−5.

B Additional results on object commonsense tasks

Retrieval mechanism. For an equivalent comparison with X-adapter (Guo et al., 2023), we adopted the
VaLM (Wang et al., 2023) image retrieval method, using retrieval instead of our image generation mechanism.
Like X-adapter, we utilized Visual Genome as the image collection for retrieval and used MS COCO as our
dataset for pretraining. As shown in Table 7, this approach yielded scores of 65.5 on Memory Color and
62.8 on Color Terms, both of which are higher than X-adapter’s results (64.1 and 60.0, respectively). Since
X-adapter’s weights are not publicly available, we refer to the results reported in the paper and are unable
to conduct evaluations for additional tasks.

Table 7: Performance comparison of our method with X-adapter on Memory Color and Color Terms.
Method Memory Color Color Terms

X-adapter 64.1 60.0
vLMIG (retrieval) 65.5 62.8

Equal number of images involved. We explored the impact of varying the number of images k used
during inference on the performance of our method compared to the baseline LIVE (Tang et al., 2023). For
both LIVE and our method, we applied our CLIP-based fusion strategy to fuse multiple images and generate
the final predictions.

Table 8 presents the accuracy scores for object commonsense tasks across different values of k. Our method
consistently outperforms LIVE for all values of k. Notably, even with k = 1, our approach achieves supe-
rior results. As k increases, both methods benefit from our fusion strategy, but our method continues to
outperform LIVE across all tasks.

Table 8: Comparison of our method with LIVE (Tang et al., 2023) using our CLIP-based fusion and different
numbers of images k. Accuracy scores are reported for object commonsense tasks.

Method k Memory Color Color Terms Object Shape Relative Size
LIVE 1 49.6 46.7 41.5 66.7
LIVE 4 46.8 42.1 36.8 75.6
LIVE 8 47.5 42.7 37.1 76.1
vLMIG 1 65.1 62.2 63.5 70.2
vLMIG 4 70.2 67.6 66.0 83.6
vLMIG 8 72.1 68.2 66.5 85.0

Additional object commonsense tasks. We evaluate vLMIG on the VEC benchmark (Li et al., 2023b),
which measures object visual commonsense across additional tasks involving Embodied Concepts, including
temperature, mass, hardness, and height. Each sample in the test set contains a sentence, a positive word
(correct), and a negative word (incorrect). A response is correct if the model assigns lower perplexity to the
sentence with the positive word compared to the one with the negative word. For example, in “Deep red fire
is hotter than melted steel” (positive: hotter) versus “Deep red fire is colder than melted steel” (negative:
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colder), the model succeeds if it assigns lower perplexity to the first sentence. We report the accuracy for
each dataset independently, evaluating vLMIG (Ours) based on GPT-2, GPT-2, LiVE, iLNG, MORE, and
Z-LaVI, the open weights baselines. As shown in the Table 9, vLMIG consistently outperforms all baselines.

Table 9: VEC benchmark results. We report accuracy on the Height, Mass, Temperature, and Hardness test
sets.

Model Base Model Height Mass Temperature Hardness

GPT2 - 0.54 0.49 0.52 0.54
iLNG BART 0.58 0.49 0.51 0.56
LIVE BART 0.61 0.50 0.50 0.56
LIVE T5 0.59 0.49 0.53 0.55
MORE T5 0.52 0.50 0.52 0.55
Z-LaVI GPT-Neo-1.3B 0.66 0.53 0.57 0.56
vLMIG (Ours) GPT2 0.71 0.66 0.60 0.58

C Additional ablation study

Test-time scaling. We align Gemma-2B’s inference runtime with that of our method configured with
ten generated images by applying Best-of-N sampling. This procedure creates N independent candidate
completions, scores each by average token log-likelihood, and selects the sequence with the highest score. As
shown in Table 10, Best-of-N narrows the gap in commonsense reasoning and reading comprehension, but
it is still not enough for visual commonsense where vLMIG keeps a clear lead.

