
ResT: An Efficient Transformer for Visual Recognition

Qing-Long Zhang, Yu-Bin Yang
State Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 21023, China
wofmanaf@smail.nju.edu.cn, yangyubin@nju.edu.cn

Abstract

This paper presents an efficient multi-scale vision Transformer, called ResT, that
capably served as a general-purpose backbone for image recognition. Unlike
existing Transformer methods, which employ standard Transformer blocks to
tackle raw images with a fixed resolution, our ResT have several advantages:
(1) A memory-efficient multi-head self-attention is built, which compresses the
memory by a simple depth-wise convolution, and projects the interaction across the
attention-heads dimension while keeping the diversity ability of multi-heads; (2)
Positional encoding is constructed as spatial attention, which is more flexible and
can tackle with input images of arbitrary size without interpolation or fine-tune;
(3) Instead of the straightforward tokenization at the beginning of each stage, we
design the patch embedding as a stack of overlapping convolution operation with
stride on the token map. We comprehensively validate ResT on image classification
and downstream tasks. Experimental results show that the proposed ResT can
outperform the recently state-of-the-art backbones by a large margin, demonstrating
the potential of ResT as strong backbones. The code and models will be made
publicly available at https://github.com/wofmanaf/ResT.

1 Introduction

Deep learning backbone architectures have been evolved for years and boost the performance of
computer vision tasks such as classification [5, 26, 33, 11], object detection [2, 41, 18, 25], and
instance segmentation [10, 24, 31], etc.

There are mainly two types of backbone architectures most commonly applied in computer vision:
convolutional network (CNN) architectures [11, 38] and Transformer ones [6, 5, 33, 39]. Both
of them capture feature information by stacking multiple blocks. The CNN block is generally a
bottleneck structure [11], which can be defined as a stack of 1 × 1, 3 × 3, and 1 × 1 convolution
layers with residual learning (shown in Figure 1a). The 1× 1 layers are responsible for reducing and
then increasing channel dimensions, leaving the 3× 3 layer a bottleneck with smaller input/output
channel dimensions. The CNN backbones are generally faster and require less inference time thanks
to parameter sharing, local information aggregation, and dimension reduction. However, due to
the limited and fixed receptive field, CNN blocks may be less effective in scenarios that require
modeling long-range dependencies. For example, in instance segmentation, being able to collect and
associate scene information from a large neighborhood can be useful in learning relationships across
objects [23].

To overcome these limitations, Transformer backbones are recently explored for their ability to
capture long-distance information [5, 33, 26, 19]. Unlike CNN backbones, the Transformer ones first
split an image into a sequence of patches (i.e., tokens), then sum these tokens with positional encoding
to represent coarse spatial information, and finally adopt a stack of Transformer blocks to capture
feature information. A standard Transformer block [28] comprises a multi-head self-attention (MSA)
that employs a query-key-value decomposition to model global relationships between sequence

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: Examples of backbone blocks. Left: A standard ResNet Bottleneck Block [11]. Middle: A
Standard Transformer Block. Right: The proposed Efficient Transformer Block. The only difference
compared with standard Transformer block is the replacement of the Multi-Head Self-Attention
(MSA) with Efficient Multi-head Self-Attention (EMSA).

tokens, and a feed-forward network (FFN) to learn wider representations (shown in Figure 1b). As a
result, Transformer blocks can dynamically adapt the receptive field according to the image content.

Despite showing great potential than CNNs, the Transformer backbones still have four major short-
comings: (1) It is difficult to extract the low-level features which form some fundamental structures
in images (e.g., corners and edges) since existing Transformer backbones direct perform tokenization
of patches from raw input images. (2) The memory and computation for MSA in Transformer blocks
scale quadratically with spatial or embedding dimensions (i.e., the number of channels), causing
vast overheads for training and inference. (3) Each head in MSA is responsible for only a subset
of embedding dimensions, which may impair the performance of the network, particularly when
the tokens embedding dimension (for each head) is short, making the dot product of query and key
unable to constitute an informative function. (4) The input tokens and positional encoding in existing
Transformer backbones are all of a fixed scale, which are unsuitable for vision tasks that require
dense prediction.

