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Abstract

In multimodal representation learning, synergistic interactions between modalities
not only provide complementary information but also create unique outcomes
through specific interaction patterns that no single modality could achieve alone.
Existing methods may struggle to effectively capture the full spectrum of syner-
gistic information, leading to suboptimal performance in tasks where such interac-
tions are critical. This is particularly problematic because synergistic information
constitutes the fundamental value proposition of multimodal representation. To
address this challenge, we introduce InfMasking, a contrastive synergistic infor-
mation extraction method designed to enhance synergistic information through
an Infinite Masking strategy. InfMasking stochastically occludes most features
from each modality during fusion, preserving only partial information to create
representations with varied synergistic patterns. Unmasked fused representations
are then aligned with masked ones through mutual information maximization to
encode comprehensive synergistic information. This infinite masking strategy
enables capturing richer interactions by exposing the model to diverse partial
modality combinations during training. As computing mutual information es-
timates with infinite masking is computationally prohibitive, we derive an Inf-
Masking loss to approximate this calculation. Through controlled experiments,
we demonstrate that InfMasking effectively enhances synergistic information be-
tween modalities. In evaluations on large-scale real-world datasets, InfMasking
achieves state-of-the-art performance across seven benchmarks. Code is released
at https://github.com/brightest66/InfMasking.

1 Introduction

Multimodal contrastive learning has revolutionized representation learning by enabling the integration
of diverse data modalities, such as text, images, and audio, into a unified latent space. This paradigm
leverages contrastive loss [37, 9] to align features from different modalities as pioneered by founda-
tional works like CLIP [38] and ALIGN [23] in vision-language tasks. These models demonstrate
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the power of aligning multimodal features to capture shared patterns across data sources, enabling
versatile downstream applications. However, current approaches often rely on the restrictive multiview
redundancy assumption [40, 43, 46], which posits that a modality is (approximately) sufficient for
the prediction of downstream tasks and contains the same task-relevant information. This assumption
derives from multi-view learning and is limited in real-world multimodal settings because many
multimodal tasks involve minimal shared information.

The shortcomings of this redundancy-centric perspective become increasingly apparent when we
examine the multifaceted nature of multimodal interactions. As illustrated in [6, 12], these inter-
actions can be classified into three fundamental categories: redundancy, uniqueness, and synergy.
Redundancy refers to scenarios where a modality can independently perform the task due to over-
lapping, shared information. Uniqueness describes cases where only one modality possesses all the
requisite information for task completion. Synergy, arguably the most significant yet elusive of the
three, occurs when modalities provide complementary information that must be combined to achieve
the desired outcome. These interaction types are not static; their predominance varies depending on
the specific task, adding a layer of complexity to multimodal learning. For instance, a task might rely
heavily on redundant information in one context, while another demands the synergistic integration of
modalities to succeed. A compelling example of this is hateful meme detection [26], where synergy
emerges when seemingly neutral modalities (such as an innocuous image and benign text) combine
to create harmful content that neither conveys on its own. This highlights the critical importance of
synergistic integration, as models must fuse information from different modalities cues to uncover
implicit biases or offensive implications that are only apparent in their joint context, enabling more
effective identification and mitigation of such content in real-world applications. Consequently, task-
agnostic multimodal representations must necessarily encompass the full spectrum of multimodal
interactions that transcend mere informational redundancy.

Recently, FactorCL [29] explicitly decomposes shared and unique representations, enabling the
estimation of redundancy and unique interactions beyond multi-view redundancy. However, its
factorized approximation of multimodal interactions is prone to cumulative errors and fails to capture
synergistic information effectively. In contrast, [12] integrates features from all modalities to
derive a common representation and subsequently maximizes the mutual information between this
representation and its augmented variants, as well as between the common representation and its
corresponding unimodal features. Although this approach facilitates the capture of redundant, unique,
and synergistic information across modalities, it primarily emphasizes enhanced redundant and unique
interactions. Synergistic information is captured by maximizing the mutual information between the
common representation and its augmented variants. Such handling may prove inadequate for tasks
that heavily rely on complex inter-modal synergy. The complexity of synergistic interactions lies
not merely in modalities providing complementary information but in how these modalities combine
through specific interaction patterns to produce outcomes unattainable by any single modality alone.
Such interactions may involve nonlinear dependencies or context-dependent dynamics. Hence,
effectively capturing the full spectrum of synergistic information remains a significant challenge.

To address this challenge, we introduce a contrastive synergistic information extraction method via
infinite masking (denoted as InfMasking). Specifically, InfMasking stochastically occludes a substan-
tial proportion of features from each modality during the fusion process. This masking preserves only
partial information, creating fused representations with varied synergistic patterns. Subsequently,
unmasked fused representations are aligned with these masked ones via mutual information maxi-
mization to encode comprehensive synergistic information. The infinite masking strategy enables
InfMasking to capture richer synergistic interactions by exposing the model to diverse combinations
of partial modality information during training. However, the computation of mutual information
estimates with infinite masking is computationally prohibitive. To address this issue, we derive
an InfMasking loss to approximate the calculation of this loss function. Empirically, InfMasking
effectively captures synergistic information between modalities in controlled environments with
known interaction types. When tested on real-world datasets across diverse domains (healthcare,
robotics) and data types (image, text, audio), InfMasking achieves state-of-the-art results on seven
multimodal tasks involving two or three modalities.
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2 Preliminary: Contrastive Multimodal Interactions

Consider X1, X2, . . . , Xn as random variables, each representing a distinct modal data (e.g., image,
text, audio, or tabular data), alongside a downstream task Y . The objective is to derive an effective
multimodal latent variable Zθ = fθ(X), where X = (X1, . . . , Xn) and θ detnotes the parameter
of multimodal encoder. Multimodal interactions refer to the process of extracting and integrating
information from multiple data sources, such as text, image, audio, or tabular data, to form a
cohesive representation for downstream tasks. These interactions can be categorized into three types:
redundancy (R), where information is shared across modalities; uniqueness (U), where information is
specific to a single modality; and synergy (S), where complementary information emerges only when
modalities are combined.

To understand multimodal interactions, we can leverage Partial Information Decomposition (PID) [49,
6], a theoretical framework that dissects the mutual information between multiple variables. For
analytical tractability, we focus on the case of n = 2. Consider two modalities X1 and X2 and a task Y .
The mutual information I(X1, X2;Y ) quantifies the total task-relevant information provided by both
modalities jointly. According to PID, this can be decomposed as: I(X1, X2;Y ) = R+S+U1 +U2,
where R represents redundant information, common to both X1 and X2, S represents synergistic
information, emerging only from the combination of X1 and X2, and U1 and U2 represent unique
information specific to X1 and X2, respectively. This decomposition is supported by consistency
equations derived from the chain rule of mutual information:

I(X1;Y ) = R+ U1, I(X2;Y ) = R+ U2, I(X1;X2;Y ) = R− S.