Table 10: Effect of Best-of-N test-time scaling on Gemma-2B.

Approach Visual
Commonsense

Commonsense
Reasoning

Reading
Comprehension

Gemma-2B 45.6 63.8 48.8
Gemma-2B Best-of-N 47.8 64.8 49.0
vLMIG 50.1 65.1 48.9

Effect of scaling in fusion strategy on performance. We evaluate the impact of increasing the number
of transformer layers in the fusion mechanism. Specifically, we compare variants of our late fusion approach
and an early fusion baseline, each with one or three transformer layers. The results in Table 11 show that
increasing the number of layers in late fusion leads to further improvements in visual commonsense reasoning,
while early fusion remains less effective even with additional layers. These findings suggest that deeper late
fusion enhances the integration of semantic text and visual representations, reinforcing its advantage over
early fusion.

Table 11: Effect of scaling transformer layers in fusion strategy.

Approach Visual
Commonsense

Commonsense
Reasoning

Reading
Comprehension

Llama3-8B 52.0 72.0 57.9
Late fusion (1 transformer layer) 55.0 72.9 58.0
Late fusion (3 transformer layers) 56.3 72.7 57.7
Early fusion (1 transformer layer) 53.3 69.9 56.7
Early fusion (3 transformer layers) 53.6 69.5 55.9

Inference time comparison. In some cases where inference speed is a critical factor, faster alterna-
tives to image generation can be employed. For instance, using CLIP embeddings instead of generating
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images provides a significant reduction in running time while still leveraging visual information. Addition-
ally, retrieval-based methods can also offer efficient alternatives when image generation is computationally
expensive.

In Table 12, we summarize the inference times for (1) our method using different image generation settings,
(2) using retrieval instead of generation, (3) using CLIP embeddings only (no generation), and (4) other
baseline approaches. The experiment was conducted using the GPT-2 model, with average inference times
computed over the Color Memory test-set predictions. The image generation and retrieval methods involve
different configurations, such as varying the number of generated images (k) and the size of the image
collections for retrieval.

Table 12: Inference time comparison for various methods and configurations, measured in milliseconds (ms).
Our methods are indicated as vLMIG .

Method Inference time (ms)
No visual involved (GPT-2) 12
vLMIG (Image generation, k = 1) 229
vLMIG (Image generation, k = 5) 496
vLMIG (Image generation, k = 10) 750
vLMIG (CLIP embeddings) 50
vLMIG (Retrieval, k = 4, 6M images) 33
Vokenization 105
Z-Lavi 355
iNLG 235
LIVE 240
MORE 215
VaLM (retrieval), k = 4, (400M images) 51

The effect of the visual encoder. Our model employs the CLIP (Radford et al., 2021) visual encoder to
handle image features, leveraging its multimodal training with text. We evaluate its effectiveness against a
unimodal image encoder, DINOv2 (Oquab et al., 2024), across the same tasks: the Color test, PIQA, and
BoolQ. Results are summarized in Table 13. Although DINOv2 provides comparable or superior performance
to the baseline methods, results suggest that CLIP still outperforms DINOv2, particularly in tasks requiring
nuanced visual comprehension, validating our choice of CLIP for enhanced multimodal learning.

Table 13: Experiment results using different visual encoders on *Visual Commonsense (includes the Color
testset (Xia et al., 2023)), *Commonsense Reasoning (includes the PIQA testset (Bisk et al., 2019)), and
*Reading Comprehension (includes the BoolQ testset (Clark et al., 2019)).