In this paper, we proposed an efficient general-purpose backbone ResT (named after ResNet [11]) for
computer vision, which can remedy the above issues. As illustrated in Figure 2, ResT shares exactly
the same pipeline of ResNet, i.e., a stem module applied for extracting low-level information and
strengthening locality, followed by four stages to construct hierarchical feature maps, and finally
a head module for classification. Each stage consists of a patch embedding, a positional encoding
module, and multiple Transformer blocks with specific spatial resolution and channel dimension.
The patch embedding module creates a multi-scale pyramid of features by hierarchically expanding
the channel capacity while reducing the spatial resolution with overlapping convolution operations.
Unlike the conventional methods which can only tackle images with a fixed scale, our positional
encoding module is constructed as spatial attention which is conditioned on the local neighborhood
of the input token. By doing this, the proposed method is more flexible and can process input images
of arbitrary size without interpolation or fine-tune. Besides, to improve the efficiency of the MSA, we
build an efficient multi-head self-attention (EMSA), which significantly reduce the computation cost
by a simple overlapping Depth-wise Conv2d. In addition, we compensate short-length limitations
of the input token for each head by projecting the interaction across the attention-heads dimension
while keeping the diversity ability of multi-heads.

We comprehensively validate the effectiveness of the proposed ResT on the commonly used bench-
marks, including image classification on ImageNet-1k and downstream tasks, such as object detection,
and instance segmentation on MS COCO2017. Experimental results demonstrate the effectiveness
and generalization ability of the proposed ResT compared with the recently state-of-the-art Vision
Transformers and CNNs. For example, with a similar model size as ResNet-18 (69.7%) and PVT-Tiny
(75.1%), our ResT-Small obtains a Top-1 accuracy of 79.6% on ImageNet-1k.

2

Figure 2: The pipeline of the proposed ResT. Similar to ResNet [11], ResT build stages with stacked
blocks, making it flexible to serve as the backbone of downstream tasks, such as Object detection,
Person ReID, and Instance Segmentation, etc.

2 ResT

As illustrated in Figure 2, ResT shares exactly the same pipeline as ResNet [11], i.e., a stem module
applied to extract low-level information, followed by four stages to capture multi-scale feature
maps. Each stage consists of three components, one patch embedding module (or stem module),
one positional encoding module, and a set of L efficient Transformer blocks. Specifically, at the
beginning of each stage, the patch embedding module is adopted to reduce the resolution of the input
token and expanding the channel dimension. The positional encoding module is fused to restrain
position information and strengthen the feature extracting ability of patch embedding. After that,
the input token is fed to the efficient Transformer blocks (illustrated in Figure 1c). In the following
sections, we will introduce the intuition behind ResT.

2.1 Rethinking of Transformer Block

The standard Transformer block consists of two sub-layers of MSA and FFN. A residual connection
is employed around each sub-layer. Before MSA and FFN, layer normalization (LN [1]) is applied.
For a token input x ∈ Rn×dm , where n, dm indicates the spatial dimension, channel dimension,
respectively. The output for each Transformer block is:

y= x′ + FFN(LN(x′)), and x′= x +MSA(LN(x)) (1)

MSA. MSA first obtains query Q, key K, and value V by applying three sets of projections to the
input, each consisting of k linear layers (i.e., heads) that map the dm dimensional input into a dk
dimensional space, where dk = dm/k is the head dimension. For the convenience of description, we
assume k = 1, then MSA can be simplified to single-head self-attention (SA). The global relationship
between the token sequence can be defined as

SA(Q,K,V) = Softmax(
QKT

√
dk

)V (2)

The output values of each head are then concatenated and linearly projected to form the final output.
The computation costs of MSA are O(2dmn2 + 4d2mn), which scale quadratically with spatial
dimension or embedding dimensions according to the input token.

FFN. The FFN is applied for feature transformation and non-linearity. It consists of two linear layers
with a non-linearity activation. The first layer expands the embedding dimensions of the input from
dm to df and the second layer reduce the dimensions from df to dm.

FFN(x) = σ(xW1 + b1)W2 + b2 (3)

where W1 ∈ Rdm×df and W2 ∈ Rdf×dm are weights of the two Linear layers respectively, b1 ∈ Rdf

and b2 ∈ Rdm are the bias terms, and σ(·) is the activation function GELU [12]. In standard
Transformer block, the channel dimensions are expanded by a factor of 4, i.e., df = 4dm. The
computation costs of FFN are 8nd2m.