Effectively capturing these interactions is fundamental to multimodal learning, as they collectively
enhance a model’s ability to generalize across diverse tasks. Therefore, an effective multimodal
representation Zθ must capture information relevant to a downstream task Y , preserving the mutual
information such that I(Z;Y ) = I(X;Y ). In self-supervised learning, however, Y remains unspeci-
fied during the representation learning phase, presenting a unique challenge. To address this, [12]
extends the contrastive learning principle of multiview redundancy to multimodal contexts:

Assumption 1 (Minimal label-preserving multimodal augmentations) A set T ∗ of multimodal
transformations exists, such that for any t ∈ T ∗ and X ′ = t(X), the mutual information
I(X;X ′) = I(X;Y ) holds, preserving the information with label Y .

Assumption 1 is justified within the framework of multimodal representation learning.
It enables a broader range of augmentations, as it is not limited to the set T ⋆

c =
{t(X) = (t1 (X1) , t2 (X2)) , . . . , tn(Xn)}. We define Z ′

θ = fθ(X
′), where X ′ = t(X) with t ∈ T

representing multimodal augmentation. Considering the data processing inequalities for the Markov
chains X → X ′ → Z ′

θ and Z ′
θ → X → Zθ, we can establish the following mutual information

bounds:I (Zθ;Z
′
θ) ≤ I (X;Z ′

θ) ≤ I (X;X ′). According to these inequalities and Assumption 1, we
can prove the following lemmas:

Lemma 1 When optimizing the function fθ to maximize mutual information I (Zθ;Z
′
θ), and under

the assumption that the network fθ possesses sufficient expressivity, we observe that in the optimal
parameter configuration: I(Zθ⋆ , Z ′

θ⋆) = I(X,X ′) = I(X,Y ).

For Zθ to serve as an effective representation of X , it must adequately preserve and encode all
task-relevant information inherent in X . We note that I(X;Y ) = I(X1, X2;Y ) = R+S+U1+U2.
Based on Lemma 1, we can learn common multimodal representations Zθ and quantify all multimodal
interactions beyond redundancy by maximizing the mutual information I (Zθ;Z

′
θ).

Lemma 2 Suppose fθ∗ is optimal, meaning it maximizes I(Zθ⋆ , Z ′
θ⋆) . Then, the equality

I(Zθ⋆ , Y ) = I(X ′, Y ) holds. For the special case where T = {ti} such that X ′ = ti(X) = Xi and
Z ′
θ⋆ = fθ⋆(X) = Zi for i ∈ {1, 2}, the following holds:I(Zi;Y ) = I(Xi;Y ) = R+ Ui.

For unimodal representations Zi where i ∈ {1, 2} to effectively represent Xi, each representation
must encode the information I(Xi;Y ) = R+Ui contained in the corresponding modality. According
to Lemma 2, we can learn optimal unimodal representations Zi and quantify both redundant and
unique multimodal interactions by maximizing the mutual information I (Zi;Z

′
θ) and I (Zi;Zθ).
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Figure 1: The overall pipeline of InfMasking. Given n modalities X = (X1, X2, . . . , Xn), we
augment them to obtain X ′ and X ′′, which are then encoded independently by modality-specific
encoders to extract latent features. These features are processed in three ways: (1) All modality
features are concatenated and input into a Transformer block, yielding fused features Z ′ and Z ′′; (2)
Each modality feature is individually input into a Transformer block, producing unimodal features
Z1, Z2, . . . , Zn ; (3) Features of each modality are randomly masked, concatenated, and input into a
Transformer block, repeated k times to obtain Z1

mask, Z
2
mask, . . . , Z

k
mask.

3 Unleashing Synergistic Information through Infinite Masking

3.1 The General Framework

The proposed framework, termed InfMasking, is a multimodal contrastive interaction method designed
to enhance synergistic information across modalities by leveraging infinite masked views. The overall
pipeline of InfMasking is illustrated in Fig. 1 and consists of two primary stages: modality-specific
latent feature encoding and multimodal feature fusion via a Transformer. Given an input set of
n modalities X = (X1, X2, . . . , Xn), we obtain X ′ and X ′′ through an augmentation process.
Subsequently, X ′ and X ′′ are processed by modality-specific encoders, where each modality is
encoded independently to extract latent features. As shown in Fig. 1, these modality features are then
processed in parallel through three distinct ways: (1) All modality features are concatenated and input
into a Transformer block, yielding fused features Z ′ and Z ′′; (2) Each modality feature is individually
input into a Transformer block, producing unimodal features Z ′

1, Z
′
2, . . . , Z

′
n and Z ′′

1 , Z
′′
2 , . . . , Z

′′
n ;

(3) Features of each modality are randomly masked, then concatenated and input into a Transformer
block to obtain fused features. This process is executed k times, resulting in Z ′1

mask, Z
′2
mask, . . . , Z

′k
mask

and Z ′′1
mask, Z

′′2
mask, . . . , Z

′′k
mask.

Based on Lemma 1 and Lemma 2, [12] proposes a contrastive multimodal (CoMM) learning approach
to learn task-agnostic multimodal representations by modeling multimodal interactions, including
redundancy, uniqueness, and synergy. CoMM estimates the mutual information using the InfoNCE

loss: ÎNCE(Z,Z
′) = Ez,z′

pos∼p(Z,Z′)

[
log

exp(zT z′
pos/τ)

exp(zT z′
pos/τ)+

∑
z′neg

exp(zT ,z′
neg/τ)

]
, where τ is a temperature

parameter. Hence, its training objective is formulated as follows:

LCoMM = − ÎNCE(Z
′, Z ′′)︸ ︷︷ ︸

≈R+S+
∑n

i=1 Ui

−
n∑

i=1

1
2

(
ÎNCE(Zi, Z

′) + ÎNCE(Zi, Z
′′)
)

︸ ︷︷ ︸
≈R+Ui

. (1)
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While the first term theoretically quantifies redundancy, synergy, and the unique information across
modalities, empirical evidence indicates that its practical performance exhibits notable limitations.
Hence, the second term constitutes the fundamental component of CoMM, specifically designed
to strengthen both unique and redundant interaction patterns. However, enhancing synergistic
interactions remains a substantial challenge in this framework.

Synergy is a complex interaction that arises when different modalities provide complementary infor-
mation, necessitating their integration for effective task performance. We aim to learn a multimodal
representation that captures all three types of interactions, with a particular emphasis on enhancing
synergistic information. To achieve this, we introduce InfMasking , a novel approach that leverages
infinite masking to enhance the modeling of multimodal interactions. Our training objective is
formulated as follows:

LTotal loss = − ÎNCE(Z
′, Z ′′)︸ ︷︷ ︸

≈R+S+
∑n

i=1 Ui

−
n∑

i=1

1

2

(
ÎNCE(Zi, Z

′) + ÎNCE(Zi, Z
′′)
)

︸ ︷︷ ︸
≈R+Ui

− Emask

[
ÎNCE(Z

′
mask, Z

′) + ÎNCE(Z
′′
mask, Z

′′)
]

︸ ︷︷ ︸
LInfMasking

, (2)

where LInfMasking represents our novel masking-based regularization term designed to specifically
enhance synergistic interactions, as detailed in Section 3.2.