Visual encoder *Visual
Commonsense

*Commonsense
Reasoning

*Reading
Comprehension

DINOv2 43.9 77.0 66.6
CLIP 45.4 77.7 67.0

The effect of the image generation model. To explore the impact of image fidelity on reasoning
capabilities, we evaluate two text-to-image models: SDXL-turbo and SD-turbo. These experiments were
conducted on the same tasks and datasets as the previous ablation. As shown in Table 14, SDXL-turbo
significantly outperforms SD-turbo in the Color task, indicating that superior image quality directly con-
tributes to better performance in visual commonsense reasoning. While improvements in PIQA and BoolQ
are less pronounced, they underscore the importance of high-quality image generation in our model. These
results imply that advancements in text-to-image research will additionally improve our method.

Impact of image source on visual commonsense performance. We tested our model under three
different variations (using the number of images k as 10): (i) Replacing the generated images with images
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Table 14: Experiment results using different text-to-image models on *Visual Commonsense (includes the
Color testset (Xia et al., 2023)), *Commonsense Reasoning (includes the PIQA testset (Bisk et al., 2019)),
and *Reading Comprehension (includes the BoolQ testset (Clark et al., 2019)).

T2I model *Visual
Commonsense

*Commonsense
Reasoning

*Reading
Comprehension

SD-turbo 41.9 76.9 66.7
SDXL-turbo 45.4 77.7 67.0

representing different prompts from the dataset, (ii) Using k-1 images representing different prompts from
the dataset and a single generated image using the correct prompt, and (iii) Generating k images from
correct prompts as default. The results in Table ??, based on our Gemma-2B model, report accuracy on our
visual commonsense benchmark. They indicate that even when generated images are unrelated to the text
context, our method performs comparably to the backbone, with further improvements using one generated
image and the best performance achieved with k generated images.

Table 15: Accuracy on the visual commonsense task using different image sources.
Approach Accuracy
Gemma-2B 33.4
Images representing different prompts 33.0
k-1 images representing different prompts 38.4
vLMIG (k generated images) 45.4

Scale on longer text inputs. We evaluated the effect of increasing the context length from a single sentence
to ten sentences while keeping the number of generated images, k, at 10. Unlike early fusion methods, our
late fusion approach is computationally efficient as it adds only a single layer. Given a backbone with K
attention layers and a text context of size L, the backbone’s complexity scales as O(KL2), while vLMIG
introduces an additional late fusion layer, resulting in an overall complexity of O((K +1)L2). This means our
approach incurs only a marginal increase in computational cost compared to the base model. As shown in
Table 16, increasing the input length in the backbone model resulted in a proportional increase in inference
running time. Notably, vLMIG exhibited a similar relative increase, suggesting that its computational cost
is primarily driven by image processing rather than text length.

Table 16: Inference running time (ms) for different text input lengths.
Approach Inference running time (ms)
Gemma-2B - single sentence 20.82
Gemma-2B - ten sentences 46.69
vLMIG - single sentence 750.71
vLMIG - ten sentences 779.34

Generated image prompting strategy. To determine the most effective image generation strategy for
enhancing our model’s interpretative and reasoning capabilities, we compared three methods: generating
images from the last sentence, the entire textual context, and the latest k sentences. These strategies
were evaluated across the same benchmarks: the Color task from ImageNetVC, PIQA, and BoolQ. Results,
detailed in Table 17, show that generating images from the latest k sentences consistently leads to the best
performance in PIQA and BoolQ test, providing a dynamic and contextually relevant visual representation.
In the Color test, since all the questions include a single sentence, the results are the same.

The effect of the CLIP-fusion mechanism. To determine the effectiveness of our suggested CLIP-score
fusion mechanism, we compare our method with and without CLIP-score fusion. Specifically, we consider
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Table 17: Experiment results comparing different image generation strategies on *Visual Commonsense
(includes the Color testset (Xia et al., 2023)), *Commonsense Reasoning (includes the PIQA testset (Bisk
et al., 2019)), and *Reading Comprehension (includes the BoolQ testset (Clark et al., 2019)).