2.2 Efficient Transformer Block

As analyzed above, MSA has two shortcomings: (1) The computation scales quadratically with dm
or n according to the input token, causing vast overheads for training and inference; (2) Each head in

3

MSA only responsible for a subset of embedding dimensions, which may impair the performance of
the network, particularly when the tokens embedding dimension (for each head) is short.

Figure 3: Efficient Multi-Head Self-Attention.

To remedy these issues, we propose an efficient multi-head self-attention module (illustrated in
Figure 3). Here, we make some explanations.

(1) Similar to MSA, EMSA first adopt a set of projections to obtain query Q.

(2) To compress memory, the 2D input token x ∈ Rn×dm is reshaped to 3D one along the spatial
dimension (i.e., x̂ ∈ Rdm×h×w) and then feed to a depth-wise convolution operation to reduce the
height and width dimension by a factor s. To make simple, s is adaptive set by the feature map size
or the stage number. The kernel size, stride and padding are s+ 1, s, and s/2 respectively.

(3) The new token map after spatial reduction x̂ ∈ Rdm×h/s×w/s is then reshaped to 2D one, i.e.,
x̂ ∈ Rn′×dm , n′ = h/s× w/s. Then x̂ is feed to two sets of projection to get key K and value V.

(4) After that, we adopt Eq. 4 to compute the attention function on query Q, K and value V.

EMSA(Q,K,V) = IN(Softmax(Conv(
QKT

√
dk

)))V (4)

Here, Conv(·) is a standard 1 × 1 convolutional operation, which model the interactions among
different heads. As a result, attention function of each head can depend on all of the keys and
queries. However, this will impair the ability of MSA to jointly attend to information from different
representation subsets at different positions. To restore this diversity ability, we add an Instance
Normalization [27] (i.e, IN(·)) for the dot product matrix (after Softmax).

(5) Finally, the output values of each head are then concatenated and linearly projected to form the
final output.

The computation costs of EMSA are O(2dmn2

s2 + 2d2mn(1 + 1
s2) + dmn (s+1)2

s2 + k2n2

s2), much lower
than the original MSA (assume s > 1), particularly in lower stages, where s is tend to higher.

Also, we add FFN after EMSA for feature transformation and non-linearity. The output for each
efficient Transformer block is:

y= x′ + FFN(LN(x′)), and x′= x + EMSA(LN(x)) (5)

4

2.3 Patch Embedding

The standard Transformer receives a sequence of token embeddings as input. Take ViT [5] as an
example, the input image x ∈ R3×h×w is split with a patch size of p× p. These patches are flattened
into 2D ones and then mapped to latent embeddings with a size of c, i.e, x ∈ Rn×c, where n = hw/p2.
However, this straightforward tokenization is failed to capture low-level feature information (such as
edges and corners) [33]. In addition, the length of tokens in ViT are all of a fixed size in different
blocks, making it unsuitable for downstream vision tasks such as object detection and instance
segmentation that require multi-scale feature map representations.

Here, we build an efficient multi-scale backbone, calling ResT, for dense prediction. As introduced
above, the efficient Transformer block in each stage operates on the same scale with identical
resolution across the channel and spatial dimensions. Therefore, the patch embedding modules are
required to progressively expand the channel dimension, while simultaneously reducing the spatial
resolution throughout the network.

Similar to ResNet, the stem module (can be seen as the first patch embedding module) are adopted
to shrunk both the height and width dimension with a reduction factor of 4. To effectively capture
the low-feature information with few parameters, here we introduce a simple but effective way, i.e,
stacking three 3× 3 standard convolution layers (all with padding 1) with stride 2, stride 1, and stride
2, respectively. Batch Normalization [14] and ReLU activation [7] are applied for the first two layers.
In stage 2, stage 3, and stage 4, the patch embedding module is adopted to down-sample the spatial
dimension by 4× and increase the channel dimension by 2×. This can be done by a standard 3× 3
convolution with stride 2 and padding 1. For example, patch embedding module in stage 2 changes
resolution from h/4× w/4× c to h/8× w/8× 2c (shown in Figure 2).