3.2 Contrastive Synergistic Information via Infinite Masking

In multimodal learning, capturing synergistic information—where different modalities provide
complementary insights—is essential for tasks requiring integrated understanding. We propose a
contrastive synergistic Information method via infinte masking to enhance synergistic interactions.
It’s core idea is to randomly mask a significant portion of the features from each modality during
the fusion process. As shown in Fig. 1, we fuse all masked features from different modalities to
obtain a fused representation Z ′

mask via a Transformer. Each time features from each modality are
randomly masked, only partial information from each modality is retained. Consequently, after each
masking operation, Z ′

mask contains distinct synergistic information. Then, by aligning Z ′
mask with

its unmasked counterparts Z ′ through maximizing their mutual information, Z ′ are encouraged to
capture distinct synergistic information. This process is repeated for K times of masking, we can
obtain the final training loss: 1

K

∑K
k=1 ÎNCE(Z

′ k
mask, Z

′) + ÎNCE(Z
′′ k
mask, Z

′′). To enable the model to
learn diverse forms of synergistic information, we allow K to approach infinity through infinite
masking, ultimately obtaining the masking loss LInfMasking as follows:

LInfMasking = − lim
K→∞

1

K

K∑
k=1

ÎNCE(Z
′ k
mask, Z

′) + ÎNCE(Z
′′ k
mask, Z

′′)

= −Emask

[
ÎNCE(Z

′
mask, Z

′) + ÎNCE(Z
′′
mask, Z

′′)
]
. (3)

This infinite masking strategy enables InfMasking to capture richer synergistic interactions by
exposing the model to diverse combinations of partial modality information during training. However,
the estimation of Emask

[
ÎNCE(Z

′
mask, Z

′)
]

and Emask

[
ÎNCE(Z

′′
mask, Z

′′)
]

is computationally expensive
via random mask samples.
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To address this issue, we derive a lower bound for Emask

[
ÎNCE(Z

′
mask, Z

′)
]

to optimize the InfMasking
loss function Eq. (3). The detailed derivation is as follows:

Emask[ÎNCE(Z
′
mask, Z

′)] = Emask[Ez′∼p(Z′)

[
log

exp(z′T z′mask/τ)

exp(z′T z′mask/τ) +
∑

z′
neg
exp(z′T

negz
′
mask/τ)

]
] (4)

= Ez′∼p(Z′)[Emask

(z′T z′mask/τ)− log[exp(z′T z′mask/τ) +
∑
z′

neg

exp(z
′T
negz

′
mask/τ)]

] (5)

≥ Ez′∼p(Z′)

z′ TEmask[z
′
mask]/τ − logEmask[exp(z

′T z′mask/τ) +
∑
z′

neg

exp(z
′T
negz

′
mask/τ)]

 (6)

The inequality Eq. (6) merges from the application of Jensen inequality on concave functions i.e.,
Ex log(X) ≤ logEx[X]. z′mask denotes the integrated representation derived from the fusion of all
masked features across diverse modalities via the Transformer architecture.

Inspired by [7], we posit that z′mask follows a Gaussian distribution, formally expressed as z′mask ∼
N (µz′

mask
,Σz′

mask
), where µz′

mask
and Σz′

mask
denote the mean vector and covariance matrix of z′mask,

respectively. This assumption is well-founded for two principal reasons. First, the masked embeddings
tend to cluster around a central value in the embedding space, as they all inherently reflect aspects
of the query’s semantic nature. Second, the variance observed across feature dimensions can be
interpreted as a representation of semantic differentiation in the ambient space, which aligns with
established principles in distributional semantics. Under this assumption, we can derive:

Lemma 3 Let µz′
mask

and Σz′
mask

be the Gaussian mean vector and covariance matrix of

z′mask, respectively. The lower bound of Emask

[
ÎNCE(Z

′
mask, Z

′)
]

can be obtained as follows:

Emask[ÎNCE(Z
′
mask, Z

′)]

≥ Ez′∼p(Z′)

z′Tµz′
mask

/τ − log[exp(z′Tµz′
mask

/τ +
z′TΣz′

mask
z

2τ2
) +

∑
z′

neg

exp(z
′T
negz

′
mask/τ)]

 (7)

This allows us to approximate the mutual information between the masked and unmasked represen-
tations without requiring exhaustive sampling of all possible masks. A detailed proof is given in
Appendix G.

4 Experiments

We perform experiments on both synthetic benchmarks and multiple large-scale real-world datasets to
verify the effectiveness of InfMasking in learning representations from diverse modalities. To evaluate
InfMasking’s capacity to capture three essential aspects of multimodal interactions (i.e., uniqueness,
redundancy, and synergy), we generate synthetic data in a controlled environment based on the
Trifeature dataset [22]. Furthermore, we assess the generalizability of InfMasking on several widely
used multimodal benchmark datasets involving diverse modality combinations in real-world scenarios.
These tasks span various domains (e.g., healthcare, robotics, etc.) allowing for a thorough assessment
of the model’s representation capabilities across diverse modalities. Detailed experimental settings
are provided in Appendix A. For evaluation, we use linear probing, i.e., freezing the pre-trained
feature extractor and training a linear classifier (or regressor, depending on the task) on top of the
learned representations. The downstream task performance of the linear model serves as an indicator
of the quality of the learned multimodal representations.

4.1 Synthetic Experiments on Trifeature Datasets

Following the experimental design of the Trifeature dataset in CoMM [12], we conduct con-
trolled experiments on a synthetic dataset derived from Trifeature. We assess the model’s ca-
pacity to learn uniqueness, redundancy and synergy through two separate experiments. In terms
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of uniqueness and redundancy, we define shapes as redundant features and textures as unique-
ness features. And the task involves two subtasks: (1) identifying the shared shape between two
images (redundancy) and (2) predicting the texture of the first image (or second image) (unique-
ness). The random-guessing baselines in both cases corresponds to 10%. As for synergy, we
artificially introduce a strong correlation between textures and colors by defining a mapping M
in the training set (e.g., blue maps to triangles, stripes to red), resulting in a 50% baseline for
random guessing. The model is trained on image pairs that follow this mapping. The task is to
determine whether a given image pair satisfies the mapping Y = 1(texture(X1), color(X2) ∈
M), thereby evaluating the model’s ability to capture synergistic interactions across modalities.

Table 1: Linear probing accuracy (in %) of redundancy (shape),
uniqueness (texture) and synergy (color and texture) on Trifeature
dataset. ♣ denotes results are from [12].