Style *Visual
Commonsense

*Commonsense
Reasoning

*Reading
Comprehension

Last Sentence 45.4 75.9 66.1
Full Context 45.4 76.6 66.4
K Latest Sentences 45.4 77.7 67.0

(i) generating a single image (k = 1), (ii) averaging the logits over ten different image generations and
outputting the highest scoring token (no CLIP-fusion), (iii) as in (ii), but using max instead of average, and
(iv) our method (which uses CLIP-fusion) with k = 10.

Results are presented in Table 18, showing that our CLIP-fusion approach consistently yields the best
performance across all tasks. While averaging and maximizing logits from multiple image generations improve
results over generating a single image, CLIP-fusion further boosts performance by effectively integrating
visual representations.

Table 18: Experiment results comparing different strategies with and without CLIP-score fusion on *Visual
Commonsense (includes the Color testset (Xia et al., 2023)), *Commonsense Reasoning (includes the PIQA
testset (Bisk et al., 2019)), and *Reading Comprehension (includes the BoolQ testset (Clark et al., 2019)).

Method *Visual
Commonsense

*Commonsense
Reasoning

*Reading
Comprehension

Generating single image (i) 40.8 76.1 66.1
Average logits (ii) 44.6 76.5 66.5
Maximum (iii) 43.0 76.1 66.9
vLMIG with CLIP-fusion (iv) 45.4 77.7 67.0

Effect of attention mechanism in fusion layer. We compare the use of cross-attention and joint
self-attention in the late fusion layer. As shown in Table 19, cross-attention performs similarly to joint self-
attention in visual commonsense reasoning but leads to lower performance in commonsense reasoning and
reading comprehension. This suggests that while cross-attention is effective for vision-related tasks, joint
self-attention better integrates multimodal information for text-based reasoning.

Table 19: Comparison of cross-attention and joint self-attention in late fusion.

Approach Visual
Commonsense

Commonsense
Reasoning

Reading
Comprehension

Cross-attention 49.8 62.8 45.2
Joint self-attention 50.1 65.1 48.9

C.1 Inference Illustration

We present illustrative examples that highlight our method’s inference process in C.1

C.2 Detailed Results

We present comprehensive results for all benchmarks discussed. First, the visual commonsense benchmark
results are detailed in Table 20. Second, results for commonsense reasoning are provided in Table 21, and
third, results for reading comprehension are provided in Table 22.
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Prompt: Question: What is the typical color of an orangutan's face?

T2I vLMIG

Next token
prediction

probability:

Image's CLIP-
score:

Black: 0.15
Orange: 0.28

Black: 0.45
Orange: 0.23

Black: 0.68
Orange: 0.09

CLIP-fusion

Black:

Orange:

Final
Prediction:

vLMIG:
Black

Llama3 Llama3:
Orange

Prompt: Question: What is the color of the spots on a spotted
salamander? Answer:

T2I vLMIG

Next token
prediction

probability:

Image's CLIP-
score:

Yellow: 0.19
Brown: 0.29

Yellow: 0.84
Brown: 0.05

Yellow: 0.35
Brown: 0.21

CLIP-fusion

Yellow:

Brown:

Final
Prediction:

vLMIG:
Yellow

Llama3 Llama3:
Brown

Figure 4: An illustration of our method’s inference process, showcasing two examples. In the first example, we
address the prompt: "What is the typical color of an orangutan’s face?" vLMIG’s final prediction correctly
selects "Black," leveraging three generated images, each with their respective CLIP-scores influencing the
CLIP-fusion result. vLMIG weights the images such that higher scores align with the black prediction, while
Llama3 incorrectly chooses "Orange." Similarly, in the second example with the prompt "What is the color
of the spots on a spotted salamander?" vLMIG correctly predicts "Yellow" by assigning the highest weight
to the second image, whereas Llama3 selects "Brown."

Furthermore, Table 23 presents the complete results of our experiment investigating the impact of the number
of images generated per inference on performance, as discussed in Figure 3.
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Table 20: Visual commonsense performance per subtask, corresponding to Tab. 2.
Tasks

Model Base Model Color Shape Material Component Others Avg.