2.4 Positional Encoding

Positional encodings are crucial to exploiting the order of sequence. In ViT [5], a set of learnable
parameters are added into the input tokens to encode positions. Let x ∈ Rn×c be the input, θ ∈ Rn×c

be position parameters, then the encoded input can be represent as
x̂ = x + θ (6)

However, the length of positions is exactly the same as the input tokens length, which limits the
application scenarios.

Figure 4: Patch and PE in ResT.

To remedy this issue, the new positional encodings are required
to have variable lengths according to input tokens. Let us look
closer to Eq. 6, the summation operation is much like assigning
pixel-wise weights to the input. Assume θ is related with x,
i.e., θ = GL(x), where GL(·) is the group linear operation
with the group number of c. Then Eq. 6 can be modified to

x̂ = x + GL(x) (7)

Besides Eq. 7, θ can also be obtained by more flexible spatial
attention mechanisms. Here, we propose a simple yet effective
spatial attention module calling PA(pixel-attention) to encode
positions. Specifically, PA applies a 3× 3 depth-wise convolu-
tion (with padding 1) operation to get the pixel-wise weight and then scaled by a sigmoid function
σ(·). The positional encoding with PA module can then be represented as

x̂ = PA(x) = x ∗ σ(DWConv(x)) (8)

Since the input token in each stage is also obtained by a convolution operation, we can embed
the positional encoding into the patch embedding module. The whole structure of stage i can be
illustrated in Figure 4. Note that PA can be replaced by any spatial attention modules, making the
positional encoding flexible in ResT.

2.5 Classification Head

The classification head is performed by a global average pooling layer on the output feature map of
the last stage, followed by a linear classifier. The detailed ResT architecture for ImageNet-1k is shown

5

in Table 1, which contains four models, i.e., ResT-Lite, ResT-Small and ResT-Base and ResT-Large,
which are bench-marked to ResNet-18, ResNet-18, ResNet-50, and ResNet-101, respectively.

Table 1: Architectures for ImageNet-1k. Here, we make some definitions. “Conv− k_c_s" means
convolution layers with kernel size k, output channel c and stride s. “MLP_c" is the FFN structure
with hidden channel 4c and output channel c. And “EMSA_n_r" is the EMSA operation with the
number of heads n and reduction r. “C" is 64 for ResT-Lite and ResT-Small, and 96 for ResT-Base
and ResT-Large.“PA" is short for pixel-wise attention, which are introduced in Section 2.4.

Name Output Lite Small Base Large

stem 56×56 patch_embed: Conv-3_C/2_2, Conv-3_C/2_1, Conv-3_C_2,PA

stage1 56×56
[

EMSA_1_8
MLP_64

]
×2

[
EMSA_1_8

MLP_64

]
×2

[
EMSA_1_8

MLP_96

]
×2

[
EMSA_1_8

MLP_96

]
×2

stage2 28×28

patch_embed: Conv-3_2C_2, PA[
EMSA_2_4
MLP_128

]
×2

[
EMSA_2_4
MLP_128

]
×2

[
EMSA_2_4
MLP_192

]
×2

[
EMSA_2_4
MLP_192

]
×2

stage3 14×14

patch_embed: Conv-3_4C_2, PA[
EMSA_4_2
MLP_256

]
×2

[
EMSA_4_2
MLP_256

]
×6

[
EMSA_4_2
MLP_384

]
×6

[
EMSA_4_2
MLP_384

]
×18

stage4 7×7
patch_embed: Conv-3_8C_2, PA[

EMSA_8_1
MLP_512

]
×2

[
EMSA_8_1
MLP_512

]
×2

[
EMSA_8_1
MLP_768

]
×2

[
EMSA_8_1
MLP_768

]
×2

Classifier 1× 1 average pool, 1000d fully-connected

GFLOPs 1.4 1.94 4.26 7.91

3 Experiments

In this section, we conduct experiments on common-used benchmarks, including ImageNet-1k for
classification, MS COCO2017 for object detection, and instance segmentation. In the following
subsections, we first compared the proposed ResT with the previous state-of-the-arts on the three
tasks. Then we adopt ablation studies to validate the important design elements of ResT.