Model redundancy↑ uniqueness↑ synergy↑
Cross♣ [38] 100.0 11.6 50.0
Cross+Self♣ [51] 99.7 86.9 50.0
FactorCL♣ [29] 99.8 62.5 46.5
MAE [19] 99.8±0.11 82.4±3.09 50.1±0.24

CoMM [12] 99.9±0.06 86.8±2.99 71.4±3.47

InfMasking (ours) 99.9±0.09 90.6±2.31 77.0±4.22

Experimental results are
illustrated in Tab. 1. Cross-
modality constraints based
on the InfoNCE loss [38]
("Cross" model) achieve the
best performance at capturing
redundant information but
struggle with uniqueness
and synergy. FactorCL [29],
self-supervised constraints
on each encoder ("Cross +
Self" [51]) and MAE [19]
(implementation details are
provided in Appendix D.1)
improve on uniqueness but
remain limited in modeling synergy. CoMM [12] performs well across all three interactions.
However, it still has considerable room for improvement, particularly in capturing synergistic
information. In comparison, InfMasking achieves superior performance in capturing both redundancy
and synergy, outperforming CoMM by 3.8% and 5.6%, respectively.

4.2 Experiments on Real-world Datasets

We further evaluate the performance of our model on several real-world multimodal datasets provided
by Multibench [30]. These datasets span diverse modality combinations and task types, providing a
comprehensive benchmark to assess the model’s ability to learn effective multimodal representations.
Further dataset details are provided in Appendix B.

4.2.1 Experiments with 2 Modalities on Multibench

Following the data preprocessing procedure of previous work [29, 12], we conduct our experiments
using the same encoders, modality configurations and train models based on encoded inputs with
diverse modalities. We consider "Cross", "Cross+Self", FactorCL and CoMM as baselines for
comparison. As presented in Tab. 2, InfMasking consistently achieves the best performance across all

Table 2: Linear probing MSE(×10−4) for regression task and top-1 accuracy (in %) for classification
tasks on Multibench. ♣ denotes results are from [29]. ∗ denotes average is only selected from the
results of classification tasks.

Model Regression Classification

V&T EE↓ MIMIC↑ MOSI↑ UR-FUNNY↑ MUSTARD↑ Average∗ ↑

Cross♣ [38] 33.09±3.67 66.7±0.1 47.8±1.8 50.1±1.9 53.5±2.9 54.52
Cross+Self♣ [51] 7.56±0.31 65.49±0.0 49.0±1.1 59.9±0.9 53.9±4.0 57.07
FactorCL♣ [29] 10.82±0.56 67.3±0.0 51.2±1.6 60.5±0.8 55.80±0.9 58.7
CoMM [12] 7.96±2.13 66.4±0.41 63.7±2.5 63.3±0.51 64.4±1.1 64.45
InfMasking (ours) 4.23±0.37 68.1±0.42 69.0±1.2 64.3±0.9 66.8±2.5 67.05

benchmark datasets. In the binary classification tasks, InfMasking outperforms CoMM—the strongest
baseline—by 1.7%, 5.3%, 1.0%, and 2.4% on the MIMIC, MOSI, UR-FUNNY, and MUSTARD
datasets, respectively. For regression tasks, InfMasking also delivers superior results, achieving a
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lead of 3× 10−4 in terms of MSE compared to the second-best model. These experimental results
demonstrate the effectiveness of InfMasking in capturing bimodal interactions. Furthermore, its
consistently strong performance across diverse datasets highlights the generalizability and robustness
of InfMasking in real-world bimodal scenarios.

4.2.2 Experiments with 3 Modalities on Multibench

Table 3: Linear probing top-1 accuracy (in %) for clas-
sification tasks on Vision&Touch and UR-FUNNY. ♣

denotes results are from [12].

Model #Mod. V&T CP↑ UR-FUNNY↑

Cross 2 86.3±0.25 50.1♣

Cross+Self 2 87.6±0.26 59.9♣

CoMM 2 85.3±0.84 63.3±0.51

InfMasking (ours) 2 88.5±0.33 64.3±0.9

CMC♣ [41] 3 94.1 59.2
CoMM 3 94.1±0.17 64.8±1.13

InfMasking (ours) 3 94.1±0.09 65.6±1.15

We evaluate the generalizability of Inf-
Masking in learning multimodal rep-
resentations beyond two modalities.
Specifically, we conduct experiments on
two datasets: Vision&Touch (for the con-
tact prediction task, with visual, force,
and proprioceptive modalities) and UR-
FUNNY (with visual, text, and audio
modalities). CMC [41] and CoMM are
selected as baselines for comparison in
the three-modality setting.

The results are summarized in Tab. 3. To
more intuitively assess the information
gain introduced by incorporating a third
modality, we additionally report results
from bi-modal training scenarios using
CoMM, "Cross" and "Cross + Self". Specifically, we train these baselines on (1) the image and
proprioceptive modalities of the Vision&Touch dataset, and (2) the image and text modalities of the
UR-FUNNY dataset. Our experiments reveal that adding a third modality significantly enhances the
performances of CoMM and InfMasking. CoMM as a strong baseline shows performance gains of
8.8% and 1.5% on Vision&Touch and UR-FUNNY, respectively. Although InfMasking’s performance
gain from adding the third modality is relatively modest compared to CoMM, it still matches CoMM’s
performance on the Vision&Touch dataset. On the UR-FUNNY dataset, InfMasking achieves the
best result (+0.8%).

4.2.3 Experiments with 2 Modalities on Multimodal IMDb

Table 4: Linear probing F1-score (weighted and macro) (in %) for
MM-IMDB. △ indicates further training on unlabeded data. ♣ denotes
results are from [12].

Model Modalities weighted-f1↑ macro-f1↑

SimCLR♣△ [9] V 40.35±0.23 27.99±0.33

CLIP♣ [38]
V 51.5 40.8
L 51.0 43.0

V+L 58.9 50.9
SLIP♣△ [35] V+L 56.54±0.19 47.35±0.27

CLIP♣△ [38] V+L 54.49±0.19 44.94±0.30

CoMM(CLIP backbone) V+L 61.29±0.73 53.79±0.22

InfMasking(ours, CLIP backbone) V+L 62.60±0.26 55.93±0.19

Multimodal IMDb(MM-
IMDb) [2] is a real-world
multimodal, multi-label
dataset designed for movie
genre classification. It
poses two major challenges:
significant class imbalance
with genres such as comedy
and drama dominating
the label distribution,
and substantial semantic
discrepancy between visual
(poster) and textual (plot’s
description) modalities.
Since genre prediction
based on a single modality
is often unreliable and the combination of both modalities can perform better [2], this underscores the
need for effective modeling of multimodal interactions. We select both single-modal and multi-modal
as baselines. For unimodal, we choose SimCLR (image-only) [9] and CLIP (pretrained on image-text
pairs) [38]. For multimodal, we include CLIP, SLIP [35], and CoMM.