Random - 7.7 9.9 6.1 49.8 24.3 19.4
Small-Scale Models

GPT-2 - 17.1 21.8 27.1 50.4 35.1 30.3
vLMIG (ours) GPT-2 44.8 29.2 32.8 49.9 36.5 38.6

Mid-Scale Models
Gemma-2B - 33.4 34.1 52.3 59.5 49.0 45.6
vLMIG (ours) Gemma-2B 45.4 36.8 57.7 59.6 51.2 50.1
Opt 2.7B - 25.7 39.9 40.2 51.3 48.1 41.0
BLIP-2 Opt 2.7B 37.8 38.7 53.1 51.7 48.5 46.0
vLMIG (ours) Opt 2.7B 35.5 40.8 48.5 51.9 50.2 45.4

Large-Scale Models
Llama3-8B - 40.2 39.6 57.6 67.8 55.0 52.0
vLMIG (ours) Llama3-8B 48.0 40.9 60.4 69.7 56.0 55.0

Table 21: Commonsense reasoning performance per subtask, corresponding to Tab. 2.
Tasks

Model Base Model PIQA SIQA HS WG ARC OBQA CQA Avg.

Small-Scale Models
GPT-2 - 62.6 38.4 31.8 50.8 34.8 25.6 32.8 46.1
vLMIG (ours) GPT-2 62.2 38.9 31.9 51.5 33.7 27.4 34.0 46.7

Mid-Scale Models
Gemma-2B - 77.0 42.1 66.6 62.2 47.7 40.2 46.8 63.8
vLMIG (ours) Gemma-2B 77.7 44.0 67.0 62.5 49.1 40.3 50.6 65.1
OPT-2.7B - 73.4 42.4 55.2 57.3 47.0 34.8 46.5 50.9
BLIP-2 OPT-2.7B 68.8 40.0 54.2 53.8 40.3 33.0 38.8 46.9
vLMIG (ours) OPT-2.7B 73.8 43.8 55.0 57.2 48.5 34.3 49.1 51.6

Large-Scale Models
Llama3-8B - 80.3 46.1 77.1 71.0 60.0 44.6 54.8 72.0
vLMIG (ours) Llama3-8B 81.4 46.6 76.5 70.8 59.8 46.0 56.3 72.9
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Table 22: Reading comprehension performance per subtask, corresponding to Tab. 2.
Tasks

Model Base Model Boolq SQuAD QuAC Avg.

Small-Scale Models
GPT-2 - 47.7 27.4 16.6 30.5
vLMIG (ours) GPT-2 48.7 29.3 18.8 32.2

Mid-Scale Models
Gemma-2B - 66.8 57.4 22.4 48.8
vLMIG (ours) Gemma-2B 67.0 57.3 22.4 48.9
Opt 2.7B - 63.1 50.5 20.4 44.6
BLIP-2 Opt 2.7B 59.9 40.4 16.5 38.9
vLMIG (ours) Opt 2.7B 63.0 51.5 19.8 44.7

Large-Scale Models
Llama3-8B - 79.3 69.2 29.1 57.9
vLMIG (ours) Llama3-8B 79.0 69.1 29.3 58.0

Table 23: Impact of the number of generated images per inference on performance per task, corresponding
to Figure 3.

Tasks

Number of Images Color PIQA BoolQ Avg.

1 40.8 76.1 66.1 60.3
2 41.8 76.7 66.4 61.2
3 42.6 77.1 66.5 62.0
4 43.5 76.9 66.6 62.3
5 43.8 77.3 66.8 62.6
6 45.1 77.6 66.6 63.1
7 44.8 77.4 66.8 63.1
8 45.4 77.7 67.0 63.3
9 45.2 77.7 66.8 63.2
10 45.4 77.7 67.0 63.3
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