3.1 Image Classification on ImageNet-1k

Settings. For image classification, we benchmark the proposed ResT on ImageNet-1k, which contains
1.28M training images and 50k validation images from 1,000 classes. The setting mostly follows [26].
Specifically, we employ the AdamW [20] optimizer for 300 epochs using a cosine decay learning
rate scheduler and 5 epochs of linear warm-up. A batch size of 2048 (using 8 GPUs with 256 images
per GPU), an initial learning rate of 5e-4, a weight decay of 0.05, and gradient clipping with a max
norm of 5 are used. We include most of the augmentation and regularization strategies of [26] in
training, including RandAugment [4], Mixup [35], Cutmix [34], Random erasing [40], and stochastic
depth [13]. An increasing degree of stochastic depth augmentation is employed for larger models,
i.e., 0.1, 0.1, 0.2, 0.3 for ResT-Lite, Rest-Small, ResT-Base, and ResT-Large, respectively. For the
testing on the validation set, the shorter side of an input image is first resized to 256, and a center
crop of 224 × 224 is used for evaluation.

Results. Table 2 presents comparisons to other backbones, including both Transformer-based ones
and ConvNet-based ones. We can see, compared to the previous state-of-the-art Transformer-based
architectures with similar model complexity, the proposed ResT achieves significant improvement
by a large margin. For example, for smaller models, ResT noticeably surpass the counterpart PVT
architectures with similar complexities: +4.5% for ResT-Small (79.6%) over PVT-T (75.1%). For
larger models, ResT also significantly outperform the counterpart Swin architectures with similar

6

Table 2: Comparison with state-of-the-art backbones on ImageNet-1k benchmark. Throughput
(images / s) is measured on a single V100 GPU, following [26]. All models are trained and evaluated
on 224×224 resolution. The best records and the improvements over bench-marked ResNets are
marked in bold and blue, respectively.

Model #Params (M) FLOPs (G) Throughput Top-1 (%) Top-5 (%)

ConvNet

ResNet-18 [11] 11.7 1.8 1852 69.7 89.1
ResNet-50 [11] 25.6 4.1 871 79.0 94.4

ResNet-101 [11] 44.7 7.9 635 80.3 95.2

RegNetY-4G [22] 20.6 4.0 1156 79.4 94.7
RegNetY-8G [22] 39.2 8.0 591 79.9 94.9
RegNetY-16G [22] 83.6 15.9 334 80.4 95.1

Transformer

DeiT-S [26] 22.1 4.6 940 79.8 94.9
DeiT-B [26] 86.6 17.6 292 81.8 95.6

PVT-T [29] 13.2 1.9 1038 75.1 92.4
PVT-S [29] 24.5 3.7 820 79.8 94.9
PVT-M [29] 44.2 6.4 526 81.2 95.6
PVT-L [29] 61.4 9.5 367 81.7 95.9

Swin-T [19] 28.29 4.5 755 81.3 95.5
Swin-S [19] 49.61 8.7 437 83.3 96.2
Swin-B [19] 87.77 15.4 278 83.5 96.5

ResT-Lite (Ours) 10.49 1.4 1246 77.2 (↑ 7.5) 93.7 (↑ 4.6)
ResT-Small (Ours) 13.66 1.9 1043 79.6 (↑ 9.9) 94.9 (↑ 5.8)
ResT-Base (Ours) 30.28 4.3 673 81.6 (↑ 2.6) 95.7 (↑ 1.3)

ResT-Large (Ours) 51.63 7.9 429 83.6 (↑ 3.3) 96.3 (↑ 1.1)

complexities: +0.3% for ResT-Base (81.6%) over Swin-T (81.3%), and +0.3% for ResT-Large
(83.6%) over Swin-S(83.3%) using 224× 224 input.

Compared with the state-of-the-art ConvNets, i.e., RegNet, the ResT with similar model complexity
also achieves better performance: an average improvement of 1.7% in terms of Top-1 Accuracy.
Note that RegNet is trained via thorough architecture search, the proposed ResT is adapted from the
standard Transformer and has strong potential for further improvement.