Tab. 4 summarizes the experimental results. Models trained on both modalities consistently outper-
formed their single-modality counterparts, further validating the importance of optimizing multimodal
representation learning. InfMasking achieves the best overall performance, improving upon CoMM
by 1.31% in weighted F1-score and 2.14% in macro F1-score. It is also worth noting that CLIP with
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its original public weights achieves 58.9% on weighted F1-score, outperforming CLIP fine-tuned
on MM-IMDb (54.59%). This suggests that redundant information learning may not always benefit
complex tasks such as genre prediction, which require complementary modality alignment [12].
These results demonstrate the robustness and generalizability of InfMasking in handling imbalanced,
semantically heterogeneous, and multi-label multimodal classification tasks.

5 Ablation Studies

To examine the effectiveness of the design of InfMasking, we conduct comprehensive ablation studies
on the bimodal Trifeature dataset focusing on three critical components: the loss function formulation,
the optimal number of masked views, and the masking ratio parameter.

Table 5: Linear probing accuracy (in %) of redundancy R, uniqueness U and synergy S on Trifeature
Dataset under different combinations of loss functions. λ1, λ2, and λ3 denote the weights for Lmask,∑

i Li, and L, respectively, where L and
∑

i Li correspond to the first and second terms in Eq. 1.
loss weights R U1 U2 S Average
λ1 λ2 λ3

0 0 1 95.8±1.91 85.9±2.11 83.8±2.97 58.7±7.11 80.1
0 1 1 99.9±0.06 87.1±3.31 86.5±2.60 71.4±3.47 86.0
1 1 0 99.9±0.08 90.7±2.10 91.4±3.03 69.2±6.20 87.8
1 1 1 99.9±0.09 90.3±1.52 90.8±2.88 77.0±4.22 89.5

Loss function. We conducted an ablation study on the Trifeature dataset to evaluate different
loss combinations for capturing multimodal interactions. As shown in Tab. 5, the full objective
(λ1 = λ2 = λ3 = 1, InfMasking) achieves the highest synergy at 77.0% while maintaining balanced
performance across other metrics. Using only CoMM loss (λ1 = 0, λ2 = 1, λ3 = 1) yields 71.4%
synergy, while using only L (λ1 = 0, λ2 = 0, λ3 = 1) further decreases to 58.7%, indicating that
CoMM loss alone is insufficient without the view diversity from masking. Excluding the L(i.e.,
ÎNCE(Z

′, Z ′′)) drops synergy to 69.2%, despite marginal improvements in redundancy and uniqueness
scores. As noted in CoMM [12], minimizing L enables the model to capture all information terms,
albeit at a slower rate. When this loss is removed, the model learns redundancy and uniqueness more
efficiently, achieving higher scores within the same epoch, but at the cost of diminished synergy
performance.

Number of masked views. According to Section 3.2, increasing the number of masked views yields
a closer approximation to Emask

[
ÎNCE(Z

′
mask, Z

′)
]

and Emask

[
ÎNCE(Z

′′
mask, Z

′′)
]
, albeit at a higher

computational cost. As observed in Fig. 2(a), the synergy score improves progressively with an
increasing number of views. Notably, performance is sufficiently robust when the number is in the
range of [6, 10], demonstrating practical feasibility for GPU implementation.

(a) Number of masked views. (b) Ratio of masking (%).

Figure 2: Synergy accuracy changes with different masked setting on Trifeature datasets.

Masking ratio. Fig. 2(b) illustrates the impact of varying the masking ratio. At lower ratios
(≤ 50%), although the model can capture synergistic information, the overall performance remains
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unsatisfactory. In contrast, maintaining a higher masking ratio enables the model to generate superior
multimodal representations that effectively leverage complementary information across modalities.
Furthermore, a higher masking ratio can also provide a greater speedup benefit [19].

6 Related Work

Multimodal learning. Multimodal learning integrates diverse data sources—such as text, image,
audio, and tactile inputs—to enhance information understanding across modalities [31, 36, 17, 32,
10]. Traditional approaches rely on simple fusion techniques like feature concatenation [11] or
modality-specific prediction averaging [14]. Transformer architectures revolutionized this field
through dynamic cross-modal attention mechanisms [42, 50]. Contemporary approaches typically
follow a two-stage framework: training specialized encoders for each modality, then projecting
these representations into a unified embedding space [4, 12]. This paradigm has been applied across
representation learning [5, 38], cross-modal alignment [28, 21], and generative modeling [1, 39].

Self-Supervised multimodal representation learning. Self-supervised learning generates supervi-
sion signals from data’s inherent structure [13, 24, 48, 47]. In multimodal contexts, these approaches
leverage cross-modal correspondences [53, 45]. Prior methods have explored generative approaches,
such as reconstructing one modality from another [39], and masked prediction strategies for joint
modality modeling [3]. Contrastive learning has emerged as particularly effective for multimodal
representation learning [15, 38], constructing positive pairs through data augmentation [9] and intro-
ducing both intra-modal and cross-modal objectives [34]. Some approaches incorporate regularization
terms to align representations across modalities [44].

Contrastive Multimodal Interactions. Contrastive multimodal approaches [38, 23] optimize
cross-modal contrastive loss but emphasize redundant information while neglecting unique and
synergistic information requiring joint consideration, with FactorCL [29] addressing this through
explicit modeling despite practical implementation challenges. CoMM [12] advances the field using
multimodal augmentations and information theory-grounded losses to capture various interaction
patterns, though enhancing synergistic interactions remains challenging.

7 Conclusion

This paper introduces InfMasking, a contrastive method that effectively captures synergistic informa-
tion in multimodal representation learning by stochastically occluding features during fusion and
aligning representations through mutual information maximization. We derive a computationally
efficient approximation for infinite masking patterns and demonstrate that our approach not only
enhances synergistic information extraction in controlled settings but also achieves state-of-the-art
performance across seven diverse multimodal benchmarks. InfMasking has some limitations. It
lacks a rigorous theoretical framework to systematically analyze the mechanisms of synergistic
interactions. Future research will prioritize developing comprehensive theoretical foundations to
formally characterize and measure the synergistic information.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We mainly claim ’synergistic information constitutes the fundamental value
proposition of multimodal representation’, and we propose a contrastive synergistic infor-
mation method designed to enhance synergistic information through an Infinite strategy. To
verify the effectiveness, we tested on real-world datasets across diverse domains (healthcare,
robotics) and data types (image, text, audio). InfMasking achieves state-of-the-art results on
seven multimodal tasks involving two or three modalities.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We claim the need for further application to pertaining and post-training, which
will benefit more, which is presented in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems, formulas, and proofs in the main text are properly numbered
and cross-referenced. The key proofs have been included in the appendix G for clarity and
completeness.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This study introduces InfMasking, a multimodal contrastive interaction
method that enhances synergistic Information by utilizing Infinite Masking. InfMasking
strategically masks substantial portions of features from each modality during the fusion
process, and then maximizes the mutual information between these masked fused features
and their unmasked counterparts. Through controlled experiments, we demonstrate that
InfMasking effectively enhances synergistic information between modalities. In evaluations
on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across
seven benchmarks. Detailed analysis and results can be found in Sec. 4. We also present the
key hyperparameters in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: After the anonymity period, we will open-source our training code and training
data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As shown in Appendix A, we provide comprehensive details of both training
and evaluation procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all experiments, we report the mean and standard deviation across five
independent runs with random seeds in the range [42, 46].

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A provides detailed information about the computational resources
utilized in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This study develops a representation learning model (InfMasking) using
publicly available datasets (compliant with their respective licenses) and does not involve
human participants or personally identifiable information, thus requiring no IRB approval.
We have provided detailed experimental descriptions and plan to open-source the training
code and data after the anonymity period to ensure reproducibility. The paper discusses
the method’s limitations and potential societal impacts, including bias risks and mitigation
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strategies. However, due to the absence of a formal IRB process in the research location,
we conducted an internal peer review to address ethical considerations, as suggested by the
NeurIPS guidelines. Additionally, local data privacy regulations prevent immediate data
sharing during the anonymity period, but we commit to full transparency post-anonymity.
After reviewing the NeurIPS Code of Ethics, we confirm that the study complies with most
requirements, with the noted exceptions being addressed through alternative measures.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We utilize the pre-processed datasets provided by MultiBench [30], which
have been anonymized to safeguard personal privacy. For the MM-IMDb experiments, we
employ publicly available open-source pre-trained models that adhere to established security
guidelines.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided detailed descriptions and clearly marked the sources and
citations for all models and frameworks involved in the paper within the experimental
section. For open-source code, we have included comprehensive comments and explanations
for all imported packages and foundational code used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new assets, including the training code and dataset used
for the InfMasking representation learning model. These assets are thoroughly documented
in the experimental section, which provides detailed descriptions of the model architecture,
training procedures, and dataset characteristics, along with citations to all foundational
frameworks and packages used. For the open-source code, we include comprehensive
comments explaining the functionality of imported packages and the structure of the founda-
tional code. A structured documentation template, detailing training configurations, dataset
licensing (compliant with applicable open-source licenses), and model limitations, will be
provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this work, the LLM is utilized solely for writing and editing purposes. They
do not influence the core methodology, scientific rigor, or the originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Experimental Details

Training protocol. All experiments are conducted using five independent runs with random seeds in
the range [42, 46]. We report the mean and standard deviation of performance metrics (i.e., accuracy,
mean squared error) to account for variability across runs. Early stopping based on validation accuracy
is systematically applied to prevent overfitting. The best-performing checkpoint on the validation set
is selected for final evaluation on the test set.

For dataset-specific encoder architectures, modality-specific data augmentation and latent converters,
we follow the same configurations as CoMM [12].

Training details. We use AdamW [33] as the optimizer in all experiments. Detailed hyperparameters
are listed in Tab. 6. Following [12] on MM-IMDb, we also use a cosine scheduler with final value
10−6 and a warmup over 10 epochs. And all models are trained for 100 epochs except for MM-IMDb
which is trained for 70 epochs. All experiments are conducted on a single NVIDIA 4090 GPU with
24GB memory.

Table 6: Hyperparameters for InfMasking. Masking ratio is the ratio of masking for each masked
view. The V&T CP and V&T EE are the contact prediction and end-effector position prediction tasks
on Vision&Touch dataset respectively.

dataset learning rate masking ratio number of masked views

Trifeature 3× 10−4 0.7 6
MIMIC 3× 10−4 0.8 6
MOSI 1× 10−3 0.8 5
UR-FUNNY(2 modalities) 1× 10−3 0.5 4
MUSTARD 1× 10−3 0.5 5
V&T CP(2 modalities) 1× 10−4 0.7 6
V&T EE 1× 10−4 0.5 4
MM-IMDb 1× 10−3 0.8 4
UR-FUNNY(3 modalities) 1× 10−3 0.5 4
V&T CP(3 modalities) 1× 10−4 0.8 5

Fusion module configuration. For all experiments involving InfMasking, we employ the fusion
module similar to that used in CoMM [12], which operates on a sequence of modality-specific
embeddings and is implemented as a Transformer-based encoder layer. Specifically, the architecture
consists of multi-head self-attention followed by a feed-forward network, with residual connections
and layer normalization. In the bimodal setting, we use a 1-layer Transformer with 8 attention
heads, while in the trimodal setting, a 2-layer Transformer with the same number of heads is adopted.
In addition, a learnable [CLS] token is appended to the input sequence, which serves as a global
representation aggregating information across modalities.

B Dataset Details

B.1 Trifeature

The Trifeature dataset [22] is designed to investigate the properties of visual neural networks and
comprises three distinct features: shape, color, and texture. Each feature consists of 10 categories,
resulting in 1,000 unique combinations. Of these, 800 are used for training and 200 for testing. Each
training combination is instantiated three times with random rotations applied to both shape and
texture components. Shapes are rendered within a 128 × 128 bounding box, with rotation angles
uniformly sampled from [−45◦, 45◦], and then randomly placed within a 224× 224 image canvas
while ensuring full visibility. Texture and color are independently applied in the same manner. Image
pairs are constructed from these instances, resulting in 10,000 training pairs and 4,096 test pairs, both
sampled from the same underlying distribution.
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B.2 Multibench

According to [30], all datasets below have been pre-processed to ensure the removal of any personally
identifiable information and to safeguard user privacy (some datasets don’t include any personal
information, e.g. Vision&Touch and MM-IMDb).

• MIMIC [25] comprises 53,423 hospital admissions from 38,597 distinct patients, spanning
the years 2001 to 2012. It includes two modalities: hourly clinical measurements over a
24-hour period (represented as 12-dimensional vectors, times series modality) and static
patient information such as age and gender (represented as 5-dimensional vectors, tabu-
lar modalities). The task is a binary classification problem aiming to predict whether a
patient belongs to ICD-9(International Statistical Classification of Diseases and Related
Health Problems) code group 7 (460–519), which is commonly used in studies on disease
classification [29].

• MOSI [52] consists of 2,199 video clips collected from YouTube, designed for sentiment
analysis tasks. Each sample includes video, audio signals, and corresponding text transcrip-
tions. The original annotations range continuously from -3 to 3; following the approach
in [29], these labels are binarized into positive and negative classes. The model is trained
based on textual and visual modalities.

• UR-FUNNY [18] is constructed from 1,866 TED talk videos and comprises 16,514 samples
for the task of humor detection. Each sample contains video, audio, and corresponding
text transcriptions. The objective is to determine whether a given sequence is humorous,
formulated as a binary classification problem. For the bi-modal setting, we use the textual
and visual modalities.