3.2 Object Detection and Instance Segmentation on COCO

Settings. Object detection and instance segmentation experiments are conducted on COCO 2017,
which contains 118k training, 5k validation, and 20k test-dev images. We evaluate the performance
of ResT using two representative frameworks: RetinaNet [18] and Mask RCNN [10]. For these two
frameworks, we utilize the same settings: multi-scale training (resizing the input such that the shorter
side is between 480 and 800 while the longer side is at most 1333), AdamW [20] optimizer (initial
learning rate of 1e-4, weight decay of 0.05, and batch size of 16), and 1× schedule (12 epochs).
Unlike CNN backbones, which adopt post normalization and can directly apply to downstream tasks.
ResT employs the pre-normalization strategy to accelerate network convergence, which means the
output of each stage is not normalized before feeding to FPN [17]. Here, we add a layer normalization
(LN [1]) for the output of each stage (before FPN [17]), similar to Swin [19]. Results are reported on
the validation split.

Object Detection Results. Table 3 lists the results of RetinaNet with different backbones. From
these results, it can be seen that for smaller models, ResT-Small is +3.6 box AP higher (40.3 vs. 36.7)
than PVT-T with a similar computation cost. For larger models, our ResT-Base surpassing the PVT-S
by +1.6 box AP.

7

Table 3: Object detection performance on the COCO val2017 split using the RetinaNet framework.

Backbones AP50:95 AP50 AP75 APs APm APl Param (M)

R18 [11] 31.8 49.6 33.6 16.3 34.3 43.2 21.3
PVT-T [29] 36.7 56.9 38.9 22.6 38.8 50.0 23.0

ResT-Small(Ours) 40.3 61.3 42.7 25.7 43.7 51.2 23.4

R50 [11] 37.4 56.7 40.3 23.1 41.6 48.3 37.9
PVT-S [29] 40.4 61.3 43.0 25.0 42.9 55.7 34.2
Swin-T [19] 41.5 62.1 44.1 27.0 44.2 53.2 38.5

ResT-Base (Ours) 42.0 63.2 44.8 29.1 45.3 53.3 40.5

R101 [11] 38.5 57.8 41.2 21.4 42.6 51.1 56.9
PVT-M [29] 41.9 63.1 44.3 25.0 44.9 57.6 53.9
Swin-S [19] 44.5 65.7 47.5 27.4 48.0 59.9 59.8

ResT-Large (Ours) 44.8 66.1 48.0 28.3 48.7 60.3 61.8

Instance Segmentation Results. Table 4 compares the results of ResT with those of previous
state-of-the-art models on the Mask RCNN framework. Rest-Small exceeds PVT-T by +2.9 box AP
and +2.1 mask AP on the COCO val2017 split. As for larger models, ResT-Base brings consistent
+1.2 and +0.9 gains over PVT-S in terms of box AP and mask AP, with slightly larger model size.

Table 4: Object detection and instance segmentation performance on the COCO val2017 split using
Mask RCNN framework.

Backbones APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 Param (M)

R18 [11] 34.0 54.0 36.7 31.2 51.0 32.7 31.2
PVT-T [29] 36.7 59.2 39.3 35.1 56.7 37.3 32.9

ResT-Small(Ours) 39.6 62.9 42.3 37.2 59.8 39.7 33.3

R50 [11] 38.6 59.5 42.1 35.2 56.3 37.5 44.3
PVT-S [29] 40.4 62.9 43.8 37.8 60.1 40.3 44.1

ResT-Base(Ours) 41.6 64.9 45.1 38.7 61.6 41.4 49.8

3.3 Ablation Study

In this section, we report the ablation studies of the proposed ResT, using ImageNet-1k image
classification. To thoroughly investigate the important design elements, we only adopt the simplest
data augmentation and hyper-parameters settings in [11]. Specifically, the input images are randomly
cropped to 224 × 224 with random horizontal flipping. All the architectures of ResT-Lite are trained
with SGD optimizer (with weight decay 1e-4 and momentum 0.9) for 100 epochs, starting from the
initial learning rate of 0.1× batch_size/512 (with a linear warm-up of 5 epochs) and decreasing it
by a factor of 10 every 30 epochs. Also, a batch size of 2048 (using 8 GPUs with 256 images per
GPU) is used.