• MUSTARD [8] is designed for sarcasm detection and is sourced from television shows
such as Friends. It contains 690 balanced utterances, each comprising video, audio, and text
transcriptions, annotated as either sarcastic or non-sarcastic. In our experiments, we utilize
the textual and visual modalities.

• Vision&Touch [27] comprises data from robotic manipulation tasks, consisting of 150
trajectories, each with 1,000 time steps. The dataset includes RGB images, depth maps,
force measurements, and end-effector positions and velocities. The benchmark tasks are (1)
binary classification to predict whether contact will occur in the next step and (2) regression
to predict the end-effector position, evaluated using mean squared error (MSE). For the
bi-modal setting, we use the visual and proprioceptive modalities.

B.3 MM-IMDb

Multimodal IMDb (MM-IMDb) [2] is designed for movie genre prediction and comprises 25,959
films, each annotated with posters, plot summaries, genre labels, and metadata. Derived from the
Movielens 20M dataset [16], this benchmark focuses on 23-way multi-label classification. In our
experiments, we utilize the image modality (movie posters) and the text modality (plot summaries).
While MM-IMDb is part of the Multibench benchmark [30], we present it separately in our experi-
ments, as our model is trained directly on the raw data instead of relying on the pre-processed features
offered by Multibench.

C Broader Impact

This study aims to enhance the modelling of cross-modal synergy to generate more informative
multimodal representations. To ensure that InfMasking can be deployed responsibly in real-world
scenarios, we highlight several key considerations.

Computational complexity. InfMasking introduces an infinite masking strategy that maximizes the
mutual information between masked fused views and their unmasked counterparts, strengthening the
complementarity of different modalities. However, this method inevitably increases GPU memory
usage, as each additional masked view amplifies the memory footprint. We encourage future work to
explore lightweight variants that can alleviate the associated computational demands.

Privacy and security. As discussed in Section 4.2.1, the datasets used in this study span multiple
domains, including healthcare, sentiment analysis and multimedia. According to [30], all instances
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containing personal information have been rigorously anonymized and de-identified. And the
Vision&Touch and MM-IMDb datasets do not contain any personally identifiable information. All
experiments are conducted using irreversible, pre-extracted features, except for MM-IMDb, which is
processed directly from raw data; no raw or reconstructable user data is accessed, thereby minimizing
privacy risks.

Future work. Future research will focus on establishing rigorous theoretical frameworks to quantify
and formally characterize the synergistic information extracted by InfMasking. Such frameworks
would provide mathematical guarantees on information preservation while elucidating the funda-
mental limits of multimodal representation learning. Additionally, we aim to develop adaptive
masking strategies that dynamically optimize masking patterns based on task requirements and
modality-specific characteristics, potentially employing reinforcement learning to fine-tune these
configurations. These advancements would significantly enhance our capacity to model complex syn-
ergistic relationships in multimodal data, advancing the field toward more generalizable multimodal
intelligence.

D Additional Experiments

D.1 Difference with MAE

Masked Autoencoders(MAE) [19] achieve self-supervised learning through reconstruction of masked
image patches, which consist of two parts. For the encoder, it encodes randomly masked image
patches into latent features. The decoder is trained to predict the masked patches using reconstruction
loss, thereby enhancing semantic relationships between them in a single-modal (vision) setting.
InfMasking adapts and extends this masking paradigm to a contrastive multimodal context. It focuses
on aligning and extracting synergistic information from multimodal tokens (e.g., features from text,
images, audio, or tabular data) through infinite masking, emphasizing cross-modal interactions like
redundancy, uniqueness, and synergy.

Table 7: Linear probing accuracy (%) on three datasets from MultiBench [30] for MAE, CoMM, and
InfMasking models.

Dataset MIMIC UR-FUNNY MOSI average

CoMM 66.4±0.41 63.3±0.51 63.7±2.5 64.47
MAE 67.4±0.3 62.5±1.43 65.4±1.6 65.1

InfMasking 68.1±0.42 64.3±0.9 69.0±1.2 67.12

Unlike MAE, our masking approach does not mask the raw input of each modality but rather masks
the features of each modality before fusion. Furthermore, we aim to maximize mutual information
between masked and unmasked multimodal representations without reconstruction. It derives a
lower bound approximation for the InfMasking loss assuming Gaussian distributions for masked
features, making it computationally feasible for infinite views. This makes InfMasking a natural
evolution for handling diverse modalities, addressing limitations in traditional contrastive learning
(e.g., over-reliance on multiview redundancy) while preserving MAE’s core idea of using masking to
create challenging, informative views.

We further compare our InfMasking loss with MAE reconstruction loss on multiple datasets from
MultiBench [30]. The results are illustrated in Tab. 7. Under the same experimental conditions, we
randomly mask tokens across modalities, encoder forward pass with masked iuput, and decoder-based
reconstruction focused solely on masked tokens (using MSE loss averaged over masked positions).
This creates a generative baseline analogous to MAE but extended to multimodal tokens. The MAE
variant replaces the InfMasking loss component terms in Eq. (2) with reconstruction loss.

D.2 Ablation Studies of Data Augmentation on Trifeature Datasets

The InfoMin Principle [41] plays a pivotal role in self-supervised learning. It demonstrates that data
augmentation is an effective strategy for adhering to this principle, as stronger data augmentations
reduce mutual information to an optimal level. In our work, we adopt the same settings for modality-
specific data augmentation as outlined in CoMM [12]. To extend this investigation, we further explore
the influence of data augmentation strategies on the bimodal Trifeature dataset [22].
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Table 8: Impact of data augmentation on linear probing accuracy (%) for multimodal interactions.
The term "All" refers to SimCLR [9] augmentations. InfMasking applies "All" augmentations to both
modalities, consistent with CoMM.

Augmentations
R U1 U2 S AverageModality 1 Modality 2

{All} ∅ 99.78±0.08 85.28±2.88 49.89±8.73 50.0±0.0 71.24
∅ {All} 99.85±0.06 49.08±2.65 87.44±3.59 50.0±0.0 71.59

{All} \{crop} {All} 97.70±0.84 58.07±2.68 87.15±3.80 50.0±0.0 73.23
{All} {All} \{crop} 96.91±1.99 85.42±4.01 57.85±6.63 50.0±0.0 72.54

InfMasking 99.86±0.10 90.30±1.52 90.80±2.88 77.02±4.22 89.5

As shown in Tab. 8, omitting data augmentation leads to a significant degradation in model perfor-
mance, particularly in uniqueness. Notably, cropping as a critical transformation in self-supervised
learning for vision tasks [9, 20], is vital for learning synergistic representations in the Trifeature
dataset. When modality-specific cropping augmentation is omitted, the model struggles to capture
the uniqueness of the corresponding modality, resulting in an inability to effectively learn synergy.

E Analysis of Gaussian Approximation Assumption via Visualization
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Figure 3: Visualization of the distribution
of multimodal fusion embeddings and its
masked counterpars.

Based on the theoretical framework of InfMasking dis-
cussed in Sec. 3.2, we further analyze the robustness of
Gaussian approximation assumption through visualiza-
tion.

We employ dimensionality reduction to project the high-
dimensional embeddings of multimodal features and
their masked view features from the Trifeature dataset
into a two-dimensional space, which are visualized us-
ing t-SNE. As shown in Fig. 3, the masked embeddings
cluster around a central point in the projected space.
Notably, this central point aligns closely with the multi-
modal features, indicating that despite the perturbations
introduced by masking, the masked embeddings inher-
ently preserve core aspects of the synergistic semantic
nature. It uncovers the stability of synergistic integra-
tion: even when parts of modalities are obscured, the
fused representations converge toward a shared seman-
tic manifold, reflecting the emergent properties that
arise from modal complementarity rather than redun-
dancy alone. Furthermore, the dispersion of masked
embeddings similarly indicates semantic differentiation
within the ambient embedding space. The observed
variance highlights subtle nuances in how masking af-
fects the differences of representations combined from
masked view features, potentially corresponding to variations in semantic granularity—such as
implicit biases or contextual implications that become apparent only through joint modal analysis.

F Pseudo-Code

Algorithm 1 outlines the training procedure of InfMasking, formulated in the general case with n
modalities (e.g., image, text, audio, etc).

The key input components are as follows: T ⋆ denotes a set of label-preserving transformations used
for data augmentation. The fusion transformer g integrates latent features from diverse modalities.
The masked view number M ′ indicates how many masked instances are generated per modality. The
random masking operatorM stochastically obscures portions of the embedding features. And the
temperature parameter τ controls the sharpness of the total loss.

25



Algorithm 1 Multimodal contrastive interaction learning with InfMasking

1: Input: Multi-modal dataset {X1, X2, ..., Xn}, label-preserving transformations T ⋆, set of
projection transformationsP = {p1, . . . , pn}, batch size N , masked view number M ′, uni-modal
encoders (fi)i∈[1..n], fusion transformer g, random mask operatorM, temperature parameter τ .

2: for sampled mini-batch {xk}k∈[1..N ] = (x1
k, ...,x

n
k )k∈[1..N ] do

3: for k ∈ [1..N ] do
4: draw t′, t′′ ∼ T ⋆

5: x′
i,x

′′
i ← t′(xi), t

′′(xi)
6: for j ∈ [1..M ′] do
7: z′

j
mask ← g

(
M(f1(x

′1
k)), ...,M(fn(x

′n
k ))

)
8: z′′

j
mask ← g

(
M(f1(x

′′1
k)), ...,M(fn(x

′′n
k ))

)
9: end for

10: z′k ← g(f1(x
′1
k), ..., fn(x

′n
k ))

11: z′′k ← g(f1(x
′′1
k), ..., fn(x

′′n
k ))

12: for i ∈ [1..n] do
13: xi

k ← pi(xk)
14: zik ← g(fi(x

i
k))

15: end for
16: end for

17: LInfMasking ← − 1
M ′

M ′∑
k=1

[
Ez′k

mask,z
′

pos∼p(Z′k
mask,Z

′)

[
log

exp(z′k
mask

T
z′

pos/τ)

exp(z′k
mask

T z′
pos/τ)+

∑
z′neg

exp(z′k
mask

T z′
neg/τ)

]
18: +Ez′′k

mask,z
′′
pos∼p(Z′′k

mask,Z
′′)

[
log

exp(z′′k
mask

T
z′′

pos/τ)

exp(z′′k
mask

T z′′
pos/τ)+

∑
z′′neg

exp(z′′k
mask

T z′′
neg/τ)

] ]
19: for i ∈ [1..n] do

20: Li ← −
[
Ezi,z

′
pos∼p(Zi,Z

′)

[
log

exp(zT
i z′

pos/τ)

exp(zT
i z′

pos/τ)+
∑

z′neg
exp(zT

i z′
neg/τ)

]
21: +Ezi,z

′′
pos∼p(Zi,Z

′′)

[
log

exp(zT
i z′′

pos/τ)

exp(zT
i z′′

pos/τ)+
∑

z′′neg
exp(zT

i z′′
neg/τ)

] ]
22: end for

23: L ← −Ez′,z′′
pos∼p(Z′,Z′′)

[
log

exp(z′T z′′
pos/τ)

exp(z′T z′′
pos/τ)+

∑
z′′neg

exp(z′T ,z′′
neg/τ)

]

24: LTotal loss ← L+
∑n

i=1 Li + LInfMasking
25: update (fi)i∈[1..n],M, g to minimize LTotal loss
26: end for
27: return (fi)i∈[1..n], g
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G Proof

Proof 1 (lemma 3)

Emask[ÎNCE(Z
′
mask, Z

′)] (8)

= Emask[Ez′∼p(Z′)

[
log

exp(z′T z′mask/τ)

exp(z′T z′mask/τ) +
∑

z′
neg
exp(z′T

negz
′
mask/τ)

]
] (9)

= Ez′∼p(Z′)[Emask

[
log

exp(z′T z′mask/τ)

exp(z′T z′mask/τ) +
∑

z′
neg
exp(z′T

negz
′
mask/τ)

]
] (10)

= Ez′∼p(Z′)[Emask

(z′T z′mask/τ)− log[exp(z′T z′mask/τ) +
∑
z′

neg

exp(z
′T
negz

′
mask/τ)]

] (11)

≥ Ez′∼p(Z′)

z′ TEmask[z
′
mask]/τ − logEmask[exp(z

′T z′mask/τ) +
∑
z′

neg

exp(z
′T
negz

′
mask/τ)]

 (12)

The inequality Eq.(12) merges from the application of Jensen inequality on concave functions i.e.,
Ex log(X) ≤ logEx[X]. z′mask denotes the integrated representation derived from the fusion of all
masked features across diverse modalities via the Transformer architecture.

Lemma 4 Consider a random variable x that follows a multivariate Gaussian distribution, denoted
as x ∼ N (µ,Σ), where µ ∈ Rn represents the mean vector and Σ ∈ Rn×n is the covariance matrix
The moment generating function (MGF) of this random variable is given by the following expression:

Ex

[
ea

Tx
]
= ea

Tµ+ 1
2a

TΣa, (13)

where a ∈ Rn is an arbitrary constant vector.

z′T z′mask/τ According to Lemma 4, we can derive the MGF of the inequality Eq.(7) as follows:

Emask[ÎNCE(Z
′
mask, Z

′)] (14)

≥ Ez′∼p(Z′)

z′Tµz′
mask

/τ − log[exp(z′Tµz′
mask

/τ +
1

2τ2
z′TΣz′

mask
z) +

∑
z′

neg

exp(z
′T
negz

′
mask/τ)]


(15)
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