Different types of stem module. Here, we test three type of stem modules: (1) the first patch
embedding module in PVT [29], i.e., 4 × 4 convolution operation with stride 4 and no padding;
(2) the stem module in ResNet [11], i.e., one 7 × 7 convolution layer with stride 2 and padding 3,
followed by one 3× 3 max-pooling layer; (3) the stem module in the proposed ResT, i.e., three 3× 3
convolutional layers (all with padding 1) with stride 2, stride 1, and stride 2, respectively. We report
the results in Table 5. The stem module in the proposed ResT is more effective than that in PVT and
ResNet: +0.92% and +0.64% improvements in terms of Top-1 accuracy, respectively.

Ablation study on EMSA. As shown in Figure!3, we adopt a Depth-wise Conv2d to reduce the
computation of MSA. Here, we provide the comparison of more strategies with the same reduction
stride s. Results are shown in Table 6. As can be seen, average pooling achieves slightly worse

8

Table 5: Comparison of various stem modules on
ResT-Lite. Results show that the proposed stem
module is more effective than existing ones in
PVT and ResNet.

Stem Top-1 (%) Top-5 (%)

PVT [29] 71.96 89.87

ResNet [11] 72.24 90.17

ResT (Ours) 72.88 90.62

Table 6: Comparison of different reduction strate-
gies of EMSA on ResT-Lite. Results show that
Average Pooling can be an alternative to Depth-
wise Conv2d to make a trade-off.

Reduction Top-1 (%) Top-5 (%)

DWConv 72.88 90.62

Avg Pooling 72.64 90.41

Max Pooling 72.20 89.97

results (-0.24%) compared with the original Depth-wise Conv2d, while the results of the Max Pooling
strategy are the worst. Since the pooling operation introduces no extra parameters, therefore, average
pooling can be an alternative to Depth-wise Conv2d in practice.

Table 7: Ablation study results on the important
design elements of EMSA on ResT-Lite, includ-
ing the 1× 1 convolution operation and Instance
Normalization in Eq. 4.

Methods Top-1 (%) Top-5 (%)

origin 72.88 90.62

w/o IN 71.98 90.32

w/o Conv-1&IN 71.72 89.93

Table 8: Comparison of various positional encod-
ing (PE) strategies on ResT-Lite.

Encoding Top-1 (%) Top-5 (%)

w/o position 71.54 89.82

+ LE 71.98 90.32

+ GL 72.04 90.41

+ PA 72.88 90.62

In addition, EMSA also adding two important elements to the standard MSA, i.e., one 1× 1 convolu-
tion operation to model the interaction among different heads, and the Instance Normalization(IN) to
restore diversity of different heads. Here, we validate the effectiveness of these two settings. Results
are shown in Table 7. We can see, without IN, the Top-1 accuracy is degraded by 0.9%, we attribute
it to the destroying of diversity among different heads because the 1× 1 convolution operation makes
all heads focus on all the tokens. In addition, the performance drops 1.16% without the convolution
operation and IN. This can demonstrate that the combination of long sequence and diversity are both
important for attention function.

Different types of positional encoding. In section 2.4, we introduced 3 types of positional encoding
types, i.e., the original learnable parameters with fixed lengths [5] (LE), the proposed group linear
mode(GL), and PA mode. These encodings are added/multiplied to the input patch token at the
beginning of each stage. Here, we compared the proposed GL and PA with LE, results are shown in
Table 8. We can see, the Top-1 accuracy degrades from 72.88% to 71.54% when the PA encoding is
removed, this means that positional encoding is crucial for ResT. The LE and GL, achieve similar
performance, which means it is possible to construct variable length of positional encoding. Moreover,
the PA mode significantly surpasses the GL, achieving 0.84% Top-1 accuracy improvement, which
indicates that spatial attention can also be modeled as positional encoding.

4 Conclusion

In this paper, we proposed ResT, a new version of multi-scale Transformer which produces hierarchi-
cal feature representations for dense prediction. We compressed the memory of standard MSA and
model the interaction between multi-heads while keeping the diversity ability. To tackle input images
with arbitrary, we further redesign the positional encoding as spatial attention. Experimental results
demonstrate that the potential of ResT as strong backbones for dense prediction. We hope that our
approach will foster further research in visual recognition.

9

Acknowledgments and Disclosure of Funding

This work is funded by the Natural Science Foundation of China (No. 62176119) and the program B
for Outstanding PhD candidate of Nanjing University.

References
[1] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,

2016.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey

Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part I, volume 12346 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2020.

[3] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu,
Chao Xu, and Wen Gao. Pre-trained image processing transformer. CoRR, abs/2012.00364, 2020.

[4] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[6] Peng Gao, Jiasen Lu, Hongsheng Li, Roozbeh Mottaghi, and Aniruddha Kembhavi. Container: Context
aggregation network. CoRR, abs/2106.01401, 2021.

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Geoffrey J.
Gordon, David B. Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13,
2011, volume 15 of JMLR Proceedings, pages 315–323. JMLR.org, 2011.

[8] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in transformer.
CoRR, abs/2103.00112, 2021.

[9] Karttikeya Mangalam Yanghao Li Zhicheng Yan Jitendra Malik Christoph Feichtenhofer Haoqi Fan,
Bo Xiong. Multiscale vision transformers. arXiv:2104.11227, 2021.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980–2988. IEEE
Computer Society, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[12] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error
linear units. CoRR, abs/1606.08415, 2016.

[13] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic
depth. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision - ECCV 2016
- 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV,
volume 9908 of Lecture Notes in Computer Science, pages 646–661. Springer, 2016.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 448–456. JMLR.org, 2015.

[15] Md. Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional neural
networks encode? In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[16] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
510–519. Computer Vision Foundation / IEEE, 2019.

[17] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie.
Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 936–944, 2017.

[18] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 2999–3007. IEEE Computer Society, 2017.

[19] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. CoRR, abs/2103.14030, 2021.

10

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[21] Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 68–80, 2019.

[22] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 10425–10433. IEEE, 2020.

[23] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish Vaswani.
Bottleneck transformers for visual recognition. CoRR, abs/2101.11605, 2021.

[24] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional convolutions for instance segmentation. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, 16th European Conference on
Computer Vision, ECCV 2020, Glasgow, UK, August 23-28, 2020, Proceedings, Part I, volume 12346 of
Lecture Notes in Computer Science, pages 282–298. Springer, 2020.

[25] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: A simple and strong anchor-free object detector.
CoRR, abs/2006.09214, 2020.

[26] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. CoRR, abs/2012.12877,
2020.

[27] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing ingredient
for fast stylization. CoRR, abs/1607.08022, 2016.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[29] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions.
arXiv preprint arXiv:2102.12122, 2021.

[30] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. CoRR,
abs/1711.07971, 2017.

[31] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chunhua Shen. Solov2: Dynamic, faster and stronger.
CoRR, abs/2003.10152, 2020.

[32] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transfor-
mations for deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 5987–5995. IEEE Computer Society, 2017.

[33] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis E. H. Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. CoRR, abs/2101.11986,
2021.

[34] Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 6022–6031. IEEE, 2019.

[35] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[36] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas
Mueller, R. Manmatha, Mu Li, and Alexander J. Smola. Resnest: Split-attention networks. CoRR,
abs/2004.08955, 2020.

[37] Qing-Long Zhang, Lu Rao, and Yubin Yang. Group-cam: Group score-weighted visual explanations for
deep convolutional networks. CoRR, abs/2103.13859, 2021.

[38] Qing-Long Zhang and Yu-Bin Yang. Sa-net: Shuffle attention for deep convolutional neural networks.
CoRR, abs/2102.00240, 2021.

[39] Zelin Zhao, Karan Samel, Binghong Chen, and Le Song. Proto: Program-guided transformer for program-
guided tasks. CoRR, abs/2110.00804, 2021.

[40] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 13001–
13008. AAAI Press, 2020.

[41] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR: deformable
transformers for end-to-end object detection. CoRR, abs/2010.04159, 2020.

11

	Introduction
	ResT
	Rethinking of Transformer Block
	Efficient Transformer Block
	Patch Embedding
	Positional Encoding
	Classification Head

	Experiments
	Image Classification on ImageNet-1k
	Object Detection and Instance Segmentation on COCO
	Ablation Study

	Conclusion

